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Abstract

Methods of transfer learning try to combine knowledge from several related tasks (or do-
mains) to improve performance on a test task. Inspired by causal methodology, we relax
the usual covariate shift assumption and assume that it holds true for a subset of predictor
variables: the conditional distribution of the target variable given this subset of predictors
is invariant over all tasks. We show how this assumption can be motivated from ideas in
the field of causality. We focus on the problem of Domain Generalization, in which no ex-
amples from the test task are observed. We prove that in an adversarial setting using this
subset for prediction is optimal in Domain Generalization; we further provide examples,
in which the tasks are sufficiently diverse and the estimator therefore outperforms pooling
the data, even on average. If examples from the test task are available, we also provide a
method to transfer knowledge from the training tasks and exploit all available features for
prediction. However, we provide no guarantees for this method. We introduce a practical
method which allows for automatic inference of the above subset and provide corresponding
code. We present results on synthetic data sets and a gene deletion data set.

Keywords: Transfer learning, Multi-task learning, Causality, Domain adaptation, Do-
main generalization.

1. Introduction

Standard approaches to supervised learning assume that training and test data can be
modeled as an i.i.d. sample from a distribution P := P(X,Y ). The inputs X are often
vectorial, and the outputs Y may be labels (classification) or continuous values (regression).
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The i.i.d. setting is theoretically well understood and yields remarkable predictive accuracy
in problems such as image classification, speech recognition and machine translation (e.g.,
Schmidhuber, 2015; Krizhevsky et al., 2012). However, many real world problems do not
fit into this setting. The field of transfer learning attempts to address the scenario in
which distributions may change between training and testing. We focus on two different
problems within transfer learning: domain generalization and multi-task learning. We begin
by describing these two problems, followed by a discussion of existing assumptions made to
address the problem of knowledge transfer, as well as the new assumption we assay in this
paper.

1.1 Domain generalization and multi-task learning

Assume that we want to predict a target Y ∈ R from some predictor variable X ∈ Rp.
Consider D training (or source) tasks1 P1, . . . ,PD where each Pk represents a probabil-
ity distribution generating data (Xk, Y k) ∼ Pk. At training time, we observe a sample(
Xk

i , Y
k
i

)nk

i=1
for each source task k ∈ {1, . . . , D}; at test time, we want to predict the tar-

get values of an unlabeled sample from the task T of interest. We wish to learn a map
f : Rp → R with small expected squared loss EPT (f) = E(XT ,Y T )∼PT (Y T − f(XT ))2 on the
test task T .

In domain generalization (DG) (e.g., Muandet et al., 2013), we have T = D + 1, that
is, we are interested in using information from the source tasks in order to predict Y D+1

from XD+1 in a related yet unobserved test task PD+1. To beat simple baseline techniques,
regularity conditions on the differences of the tasks are required. Indeed, if the test task
differs significantly from the source tasks, we may run into the problem of negative transfer
(Pan and Yang, 2010) and DG becomes impossible (Ben-David et al., 2010).

If examples from the test task are available during training (e.g., Pan and Yang, 2010;
Baxter, 2000), we refer to the problem as asymmetric multi-task learning (AMTL). If the
objective is to improve performance in all the training tasks (e.g., Caruana, 1997), we call
the problem symmetric multi-task learning (SMTL), see Table 1 for a summary of these
settings. In multi-task learning (MTL), which includes both AMTL and SMTL, if infinitely
many labeled data are available from the test task, it is impossible to beat a method that
learns on the test task and ignores the training tasks.

1.2 Prior work

A first family of methods assumes that covariate shift holds (e.g., Quionero-Candela et al.,
2009; Schweikert et al., 2009). This states that for all k ∈ {1, . . . , D, T}, the conditional
distributions Y k |Xk are invariant between tasks. Therefore, the differences in the joint
distribution of Xk and Y k originate from a difference in the marginal distribution of Xk.
Under covariate shift, for instance, if an unlabeled sample from the test task is available
at training in the DG setting, the training sample can be re-weighted via importance sam-
pling (Gretton et al., 2009; Shimodaira, 2000; Sugiyama et al., 2008) so that it becomes
representative of the test task.

1. In this work, we use the expression “task” and “domain” interchangeably.
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method training data from test domain

Domain Generalization (DG)
(X1, Y 1), . . . , (XD, Y D)

T := D + 1
(X1, Y 1), . . . , (XD, Y D),XD+1

Asymm. Multi-Task Learning (AMTL)
(X1, Y 1), . . . , (XD, Y D)

T := D
(X1, Y 1), . . . , (XD, Y D),XD

Symm. Multi-Task Learning (SMTL)
(X1, Y 1), . . . , (XD, Y D)

all
(X1, Y 1), . . . , (XD, Y D),X1, . . . ,XD

Table 1: Taxonomy for domain generalization (DG) and multi-task learning (AMTL and
SMTL). Each problem can either be used without (first line) or with (second line) additional
unlabeled data.

Another line of work focuses on sharing parameters between tasks. This idea orig-
inates in the hierarchical Bayesian literature (Bonilla et al., 2007; Gao et al., 2008). For
instance, Lawrence and Platt (2004) introduce a model for MTL in which the mapping fk
in each task k ∈ {1, . . . , D, T} is drawn independently from a common Gaussian Process
(GP), and the likelihood of the latent functions depends on a shared parameter θ. A similar
approach is introduced by Evgeniou and Pontil (2004): they consider an SVM with weight
vector wk = w0+vk, where w0 is shared across tasks and vk is task specific. This allows for
tasks to be similar (in which case vk does not have a significant contribution to predictions)
or quite different. Daumé III et al. (2010) use a related approach for MTL when there is
one source and one target task. Their method relies on the idea of augmented feature space,
which they obtain using two features maps Φs(Xs) = (Xs,Xs, 0) for the source examples
and Φt(Xt) = (Xt, 0,Xt) for the target examples. They then train a classifier using these
augmented features. Moreover, they propose a way of using available unlabeled data from
the target task at training.

An alternative family of methods is based on learning a set of common features
for all tasks (Argyriou et al., 2007a; Romera-Paredes et al., 2012; Argyriou et al., 2007b;
Raina et al., 2007). For instance, Argyriou et al. (2007a,b) propose to learn a set of low
dimensional features shared between tasks using L1 regularization, and then learn all tasks
independently using these features. In Raina et al. (2007), the authors construct a similar
set of features using L1 regularization but make use of only unlabeled examples. Chen
et al. (2012) proposes to build shared feature mappings which are robust to noise by using
autoencoders.

Finally, the assumption introduced in this paper is based on a causal view on domain
adaptation and transfer.

Schölkopf et al. (2012) relate multi-task learning with the independence between cause
and mechanism. This notion is closely related to exogeneity (Zhang et al., 2015b), which
roughly states that a causal mechanism mapping a cause X to Y should not depend on
the distribution of X. Additionally, Zhang et al. (2013) consider the problem of target and
conditional shift when the target variable is causal for the features. They assume that there
exists a linear mapping between the covariates in different tasks, and the parameters of this
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mapping only depend on the distribution of the target variable. Moreover, Zhang et al.
(2015a) argue that the availability of multiple domains is sufficient to drop this previous
assumption when the distribution of Y k and the conditional Xk |Y k change independently.
The conditional in the test task can then be written as a linear mixture of the conditionals
in the source domains. The concept of invariant conditionals and exogeneity can also be
used for causal discovery (Peters et al., 2016; Zhang et al., 2015b; Peters et al., 2017).

1.3 Contribution

Taking into account causal knowledge, our approach to DG and MTL assumes that covari-
ate shift holds only for a subset of the features. From the point of view of causal modeling
(Pearl, 2009), assuming invariance of conditionals makes sense if the conditionals represent
causal mechanisms (e.g., Hoover, 1990), see Section 2.3 for details. Intuitively, we expect
that a causal mechanism is a property of the physical world, and it does not depend on
what we feed into it. If the input (which in this case coincides with the covariates) shifts,
the mechanism should thus remain invariant (Hoover, 1990; Janzing and Schölkopf, 2010;
Peters et al., 2016). In the anticausal direction, however, a shift of the input usually leads
to a changing conditional (Schölkopf et al., 2012). In practice, prediction problems are
often not causal — we should allow for the possibility that the set of predictors contains
variables that are causal, anticausal, or confounded, i.e., statistically dependent variables
without a directed causal link with the target variable. We thus expect that there is a
subset S∗ of predictors, referred to as an invariant set, for which the covariate shift as-
sumption holds true, i.e., the conditionals of output given predictor Y k |Xk

S∗ are invariant
across k ∈ {1, . . . , D, T}. If S∗ is a strict subset of all predictors, this relaxes full covariate
shift. We prove that knowing S∗ leads to robust properties for DG. Once an invariant set is
known, traditional methods for covariate shift can be applied as a black box, see Figure 1.
In the MTL setting, when labeled or unlabeled examples from the test task are available
during training, we might not want to discard the features outside of S∗ for prediction.
Hence, we also propose a method to leverage the knowledge of the invariant set S∗ and the
available examples from the test task in order to outperform a method that learns only on
the test task.

Finally, note that in this work, we concentrate on the linear setting, keeping in mind
that this has specific implications for covariate shift.

1.4 Organization of the paper

Section 2 formally describes our approach and its underlying assumptions; in particular, we
assume that an invariant set S∗ is known. For DG, we prove in Section 2.1 that predicting
using only features in S∗ is optimal in an adversarial setting. Moreover, we present an
example in which we compare our proposed estimator with pooling the training data, a
standard technique for DG. In MTL, when additional labeled examples from T are available,
one might want to use all available features for prediction. Section 2.2 provides a method
to address this. We discuss a link to causal inference in Section 2.3. Often, an invariant set
S∗ is not known a priori. Section 3 presents a method for inferring an invariant set from
data. Section 4 contains experiments on simulated and real data.
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2. Exploiting invariant conditional distributions in transfer learning

Consider a transfer learning regression problem with source tasks P1, . . . ,PD, where (Xk, Y k) ∼
Pk for k ∈ {1, . . . , D}.2 We now formulate our main assumptions.

(A1) There exists a subset S∗ ⊆ {1, . . . , p} of predictor variables such that

Y k |Xk
S∗

d
= Y k′ |Xk′

S∗ ∀k, k′ ∈ {1, . . . , D}. (1)

We say that S∗ is an invariant set which leads to invariant conditionals. Here,
d
=

denotes equality in distribution.
(A1’) This invariance also holds in the test task T , i.e., (1) holds for all k, k′ ∈ {1, . . . , D, T}.
(A2) The conditional distribution of Y given an invariant set S∗ is linear: there exists

α ∈ R|S∗| and a random variable ǫ such that for all k ∈ {1, . . . , D}, [Y k |Xk
S∗ = x]

d
=

αtx+ ǫk, that is Y k = αtXk
S∗ + ǫk, with ǫk ⊥⊥ Xk

S∗ and for all k ∈ {1, . . . , D}, ǫk
d
= ǫ.

Assumption (A1’) is stronger than (A1) only in the DG setting, where, of course, (A1’) and
(A2) imply the linearity also in the test task T . While Assumption (A1) is testable from
training data, see Section 3, (A1’) is not. In covariate shift, one usually assumes that (A1’)
holds for the set of all features. Therefore, (A1’) is a weaker condition than covariate shift,
see Figure 1. We regard this assumption as a building block that can be combined with any
method for covariate shift, applied to the subset S∗. It is known that it can be arbitrarily
hard to exploit the assumption of covariate shift in practice (Ben-David et al., 2010). In
a general setting, for instance, assumptions about the support of the training distributions
P1, . . . ,PD and the test distribution PT must be made for methods such as re-weighting
to be expected to work (e.g., Gretton et al., 2009). The aim of our work is not to solve
the full covariate shift problem, but to elucidate a relaxation of covariate shift in which it
holds given only a subset of the features. We concentrate on linear relations (A2), which
circumvents the issue of overlapping supports, for example.

For the remainder of this section, we assume that we are given an invariant subset S∗

that satisfies (A1) and (A2). Note that we will also require (A1’) for DG. In MTL, the
invariance can be tested on the labeled data available from the test task, so (A1) and (A1’)
are equivalent.

We show how the knowledge of S∗ can be exploited for the DG problem (Section 2.1)
and in the MTL case (Section 2.2). Here and below, we focus on linear regression using
squared loss

EPT (β) = E(XT ,Y T )∼PT (Y T − βtXT )2 (2)

(the superscript T corresponds to the test task, not to be confused with the transpose,
indicated by superscript t). We denote by EP1,...,PD(β) the squared error averaged over the
training tasks k ∈ {1, . . . , D}.

2. We assume throughout this work the existence of densities and that random variables have finite variance.
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(A1): ∃S∗ ⊆ {1, . . . , p} : Y |XS∗ invariant.

Covariate shift holds: Y |X{1,...,p} invariant.

Use methods for covariate
shift, applied to S∗.

Here, (A2): linear model

Figure 1: Assumption (A1) (blue) is a relaxation of covariate shift (orange): the covariate
shift assumption is a special case of (A1) with S∗ = {1, . . . , p}. Given the invariant set S∗,
methods for covariate shift can be applied.

2.1 Domain generalization (DG): no labels from the test task

We first study the DG setting in which we receive no labeled examples from the test task
during training time. Throughout this subsection, we assume that additionally to (A1)
and (A2), assumption (A1’) holds. It is important to appreciate that (A1’) is a strong
assumption that is not testable on the training data: it is an assumption about the test
task. We believe no nontrivial statement about DG is possible without an assumption of
this type.

Now, we introduce our proposed estimator, which uses the conditional mean of the
target variable given the invariant set in the training tasks. We prove that this estimator
is optimal in an adversarial setting.

Proposed estimator. The optimal predictor obtained by minimizing (2) is the condi-
tional mean

βopt := argmin
β∈Rp

EPT (β), (3)

which is not available during training time. Given an invariant set S∗ satisfying (A1), (A1’)
and (A2), we propose to use the corresponding conditional expectation as an estimator. In
other words, let βS∗

= argminβ∈R|S∗|(Y 1 − βtX1
S∗)2 be the vector obtained by minimizing

the squared loss in the training tasks using only predictors in S∗. We propose as a predictor
the vector βCS(S∗) ∈ Rp obtained by adding zeros to βS∗

in the dimensions corresponding
to covariates outside of S∗. More formally, we propose to use as a predictor

Rp → R

x 7→ E[Y 1 |X1
S∗ = xS∗ ]

and write E[Y 1 |X1
S∗ = xS∗ ] =

(
βCS(S∗)

)t
x. (4)

Because of (A1), the conditional expectation in (4) is the same in all training tasks. In the
limit of infinitely many data, given a subset S, βCS(S) is obtained by pooling the training
tasks and regressing using only features in S. In particular, βCS := βCS({1,...,p}) is the
estimator obtained when assuming traditional covariate shift.

Optimality in an adversarial setting. In an adversarial setting, predictor (4) satis-
fies the following optimality condition; as for the other results, the proof is provided in
Appendix A. We state and prove a more general, nonlinear version of Theorem 1 in Ap-
pendix A.1.
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Theorem 1 (Adversarial) Consider (X1, Y 1) ∼ P1,. . ., (XD, Y D) ∼ PD and an invari-
ant set S∗ satisfying (A1) and (A2). The proposed estimator satisfies an optimality state-
ment over the set of distributions such that (A1’) holds: we have

βCS(S∗) ∈ argmin
β∈Rp

sup
PT∈P

EPT (β),

where βCS(S∗) is defined in (4) and P contains all distributions over (XT , Y T ), T = D +
1, that are absolutely continuous with respect to the same product measure µ and satisfy

Y T |XT
S∗

d
= Y 1 |X1

S∗.

Unlike the optimal predictor βopt, the proposed estimator (4) can be learned from the
data available in the training tasks. Given a sample (Xk

1, Y
k
1 ), . . . , (X

k
nk
, Y k

nk
) from tasks

k ∈ {1, . . . , D}, we can estimate the conditional mean in (4) by regressing Y k on Xk
S∗ . Due

to (A1), we may also pool the data over the different tasks and use

(X1
1, Y

1
1 ), . . . , (X

1
n1
, Y 1

n1
), (X2

1, Y
2
1 ), . . . , (X

D
nD

, Y D
nD

)

as a training sample for this regression.
One may also compare the proposed estimator with pooling the training tasks, a stan-

dard baseline in transfer learning which corresponds to assuming that usual covariate shift
holds. Focusing on a specific example, Proposition 2 in the following paragraph shows that
when the test tasks become diverse, predicting using (4) outperforms pooling on average
over all tasks.

Comparison against pooling the data. We proved that the proposed estimator (4)
does well on an adversarial setting, in the sense that it minimizes the largest error on a
task in P. The following result provides an example in which we can analytically compare
the proposed estimator with the estimator obtained from pooling the training data, which
is a benchmark in transfer learning. We prove that in this setting, the proposed estimator
outperforms pooling the data on average over test tasks when the tasks become more diverse.

Let Xk
S∗ be a vector of independent Gaussian variables in task k. Let the target Y k

satisfy
Y k = αtXk

S∗ + ǫk , (5)

where for each k ∈ {1, . . . , D}, ǫk is Gaussian and independent of Xk
S∗ . We have Xk =

(Xk
S∗ , Zk), where

Zk = γkY k + ηk ,

for some γk ∈ R and where ηk is Gaussian and independent of Y k.3 Moreover, assume that
the training tasks are balanced. We compare properties of estimator βCS(S∗) defined in
Equation (4) against the least squares estimator obtained from pooling the training data.
In this setting, the tasks differ in coefficients γk, which are randomly sampled. We prove that
the squared loss averaged over unseen test tasks is always larger for the pooled approach,
when coefficients γk are centered around zero. In the case where they are centered around a
non-zero mean, we prove that when the variance between tasks (in this case, for coefficients
γk) becomes large enough, the invariant approach also outperforms pooling the data.

3. Using the notation introduced later in Section 2.3, this corresponds to a Gaussian SEM with DAG shown

in Fig. 3.
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Figure 2: The figure shows expected errors for the pooled approach and the proposed
method, see Equation (6). µ = 0. We consider two training tasks over 10, 000 simulations.
In each, we randomly sample the variance of each covariate in X, the variance of η, and γ.
σ2 is the same in all tasks. As predicted by Proposition Proposition 2 observe that the error
from the pooled approach (red) is systematically higher than the error from the prediction
using only the invariant subset (blue), and both the error and its variance become large as
the variance Σ2 of coefficients γk increases.

Proposition 2 (Average performance) Consider the model described previously. More-
over, assume that the tasks differ as follows: the coefficients γ1, . . . , γD, γT = γD+1 are i.i.d.
with mean zero and variance Σ2 > 0. The tasks do not differ elsewhere. In particular, the
distribution of Xk

S∗ is the same for all tasks. Then the least squares predictor obtained from
pooling the D training tasks βCS = (βCS

S∗ , βCS
Z ) satisfies:

EγT

(
EPT

(
βCS

))
≥ EγT

(
EPT

(
βCS(S∗)

))
= σ2. (6)

In particular, this implies the following:

Eγ1,...,γD,γT

(
EPT

(
βCS

))
≥ Eγ1,...,γD,γT

(
EPT

(
βCS(S∗)

))
= σ2. (7)

Moreover, if the coefficients γ1, . . . , γD, γT are i.i.d. with non-zero mean µ, (6) holds for
fixed γ1, . . . , γD if Σ2 ≥ P (µ), where P is a polynomial in µ, see Appendix A.2 for details.

The proof of Proposition 2 can be found in Appendix A.2. Figure 2 visualizes Proposition 2
for two training tasks, it shows the expected errors for the pooled and invariant approaches,
see (6), as the variance Σ2 increases. Recall that Σ2 corresponds to the variance of coeffi-
cients γk, and thus indicates how different the tasks are. The expected errors are computed
using the analytic expression found in the proof of Proposition 2. As predicted by Propo-
sition 2, the expected error of the pooled approach always exceeds the one of the proposed
method (the coefficients γk are centered around zero), see Equation (6). As Σ2 tends to
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zero, γk is close to zero in all tasks, which explains the equality of both the pooled and
invariant errors for the limit case Σ approaching 0. For coefficients γk centered around a
non zero value, Equation (6) does not necessarily hold for small Σ2.

Proposition 2 presents a setting in which the invariant approach outperforms pooling
the data when the test errors are averaged over γ, i.e., EγT

(
EPT

(
βCS

))
≥ EγT

(
EPT

(
βCS

))
.

It is also clear to see that the equality of the distribution of ǫk in Equation (5) for all
k ∈ {1, . . . , D} leads to Varγ

(
EPT

(
βCS(S∗)

))
= 0, thus our invariant estimator minimizes

the variance of the test errors across all related tasks.

2.2 Multi-task learning (MTL): combining invariance and task-specific
information

In MTL, a labeled sample
(
XT

i , Y
T
i

)nT

i=1
is available from the test task and the goal is to

transfer knowledge from the training tasks. As before, we are given an invariant set S∗

satisfying (A1) and (A2). Can we combine the invariance assumption with the new labeled
sample and perform better than a method that trains only on the data in the test task?
According to (A1) and (A2), the target satisfies Y k = αtXk

S∗ + ǫk, where the noise ǫk has
zero mean and finite variance, is independent of Xk

S∗ and has the same distribution in the
different tasks k ∈ {1, . . . , D, T}. Our objective is to use the knowledge gained from the
training tasks to get a better estimate of βopt defined in Equation (3). We describe below
a way to tackle this using missing data methods.

Missing data approach In this section, we specify how we propose to tackle MTL by
framing it as a missing data problem. While the idea is presented in the context of AMTL,
it can be used for SMTL in the same way. In order to motivate the method, assume that
for each k ∈ {1, . . . , D, T}, there exists another probability distribution Qk with density
qk having the following properties: (i) when restricted to (Xk

S∗ , Y k), Qk coincides with Pk,
(ii) the conditional qT (y |xS∗ ,xN ) coincides with pT (y |xS∗ ,xN ) on the test task and (iii)
q(y |xS∗ ,xN ) := qk(y |xS∗ ,xN ) is the same in all tasks (which is not satisfied by Pk, of
course). The goal of learning the regression model from Y on XS∗ and XN in PT coincides
with the task of learning the same regression model in QT . Property (iii) implies that we
can pool the data from all tasks Qk. This is not possible, of course, for the given data,
which we have received from the distributions Pk. But now assume that in all training
tasks, we only have access to the marginal (Xk

S∗ , Y k) from Qk. Any method that addresses
the regression under these constraints be used with the data available because of (i). We
first prove the existence of such distributions Qk:

Proposition 3 (Correctness of transfer) Let S∗ be an invariant set verifying (A1) and
(A2). For k ∈ {1, . . . , D, T}, denote by (x, y) 7→ pk(x, y) the density of Pk. Then there exists
a function q : Rp → R+ such that for each k ∈ {1, . . . , D, T}, there exists a distribution Qk

with density qk such that for all (x, y) ∈ Rd+1, for all k ∈ {1, . . . , D, T},
i) qk(xS∗ , y) = pk(xS∗ , y),
ii) qT (y |xS∗ ,xN ) = pT (y |xS∗ ,xN ),
iii) qk(y |xS∗ ,xN ) = q(y |xS∗ ,xN ).

The proof for Proposition 3 can be found in Appendix A.3. Following the previous intuition,
for the training tasks k ∈ {1, . . . , D}, we hide the data of Xk

N and pretend the data in each
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task k ∈ {1, . . . , D, T} come from Qk. Note that some of the data are only missing for the
training tasks. More precisely, Xk

N is missing for k ∈ {1, . . . , D}, while because of (i) in
Proposition 3, (Xk

S∗ , Y k) is available for all tasks k ∈ {1, . . . , D, T}. We thus pool the data
and learn a regression model of Y versus (XS∗ ,XN ) by maximizing the likelihood of the
observed data.

We formalize the problem as follows. Let (Zi)
n
i=1 = (XS∗,i,XN,i, Yi)

n
i=1 be a pooled

sample of the available data from the training tasks and the test task, in which XN,i is

considered missing if Xi is drawn from one of the training tasks. Here, n =
∑T

k=1 nk is the
total number of training and test examples. Denote by Zobs,i the components of Zi which are
not missing. In particular, Zobs,i = Zi if i is drawn from the test task and Zobs,i = (XS∗,i, Yi)
otherwise. Moreover, let Σ be a (p + 1) × (p + 1) positive definite matrix, and Σi is the
submatrix of Σ which corresponds to the observed features for example i. If example i is
drawn from a training task, Σi is of size (|S

∗|+1)×(|S∗|+1), and (p+1)×(p+1) otherwise.
The log-likelihood based on the observed data for matrix Σ satisfies:

ℓ(Σ) = const−
1

2

n∑

i=1

det (Σi)−
1

2
ZT
obs,iΣ

−1
i Zobs,i, (8)

and our goal is to find Σ which maximizes (8). This model for the likelihood assumes that
the data is multi-variate Gaussian with covariance matrix Σ.

When all data are observed, the least squares estimator βopt can be seen as the result of
a two step procedure. First, (8) is maximized for the sample covariance matrix. Then, one
computes the conditional mean E[Y |X = x] of the estimated joint distribution of (X,Y ). In
the case of missing data, however, the sample covariance matrix does no longer maximize (8),
see paragraph ‘A naive estimator for comparison’ below. Instead, we maximize (8) using
EM.

Chapter 11 in Little and Rubin (1986) provides the update equations for optimizing
Equation (8) using EM. More precisely, given an estimate Σr of the covariance matrix at
step r, the algorithm goes as follows.

E step: For an example i, we define

Zr
i :=

{
Zi if example i is from the test task,

(XS∗,i,E(X
r
N |Zobs,i), Yi) otherwise.

Here, we are essentially imputing the data forXN in the training tasks by the conditional
mean given the observed data, using the current estimate of the covariance matrix Σr.
The conditional expectation is computed using the current estimate Σr and the Gaussian
conditioning formula:

E(Xr
N |Zobs,i) = Σr

NZobs
(Σr

Zobs
)−1Zobs,i,

where Σr
NZobs

is the submatrix of Σr corresponding to the cross-covariance between XN

and (XS∗ , Y ), and Σr
Zobs

is the submatrix corresponding to the covariance of (XS∗ , Y ). For

examples from the test task, we simply copy the example, since PT = QT . Moreover, define

Cr
N,i :=

{
0 if example i is from the test task,

Cov(Xr
N |Zobs,i) = Σr

N − Σr
NZobs

(Σr
Zobs

)−1Σr
ZobsN

otherwise.

10
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M step: compute the sample covariance given the imputed data:

Σr+1 =
1

n
E

(
n∑

i=1

Zr
i (Z

r
i )

t |Zobs,i,Σ
r

)
=

1

n

n∑

i=1

Zr
i (Z

r
i )

t + Cr
i ,

where Cr
i is a (p+1)×(p+1) matrix whose submatrix corresponding to features in N is Cr

N,i,
and the remaining elements are 0. The intuition for the M step is simple: we compute the
sample covariance with the values imputed for XN . Since these values are being imputed,
matrix C adds uncertainty for the corresponding values.

Once the algorithm has converged, we can read off the regression coefficient from the
joint covariance matrix as E[Y |XS∗ = xS∗ ]. The whole procedure is initialized with the
sample covariance matrix computed with the available labeled sample from T .

Incorporating unlabeled data The previous method also allows us to incorporate un-
labeled data from the test task. Indeed, assume that an unlabeled sample XT = (XT

S∗ ,XT
N )

from the test task is also available at training time. This can be incorporated in the pre-
vious framework since the label Y can be considered to be missing (as opposed to XT

N

previously). We can then write Zr
i = (XS∗,i,XN,i,E(Y

r
i |Zobs,i)) for the unlabeled data,

thus imputing the value of Y in in the E-step by the conditional mean given (XS∗,i,XN,i).
The added covariance is then Cr

Y,i = Var(Y )r − Σr
Y Zobs

(Σr
Zobs

)−1Σr
ZobsY

. The rest of the
algorithm remains unchanged.

A naive estimator for comparison In the population setting, Proposition 5 in Ap-
pendix A.4 provides an expression for βopt as a function of α and ǫ from Assumption (A2).
As in the previous paragraph, one could try to estimate the covariance matrix of (X, Y )
using the knowledge of α and ǫ from the training tasks, and then read off the regression
coefficients. In the presence of a finite amount of labeled and unlabeled data from the test
task, a naive approach would thus plug in the knowledge of α and ǫ as follows: the entries
of Σ̂X,Y that correspond to the covariances between XS∗ and Y are replaced with Σ̂XS∗ ·α,

and the entry corresponding to the variance of Y is replaced by αtΣ̂XS∗α + Var(ǫ). This,
however, often performs worse than forgetting about α and using the data in the test domain
only, see Figure 5 (left). Why is this the case? The naive solution described above leads to
a matrix Σ that does not only not maximize (8) but that often is not even positive definite.
One needs to optimize over the free parameters of Σ, which corresponds to the covariance
between XN and Y , given the constraint of positive definiteness. For comparison, we mod-
ified the naive approach as follows. First, we find a positive definite matrix satisfying the
desired constraints. In order to do this, we solve a semi-definite Program (SDP) with a
trivial objective which always equals zero. Then, we maximize the likelihood (8) over the
free parameters of Σ with a Nelder-Mead simplex algorithm. The constrained optimiza-
tion problem can be shown to be convex in the neighborhood of the optimum (Zwiernik
et al., 2017, Sec. 3) if the number of data in the test domain grows. While gradients can
be computed for this problem, gradient-based methods seem to perform poorly in practice
(experiments are not shown for gradient based methods).

In an idealized scenario, infinite amount of unlabeled data in the test and labeled data
in the training tasks could provide us with ΣX, Σ(XS∗ ,Y ) and Var(Y ). We could then plug

in these values into Σ and optimize over the remaining parameters, see βCS(cau+,i.d.) in

11
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Figure 5 (left). In practice, we have to estimate ΣX, Σ(XS∗ ,Y ) and Var(Y ) from data. Thus,
the EM approach mentioned above constitutes the more principled approach.

2.3 Relation to causality

In this section, we provide a brief introduction to causal notions in order to motivate our
method. More specifically, we show that under some conditions, the set S∗ of causal parents
verifies Assumptions (A1) and (A1’). Structural equation models (SEMs) (Pearl, 2009) are
one possibility to formalize causal statements. We say that a distribution over random
variables X = (X1, . . . , Xp) is induced by a structural equation model with corresponding
graph G if each variable Xj can be written as a deterministic function of its parents PAG

j

(in G) and some noise variable Nj :

Xj = fj(XPA
G
j
, Nj) , j = 1, . . . , p . (9)

Here, the graph is required to be acyclic and the noise variables are assumed to be jointly
independent. An SEM comes with the ability to describe interventions. Intervening in the
system corresponds to replacing one of the structural equations (9). The resulting joint
distribution is called an intervention distribution. Changing the equation for variable Xj

usually affects the distribution of its children for example, but never the distribution of
its parents. Consider now an SEM over variables (X, Y ). Here, we do not specify the
graphical relation between Y and the other nodes: Y may or may not have children or
parents. Suppose further that the different tasks P1, . . . ,PD are intervention distributions
of an underlying SEM with graph structure G. If the target variable has not been intervened
on, then the set S∗ := PAG

Y satisfies Assumptions (A1) and (A1’). This means that as
long as the interventions will not take place at the target variable, the set S∗ of causal
parents will satisfy Assumptions (A1) and (A1’).

Recently, Peters et al. (2016) have given several sufficient conditions for the identifiability
of the causal parents in the linear Gaussian framework. E.g., if the interventions take place
at informative locations, or if we see sufficiently many different interventions, the set of
causal parents is the only set S∗ that satisfies Assumptions (A1) and (A1’). If there exists
more than one set leading to invariant predictions, they consider the intersection of all such
subsets. In this sense, seeing more environments helps for identifying the causal structure.
In this work, we are interested in prediction rather than causal discovery. Therefore, we try
to find a trade-off between models that predict well and invariant models that generalize
well to other domains. That is, in the DG setting, we are interested in the subset which
leads to invariant conditionals and minimizes the prediction error across training tasks.

If the tasks Pk correspond to interventions in an SEM, we may construct an extended
SEM with a parent-less environment variable E that points into the intervened variables.
Then, Pk equals the distribution of (X, Y ) |E = k, see (Peters et al., 2016, Appendix C). If
the distribution of (X, Y, E) is Markov and faithful w.r.t. the extended graph, the smallest
set S that leads to invariant conditionals and to best prediction is a subset of the Markov
blanket of Y : certainly, it contains all parents of Y ; if it includes a descendant of Y , this
must be a child of Y (which yields better prediction and still blocks any path from Y to
E); analogously, any contained ancestor of a child of Y must be a parent of that child.

12
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3. Learning invariant conditionals

In the previous section, we have seen how a known invariant subset S∗ ⊆ {1, . . . , p} of
predictors leading to invariant conditionals Y k |Xk

S∗ , see Assumptions (A1) and (A1’), can
be beneficial in the problems of DG and MTL. In practice, such a set S∗ is often unknown.
We now present a method that aims at inferring an invariant subset from data. Throughout
this paper, we denote by S any subset of features, while S+ is an invariant set (which is not
necessarily unique) for which (A1) holds. Such a subset S+ does not necessarily satisfy both
Assumptions (A1) and (A1’). Indeed, in DG, only (A1) is testable in the training data.
More precisely, if several invariant sets which satisfy (A1) are found, and only some of them
satisfy (A1’), we cannot find these from data. We therefore have to add a criterion allowing
us to select among several invariant sets. The method we propose provides an estimator Ŝ
for an invariant subset S+, which is chosen as the subset satisfying Assumption (A1) which
maximizes predictive accuracy on a validation set. In MTL, we still write S+, even if we
could then write S∗ as (A1’) becomes testable. It is summarized in Algorithm 1, code is
provided in https://github.com/mrojascarulla/causal_transfer_learning.

3.1 Our method.

Algorithm 1: Subset search

Inputs: Sample (xk
i , y

k
i )

nk

i=1 for tasks k ∈ {1, . . . , D}, threshold δ for independence
test.

Outputs: Estimated invariant subset Ŝ.
1 Set Sacc = {}, MSE = {}.
2 for S ⊆ {1, . . . , p} do
3 linearly regress Y on XS and compute the residuals RβCS(S) on a validation set.

4 compute H = HSICb

(
(RβCS(S),i,Ki)

n
i=1

)
and the corresponding p-value p∗ (or

the p-value from an alternative test, e.g., Levene test.).
5 if p∗ > δ then

6 compute ÊP1,...,D(βCS(S)), the empirical estimate of EP1,...,D(βCS(S)) on a
validation set.

7 Sacc.add(S), MSE.add(ÊP1,...,D(βCS(S)))

8 end

9 end

10 Select Ŝ according to RULE, see Section 3.4.

Consider a set of D tasks, a target variable Y k and a vector Xk of p predictor variables
in task k. For β ∈ Rp, we define the residual in task k as:

Rk
β = Y k − βtXk, k ∈ {1, . . . , D}. (10)

By Assumptions (A1) and (A2), there exists a subset S+ and some vector βCS(S+) such that

for all j /∈ S+, β
CS(S+)
j = 0 and R1

βCS(S+)

d
= . . .

d
= RD

βCS(S+)
. Such a set S+ is not necessarily

unique. As stated in (Peters et al., 2016), the number of invariant subsets decreases as more
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Algorithm 2: Greedy subset search

Inputs: Sample (xk
i , y

k
i )

nk

i=1 for tasks k ∈ {1, . . . , D}, threshold δ for independence
test.

Outputs: Estimated invariant set Ŝgreedy.
1 Set Sacc = {}, Ŝcurrent{}, MSE = {}.
2 for i ∈ {1, . . . , niters} do
3 Set statmin = ∞.
4 for S ∈ S

Ŝcurrent
do

5 linearly regress Y on XS and compute the residuals RβCS(S) on a validation
set.

6 compute H = HSICb

(
(RβCS(S),i,Ki)

n
i=1

)
and the corresponding p-value p∗

(or the p-value from an alternative test, e.g. Levene test.).
7 if p∗ > δ then

8 compute ÊP1,...,D(βCS(S)), the empirical estimate of EP1,...,D(βCS(S)) on a
validation set.

9 Sacc.add(S), MSE.add(ÊP1,...,D(βCS(S))),

10 set Ŝcurrent = S.

11 end
12 else if H < statmin then

13 set Ŝcurrent = S, statmin = H.
14 end

15 end

16 end

17 Select Ŝ according to RULE, see Section 3.4.

different tasks are observed at training time. We propose to do an exhaustive search over
subsets S of predictors and statistically test for equality of the distribution of the residuals in
the training tasks, see the section below. Among the accepted subsets, we select the subset Ŝ
which leads to the smallest error on a validation set. This is a fundamental difference to the
method proposed by Peters et al. (2016). Indeed, while our method addresses the transfer
problem, Peters et al. (2016) is about causal discovery. Algorithm 1 finds an invariant subset
which also leads to the lowest validation error. This subset may contain covariates which
are non causal, see Section 4.3 for further details. On the other hand, Peters et al. (2016)
estimate the causal parents (with coverage guarantee). Such an approach has a different
purpose and performs very badly both in DG and MTL: e.g., when all tasks are identical,
it uses the empty set as predictors, while our method selects the full set of predictors.

In Section 3.3, we propose two solutions for when the number of predictors p is too large
for an exhaustive search: a greedy method and variable selection. While the algorithms are
presented using linear regression, the extension to a nonlinear framework is straightforward.
In particular, linear regression can be replaced by a nonlinear regression method.
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3.2 Statistical tests for equality of distributions.

In order to test whether a subset S leads to invariant conditionals, we can use a statistical
test to check whether the residuals Rk

βCS(S) have the same distribution in all tasks k ∈

{1, . . . , D}. We propose two possible methods.

For Gaussian data, one can use a Levene test (Levene, 1960) to test whether the residuals
have the same variance in all tasks; their means are zero as long as an intercept is included
in the regression model.

As an alternative, we propose a nonparametric D-sample test by testing whether the
residuals are independent of the task index. This test is a direct application of HSIC (Gret-
ton et al., 2007) but to our knowledge, is novel. Suppose that the index of the task can
be considered as a random variable K. We consider the sample Z = (RβS ,i,Ki)

n
i=1 as

drawn from a joint distribution over residuals and task indices, where n =
∑D

k=1 nk and
Ki ∈ {1, . . . , D} is a discrete value indicating the index of the corresponding task. The
residuals have the same distribution in all training tasks if and only if RβS and K are inde-
pendent. Two characteristic kernels are used: a kernel κ is used for embedding the residuals
and a trivial kernel d such that d(i, j) = δij is used for K. Let therefore HSIC(RβS ,K)
denote the value of the HSIC (Gretton et al., 2007) between RβS and K, and let HSICb(Z)
be the corresponding test statistic. A subset S is accepted if if leads to accepting the null
hypothesis of independence between RβS and K at level δ.

Both in the case of the Levene test and the D-sample test, the test outputs a p-value
p∗, and we accept the null H0 if p∗ > δ. Among these accepted subsets, we output the set Ŝ
which leads to the smallest loss on a validation set. The test level δ is given as an input to
our method and allows for a trade-off between predictive accuracy and exploiting invariance.
As δ tends to zero, the null is accepted for all subsets and we then select all features, which
is equivalent to covariate shift. When δ approaches one, no subset is accepted as invariant.
Our method then reduces to the mean prediction. In order to compute p-values, a Gamma
approximation is used for the distribution of HSICb(Z) under the null.

For non-additive models, one may even apply a conditional independence test (e.g.,
Zhang et al., 2011; Fukumizu et al., 2008) to test whether K is independent of Y |XS .

3.3 Scalability to a large number of predictors

When the number of features p is large, full subset search is computationally not feasible.
We propose two solutions for this scenario. If one has reasons to believe that the signal is
sparse, that is the true set S∗ is small, one may use a variable selection technique such as
the Lasso (Tibshirani, 1996) as a first step. Under the assumptions described in Section 2.3,
we know that the invariant set with the best prediction in the training tasks can be assumed
to be a subset of the relevant features (which here equals the Markov blanket of Y ). Thus,
if variable screening is satisfied ,i.e., one selects all relevant variables and possibly more, the
pre-selection step does not change the result of Algorithm 1 in the limit of infinitely many
data. For linear models with ℓ1 penalization, variable screening is a well studied problem,
see, e.g., compatibility and βmin conditions (Bühlmann and van de Geer, 2011, Chapter
2.5).

Alternatively, one may perform a greedy search over subsets when full subset search is
not feasible. Denote by SS the collection of neighboring sets of a set S obtained by adding or
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X1

X2

X3

Y X5

Figure 3: Example of a directed acyclic graph, see Section 2.3. If Y is not intervened on,
the conditional Y |X1, X2, X3 remains invariant.

removing exactly one predictor in S. If no subset has been accepted at a given iteration, we
select the neighbor leading to the smallest test statistic. If a neighbor is accepted, we select
the one which leads to the smallest training error. We start with the p subsets with only
one element, and allow to add or remove a single predictor at each step, see Algorithm 2.
As often for greedy methods, there is no theoretical guarantee.

3.4 Subset selection in MTL

In DG, among the accepted subsets, we select the set Ŝ which leads to the lowest validation
error. In MTL, however, a labeled sample from the test task T is available at training
time. Therefore, Algorithm 1 is slightly modified. First, we get all the sets for which
H0 is accepted. Then, we select the accepted set Ŝ which leads to the smallest 5 fold
cross validation error. For each subset, we compute the least squares coefficients using
the procedure described in Section 2.2, and measure the prediction error on the held out
validation set. Using the notation of Algorithm 1, let Sacc be the set of subsets accepted as
invariant, and let MSE be the set of their corresponding squared errors on the validation
set. The following rules are used for selecting an invariant set in DG and MTL.

i) RULE for DG: Return Ŝ = Sacc[argminMSE].
ii) RULE for MTL: Define CVacc = {}. For each set S ⊆ Sacc, do CVacc.add(CVS),

where CVS is the 5-fold cross validation error over the labeled test data obtained by
optimizing (8) using EM with subset S.
Return Ŝ = Sacc[argminCVacc].

Given a set of k ∈ {1, . . . , T} training tasks, a collection of sets Ŝ1, . . . , Ŝu (eventually
empty) is obtained, all of which lead to accepting the null hypothesis of invariance between
the training tasks in DG. Our methods use the MSE on a validation set as a criterion for
selecting a subset among these u candidates. This is a design choice which is dependent
on the specific application, and can be modified. For instance, if being conservative is
important, the MSE may be an inappropriate choice. One may be then interested in
combining confidence intervals for the accepted sets. One idea is to consider all accepted sets
at the same time, one of which is, with probability 1−α, the set S∗ from Assumption (A1’).
These sets yield different predictions, one of which stems from S∗, again, with probability
1−α. In some settings, it might be helpful to output the whole set of predictions. If one is
interested in confidence intervals, these may be combined by taking its union. Heinze-Deml
et al. (2018) discuss this idea in the context of prediction under interventions.
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estimator description

βCS(cau) Linear regr. with true causal predictors (often unknown in practice).

βCS(Ŝ) Finding the invariant set Ŝ using full subset search and performing lin. regr. using
predictors in Ŝ. Ŝgreedy corresponds to finding the invariant set using a greedy
procedure. ŜLasso corresponds to doing variable selection using Lasso as a first
step, then doing full subset search on the selected features.

βCS Pooling the training data and using linear regr.

βCS(Ŝ+) Finding the invariant set Ŝ using full subset search and solve the optimization problem
described in ’A naive estimator for comparison’.

βCS(Ŝ♯) Finding the invariant set Ŝ using full subset search and maximizing (8) for MTL
using EM.

βmean Pooling the training data and outputting the mean of the target.
βdom Linear regression using only the available labeled sample from T .
βMTL Multi-task feature learning estimator (Argyriou et al., 2007a).
βDICA DICA (Muandet et al., 2013) with rbf kernel.
βmDA Pooling the training data and an unlabeled sample from T , learning features using

mSDA (Chen et al., 2012) with one layer and linear output, then using linear regr.

Table 2: Estimators used in the numerical experiments. A ’+’ next to a subset S corresponds
to the method for MTL described in the last paragraph of Section 2.2.

4. Experiments

We compare our estimator to different methods, which are summarized in Table 2. βCS(cau)

uses the ground truth for S∗ when it is available, βCS(Ŝ) corresponds to full search us-
ing Algorithm 1, βCS uses the pooled training data, βMTL performs the Multi-task fea-
ture learning algorithm (Argyriou et al., 2007a) for the MTL setting and βDICA performs
DICA (Muandet et al., 2013) for DG. For DICA, which is a nonlinear method, the kernel
matrices are constructed using an rbf kernel, and the length-scale of the kernel is selected
according to the median heuristic. In the MTL setting, we combine the invariance with
task specific information by optimizing (8) using EM, resulting in regression coefficients

βCS(Ŝ♯) and βCS(cau♯) when the ground truth is known. Finally, βCS(cau♯,UL) indicates that
unlabeled data from T was also available. For reference, Figure 5 (left) provides results

for βCS(Ŝ+) and βCS(cau+), which correspond to the estimators obtained by solving the
constrained optimization problem described in the paragraph ‘A naive estimator for com-
parison’ of Section 2.2 (βCS(cau+) uses the ground truth for S∗ and α), while βnaive imputes
the covariance matrices but does not optimize the free parameters. βCS(cau+,i.d.) (infinite
data) also assumes that we know the ground truth for the entries of the covariance matrix
for the test task corresponding to the covariance of X, the covariance between XS∗ and Y ,
and the variance of Y .

4.1 Synthetic data set

In this section, we generate a synthetic data set in which the causal structure of the problem
is known. For all experiments, we choose δ = 0.05 as a rejection level for the statistical
test in Algorithms 1 and 2. Moreover, we use 40% of the training examples to fit the linear
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models in Algorithms 1 and 2, and the remaining data as validation. The sensitivity to the
choice of δ is discussed in Section 4.2.

Generative process of the data For each task k ∈ {1, 2, . . . , D, T}, we sample a set of
causal variables from a multivariate Gaussian

Xk
S∗ ∼ N (0,Σk

S∗)

where the covariance matrix Σk
S∗ is drawn from a Wishart distribution W(Uk

S∗ , p), where
Uk
S∗ is computed as V k(V k)t. Here, V k is a (|S|, |S|) matrix of standard Gaussian random

variables.
The target variable Y k is drawn as

Y k = αXk
S∗ + ǫk

where ǫk ∼ N (0, 2) (the standard deviation of ǫk is 6 for the non sparse DG experiment
with 30 predictors, see the bottom of Figure 4).

We sample the remaining predictor variables as

Xk
N = γkY k + βk(Xk

S∗)C + ηk

where ηk ∼ N (0,Σk
N ). (Xk

S∗)C is a subset of Xk
S∗ of size |C| which generates both the target

Y k and XNT k. γk of size |N | is computed as γk = (1− λ)γ0 + λgk, where λ ∈ [0, 1], γ0 is
the same in all tasks while gk is task dependent. Both γ0 and gk are drawn from a standard
Gaussian. Similarly to γk, βk is a (|C|, |N |) matrix computed as βk = (1− λ)β0 + λbk. Σk

N

is sampled similarly to Σk
S∗ . Finally, α is sampled from a standard Gaussian distribution.

The generative process and hyper-parameters are the same for all the experiments (DG
and MTL).

Results Our goal is to linearly predict target Y T using predictors XT = (XT
S∗ ,XT

N ) on
the test task. Given regression coefficient β, we measure the performance in the test task
using the logarithm of the empirical estimator of EPT (β).

In Figure 4, we are in the DG setting (thus, no labeled examples from T are observed
at training). 4000 examples per training task are available for the top left and right plots,
while only 1000 examples per task are available on the bottom because of computational
reasons. We report the log average empirical MSE over left out test tasks. We study both
sparse and non sparse settings (in which full search is not feasible). On the upper left and
upper right, we see that when more than four training tasks are available, both the full
search and greedy approaches are able to recover an invariant set, and outperform pooling
the data for any number of training tasks. When more than five training tasks are observed,

βCS(Ŝ) performs like βCS(cau), which uses knowledge of the ground truth. On the bottom,

full search is not feasible, and βCS(Ŝgreedy) outperforms other approaches.
In Figure 5 (top left), we consider an AMTL setting, in which large amounts of labeled

data (36000) from the training tasks and unlabeled data from the test task (50000) are
available. Both S and N are of size 3, such that X is 6-dimensional. For all MTL experi-
ments, 6 training tasks are available. We report the percentage of simulations for which the
population MSE of a given approach outperforms βdom. We see that βCS(cau+,i.d.) systemat-

ically outperforms βdom. Moreover, βCS(cau+) and βCS(Ŝ+) also perform well, and positive

18



Invariant Models for Causal Transfer Learning

2 3 4 5 6
# of training tasks T

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
gM

SE

CS

CS(S)

CS(Sgreedy)

CS(cau)

mean

mSDA

DICA

2 3 4 5 6
# of training tasks T

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
gM

SE

CS

CS(S)

CS(Sgreedy)

CS(cau)

mean

mSDA

DICA

2 3 4 5 6 7 8 9 10 11
# of training tasks T

3.6

3.8

4.0

4.2

4.4

lo
gM

SE

CS

CS(Sgreedy)

CS(cau)

mean

mSDA DICA

Figure 4: DG setting. Logarithm of the empirical squared error in the test task for the
different estimators in the DG setting. The results show averages and 95% confidence
intervals for the mean performance over 100 repetitions. We vary the number of tasks
D available at training time. Upper left: both S and N are of size 3, such that X is 6-
dimensional. |C| is of size one. Upper right: 30 noise variables are added to X. Variable

selection using the Lasso is used prior to computing βCS(Ŝ), while βCS(Ŝgreedy) uses all
predictors. Bottom: both S and N are of size 15. Full search is not computationally
feasible in this setting and only the greedy procedure can be used. Other methods such
as βCS , βmSDA and βDICA often perform badly, which explains why in comparison βmean

appears to performs well.

transfer is effective. However, a prohibitively large amount of labeled and unlabeled data
is needed for these approaches, and the differences become non-significant for all methods
except βCS(cau+,i.d.). This shows the limitation of this family of approaches. In a setting
with only 900 examples per training task in SMTL, we plot in Figure 6 the histogram of the
error difference ∆ = E(βdom)− E(β) for βCS(cau♯). Figure 5 (top right) corresponds to the
same setting, but we vary the number of unlabeled data available (we only plot methods
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Figure 5: MTL setting. Percentage of repetitions (out of 100) for which the corresponding
method outperforms βdom (or βCS(cau♯) for the top right plot). Both S and N are of size 3,
such that X is 6-dimensional. Upper left: AMTL setting. This plot shows that the methods

βCS(Ŝ+) and βCS(cau+) presented in Section 2.2 perform well, but a large amount of data is
necessary: 50000 unlabeled examples from T and 36000 training examples are available. The
naive method βnaive performs poorly. Upper right: in the SMTL setting, we fix the number
of training data (500 per task) and vary the amount of unlabeled data available from the test
task. We report the percentage of scenarios in which the corresponding method outperforms
βCS(cau♯) this time (which uses no unlabeled data). While βmDA always performs worse than
βCS(cau♯) and does not exploit the unlabeled data, we see that βCS(cau♯,UL) performs better
as the amount of unlabeled data increases. Bottom: SMTL setting, and we vary the number
of labeled examples available in each training task. Here, significantly less labeled data was
available in the training tasks (from 50 to 1000 per task). In this setting, the methods
using unlabeled data were given 100 unlabeled examples. Bottom left: logarithm of the
empirical squared error in the test task for different estimators. Bottom right: percentage
of repetitions (out of 100) for which the corresponding method outperforms βdom.

that use unlabeled data, and βCS(cau♯) is used as reference instead of βdom). In Figure 5
(bottom) we consider an SMTL setting in which only 100 unlabeled data points are avail-
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Figure 6: In the SMTL setting, 900 examples from each of the training tasks are available
(this corresponds to the data point furthest to the right in the bottom plot of Figure 5).
We run 100 repetitions and plot the histograms of ∆ = E(βdom) − E(βCS(cau♯)). The
proposed estimator outperform βdom: for a large proportion of the repetitions, ∆ > 0.
More importantly, the distribution of ∆ is heavily skewed in the positive values. In other
words, when βdom outperforms βCS(cau♯), the difference in performance is small, while the
difference is often larger for the converse.

able, and only few labeled examples are available in each task. Here, we see that βCS(cau♯),

βCS(Ŝ♯) and βMTL perform well, while other methods do not. In terms of MSE (bottom
left), the difference in performance between the top competing methods is not statistically
significant.

Time complexity The most expensive component of our method is the estimation of the
invariant subset. In the DG experiment in Figure 4, with n = 4000 examples available for
each of the 6 tasks, and p = 6 predictors, full subset search takes 0.067 seconds and greedy
search 0.037, where the results are averaged over 100 repetitions. With p = 10, full search
averages at 1.57 seconds, and greedy search 0.0396. With p = 30, where full search is not
feasible, greedy search averages at 1.21 seconds. In the MTL experiment in Figure 5, the
EM algorithm runs for 0.00105 seconds on average over 100 repetitions. As a reference, in
MTL, linear regression averages at 0.000301 seconds and mSDA at 0.0547 seconds.

4.2 Sensitivity to the acceptance level δ

Both Algorithm 1 and its greedy version Algorithm 2 receive an acceptance level δ as input
for the statistical test. In our other experiments, we chose the standard value of δ = 0.05.
Figure 8 shows the error on the test tasks in the DG setting for both methods for different
values of δ. The setting is the same as in the left of Figure 4 for three training tasks. βCS

and βCS(cau) are provided as reference. For δ = 0, all subsets are accepted as invariant,
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Figure 7: Left : SMTL setting with 6 tasks and 900 examples per task. We plot the percent-
age of repetitions (over 100) for which the given methods outperform βdom, as a function
of the size of the invariant set S∗. We see that as S∗ becomes larger, more information
is transferred from the training tasks, and as such the performance of βCS(cau♯) improves.
When S∗ is the full set, our method behaves like pooling the data. Right : Covariates se-
lected by Algorithm 1 when the training tasks contain interventions only on some of the
covariates. The bars represent the percentage of repetitions (out of 100) for which the cor-
responding covariates were selected. When there are no interventions in the training tasks,
meaning that all the training tasks follow the same distribution, Algorithm 1 systematically
selects all covariates for prediction. When more interventions are performed, however, the
corresponding covariates (in red) are excluded in a large number of the repetitions.

thus both methods behave like pooling the data. After a critical value of δ, no subset is
accepted, and both algorithms return the subset with the largest p-value.

4.3 Informativeness and subset estimation

The estimation of an invariant subset involves finding a subset for which the residuals have
the same distribution across tasks. It is desirable, however, that the selected subset is one
which explains the data best. This is ensured by selecting the subset which leads to the
smallest error on a validation set. Therefore, some covariates in N may be included in a
selected subset if there are no interventions on this covariates in the training tasks. More
precisely, if including a covariate does not lead to a statistically measurable difference in
the distribution of the residuals between the training tasks, it is advantageous in general to
include it in the selected subset since the data is better explained.

We illustrate this in Figure 7 (right) in the setting previously described with p = 6.
We estimate an invariant subset using Algorithm 1 over 100 repetitions in the following
scenarios: i) all the covariates have the same distribution across tasks, ii) one, two or three
covariates in N are subject to interventions between the tasks. Figure 7 (right) show the
proportion of repetitions for which each covariate is included in the selected subset. We
see that, as expected, covariates in N for which there are no interventions are included
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Figure 8: Logarithm of the empirical squared error in the test task in the DG setting
as a function of the acceptance level of the statistical test δ in Algorithm 1. The setup
corresponds to t = 3 in Figure 4 (left), also over 100 repetitions. For δ = 0, all subsets
are accepted, so the full set of predictors, which minimizes the validation squared error,
is selected. Algorithm 1 then returns βCS . As δ increases, no subset is accepted, and
Algorithm 1 returns the subset with the largest p-value.

in the selected subset in a large portion of the repetitions, while the other covariates are
excluded. This highlights that Algorithm 1 can only exclude covariates whose distribution
shifts between training tasks. If being conservative is important for the problem at hand,
one can modify Algorithm 1 accordingly, see the end of Section 3.4.

Moreover, in Figure 7 (left) we consider a similar setting, and we compute the perfor-
mance against βdom in an SMTL setting as the size of the invariant set increases. We see
that as the size of the invariant set increases, the performance of βCS(cau♯) improves, since
more information is being transferred from the training tasks. When p = 6, traditional
covariate shift holds, and βCS(cau♯) performs on par with βpool.

4.4 Gene perturbation experiment

We apply our method to gene perturbation data provided by Kemmeren et al. (2014).
This data set consists of the m-RNA expression levels of p = 6170 genes X1, . . . , Xp of the
Saccharomyces cerevisiae (yeast). It contains both nobs = 160 observational data points
and nint = 1479 data points from intervention experiments. In each of these interventions,
one known gene (out of p genes) is deleted. In the following, we consider two different tasks.
The observational sample is drawn from the first task, and the pooled nint interventions are
drawn from the second task.

Motivation In order to gain an intuition about the experiments we are presenting, con-
sider Figure 9. We select as a target a gene Y out of the p genes, and our goal is to predict
the activity of Y given the remaining p− 1 genes as features. Some of these p− 1 genes are
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Figure 9: Example of the expression of pairs of genes, where A is causal (left) and B is
non-causal (right) of target Y . The blue points are from the observational sample (task 1),
the red dots are the interventional sample (task 2), and the green point corresponds to the
single interventions in which A and B are intervened on respectively. On the left, a model
learned on the data in red and blue would still perform well on the intervention point, which
is not the case on the right.

causal of the activation of Y . For example, Figure 9 shows on the x-axis the activity of two
genes (gene A on the left, gene B on the right) such that:

• The expressions of A and B are strongly correlated with the expression of Y .
• A is causal of Y (here, we use the definition of a causal effect proposed by Peters et al.
(2016)).

• B is non-causal of Y (anticausal or confounded).

In Figure 9 (left), the blue points correspond to the 160 data points from the observational
sample, which corresponds to the first task. The red dots are the 1478 data points from the
interventional sample, except for the single data point for which A is intervened on, and
constitute the second task. The plot on Figure 9 (right) is constructed analogously for B.
We can indeed see that in the pooled sample from task 1 and 2, A and B are both strongly
correlated with target Y .

The key difference between both plots are the green points. On Figure 9 (left), the
green dot corresponds to the single intervention experiment in which gene A is intervened
on. Similarly, the green dot on Figure 9 (right) is the single point in which B is intervened
on. Our goal is to consider the DG setting in which the test task consists on this single
intervention point.

For the causal gene A, one expects that a change in the activity of A should translate
into a proportional change in the activity of Y . We observe that, in the particular example
of the left plot, a linear regression model from A to Y trained only on the pooled data
from tasks 1 and 2 (blue and red in Figure 9) would lead to a small prediction error on the
intervened point (in green). That is, S∗ = {A}might be a good candidate for a set satisfying
Assumptions (A1), (A1’) and (A2). For the non-causal gene B, however, intervening on B
leaves the activity of Y unchanged, and the linear model learned on the data from tasks
1 and 2 performs badly on the test point in green. In such case, a candidate set is the
empty set S∗ = {}, leading to prediction using the mean of the target in the training data.
A model which is aiming to test in these challenging intervention points should therefore
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include causal genes as features, but exclude non-causal genes. In these experiments, we
aim at testing whether we can exclude non-causal genes such as B automatically.

Setup We address the problem of predicting the activity of a given gene from the remain-
ing genes. We are looking at the following:

• We consider p different problems. In each problem j ∈ {1, . . . , p}, we aim at pre-
dicting the activity Y = Xj of gene j using (Xℓ)ℓ 6=j as features.

• In each problem j ∈ {1, . . . , p}, two training tasks k ∈ {1, 2} are available. The data
from the first task is the observational sample, and the data from the second task are
all the nint interventions (we shall subsequently remove some points for testing, see
below).

The goal is now to apply our method to each of the problems and estimate an invariant
subset. Due to the large number of predictors, we first select the 10 top predictor variables
using the Lasso and then apply Algorithm 1 to select a set of invariant predictors Ŝ, see

βŜLasso in Table 2. We denote the indices of the features selected using Lasso by L =
(L1, . . . , L10).

The procedure is then evaluated as follows: for each problem j ∈ {1, . . . , p}, we first find
the genes in (XL1 , . . . , XL10) for which an interventional example is available. Note that
this might not hold for all selected genes, since only nint < p interventions are available.
We then iterate the following procedure (this is within the context of the same problem):
for each gene in (XL1 , . . . , XL10) for which an intervention is available,

• we put aside the example corresponding to this intervention from the training data
(in the motivation example, this would correspond to the green point).

• we estimate an invariant subset Ŝ ⊆ L using Algorithm 1 with the remaining obser-
vational and interventional data.

• we test all methods on the single intervention point which was put aside.

We expect two different scenarios, as explained in the motivation paragraph above: (1) if
the intervened gene is a cause of the target gene, it should still be a good predictor (see
Section 2.3); then, it should be beneficial to have this gene included in the set of predictors
Ŝ. (2) if the intervened gene is anticausal or confounded (we refer to this scenario as
non-causal), the statistical relation to the target gene might change dramatically after the
intervention and therefore, one may not want to base the prediction on this gene. In order
to see this effect and understand how the different approaches for DG in Table 2 handle the
problem, we consider two groups of experiments.

(1) we select the target genes Y for which one of the features in L is causal for the activity
of Y and for which an intervention experiment is available. 39 problems fall in this
causal scenario.

(2) out of the remaining problems we chose target genes with (non-causal) predictors that
have been intervened on and — in order to increase the difficulty of the problem —
that are strongly correlated with the target gene. We therefore select 269 cases for
which a Pearson correlation test (the null hypothesis corresponds to no correlation)
outputs a p-value equal to zero.

Results Figure 10 shows box plots for the errors of the different methods for the causal
problems (1) on the top left and for the non-causal problems (2) in the top right. We do
not plot outliers in order to improve presentation. Figure 10 (top left) presents the causal
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Figure 10: In the causal problems (top left), interventions are performed on causal genes.
As expected, the input genes continue to be good predictors, and βCS works well. In the
non-causal problems (top right), one of the inputs is intervened upon and becomes a poor
predictor, impairing the performance of βCS . The mean predictor βmean uses none of the
predictors, and therefore works comparatively well in this scenario. Our proposed estimator

βCS(Ŝ) provides reasonable estimates in both the causal and non-causal settings, while other
methods only perform well in one of the scenarios. βDICA performs similarly to βmean in
both scenarios, and is therefore outperformed by other methods in the causal problems
(note that βDICA uses all available features). Bottom: in the non-causal scenario (2), we
plot the number of test genes for which the squared error for βCS is larger than τ times the

squared error for βCS(Ŝ), and vice-versa, where τ is plotted on the x-axis. This plot shows
the number of genes for which one of the method does significantly worse than the other.

By this measure, βCS(ŜLasso) outperforms βCS for all values of τ .

scenario. As expected, pooling does well in this setting. Figure 10 (bottom) shows that
in the non-causal problems (2), prediction using an invariant subset leads to less severe
mistakes on test genes compared to pooling the tasks.

For comparison, since we know which predictors are being intervened on at test time,
we included a method that makes use of causal knowledge: βCS(cau) uses all 10 predictors
in the causal problems (1) and all but the intervened gene in the non-causal problems (2).
In practice, this causal knowledge is often not available. We regard it as promising that the

fully automated procedure βCS(ŜLasso) performs comparably to βCS(cau).
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5. Conclusions and further directions

We propose a method for transfer learning that is motivated by causal modeling and exploits
a set of invariant predictors. If the underlying causal structure is known and the tasks
correspond to interventions on variables other than the target variable, the causal parents
of the target variable constitute such a set of invariant predictors. We prove that predicting
using an invariant set is optimal in an adversarial setting in DG. If the invariant structure
is not known, we propose an algorithm that automatically detects an invariant subset,
while also focusing on good prediction. In practice, we see that our algorithm successfully
finds a set of predictors leading to invariant conditionals when enough training tasks are
available. Our method can incorporate additional data from the test task (MTL) and yields
good performance on synthetic data. Although an invariant set may not always exist, our
experiment on real data indicates that exploiting invariance leads to methods which are
robust against transfer.

As we saw in the DG and MTL experiments, βŜ does not always performs as well as βcau,
which uses the ground truth. We believe that alternative methods for estimating the set Ŝ
may close this gap. Furthermore, extending our framework to nonlinearities seems straight-
forward and may prove to be useful in many applications. For instance, we provide a general,
nonlinear version of Theorem 1 in Appendix A. Moreover, Algorithms 1 and 2 are presented
in a linear setting. However, the extension to a nonlinear framework is straightforward. In
particular, the linear regression can be replaced by a nonlinear regression method. We
expect that there may be feature maps leading to invariant conditionals that are different
from a subset.

We expect our method to be favorable in (adversarial-like) situations with strong dif-
ferences between the tasks, such as the gene experiment in Section 4.4. We also evaluated
our method on the School dataset (Bakker and Heskes, 2003), but found that we do not
do better than pooling the data (we also do not do worse, the results are not shown). We
believe this may be due to the fact that the difference between the tasks in this dataset are
not too large.

We believe, finally, that the link to causal assumptions and the exploitation of causal
structure may lend itself well to proving additional theoretical results on transfer learning.

27



Rojas-Carulla and Schölkopf and Turner and Peters

Appendix A.

In this Appendix, we provide proofs for the theoretical results in the paper, as well as an
extension of Theorem 1.

A.1 A nonlinear extension of Theorem 1

The extension of Theorem 1 to a nonlinear setting is straightforward. Given a subset
S∗ leading to invariant predictions, the proposed predictor is defined as the conditional
expectation

fS∗ :
Rp → R

x 7→ = E[Y 1 |X1
S∗ = xS∗ ].

(11)

The following theorem states that fS∗ is optimal over the set of continuous functions C0 in
an adversarial setting.

Theorem 4 Consider D tasks (X1, Y 1) ∼ P1,. . ., (XD, Y D) ∼ PD that satisfy Assump-
tion (A1). Then the estimator fS∗ in (11) satisfies

fS∗ ∈ argmin
f∈C0

sup
PT∈P

E(XT ,Y T )∼PT

(
Y T − f(XT )

)2
,

where P contains all distributions over (XT , Y T ) that are absolutely continuous with respect

to the same product measure µ and satisfy Y T |XT
S∗

d
= Y 1 |X1

S∗ .

Proof
Consider a function f that is possibly different from fS∗ , see (11). For each distribution

Q ∈ P, we will now construct a distribution P ∈ P such that
∫
(y − f(x))2 dP ≥

∫
(y − fS∗(x))2 dQ .

In this proof, we assume that the probability distributions in P are absolutely continuous
with respect to Lebesgue measure. The extension to the case where they are absolutely
continuous with respect to a same product measure µ is straightforward. Let us therefore
assume that Q has a density (x, y) 7→ q(x, y). Define P to be the distribution that corre-
sponds to p(x, y) := q(xS∗ , y) · q(xN ), where xN contains all components of x that are not
in S∗. In the distribution P, the random vector XN is independent of (XS∗ , Y ). But then

∫
(y − f(x))2 dP

=

∫

xN

∫

xS∗ ,y

(y − f(xS∗ ,x))2 p(xS∗ , y) dxS∗ dy p(xN ) dxN

≥

∫

xN

∫

xS∗ ,y

(y − fS∗(xS∗))2 p(xS∗ , y) dxS∗ dy p(xN ) dxN

=

∫

x,y

(y − fS∗(xS∗))2 q(xS∗ ,xN , y) dxS∗ dy dxN

=

∫
(y − fS∗(x))2 dQ.
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A.2 Proof of Proposition 2

We consider three variables and the following generative process: Y k = αtXk
S∗ + ǫk, Zk =

γkY k+ηk, where ǫk ∼ N (0, σ2), ηk ∼ N (0, σ2
η) and (Xk

S∗)j ∼ N (0, (σX)2j ). In this model, γk

is the parameter responsible for the difference between the tasks, while the other parameters
are shared between the tasks.

At training time, D tasks are available. We first aim to obtain an explicit formula for
the linear regression coefficients βCS = (βCS

S∗ , βCS
Z ) obtained from pooling all the training

tasks together. Denote by X, Y and Z the pooled training data. For fixed γ1, . . . , γD, the
expected loss in the training data satisfies for coefficient β verifies:

E

((
Y − (βX)tX− βZZ

)2)
=

1

D

D∑

k=1

E

(
Y k − (βX)tXk − βZZ

k
)2

= βt
Xdiag(σ2

X)βX +
β2
Z

D

(
σ2
ηD + VY γ2

)
+ 2(βZ

γ̄

D
− 1)αtdiag(σ2

X)βX + VY − 2
γ̄

D
VY βZ ,

(12)

where VY = αtdiag(σ2
X)α + ǫ2. By differentiating (12) with respect to β, we obtain the

following expression for the pooled coefficients:

βCS
Z =

γ̄σ2

V 2
Y γ

2 +Dσ2
η −

γ̄2

D
αtdiag(σ2

X)α
and βCS

S∗ = (1−
γ̄

D
βCS
Z )α,

where γ2 =
∑D

k=1(γ
k)2 and γ =

∑D
k=1 γ

k. Consider now an unseen test task with coefficient
γT . The expected loss on the test task using the pooled coefficients is:

EPT (βCS) = E
(
(Y T − (βCS

X )tXT − βCS
Z ZT )2

)
=
(
βCS
X

)t
diag(σ2

X)βCS
X + (βCS

Z )2
(
VY (γ

T )2 + σ2
η

)

+ 2βCS
Z γTαtdiag(σ2

X)βCS
X + VY

− 2αtdiag(σ2
X)βCS

X − 2βCS
Z VY γ

T . (13)

Therefore, the expectation with respect to γT is:

EγT

(
EPT (βCS)

)
= (βCS

X )tdiag(σ2
X)βCS

X + (βCS
Z )2

(
VY Σ

2 + σ2
η

)
+ VY − 2αtdiag(σ2

X)βCS
X

Denote by EPT (βS) = σ2 the expected loss when using the invariant conditional predictor
βS∗

= (α, 0). Then:

EγT

(
EPT (βCS)

)
≥ EγT

(
EPT (βS∗

)
)

⇔ (βCS
X )tdiag(σ2

X)(βCS
X ) + (βCS

Z )2
(
VY Σ

2 + σ2
η

)
+ VY − 2αtdiag(σ2

X)βCS
X ≥ σ2

⇔ (βCS
Z )2

(
VY Σ

2 + σ2
η

)
≥ 2αtdiag(σ2

X)βCS
X − (βCS

X )tdiag(σ2
X)βCS

X − αtdiag(σ2
X)α

⇔ (βCS
Z )2

(
VY Σ

2 + σ2
η

)
≥ −

γ̄2

D2
(βCS

Z )2αtdiag(σ2
X)α, (14)

by replacing βCS
X = α − α γ

D
βCS
Z . This inequality holds true for any value of the variance

Σ2, and the pooled coefficient leads to larger error in expectation.
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Consider now that the coefficients γk are fixed and centered around a non-zero value µ.
Then the expectation with respect to γT of the loss in the test task is the following:

EγT

(
EPT (βCS)

)
= (βCS

X )tdiag(σ2
X)βCS

X + (βCS
Z )2

(
VY (Σ

2 + µ2) + σ2
η

)

+ 2βCS
Z αtdiag(σ2

X)βCS
X µ+ VY − 2αtdiag(σ2

X)βCS
X − 2βCS

Z VY µ. (15)

Then, if γ̄ 6= 0 (if γ̄ = 0, both estimators coincide):

EγT

(
EPT (βCS)

)
≥ EγT

(
EPT (βS∗

)
)

⇔ Σ2 ≥ P (µ), (16)

where P (µ) = −µ2 − 2
βCS
Z

((
1− γ̄

D
βCS
Z

) αtdiag(σ2
X)α

VY
− 1

)
µ− γ̄2

VY D2α
tdiag(σ2

X)α+
ση

VY
.

A.3 Proof of Proposition 3

Proof For k ∈ {1, . . . , D, T}, let Qk be the probability distribution with density:

qk(xS∗ ,xN , y) := pk(xS∗ , y)pT (xN |xS∗ , y). (17)

In the test task T , we trivially have qT = pT . First, it is easy to see that qk and pk have
the same marginal distribution over xS∗ and y. Indeed:

qk(xS∗ , y) =

∫

R|N|

qk(xS∗ ,xN , y)dxN

=

∫

R|N|

pk(xS∗ , y)pT (xN |xS∗ , y)dxN

= pk(xS∗ , y)

∫

R|N|

pT (xN |xS∗ , y)dxN = pk(xS∗ , y). (18)

Second, we prove that the conditional qk(y |xS∗ ,xN ) is the same in all tasks. Indeed, by
applying Bayes’ rule:

qk(y |xS∗ ,xN ) = qk(xN | y,xS∗)
qk(y,xS∗)

qk(xS∗ ,xN )

= pT (xN | y,xS∗)
qk(y |xS∗)

qk(xN |xS∗)

= pT (xN | y,xS∗)
pk(y |xS∗)∫

R
qk(y,xN |xS∗)dy

= pT (xN | y,xS∗)
pk(y |xS∗)∫

R
qk(xN | y,xS∗)qk(y |xS∗)dy

= pT (xN | y,xS∗)
pk(y |xS∗)∫

R
pT (xN | y,xS∗)pk(y |xS∗)dy

.

We have used the fact that qk(xN | y,xS∗) = pT (xN | y,xS∗), which follows from (18). Since
the last equality leads to a term which is equal in all tasks (indeed, Assumption (A1) ensures
that pk(y |xS∗) is the same for all k ∈ {1, . . . , D, T}), we have the desired result.
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A.4 Statement and proof of Proposition 5

In this Section, we provide an analytic expression for βopt from (3) in terms of α and ǫ.

Proposition 5 Assume that XS∗ follows an arbitrary distribution and that Assumptions (A1)
and (A2) hold. Let γ ∈ R|N | be the solution of an L2 regression from XT

N on Y T . There-
fore, we can write XT

N = γY T + η, with η uncorrelated to Y T , and the components of η can
be correlated. Then the regression coefficients βopt = (βopt

S∗ , β
opt
N ) minimizing the expected

squared loss in the test task satisfy

βopt
N = E(ǫ2)M−1γ , (19)

βopt
S∗ = α

(
1− (γT )tβT

N

)
− Σ−1

X,S∗ΣX,NβN , (20)

where M = E(ǫ2)γγt + ΣN − Σt
X,NΣ−1

X,S∗ΣX,N , and ΣN := E(ηηt), ΣX,S∗ := E(XS∗Xt
S∗),

ΣX,N := E(XS∗ηt) are the corresponding Gram matrices.4

Proof To simplify notation, we write Y T , XT
S∗ and XT

N as Y , XS∗ and XN . We compute
the gradients of the expected squared loss after replacing the expression for Y and XS∗ :

L = E(Y − βt
S∗XS∗ − βt

NXN )2

= (α(1− γtβN )− βS∗)tΣX,S∗(α(1− γtβN )− βS∗)

+ (1− βt
Nγ)2E(ǫ2) + βt

NΣNβN − 2(α(1− γtβN )− βS∗)tΣX,NβN

The gradients satisfy

∂L

∂βS∗
= −2ΣX,S∗(α(1− γtβN )− βS∗) + 2ΣX,NβN

1

2

∂L

∂βN
= ΣNβN − (1− γtβN )E(ǫ2)γ + γαtΣX,NβN

− γαtΣX,S∗(α(1− γtβN )− βS∗)− Σt
X,N (α(1− γtβN )− βS∗)

By setting these to zero, we find the stated values for βopt
S∗ and βopt

N .

Appendix B.

The code to reproduce the experiments in the paper can be found in
https://github.com/mrojascarulla/causal_transfer_learning.

4. We dropped the superscript T to lighten the notation.
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