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Invariant object recognition is a 
personalized selection of invariant 
features in humans, not simply 
explained by hierarchical feed-
forward vision models
Hamid Karimi-Rouzbahani1,2,3, Nasour Bagheri1 & Reza Ebrahimpour  3,2

One key ability of human brain is invariant object recognition, which refers to rapid and accurate 

recognition of objects in the presence of variations such as size, rotation and position. Despite decades 

of research into the topic, it remains unknown how the brain constructs invariant representations 

of objects. Providing brain-plausible object representations and reaching human-level accuracy in 

recognition, hierarchical models of human vision have suggested that, human brain implements similar 

feed-forward operations to obtain invariant representations. However, conducting two psychophysical 

object recognition experiments on humans with systematically controlled variations of objects, we 

observed that humans relied on specific (diagnostic) object regions for accurate recognition which 
remained relatively consistent (invariant) across variations; but feed-forward feature-extraction models 
selected view-specific (non-invariant) features across variations. This suggests that models can develop 
different strategies, but reach human-level recognition performance. Moreover, human individuals 
largely disagreed on their diagnostic features and flexibly shifted their feature extraction strategy 
from view-invariant to view-specific when objects became more similar. This implies that, even in rapid 
object recognition, rather than a set of feed-forward mechanisms which extract diagnostic features 

from objects in a hard-wired fashion, the bottom-up visual pathways receive, through top-down 

connections, task-related information possibly processed in prefrontal cortex.

Human object recognition is remarkably rapid and precise. Although many brain-plausible and computer vision 
algorithms have approached human recognition performance in recent years1–3, humans still outperform most 
of these algorithms in di�cult situations of object recognition such as when objects appear under variations4 
(e.g. size, position, rotation) or when they are occluded5 or in clutter4. �ese observations suggest that humans 
seem to use a set of cognitive processes which are still missing from the computational algorithms and even from 
brain-plausible models of human vision.

�e ventral visual stream of the brain, which starts from V1 and ends at inferior temporal (IT) cortex, is pro-
posed to play the key role in the processing of object category information6,7. Along this stream, as the simple to 
complex visual features are extracted from visual signals, category information reveals increased robustness to 
di�erent variations8–12. Finally, these category-speci�c representations are classi�ed by high-level cognitive pro-
cesses in prefrontal cortex7,13–16. Accordingly, although this insight implies that a purely hard-wired feed-forward 
(bottom-up) account might be able to explain invariant object recognition in humans, many studies have revealed 
a more complex interaction between the bottom-up sensory information and top-down cognitive processes 
which together determine the performance of object recognition in humans17–19. �erefore, as opposed to most 
of recently developed computational algorithms which have merely implemented the hierarchical feed-forward 
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structure of the ventral visual stream3,20,21, brain seems to deploy complementary mechanisms to perform accu-
rately in di�cult object recognition situations22,23.

A seminal study has recently proposed that humans rely signi�cantly on speci�c sets of object parts (i.e. visual 
features or simply features), referred to as Minimal Recognizable Con�gurations (MIRCs), while none of the 
state-of-the-art computational algorithms (i.e. including machine-vision algorithms24–26 as well as brain-inspired 
models of vision8,20,27) revealed such a dependence on speci�c object parts in recognition28. �e MIRCs were 
called minimal in the sense that a small reduction in their complexity caused a signi�cant reduction in humans’ 
recognition performance (but did not a�ect performance of the models). In other words, some speci�c object 
parts were considered more informative to humans, but provided as much information as any other parts for 
computational models. �at study provided proof for a huge gap in object processing between humans and com-
putational algorithms of object recognition. However, this should not come as a surprise that computational 
algorithms failed to re�ect human recognition strategies, knowing that feature-based object/scene recognition 
strategies adopted by humans are not even observed in rhesus monkeys29,30, the major animal model of human 
perception.

Altogether, humans’ remarkable recognition performance and their unique way of exploiting object features 
motivated us to systematically study humans’ feature-based object recognition strategies under variations. It has 
been proposed that, the redundancy of objects’ diagnostic features can explain how invariance is achieved in 
recognition28. In other words, variations would impose little impact on recognition as long as there are other 
diagnostic features available to the visual system from a given object28. However, this suggestion had remained 
overlooked before the current study.

In this study, we aim to answer two major questions. First, what is the feature-based strategy used by humans 
when recognizing objects under variations? It can also be similar/di�erent across human individuals. Second, do 
hierarchically organized feature extractor models of vision adopt the same strategy as humans do for invariant 
object recognition? By the second question, we aim to know whether feature-based recognition can be simply 
explained by feed-forward feature extractor mechanisms or other mechanisms might also contribute to invariant 
object recognition.

Although there are many studies which have investigated feature-based recognition in humans and other 
species31–37, no systematic study has ever been conducted to investigate this ability under controlled naturalis-
tic variations. In a comparative study between humans and monkeys, it was shown that humans relied on sets 
of relatively consistent (invariant) features when objects were rotated in image plane, whereas monkeys used a 
screen-centered (view-speci�c) strategy29. However, the simplicity of the task (i.e. subjects discriminated three 
semantically and perceptually di�erent objects which were presented for 500 ms) and stimuli (i.e. stimuli were 
dark silhouettes of bottle, pipe and hand), made the results inconclusive29. Moreover, that study did not cover 
more challenging variations such as size, position and in-depth rotation, each of which may involve di�erent 
mechanisms in the human brain6,38. A recent study on rats incorporated all the mentioned variations and showed 
that rats followed a relatively invariant feature-based strategy when recognizing objects36. A follow-up study 
on rats showed that the consistency (invariance) of the diagnostic features was directly related to the level of 
similarity between the objects which were discriminated37. �e former study also showed that a pixel-space 
ideal observer could accurately predict rats’ discrimination strategy, suggesting that rats might have developed 
a template-matching pixel-space strategy for object recognition. However, it remains unknown what strategies 
would humans adopt to perform a similar task.

�erefore, to extend those previous results to the human feature-based recognition, we generated an image set 
which presented objects in thirteen di�erent conditions in four variations. We then asked humans to discrimi-
nate a pair of 3D objects in two psychophysical object discrimination tasks. In order to obtain the diagnostic and 
anti-diagnostic object parts (features), Bubbles method was used in a staircase paradigm39. To provide computa-
tional cases for comparison, we also investigated the strategies used by a pixel-level ideal observer39 and a deep 
convolutional neural network20 (i.e. known as AlexNet) by feeding them the same image set provided to humans. 
Using the ideal observer enabled us to compare human results with those previously reported for rats36,37. We 
used AlexNet as a model of human vision, as it was suggested to provide the most brain-plausible object rep-
resentations to humans and monkeys2,21,40.

We show that when discriminating the naturalistic images of this study, humans relied on a few object features 
(diagnostic features) in each variation condition which mostly varied from subject to subject. �ese diagnostic 
features could be relatively consistent (invariant) across variation conditions, supporting an invariant rather than 
screen-centered feature-based recognition strategy adopted by humans. Interestingly, the level of diagnostic fea-
tures consistency was determined by the level of similarity between the two objects which were discriminated. We 
also show that, neither an ideal observer nor a deep convolutional neural network could emulate human recogni-
tion strategies; those models developed screen-centered strategies. �is implies that, compared to humans, who 
can generalize the diagnostic features from one variation condition to another, the hierarchical models of vision 
used in this study, adopt a unique strategy for each variation condition. As these computational models present 
low to high levels of feature extraction mechanisms in the hierarchy of the human visual system, these results 
suggest that human object recognition involves more than just a series of feature extraction levels; it can rather be 
highly in�uenced by top-down cognitive mechanisms such as task-information, learning and decision-making.

Methods
Image set generation. To study feature-based invariant object recognition in humans and computational 
models, we needed an object image set with levels of controlled variations. �e number of objects in the image 
set was limited by the Bubbles method and our goal to study several conditions in four di�erent variations. �us, 
three 3D car mesh models were freely downloaded (available at https://grey.colorado.edu/CompCogNeuro/index.
php/CU3D) and rendered in Blender so�ware (www.blender.com) in di�erent variation conditions. Two of the 
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car models were sport cars (cars 1 and 2) and the third (car 3) was a truck. �e car models were illuminated from 
the same light source (Fig. 1A). �ey covered approximately equal areas and had equal average luminance. In the 
default condition, cars were positioned in the middle of the screen (no eccentricity), covered an average area of 10 
degrees of visual angle and underwent no in-plane and in-depth rotations. In order to generate di�erent variation 

Figure 1. Image set. (A) Car models used in the behavioral and simulation experiments. (B) Variation 
conditions that the cars underwent, which included variations in position, size, in-plane and in-depth rotations. 
In position conditions, cars appeared on imaginary circles with di�erent radii from the image center. In size 
conditions, they appeared at di�erent scales and in the in-depth and in-plane conditions, cars were rotated 
around Z and Y Cartesian axes, respectively. Note that, images were cropped and rescaled in di�erent variations 
for better visualization in the images shown. �e default condition, which shows the cars in 10° size, zero 
eccentricity, zero in-plane and in-depth rotations, is indicated by the red frame. More information regarding 
each condition is provided below it. �e 3D car models used to generate these images are available under a 
Creative Commons Attribution-ShareAlike 3.0 Unported License (https://creativecommons.org/licenses/by-
sa/3.0/) and were freely downloaded from (https://grey.colorado.edu/CompCogNeuro/index.php/CU3D).

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
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conditions, cars underwent levels of variation in position, size, in-plane and in-depth rotation (Fig. 1B). Variation 
levels were chosen so as to provide overlapping and non-overlapping viewing presentations across conditions. 
�is way, the conditions could provide a large range of performance when humans tried to recognize the objects 
(e.g. in very small-sized or upside down views). Finally, a unique 768 × 768 pixel gray scale (i.e. ranging from 0 to 
255 of gray levels) image was generated from each car in each variation condition making to a total of 39 unique 
images in the unmasked image set for the three cars (i.e. each car underwent 13 variation conditions).

In order to obtain the visual features which were most relevant to the recognition of each object, we used 
Bubbles method39. �is method, previously used in several object recognition tasks on humans and other spe-
cies32,36,37,39,40, assigns weights to di�erent object patches (features) according to their contribution to correct rec-
ognition of the corresponding object. To �nd the contributing features, a bubbles mask is put on the object image 
which allows only a fraction of the object to be recognizable by the observer (Fig. 2A). �e bubbles mask used 
in this study was a gray scale image with gray level values between zero and one. �ese masks were generated by 
adding several normally-distributed gray level values at random 2D positions on a totally zero mask. A�er mul-
tiplying the object image by the generated mask image, the object is only partially observable through the pores.

�e recognition performance of observers is highly dependent on both the number and the variance of the 
Gaussian pores of the bubbles mask. �erefore, to control the recognition accuracy, as it is needed in the anal-
ysis of Bubbles method, we chose a constant variance for the pores relative to the object size and controlled the 
number of pores on the mask (Fig. 2B). In fact, we dynamically altered the number of bubbles on the masks in 
the range of 10 to 25 in steps of �ve, based on the subject’s performance using an online adaptive algorithm to 
keep the accuracy at approximately 75% correct for each subject (Fig. 2B). During each experiment session, 
this algorithm evaluated subject’s performance on the last four trials to decide on the number of bubbles in the 
coming trial. Accordingly, the number of bubbles was increased by �ve if the masked stimuli had been correctly 

Figure 2. Bubbles procedure. (A) Object image is multiplied by bubbles masks with random Gaussian pores 
at di�erent positions to generate the �nal masked image. (B) Di�erent numbers of bubbles, as indicated by the 
number below each image, were used in the masks to control the discrimination performance in the behavioral 
experiment. �e 3D car models used to generate these images are available under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License (https://creativecommons.org/licenses/by-sa/3.0/) and were freely 
downloaded from (https://grey.colorado.edu/CompCogNeuro/index.php/CU3D).

https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D


www.nature.com/scientificreports/

5Scientific RepoRts | 7: 14402  | DOI:10.1038/s41598-017-13756-8

recognized in less than three trials and was decreased by �ve if they had been correctly classi�ed in the last four 
trials. �e Bubbles on the masks (i.e. Gaussian pores) had a variance of 750 pixels in the default condition which 
was multiplied by the scale factors of the objects in other object scales. Each image in the image set was then 
multiplied by 300 distinct random bubbles masks to make a total of 7800 images (26 images for two objects × 300 
masks) shown to each subject. It should be noted that, not all transparent pores were positioned distinctly on the 
mask, nor did they all align with object parts when multiplied by object images. �ere were cases in which the 
pores failed to overlap with any object part so leaving no e�ect.

Psychophysical experiments. In order to obtain insight into the underlying mechanisms of feature-based 
object recognition in humans we conducted two psychophysical (behavioral) experiments. �e only di�erence 
between the �rst and the second experiment was the object pairs used in the experiments. It was important for 
us to study the e�ect of object similarity on human recognition strategies, as it has been shown to be an e�ective 
factor on rats36,37. Two distinct groups of 13 and nine human subjects (mean age 26, 15 males) volunteered in two 
experiments, each of which had 10 sessions of 30-minute task. Informed consent was obtained from each par-
ticipant. All experimental protocols were approved by the ethical committee of Shahid Rajaee Teacher Training 
University. All experiments were carried out in accordance with the guidelines of the declaration of Helsinki and 
the ethical committee of Shahid Rajaee Teacher Training University. �e experiments were two-object discrim-
ination tasks. In the �rst experiment, the �rst subject group discriminated car 1 from car 2 and in the second 
experiment the second group discriminated car 2 from car 3. Subjects had normal or corrected-to-normal vision 
and were seated in a darkened room, 60 cm away from a monitor. Objects were presented in sizes between six 
to 17 degrees of visual angle and in eccentricities between three to 13 degrees of visual angle, depending on the 
condition. We used Matlab PsychoToolbox41 for stimulus presentation and response recording. Each experiment 
had two phases: a training phase and a testing phase. �e training phase was aimed at acquainting subjects with 
the stimuli and the mapping between the two objects and the two prede�ned keys on the keyboard. In the train-
ing phase, subjects discriminated all unmasked images of the two objects (i.e. 13 conditions for each object). 
A�er these 26 trials, the training phase continued with repetitions of the 26 unmasked images of objects and was 
stopped as soon as the categorization accuracy, which was being measured from the beginning of the training 
phase, surpassed 80% correct. At the end of each trial, the correctness of the subject’s response was indicated on 
the monitor as a feedback to the subject. �e order of the presented images was randomized among subjects in 
both the training as well as the testing phases. As opposed to previous studies in which subjects were tested on 
viewing conditions (e.g. poses, sizes and positions) which were di�erent from those presented during training42, 
we trained the subjects on all testing conditions to minimize the bias from involving high-level memory mecha-
nisms such as view-point generalization and learning42. �e testing phase had three di�erences with the training 
phase: no feedback was provided to subjects on correctness of their responses; masked versions of object images 
were presented to subjects; it was organized in four blocks of 195 trials with 5 minutes of rest time in between 
the blocks. At the beginning of each trial, a �xation point was presented on the center of the screen for 200 ms, 
followed by a stimulus image which remained on the screen for 50 ms (Fig. 3). A�er the stimulus o�set, although 
they were asked to respond as fast and accurately as possible, subjects had an unlimited time to determine which 
car they recognized by pressing the key associated with the car (i.e. the task was two-alternative forced choice).

Bubbles method. Bubbles method can determine the importance of di�erent object parts in recognition 
based on correct and incorrect responses of subjects. For that purpose, in the case of HSD experiment, the bub-
bles masks from trials in which a given subject correctly recognized car 1 were added up in a pixel-wise fashion to 
generate a ‘correct map’. �e whole set of masks, which were used in the �rst experiment for car 1, was also added 
up to generate a ‘total map’. �e ‘correct saliency map’, which showed the importance of di�erent parts of car 1 in 
recognition, was calculated by dividing the value of each pixel in the correct map by the pixel value on the total 
map at the same XY image location.

Figure 3. Psychophysical paradigm. Every trial started with a central yellow �xation point which was aimed 
to preclude subjects from making eye movements, followed by presentation of a masked stimulus, and �nished 
a�er subject’s response. �e 3D car models used to generate these images are available under a Creative 
Commons Attribution-ShareAlike 3.0 Unported License (https://creativecommons.org/licenses/by-sa/3.0/) and 
were freely downloaded from (https://grey.colorado.edu/CompCogNeuro/index.php/CU3D).

https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
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We conducted a permutation test to �nd signi�cantly diagnostic regions on the correct saliency map for each 
object condition, as previously done for rats36. For that purpose, the entire set of trials on a single car condition 
was randomly sub-sampled for a subset of randomly chosen correct trials. �e bubbles masks corresponding to 
the subset were added up and divided by the pooled masks from the whole set of trials to provide a ‘random cor-
rect saliency map’. In fact, this map was generated from the bubbles masks including both correct and incorrect 
trials. �ese random correct saliency maps included the same number of correct masks as in the actual experi-
ment. �is random sub-sampling procedure was repeated 1000 times to reach 1000 random correct maps. Next, 
a one-tailed permutation test was performed which indicated the signi�cance of each pixel on the true correct 
saliency map by comparing its pixels with those obtained from the 1000 randomly generated correct saliency 
maps. Pixels on the true correct saliency maps with values higher the 95th percentile of the corresponding pixel 
values on the random correct saliency maps were considered signi�cant (p < 0.05) and called ‘diagnostic’ as they 
provided a high chance for the object to be correctly recognized in the experiment. To �nd the ‘anti-diagnostic’ 
pixels (features or regions) on the true correct saliency map, which signi�cantly resulted in incorrect responses, 
the same procedure was repeated, but here the number of incorrectly classi�ed trials from each condition was 
used in the sub-sampling to generate 1000 random incorrect saliency maps. �en a similar comparison was made 
between these maps and the true incorrect saliency map. �e latter map has to be obtained as was the true correct 
saliency map but with incorrect trials.

To highlight the diagnostic and anti-diagnostic regions of car 1, the relevant car 1 image (i.e. on the same con-
dition) was overlaid on the correct saliency map to obtain a ‘car-overlaid correct saliency map’. �en, the diagnos-
tic and anti-diagnostic regions were highlighted respectively by red and blue colors as shown in Figs 5 and 6. �is 
procedure was repeated for each variation condition of car 1, 2 and 3, for each experiment and subject separately.

For calculating the pooled saliency maps across subjects (e.g. Figs 12 and 13), trials from di�erent subjects 
were pooled and the whole above procedure was repeated on the pooled dataset.

Figure 4. Humans’ behavioral performance on the two experiments. (A) Discrimination accuracy in each 
variation condition shown in Fig. 1. (B) �e corresponding correct reaction times for the same variation 
conditions as shown in (A). Blue and red bars show results for the HSD and LSD, respectively. Red numbers 
indicate the default condition which is repeated in all graphs for better visualization. Error bars show the 
standard error across subjects. Accordingly, the cross-condition signi�cance matrices with blue-green and red-
yellow spectra which are provided below each graph are for the HSD and LSD, respectively. Color codes used in 
the matrices indicate the signi�cance of di�erence between the conditions and is de�ned by the color bar.
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Computational model. To see if a hierarchical feed-forward structure could develop feature-based object 
recognition strategies similarly to humans, we used a previously developed brain-plausible deep convolutional 
neural network model of human ventral visual processing. Although not ever been provided with any biological 
information during training, the model has been very successful in predicting primates’ object representations at 
higher visual areas such as V4 and IT2,3,43. �e model, known as ‘AlexNet’, is an eight-layered hierarchical struc-
ture (i.e. the 7th layer is regarded as the model output here as the 8th layer was dedicated to classi�cation scoring on 
ImageNet) which extracts information from input images by applying on them several mathematical operations 
such as convolution, max-pooling, regularization, etc. �ese operations provided the infrastructure for extracting 
simple to complex visual features from input images along the layers. �e model had been trained to be evaluated 
on the ImageNet Large Scale Visual Discrimination Challenge (ILSVRC) (http://www.image-net.org/), and had 
outperformed the state-of-the-art machines on the task. �e model was developed by Krizevsky et al.20 and we 

Figure 5. Diagnostic (red regions) and anti-diagnostic (blue regions) features found for 2 sample subjects on 
the HSD experiment. �e brightness of car regions indicates the importance of the region in its discrimination 
with brighter regions leading to more accurate answers. Diagnostic features which were consistently/rarely 
used by subjects across variations are indicated by green/yellow arrows. Magenta arrows indicate the diagnostic 
features which were used by both sample subjects on the same variation condition. �e 3D car models used to 
generate these images are available under a Creative Commons Attribution-ShareAlike 3.0 Unported License 
(https://creativecommons.org/licenses/by-sa/3.0/) and were freely downloaded from (https://grey.colorado.edu/
CompCogNeuro/index.php/CU3D).

http://www.image-net.org/
https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
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used its Matlab implementation, provided by Vedaldi et al.44 (available at http://www.vlfeat.org/matconvnet/), 
with the same training weights learned on the ILSVRC to provide representations of the car exemplars in current 
study. �e ILSVRC included the car categories used in the current study and around 1000 more object categories. 
�is very large number of categories which was used in the training of the model made the model an excellent 
candidate to explain the generality of the brain.

A template-matching approach along with a winner-take-all algorithm was used to obtain the saliency maps 
for the computational model as they were calculated for humans. For that purpose, we used the representations 
obtained from the 3rd and the 7th model layers and analyzed them separately. �e reason for these choices was that 
the 3rd model layer, which was convolutional, provided the closest discrimination performance to those obtained 
from humans among other model layers (i.e. the discrimination rates averaged across the two datasets were 
respectively 65.32%, 73.24%, 77.78%, 78.08%, 79.59%, 80.25% and 81.05% correct for the �rst to last layers of 
the model on the same masked objects presented to humans). �is closeness was preferred to avoid any potential 
in�uence of performance on the analyses. Moreover, the 3rd layer seemed to be a suitable choice to provide insight 

Figure 6. Diagnostic (red regions) and anti-diagnostic (blue regions) features found for 2 sample subjects on 
the LSD experiment. �e details are the same as in Fig. 5. �e 3D car models used to generate these images are 
available under a Creative Commons Attribution-ShareAlike 3.0 Unported License (https://creativecommons.
org/licenses/by-sa/3.0/) and were freely downloaded from (https://grey.colorado.edu/CompCogNeuro/index.
php/CU3D).

http://www.vlfeat.org/matconvnet/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
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into the intermediate-complexity feature extraction process starting at the model input (i.e. here the observer 
plays the role of the model’s input layer as it processes pixel-space information) and ending at the model output. 
�e rationale behind the choice of the 7th model layer was that, as explained earlier, this layer has shown to predict 
high-level human representational space with high accuracy2,6,21,38; therefore, this layer might provide highly 
brain-plausible processing strategies. In addition, it was a representative for the most complex visual features 
which could be extracted in the visual hierarchy. To perform the template matching, we applied both the masked 
and unmasked object images to the model and obtained their corresponding representations from the 3rd and 
7th model layers. We fed the model only with images presented to humans in the psychophysical experiments to 
avoid potential di�erences in results. On each dataset, using Pearson linear correlation, the similarity between 
each of the masked and unmasked object representations was measured (i.e. conditions shown in Fig. 1B). �en, 
the winner-take-all algorithm decided on the category of the masked image, by comparing the 26 correlation val-
ues. Accordingly, on the HSD dataset, the masked image belonged to car 1, if the maximum correlation value was 
observed between its representation and any of the 13 unmasked representations of car 1. Otherwise, the masked 
image belonged to car 2. As the computational model processed the masked images di�erently from humans, 
the correct and incorrect trials which were obtained from the model analyses did not necessarily follow human 
correct/incorrect trials. In other words, the trials which were correctly recognized by humans were not necessarily 
recognized correctly by the model and vice versa. To reach the saliency maps of the computational model, the 
same Bubbles method explained earlier was repeated on the model data. �e signi�cance of the saliency maps was 
also evaluated as explained earlier.

Ideal observer. Saliency maps were also calculated for an ideal observer39,42. �e ideal observer evaluated the 
importance of di�erent object parts based on the pixel space information they provided for recognition. In other 
words, the ideal observer, and the following classi�cation algorithm, used original masked images to calculate the 
saliency maps as opposed to the computational model which used the transformed versions of the same images 
(i.e. object representations). Accordingly, the masked images of objects were compared with the unmasked images 
for their correlations in the same way as done for the computational model. �e same winner-take-all algorithm 
was used for classi�cation. As the ideal observer provided higher recognition performance compared to humans, 
to remove potential bias when comparing them, we added Gaussian noise (with standard deviations equal to 
100% and 90% to the average image luminance respectively for the HSD and LSD) to the stored unmasked images 
to equalize the observer performance (77.45% and 75.48% respectively on the HSD and LSD) to that obtained 
from humans. Other implementation details of the ideal observer resembled those obtained from the computa-
tional model, including how the signi�cance of the saliency maps was calculated for the observer.

Data availability. �e data sets generated during and/or analyzed during the current study are available 
from the corresponding author on reasonable request.

Results
�is study was aimed at investigating the feature-based mechanisms involved in human invariant object recog-
nition. For that purpose, 21 human subjects participated in two object discrimination experiments in which they 
observed occluded images of cars. Subjects had to discriminate between a pair of cars based on their unmasked 
parts. �e correctness of subjects’ answers revealed the relative importance of the unmasked visual features in 
recognition and the strategy which was used when the objects underwent di�erent variation conditions. �e only 
di�erence between the two experiments was the set of stimuli used. Designing two experiments with di�erent 

Figure 7. Relative importance of di�erent car parts in recognition on the HSD (le�) and the LSD (right). 
Relative importance is calculated as the ratio of the number of times the part included a diagnostic region to 
the number of times the car part had been visible in the unmasked variation conditions. Error bars show the 
standard error across subjects.
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levels of object similarity provided the opportunity to compare the human recognition strategies against those 
observed in rats which showed that object similarity could alter the invariance of diagnostic object features across 
variations37.

�e similarity of objects in the two datasets (Car 1 vs. Car 2 and Car 2 vs. Car 3) was assessed in the pixel 
space using normalized Euclidean distance on every variation condition (Table 1). Results showed a signi�-
cantly (p < 0.01, Wilcoxon signed rank test) higher similarity between the two exemplars of the �rst stimulus set 
(mean = 0.155, SD = 0.015) compared to the second stimulus set (mean = 0.187, SD = 0.008). Accordingly, we 

Variation

Stimulus set Default

Position Size In-plane rotations In-depth rotations

3° 7° 13° 6° 14° 17° −40° 60° 180° −40° 40° 180°

Stimulus set 
1 (Car 1 & 
Car 2)

0.153 0.153 0.153 0.153 0.149 0.154 0.154 0.202 0.157 0.149 0.154 0.134 0.150

Stimulus set 
2 (Car 2 & 
Car 3)

0.194 0.194 0.194 0.194 0.189 0.195 0.194 0.176 0.174 0.187 0.134 0.186 0.179

Table 1. Normalized Euclidean distance between car exemplars in the two datasets.

Figure 8. Scatters of raw versus aligned overlaps between diagnostic regions. Results from humans (A), ideal 
observer (B) middle and (C) last layers of the computational model (D), on the HSD (le�) and LSD (right) 
experiments are shown. �e overlaps were measured using the procedure explained in section 3.3. Raw overlaps 
are plotted against aligned overlaps for each of the 21 pairs of conditions (pool of zero and non-zero overlapping 
conditions) of the two cars. �ese results are from size and position variations, on which the reverse-
transformation could result in totally overlapping diagnostic regions in ideal cases. �e 3D car models used to 
generate these images are available under a Creative Commons Attribution-ShareAlike 3.0 Unported License 
(https://creativecommons.org/licenses/by-sa/3.0/) and were freely downloaded from (https://grey.colorado.edu/
CompCogNeuro/index.php/CU3D).

https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
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termed the �rst and the second image sets respectively as the ‘High similarity’ (HSD) and ‘Low similarity’ datasets 
(LSD) in the rest of the paper.

Human performance at discriminating masked cars. Humans were very successful at discriminat-
ing the cars using the masked images. �e average discrimination rates were 76.38% (SD = 10.01) and 75.17% 
(SD = 2.21) across subjects respectively on the HSD and LSD, which were signi�cantly (p < 0.001, Wilcoxon 
signed-rank test) above the chance level (i.e. 50%). �is shows that, while humans could use the information 
exposed from the transparent pores to discriminate the cars, the adaptive algorithm was e�ective at keeping the 
accuracy at around 75% correct for the Bubbles analysis.

�e average correct reaction times (i.e. calculated over correctly answered trials) were 871 ms (SD = 172 ms) 
and 888 ms (SD = 217 ms) respectively on the HSD and LSD across subjects, which repeated several studies 
reporting the human reaction times in object categorization4,6. However, the discrimination accuracy was not 
equal in all variations and their constituent conditions (Fig. 4A). On the HSD (and LSD), the average correct 
rates were 78.39% (66.54%), 79.74%, (80.99%) 71.31% (71.05%) and 78.68% (80.37%) respectively for the posi-
tion, size, in-plane and in-depth variations across subjects. �e subjects’ accuracy was signi�cantly (p < 0.05, 
Wilcoxon signed-rank test) above chance in all variation conditions. Position conditions resulted in signi�cantly 
lower correct rates on the LSD compared to HSD (p < 0.001, two-tailed unpaired t-test). �e conditions of the 
in-plane rotation imposed more di�culty in discrimination compared to other variations, especially when cars 
were oriented upside down (Fig. 4A). Figure 4 also provides cross-condition signi�cance matrices indicating the 
signi�cance of di�erences across condition pairs. For example, to obtain each element of these cross-condition 
signi�cance matrices on the HSD, we evaluated the di�erence between the 13-element vectors containing accu-
racy values/correct reaction times of the 13 subjects in two conditions of a single variation. To obtain the level of 
signi�cance between two conditions, we applied Wilcoxon signed-rank test on the two 13-element vectors. �e 
resultant p-values were Bonferroni corrected and reported, by color codes, in the matrices provided below corre-
sponding accuracy/reaction time plots.

Subjects’ performance has signi�cantly (p < 0.05, two-tailed unpaired t-test) dropped when the cars were 
positioned above the central �xation point compared to when they were presented centrally on both the HSD and 
LSD. Subjects showed a signi�cant performance decline in the most peripheral position condition on the LSD. 
Based on the accuracy and reaction times of the subjects in position conditions we can conclude that the subjects 
did not make saccadic eye movements towards the cars in non-default conditions (Fig. 4). Subjects showed a high 
performance de�cit when the objects were presented in the smallest size condition (i.e. 6 degrees of visual angle) 

Figure 9. Quantitative comparison of diagnostic features’ consistency between humans and computational 
models. (A) Across-subject averaged aligned overlap from di�erent modalities (including humans, observer, 
and model), and (B) the corresponding cross-object and cross-experiment signi�cance matrices which indicate 
the level of signi�cance in di�erences (as evaluated by unpaired two-tailed t-test) in color codes. (C) Percentages 
of the number of condition pairs which provided signi�cant overlap values. Error bars show the standard error 
across subjects.
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Figure 10. Average number and size of diagnostic features found on the two experiments. (A) Average 
number of diagnostic features obtained from all variation conditions of the two image sets (i.e. HSD and LSD) 
as a function of the minimal feature size. Minimal feature size was de�ned as the size threshold below which 
features were considered in the analysis. Results on the le� column were computed by pooling across all objects, 
variation conditions, features and subjects participating in each experiment. Shaded regions indicate the 
standard error across all the mentioned dimensions. �e right column shows the same results but only for car 2. 
(B) Average feature size and (C) relative feature size (as obtained by dividing the size of each feature by the area 
of the corresponding car view). Insets show the deference between the values obtained from ☺ the two image 
sets (with black showing no signi�cant di�erence and red showing signi�cant di�erence at p < 0.05, two-tailed 
t-test).
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on both the HSD and LSD, with signi�cant e�ects (P < 0.05, two-tailed unpaired t-test) on both the accuracy and 
reaction time. However, the result still remained signi�cantly above the chance.

As previously reported in a more generic discrimination task with unmasked objects45, in-plane and in-depth 
rotations seem to depend on a reference-based transformation process. �is process is proposed to transform 
the perceived object to a reference frame in which the memorized representations of objects are stored to �nd 
the best match6. �is might be the reason behind the results of the in-plane and in-depth rotations which pro-
vided a symmetric curve around the default condition for accuracy (Fig. 4A). For the in-plane rotations, the 
performance dropped (i.e. accuracy decreased and reaction time increased) as the objects underwent from 0 to 
180° and increased as it came closer to the default condition on both datasets. �e performance was signi�cantly 
(P < 0.05, two-tailed paired t-test) lower when the cars appeared upside down, which might be because of lack 
of informative visual features in that condition. Results of in-depth rotation showed a decrease in performance 
when the cars were mirrored (i.e. were rotated 180°) on the HSD or shown from the back view, rather than when 
they were presented frontally on both datasets. Humans accuracy showed a signi�cant negative correlation with 
correct reaction times (r = −0.81, p < 0.001, Pearson linear correlation). �is implies that variations a�ected both 
the accuracy and speed of recognition, and not one at the cost of the other6.

Although some conditions showed signi�cant impacts on the discrimination performance, humans achieved 
correct rates which were signi�cantly higher than those which could be achieved by chance (p < 0.001) (the 
signi�cance level was p < 0.05 for the 180° in-plane rotation condition on HSD). �is remarkable performance 
implies that humans used an invariant strategy when trying to recognize objects under variations; a strategy 
which was not easily a�ected by variations. In the following sections we investigate the feature-based mechanisms 
which might underlie this strategy.

Role of diagnostic features in object discrimination. Using the subjects’ correct and incorrect 
responses and the Bubbles method, we extracted saliency maps for subjects in all variation conditions (Figs 5 
and 6). Results for two sample subjects on the HSD are shown in Fig. 5, for di�erent variation conditions. �e 
brightness of the pixels on car images represents the probability of the object region to lead to a correct answer 
when it is visible through the bubbles mask, with brighter pixels indicating higher probability. Red and blue areas 
indicate regions which signi�cantly led to correct and incorrect answers, respectively, which we termed ‘diagnos-
tic’ and ‘anti-diagnostic’ regions as explained earlier. Note that, we increased the gray level of the windshield and 

Figure 11. Inter-subject overlap (consistency) of the diagnostic features. (A) Inter-subject overlap of the 
diagnostic features was calculated in similar variation conditions between every possible pair of subjects 
participating in the HSD and LSD experiments. For the observer and the model, the inter-subject overlaps 
refer to calculating the overlap of the diagnostic features found on the same set of stimuli used in human 
experiments. �e error bars indicate the standard error across subject pairs. (B) �e corresponding cross-object 
cross-experiment signi�cance matrices show the Bonferroni corrected level of di�erences between the overlaps 
calculated for di�erent objects.
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side windows of Car 1 for improved visualization, whereas the actual gray level was zero in the experiments as 
shown in Fig. 1.

Visual inspection of the saliency maps of the selected subjects revealed several key characteristics of 
feature-based recognition in humans. Results of the default condition (Fig. 5, the top le�-most image in each 
panel) suggested that not all car parts contributed equally to its correct recognition. In other words, there were 
areas of diagnostic features which signi�cantly contributed to the recognition of the car whereas some other areas 
led to incorrect trials. For a detailed de�nition of car parts see Supplementary Table S1. For instance, subject 1 
relied on the rear window as well as trunk and rear post of car 1 and relied on rear as well as a small portion of 
the front fenders of car 2 for correct recognition. A high proportion of front and rear fenders and doors of car 1 
were anti-diagnostic for subject 1 while the anti-diagnostic regions of car 2 included areas on the hood, trunk, 
roof, front posts, doors and front bumper. For subject 2, the headlights, hood, windshield, front bumper as well 
as a small proportion of the doors and windows were diagnostic of car 1. Subject 2 relied on the hood, roof and 

Figure 12. Pooled saliency maps for humans as well as computational models on the HSD. Diagnostic (red) 
and anti-diagnostic (blue) regions for car 2 on the HSD obtained from humans (top row), ideal observer 
(second panel from top) and middle/last model layers (the two bottom panels). Maps were generated by pooling 
the trials from all subjects. �e 3D car models used to generate these images are available under a Creative 
Commons Attribution-ShareAlike 3.0 Unported License (https://creativecommons.org/licenses/by-sa/3.0/) and 
were freely downloaded from (https://grey.colorado.edu/CompCogNeuro/index.php/CU3D).

http://S1
https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
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rear window of car 2 for correct recognition. Proportions of the doors and front fender of car 1 and the doors, rear 
wheels, middle post, windshield and front bumper of car 2 were anti-diagnostic in default condition.

In the default condition of the LSD (Fig. 6, the top le�-most image in each panel), the doors, rear fender and 
rear bumper of car 2, and the roof, hood, box and rear fender of car 3 were diagnostic for subject 3 while subject 
4 used the front bumper and the doors of car 2 as well as the doors, box, rear wheels and the rear fender of car 3 
as diagnostic features. �ese sample subjects showed a variety of anti-diagnostic regions on the default condition 
of the HSD.

Although there were instances of agreement on the diagnostic regions between the sample subjects (as indi-
cated by the magenta arrows in Figs 5 and 6), results showed a high level of inter-subject variability in diagnostic 
and anti-diagnostic features. �is will be quantitatively evaluated and compared between the two datasets in the 
following sections.

Next we investigated the consistency of diagnostic features across variation conditions to see whether a set 
of view-invariant or view-speci�c diagnostic features were deployed by humans for accurate recognition. On the 
HSD, subject 1 deployed diagnostic features from di�erent parts of car 1 depending on the condition of the car 
(Fig. 5, top panel). �ese included the windshield, bumpers, wheels and even the car �oor. Although majority 

Figure 13. Pooled saliency maps for humans as well as computational models on the LSD. �e details are the 
same as in Fig. 12. �e 3D car models used to generate these images are available under a Creative Commons 
Attribution-ShareAlike 3.0 Unported License (https://creativecommons.org/licenses/by-sa/3.0/) and were freely 
downloaded from (https://grey.colorado.edu/CompCogNeuro/index.php/CU3D).

https://creativecommons.org/licenses/by-sa/3.0/
https://grey.colorado.edu/CompCogNeuro/index.php/CU3D
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Figure 14. Average number and sizes of diagnostic features of car 2 in the two experiments. (A), (B) and (C) 
show the results from ideal observer, the middle and last layers of the AlexNet model, respectively. Le� column: 
average number of diagnostic features obtained from all variation conditions of the two image sets (HSD and 
LSD) as a function of minimal feature size. Right column: average feature size. Shaded regions indicate the 
standard error. Insets show the signi�cance of di�erence between the values obtained from the two image sets 
(with black showing no signi�cant di�erence and red showing signi�cant di�erence at p < 0.05, two-tailed 
unpaired t-test).
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of diagnostic and anti-diagnostic regions were not repeated across the variation conditions, consistent diagnos-
tic features were also used by subjects in discrimination (as indicated by green arrows in Figs 5 and 6). �ese 
included the windshield of car 1 and the front wheels of car 2. �ere were also areas of diagnostic features which 
were only adopted when they became available to subjects (yellow arrows). �ese included the �oor of both cars 
as well as the outside mirrors of car 2. For subject 2, the hood and front wheels were respectively used from cars 1 
and 2 and the tail lights of car 2 were only used when they became available to the subject.

On the LSD, regions of the doors of car 2 and the wheels of car 3 were repeatedly chosen as diagnostic across 
variation conditions by subject 3. For subject 4, the front bumper and wheels were consistently chosen respec-
tively from cars 2 and 3 in recognition. As for alternative features, the car �oors were chosen by subject 3 on the 
LSD, on the upside down condition in which the consistent features were absent. �e grille and the �oor of car 3 
became diagnostic as soon as they appeared to help subject 4 in recognition.

Consistent reliance on speci�c car parts across variations suggested that some car parts might have been 
more informative than others. For example, car wheels were consistently chosen as diagnostic features by many 
subjects (e.g. wheels of car 2 used by subjects 1, 3 and 4, and wheels of car 3 by subject 3) while other parts such 
as the windshield was considered diagnostic much fewer times by the subjects (e.g. subject 1, car 1). �erefore, 
next we evaluated the importance of di�erent car parts in recognition by counting the number of times the part 
was diagnostic and divided the resultant number by the number of conditions in which the car part was avail-
able to the subject. �is resulted in a vector of 23 numbers for each car (representing the 23 car parts shown in 
Supplementary Table S1) that was normalized to 1 which explained the relative importance of di�erent car parts 
for each subject. �is procedure was repeated for every car exemplar, dataset and subject. Figure 7 shows the 
across-subject averaged results of the two datasets. We sorted the car parts according to their average relative 
importance for the two cars on the HSD.

Results from both the HSD and LSD showed the highest relative importance for car �oors which appeared 
only once across variation conditions when the cars were oriented upside down. Other car parts such as the 
roof, doors, hood, rear and front fenders provided the next highest relative importance and parts such as the 
headlights, middle and front posts, tail lights, outside mirrors and quarter windows showed the lowest relative 
importance. It should be noted that zero-valued bars in Fig. 7 show results of either the car not possessing the 
part (e.g. rear bumper for car 3) or the part not ever including diagnostic regions (e.g. headlights for car 2). �e 
two cars in HSD largely agreed on the level of relative importance of their parts. However, this is not true in the 
case of several parts such as the rear posts, grille and headlights. On the LSD, the number of parts which showed 
di�erent relative importance between cars 2 and 3 increased since the cars were structurally much more di�erent 
than those in the HSD (Table 1). Examples include the rear fender, front and rear wheels and the trunk/box of 
car 2/3 which provided a signi�cantly higher relative importance for car 3 than for car 2. Qualitatively, a similar 
order of relative importance was observed for car 2 parts on both HSD and LSD. �e across-feature grand aver-
age relative importance for car 2 in the HSD and LSD were respectively 0.24 (SD = 0.22) and 0.27 (SD = 0.23) 
which were not signi�cantly di�erent (p = 0.19, unpaired two-tailed t-test). It seems that, one key parameter 
which determined the relative importance of the car parts was the relative size of the parts (e.g. compare the area 
of the roof with that of the middle posts). However, the relative size of the car part per se failed to explain many 
instances of relative importance of car parts shown in Fig. 7. For instance, compare the relative importance of the 
exhaust with the quarter window of car 1, the grille with the windows of car 2 and the front wheels with the doors 
of car 3. �erefore, it seems that humans deployed other recognition mechanisms which gave systematic weights 
to informative visual features for accurate recognition. A more quantitative evaluation on the consistency of the 
visual features will be provided in the following sections.

In conclusion, these results revealed that humans relied on a set of diagnostic features to recognize the cars. 
A portion of these features were consistently chosen by subjects across several variation conditions (the features 
indicated with green arrows in Figs 5 and 6), while some of them were used only rarely (the features indicated 
with yellow arrows in Figs 5 and 6) as soon as they appeared. Results also showed a high level of inter-subject 

Model Dataset Object
% Higher 
raw overlap % Higher aligned overlap % Dark % Gray % Black

Ideal observer

HSD
Car 1 63.4 36.6 9.9 6.1 0.8

Car 2 62.4 37.6 14.9 2.6 4.2

LSD
Car 2 70.8 29.2 12.7 4.6 2.9

Car 3 63.5 36.5 11.5 7.5 4.0

AlexNet middle

HSD
Car 1 75.2 24.8 10.7 7.7 3.4

Car 2 65.9 34.1 10.0 7.7 2.3

LSD
Car 2 81.8 18.2 10.6 15.2 13.1

Car 3 61.9 38.1 8.1 16.2 13.1

AlexNet last

HSD
Car 1 75.2 24.8 12.0 3.9 2.7

Car 2 65.9 34.1 12.8 7.4 1.9

LSD
Car 2 81.8 18.2 13.7 19.0 9.8

Car 3 61.9 38.1 8.6 6.9 0

Table 2. Statistics obtained from the raw vs. aligned overlap results in Fig. 8, for observer and computational 
model on the two datasets.

http://S1
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variability in the choice of diagnostic features, meaning that individuals developed their own personalized strat-
egy in object recognition.

Impact of object similarity on human object discrimination. In order to investigate whether humans’ 
reliance on diagnostic features could be explained by a view-invariant or view-speci�c strategy, we measured 
the amount of overlap between the diagnostic regions found for di�erent variation conditions using the method 
developed by Alemi-Neissi et al.36. To perform this analysis, we considered only conditions from the a�ne var-
iations of size, position and the default condition and computed the amount of overlap between every possible 
pair of these conditions (i.e. 11 pairs of conditions were accounted for each car in which the diagnostic fea-
tures obtained from the conditions could possibly overlap). We calculated the overlap in two circumstances: 
‘raw overlap and aligned overlap’. ‘Raw overlap’ refers to calculating the pixel-space overlap between diagnostic 
regions obtained from the same car appearing in a pair of di�erent views (variation conditions), while ‘aligned 
overlap’ refers to the circumstance of overlap calculation in which the two di�erent views (variation conditions) 
of the same car are reverse-transformed to the default condition prior to overlap calculation. As an example, 
consider the case of a pair of conditions in which the cars (i.e. the same cars) were respectively in 3° position 
and 14° size conditions. In the case of raw overlap, the pixel-space overlap was calculated without any manip-
ulation of car images using equation (1) knowing only the regions of diagnostic features of both conditions. In 
the case of aligned overlap, however, the �rst car was returned to the center of the screen and the second car was 
down-scaled to the default size, so that reverse-transformed images of the cars perfectly overlapped in the middle 
of the screen. In the latter case the diagnostic features of the car views might or might not overlap depending on 
the feature-based recognition strategies adopted by humans and the computational models. Finally he amount of 
overlap between the car view in both the raw and aligned circumstances was calculated according to equation (1):

=
+ +

Op
Oa

Oa Da Da1 2 (1)

where Oa refers to the diagnostic car areas (i.e. number of pixels) which overlapped between the �rst and the 
second variation conditions, Da1 and Da2 refer to the area of diagnostic regions for the variation conditions 1 and 
2, respectively, and Op is the proportion of the overlapping area of the superimposed conditions. It should be 
noted that, we used a�ne transformations since they could be correctly reverse-transformed in the aligned over-
lap case and lead to a single object as a result. As it was shown in Fig. 1B, other transformations were not a�ne 
(i.e. cars had several parts which were visible in one condition but invisible in others). Therefore, even if 
reverse-transformed, the diagnostic features could not possibly overlap.

In order to determine the signi�cance of the measured overlaps we used the method proposed by Nielsen et 
al.17. Read that paper for details of the method. Brie�y, in this method we �rst calculated the minimum box which 
encompassed each object view. �en, in both raw and aligned cases, the set of diagnostic regions found for each 
object (stuck together) was moved to random positions within its surrounding box and the area of overlap was 
calculated between the �rst and second object views using equation (1). Note that, in the case of aligned overlap, 
the encompassing boxes of the two object views totally overlapped as the objects did a�er reverse-transformation. 
�e random positioning of the diagnostic features was repeated 1000 times and the random overlaps were recal-
culated. �en, a one-tailed permutation test determined the signi�cance of the true overlaps against the resultant 
null distribution. �e overlaps were considered signi�cant if their values were higher than the 95th percentile of 
the overlaps calculated from the random positioning (P < 0.05, Fig. 8A). �e data points (which were obtained by 
plotting raw and aligned overlap values on the same condition pairs against each other) for car 1/3 and car 2 are 

Model

Variation

Dataset Object Default

Position Size In-plane rotations In-depth rotations

3° 7° 13° 6° 14° 17° −40° 60° 180° −40° 40° 180°

Ideal observer

HSD
Car 1 0.10 0.06 0.07 0.12 −0.31 0.13 −0.05 −0.21 −0.26 −0.17 0.05 −0.01 −0.16

Car 2 0.26* −0.06 −0.20 0.11 −0.22 0.25* −0.06 0.16 0.10 0.04 0.08 0.10 −0.10

LSD
Car 2 −0.18 0.06 −0.05 0.16 −0.01 0.20 0.18 0.27* −0.06 −0.02 −0.02 0.02 0.03

Car 3 0.10 0.17 −0.24 0.14 0.05 0.10 −0.18 0.02 0.02 −0.23 −0.03 0.14 0.05

AlexNet middle

HSD
Car 1 −0.23 0.10 0.15 −0.04 −0.07 0.02 −0.13 −0.16 −0.02 0.39* 0.01 0.19 0.01

Car 2 0.12 −0.15 0.08 0.30 −0.25 0.27 −0.03 −0.14 −0.31 −0.22 −0.10 0.16 0.16

LSD
Car 2 −0.01 −0.03 −0.05 0.02 0.03 0.06 0.08 −0.09 −0.01 −0.08 0.03 0.09 0.01

Car 3 0.21 0.21 0.02 0.22 0.36* −0.02 −0.42 0.14 −0.16 −0.18 −0.16 −0.12 0.32*

AlexNet last

HSD
Car 1 0.10 −0.12 −0.07 0.25 −0.07 −0.02 −0.05 −0.09 0.25* 0.14 0.02 0.16 −0.10

Car 2 0.39* −0.05 −0.25 0.08 −0.05 0.06 −0.27 −0.06 −0.02 0.05 −0.18 0.17 0.12

LSD
Car 2 0.08 0.07 0.36* −0.18 0.10 −0.33 0.14 −0.12 −0.10 0.02 −0.16 0.03 −0.03

Car 3 −0.07 −0.07 0.09 0.03 0.24 0.01 −0.25 −0.01 −0.05 −0.17 −0.04 −0.15 0.24

Table 3. Comparison between the saliency maps obtained from humans and the ideal observer, as well as 

the middle and last model layers. Values are correlation coe�cients between saliency maps and stars indicate 

signi�cant correlations.
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indicated with squares and circles in Fig. 8, respectively. Shades of gray indicate the level of signi�cance of raw and 
aligned overlaps against the 1000 random overlaps. White and black shades represent cases in which none and 
both overlaps were respectively signi�cant while gray and dark shades indicate cases with only raw and aligned 
overlap being respectively signi�cant.

203 (out of 286) pairs of conditions showed non-zero overlapping areas of diagnostic features across the entire 
set of subjects (i.e. 13 subjects) on the HSD. As shown in Fig. 8A, le�, on the HSD, the vast majority of overlap-
ping pair of conditions (143 out of 203, 70.4%) fell onto the area beneath the dashed line meaning that they had 
higher aligned overlaps (mean = 0.028, SD = 0.042) than raw overlaps (mean = 0.012, SD = 0.025), the di�erence 
of which was signi�cant when compared (p < 0.01, Wilcoxon signed-rank test). Many pairs of conditions (81 out 
of 203, 40%) showed non-zero values of aligned overlap with zero raw overlaps. A number of cases (31 out of 203, 
15.3%, dark data points) showed signi�cant values of aligned overlaps but insigni�cant values of raw overlaps. 
Only 6 cases (out of 203, 3%) showed signi�cant values of raw and insigni�cant values of aligned overlaps. In only 
2 cases (out of 203, 1%) both the raw and aligned overlaps were signi�cant.

On the LSD, as Fig. 8A, right, shows, most of the data points (115 out of 164, 70.1%) were located below 
the dashed line showing higher aligned overlaps (mean = 0.031, SD = 0.044) than raw overlaps (mean = 0.017, 
SD = 0.027), whose di�erence was also signi�cant when compared (p < 0.05, Wilcoxon signed-rank test). In many 
cases (59 out of 164, 36%), the data points showed non-zero values of aligned overlaps while their corresponding 
raw overlaps were zero. In a large proportion of cases (36 out of 164, 22%, dark data points) signi�cant overlaps 
for the aligned features were observed along with insigni�cant overlaps for the raw features. Only six cases (out 
of 164, 3.65%) showed signi�cant overlaps in the raw and insigni�cant overlaps in the aligned conditions. In only 
two cases (out of 164, 1.2%) both the raw and aligned overlaps showed signi�cant values.

�ese results show a signi�cant advantage for aligned overlaps compared to raw overlaps, which adds support 
to a view-invariant strategy (in which subjects relied on a set of diagnostic object features and used them despite 
changes in object viewing conditions) rather than a screen-centered strategy (in which speci�c regions of the 
screen relative to the object were relied on for recognition which could lose their importance if the object condi-
tion varied on the screen) used by humans in object recognition. �e averaged aligned overlaps across subjects as 
well as the percentages of aligned overlaps on the HSD and LSD are summarized in Fig. 9.

Average aligned overlaps across subjects (light gray bars in Fig. 9A) on the HSD were 0.035 and 0.025 respec-
tively for cars 1 and 2, and 0.034 and 0.029 respectively for cars 2 and 3 on the LSD. Although the pooled results 
from the HSD did not show a signi�cant di�erence (p = 0.63, unpaired two-tailed t-test) with those from the LSD, 
the average aligned overlaps of car 2 on the LSD showed a signi�cantly higher value compared to its value on the 
HSD (Bonferroni corrected p = 0.013, two-tailed t-test, Fig. 9B the le�-most cross-object signi�cance matrix). 
�is implies that the lower similarity between the objects, which were discriminated, increased the consistency of 
the diagnostic features across variation conditions. �e evaluation of the percentages of aligned overlaps (Fig. 9C, 
light gray bars) also showed an increase from 11.55% on the HSD to 19.2% on the LSD (averaged across cars 
in the same image set). �ese were especially interesting for car 2 which were 15.4% and 20.2% respectively on 
the HSD and LSD; showing 31% improvement. Together results of Fig. 9 show a shi� of strategy from a more 
variation-dependent to variation-independent strategy in the choice of diagnostic features when discriminat-
ing two dissimilar (LSD) cars compared to relatively similar cars (HSD). �is is re�ected in both the amount 
of aligned overlap as well as the percentages of signi�cant overlaps of the diagnostic features from car 2 which 
participated in both experiments.

To gain a deeper insight into other potential di�erences between the recognition strategies of humans when 
discriminating object exemplars with di�erent levels of similarity, we evaluated the numbers and sizes of diag-
nostic features obtained from the two experiments (i.e. HSD and LSD). As it was obvious in the results (Figs 5 to 
7), the diagnostic features varied in the size of area that they covered, ranging from several to hundreds of pixels. 
�erefore, as previously suggested37, we evaluated the numbers, sizes and relative sizes of diagnostic features as a 
function of minimal feature size to see if a systematic di�erence existed between the two experiments. �e mini-
mal feature size provided a threshold which determined the size of the smallest diagnostic feature which could be 
included in the analyses. �erefore, values of the horizontal axes in the plots of Fig. 10 indicate the minimum size 
of diagnostic features considered in the analysis. To produce the results shown in Fig. 10, we pooled the parame-
ters (i.e. the number, size and the relative sizes of the features) obtained from all variation conditions and subjects 
and calculated the average results in the corresponding experiment. �e signi�cance of di�erences between the 
statistics (size, number and relative size) of diagnostic features from the HSD and LSD were compared using 
two-tailed unpaired t-test and their p-value results are provided in the insets plots in Fig. 10.

As the results show (Fig. 10A), a signi�cantly (p < 0.05) larger number of diagnostic features were found 
which had medium sizes between 78 to 227 pixels on the LSD compared to HSD. However, the large-size diag-
nostic features of the HSD, with areas larger than 236 pixels, signi�cantly outnumbered the features with the same 
area found on the LSD. �e advantage of the HSD, which asymptotically became insigni�cant for sizes larger 
than 1357 pixels, along with the advantage for the LSD in small to medium sizes suggest that the average number 
of diagnostic features for the two datasets were roughly equal. However, the crossover of the average curves at 
around the minimal feature size of 250 pixels revealed a larger number of features with smaller areas for the LSD 
and larger areas for the HSD, respectively. Interestingly, car 2, which participated in both experiments, showed a 
signi�cantly lower number of features at both small (from 1 to 78 pixels) and large (from 228 to 451 pixels) scales 
on the HSD compared to LSD. �is result revealed a decrease in size of the diagnostic features as a result of lower 
similarity between categories in the discrimination task, which is consistent with previous reports from rats37.

Next we evaluated the absolute and relative sizes of the features found on the two experiments (Fig. 10B and 
C). To calculate the relative sizes of the features, the absolute size of a given feature was divided by the area of 
the car in the corresponding variation condition. Although averagely smaller absolute and relative sizes were 
observed for small features on the LSD (signi�cant di�erences were observed below minimal features sizes of 



www.nature.com/scientificreports/

20Scientific RepoRts | 7: 14402  | DOI:10.1038/s41598-017-13756-8

225 and 232 pixels respectively for the absolute and relative feature sizes), results of car 2 showed no signi�cant 
di�erence in feature sizes between the HSD and LSD. In conclusion, this implies that the absolute and relative 
sizes of the diagnostic features were not signi�cantly di�erent between the HSD and LSD for car 2 which partic-
ipated in both experiments, and the observed signi�cant di�erences observed for the exemplar-averaged results 
(Fig. 10B and C, le�) were mainly caused by the properties of the other exemplars in the datasets (i.e. car 1 and 
3 respectively on the HSD and LSD) rather than di�erences in the recognition strategies between the datasets. 
�erefore, the similarity of objects in the dataset did not impose a signi�cant impact on the sizes of the diagnostic 
features. �is is in contrast with the rats’ data which showed an increase in the feature size when discriminating 
less similar objects37.

We also investigated the potential in�uence of exemplars’ similarity on the consistency of diagnostic fea-
tures across subjects. For that purpose, we calculated the overlap between diagnostic features of the same vari-
ation conditions in all possible pairs of subjects (Fig. 11). �e overlaps were calculated using equation (1). �e 
average of overlap was signi�cantly (p < 10−6, two-tailed t-test) higher for the LSD (mean = 0.029) compared to 
the HSD (mean = 0.017). Interestingly, results from car 2 showed a signi�cant (p = 0.03) advantage for the LSD 
(mean = 0.035) compared to HSD (mean = 0.021), which revealed the dependence of the inter-subject consist-
ency on the similarity of car exemplars. �ese results suggest that when the cars were closely matched (HSD), dif-
ferent subjects relied on their own sets of features which were not necessarily adopted by other subjects in object 
recognition, while in more dissimilar object pairs (LSD) a higher level of agreement existed between subjects 
when deploying informative features. �e dependency of the inter-subject consistency of diagnostic features on 
the similarity of objects repeated previous results from rats37.

Quantitative comparison of the results between humans and computational models. We pro-
vided the results of the same analyses performed on humans with those obtained from the outputs of an ideal 
observer and the middle and last layers of the computational model (Figs 8, 9 and 11). It should be noted that, as a 
subset of images were presented to each human subject, the same set of images which were presented to humans, 
were also presented to the ideal observer and the computational model to avoid possible bias from compari-
sons. In this section, we explain the results from the computational models and those obtained from humans. 
As explained earlier, the ideal observer implemented a pixel-space solution to the object discrimination problem 
while the middle and last model layers, using feature extraction mechanisms, deployed more complex features 
from the input images to solve the same problem. Possible correlations between human results and those obtained 
from the computational models can provide evidence that humans might be developing the same strategies as 
implemented by the models in solving feature-based invariant object recognition. Implementation details for the 
ideal observer and the computational model were provided in the Methods section.

Consistency of diagnostic features across variations. We plotted aligned vs. raw overlap scatters for 
the ideal observer as well as the middle and last model layers on both the HSD and LSD (Fig. 8B to D). When 
comparing the scatter plots obtained from humans with those obtained from the observer and the model, sig-
ni�cantly (p < 0.01, two-tailed unpaired t-test) higher values of raw and aligned overlaps can be seen for the 
observer (with means = 0.087 and 0.081), the middle (with means = 0.078 and 0.197) and last model layers (with 
means = 0.081 and 0.118) respectively on the HSD and LSD. However, as opposed to humans, both the ideal 
observer and the computational model showed higher values of raw versus aligned overlaps (i.e. much more data 
points are positioned above the dashed line in Fig. 8B to D, see also % Higher raw/aligned overlap columns in 
Table 2) on both HSD and LSD. �is suggests that, rather than a view-invariant strategy in choosing diagnostic 
features which remained stable across variations, a low-level screen-centered strategy seems to be at work for the 
observer and the model compared to humans.

When comparing the number of the dark data points (i.e. which represent cases with signi�cant aligned, 
insigni�cant raw overlaps), a higher percentage is observed for humans on the HSD (15.3%) and LSD (22%) 
compared to the observer and the computational model (Table 2). Neither the observer nor the computational 
model revealed an increase in the percentages of dark points as a result of change in datasets. Rather, an opposite 
e�ect was observed with a higher percentage of gray points for the observer and the model compared to humans. 
Searching for the e�ect of increased aligned overlap and increased percentages of signi�cant aligned overlap for 
car 2 which was observed for humans on the LSD compared to HSD (Fig. 9, light gray bars), we observed the 
same increases only for the middle model layer (Fig. 9, dark bars). �e inter-subject consistency also increased for 
middle model layer (Fig. 11, dark bars). Hence, the computational algorithms failed to repeat the feature-based 
strategies adopted by humans when discriminating objects with di�erent levels of similarity.

We also computed pooled saliency maps for humans, ideal observer and computational model (i.e. based 
on their responses to the same set of masked images used in human experiments). To obtain these maps, we 
pooled the entire set of masked images from all subjects in each experiment and repeated the same procedure as 
was done for individuals with the pooled correct and incorrect trials from the humans (Figs 12 and 13). Careful 
comparison between the pooled saliency maps obtained from the observer and model showed very limited cor-
relations with humans. We highlighted the diagnostic features which were shared by humans and observer/com-
putational model by magenta arrows on the relevant variation conditions in Figs 12 and 13. �ere were only 4, 
3 and 4 diagnostic features which were shared by humans and respectively the observer, middle and last model 
layers, on the HSD. �ese numbers were respectively 3, 1 and 1 on the LSD. �ese qualitative results suggest that 
a di�erent set of mechanisms might be developed for object recognition in humans which are not implemented 
by either the ideal observer or the computational model. However, a more quantitative approach was needed for 
more decisive conclusions.
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In order to quantitatively compare the saliency maps in Figs 12 and 13, we calculated also the correlations 
between the pooled maps obtained from the observer and the model with those obtained from the humans 
(Table 3). To see whether the correlations were signi�cant or not, we used the procedure explained earlier in 
the ‘Bubbles method’ to generate random correct saliency maps for the pooled human data, observer as well as 
model layers. Using the random sub-sampling procedure explained earlier, we calculated 1000 random correct 
saliency maps for the model as well as the observer whose correlations were computed and compared against the 
1000 random saliency maps obtained from the human data. Finally, the true correlation values were evaluated for 
signi�cance against the 1000 random correlations obtained from the random saliency maps. �e true correlation 
value was considered signi�cant if it was larger than 950 random correlation values (p < 0.05).

As the correlation results show (Table 3), neither the ideal observer nor middle/last model layers showed 
many instances of signi�cant correlation with the human results. A total of 9 variation conditions (out of the 156 
variation conditions in Tables 3, 5.7%) showed signi�cant correlations with humans without notable di�erences 
between HSD and LSD. �ree instances were signi�cant for the ideal observer as well as for the middle/last model 
layers. �is little correlation in the results is of no surprise as none of the models could emulate humans’ consist-
ency in their choice of visual features across variation conditions (Figs 8, 9 and 11).

Finally, we investigated the e�ect of objects’ similarity on the ideal observer as well as middle and last model 
layers to see whether they would select a lower number of features on the LSD as was seen for humans (Fig. 10A). 
For the sake of brevity, we have only provided results of the number and absolute sizes of features from car 2 
which included in both datasets (Fig. 14). It should be mentioned that, the results of the other objects and relative 
sizes of the features showed similar patterns.

As opposed to humans (Fig. 10A, right), the ideal observer, middle and last model layers showed an increase in 
the number of features on the LSD compared to HSD (Fig. 14, le� column). However, the di�erence between the 
HSD and LSD descended as sizes of the minimal features increased for the observer, while the opposite was true 
for the model layers. Absolute sizes of the features were also higher on the LSD compared to HSD with increasing 
di�erence as a function of minimal feature size for the three cases (Fig. 14, right column). �ese results show that, 
both the ideal observer and computational model used a higher number of diagnostic features with larger areas. 
�erefore, it can be concluded that, neither a pixel-level (i.e. idea observer), nor an intermediate-complexity (i.e. 
middle model layer) or high-complexity (i.e. last model layer) feature extractor algorithm could emulate the 
human strategies when solving the feature-based object discrimination tasks of the current study.

Discussion
Invariant object recognition, which refers to accurate and rapid recognition of objects under variations, is a dis-
tinguishing ability of human vision which has not yet found any arti�cial counterpart in the �eld of machine 
vision. �e reason behind this superiority is the complexity of human visual processing, especially when encoun-
tering complex recognition problems46–49. �is study investigated feature-based object recognition under com-
mon object variations in humans and two computational models of human vision. �e models extracted low-, 
intermediate- and high-complexity visual features from object images and enabled us to search for a computa-
tional account of human visual processing at di�erent levels of complexity.

Results showed that, rather than utilizing all car parts with equal probability, humans relied on speci�c parts 
for recognition (Figs 5 and 6). Accordingly, several parts, despite their comparable sizes to other parts, con-
tributed more dominantly to correct recognition of the cars (Fig. 7). �ese results are supported by previous 
�ndings which observed intermediate-complexity feature-based strategies for object28–30,33 and face50 recogni-
tion in primates. Relying on intermediate-complexity features seems to be a logical strategy as such features 
have been shown to provide the richest space of information in object recognition compared to features with 
higher or lower levels of complexity and size34. While many previous studies have used Bubbles method to inves-
tigate feature-based mechanisms of vision, they have not asked how variations would change the diagnostic 
features of objects28–30,33. �erefore, current study has extended previous investigations by generating a set of 
variation-controlled stimuli to study whether humans use a set of view-speci�c or view-invariant diagnostic fea-
tures across variations. Detailed computational analyses used in current study has provided evidence that, at least 
on the current variation-enriched image set, humans deployed a set of view-invariant diagnostic features in rec-
ognition (Figs 5 and 6). In other words, proportions of the features used in one variation condition signi�cantly 
overlapped with those used across other conditions (Figs 8 and 9).

By default, the relative consistency of diagnostic features across variation conditions was less probable, since 
this locking of visual processing on speci�c object parts seems very energy-consuming compared to relying on 
some low-level variation-una�ected strategy across variation conditions. In fact, low-level strategies, such as reli-
ance on screen-centered di�erences in object appearance, could have provided a trivial solution to object discrim-
ination if we had failed to consider variations which drastically changed the appearance of objects on the screen. 
�erefore, in order to reach recognition rates which were signi�cantly above chance (Fig. 4), subjects had to have 
developed strategies which were una�ected by object variations �is suggests that, previous studies which did not 
change the object appearance on the screen28–30 might have su�ered greatly from allowing the subjects to develop 
screen-centered strategies when discriminating between the objects under question.

It has been previously suggested that the similarity between objects plays a dominant role in their high-level 
brain representations51–53, and can also modulate the strategies of object discrimination37. �erefore, in the cur-
rent study, we also investigated human object discrimination strategies at two levels of object similarity. Results 
showed that, as in rats37, humans smoothly shi�ed their feature-based strategy from being view-speci�c on the 
high-similarity dataset (HSD) to a rather view-invariant strategy on the low-similarity dataset (LSD). More spe-
ci�cally, humans used a set of diagnostic features which were more consistent and less numerous across variation 
conditions on the LSD (Figs 9 and 10). �ese similarity-dependent results imply that the level of invariance 
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reported in many human psychophysical studies4,6,48,49, which has always been a point of con�ict11,54, could have 
been in�uenced by the similarity of objects used in the discrimination task.

Our results also showed that none of the computational models used in this study could predict human 
feature-based object discrimination strategies and how those strategies were modulated by the level of object sim-
ilarity (Figs 8, 9, 12, 13 and 14). �is is interesting as recent studies have shown a high level of brain-plausibility 
for the hierarchical model (AlexNet20) used in the current paper2,4,6,21,43,55. It is noteworthy that the mentioned 
studies have evaluated the brain-plausibility of the model at the level of high-level representations and suggested 
that these models might use the same mechanisms adopted by the human brain in object processing3. Clearly, it 
is di�erent from evoking the neural-level feature extraction mechanisms themselves, as was done in the current 
study. Many previous studies have reported discrepancy between object recognition in humans and computa-
tional models of vision31,56,57. Among them, a recent systematic study showed that none of the state-of-the-art 
computational object recognition algorithms (including AlexNet) revealed the human-like object-part sensi-
tivity in recognition28. We believe that this discrepancy can be explained by the top-down cognitive processes 
involved in visual processing of the human brain which are absent from feed-forward computational models 
of vision35,58,59. More speci�cally, the dynamical strategies developed by both humans and rats might have been 
evoked by top-down mechanisms developed in higher visual brain areas such as PFC. Pre-frontal cortex, which 
plays an important role in object recognition14,16,58, has shown very �exible structure in representational, deci-
sional and learning operations when encountering di�erent object recognition tasks60. �ese PFC-related oper-
ations, if incorporated in computational models of vision, might help in �nding closer matches for the human 
vision. As our image set was generated using occluding masks, it may have involved recurrent mechanisms of 
the brain in humans which are also absent from the models used here. �erefore, it seems relevant to compare 
the human results with those obtained from recently-developed brain-plausible recurrent models of vision5,61 in 
future studies.

One critical observation of current study is the variability of the diagnostic features across di�erent human 
subjects (Figs 5, 6 and 11). �is implies that every individual has relied on a set of features which they considered 
diagnostic, but were not necessarily considered important by other subjects. �is result is in contrast with pre-
vious results from rats, which showed a higher level of inter-subject consistency of diagnostic visual features36,37. 
�is discrepancy can be explained in light of the much higher computational processing power of the human 
brain compared to rats. Moreover, subjects of our study came from di�erent visual backgrounds and are incom-
parable with the rats of previous studies36,37 which were bred in similar constrained environments and have been 
solely trained to discriminate speci�c visual stimuli. In addition, the car models used in the current study provide 
more structural di�erences to each other compared to the arti�cial objects shown to those rats36,37, thus provid-
ing more options of diagnostic features for human individuals to choose from. �erefore, it should not come as 
a surprise to observe much more individual variability of strategies among humans compared to rats. Besides, 
while the recognition strategies developed by rats could be accurately predicted by a pixel-level ideal observer 
such as the one used in this study, the recognition strategies of our subjects could not be predicted by any of those 
computational algorithms. �ese add support to the fact that humans seem to have used much more complex 
recognition strategies than the models of current study.

One limitation of current study, which might seem to constrain the generalization of the results to the big 
problem of object recognition, is the number of objects used in the experiments. �is limitation was imposed 
on the study by two factors: the Bubbles method and the large number of variation conditions needed to study 
invariant object recognition. When using the Bubbles method, to gain statistical signi�cance for diagnostic and 
anti-diagnostic regions, each object condition needs to be presented to each subject hundreds of times (i.e. our 
subjects participated in 10 sessions of psychophysical experiments for only a pair of objects). As we aimed to 
study the dynamical behavior of object features across variations, we did not limit the variation conditions, but 
limited the number of objects in the image set. Nonetheless, two is the most common number for objects used 
with Bubbles method36,37,62, and the number has been rarely increased29,63. We believe that, although the diag-
nostic features will surely vary across di�erent sets of objects, the strategies will most probably remain stable 
across objects. �is is supported by many of the human strategies observed in the current study which repeated 
strategies observed in rats36,37; two totally di�erent species discriminating drastically di�erent object categories. 
However, the inclusion of factors such as levels of categorization (i.e. subordinate, basic and superordinate)64 and 
task complexity (e.g. detection, discrimination, attention)60 will probably a�ect the developed strategies.

Another limitation of this study, which can be covered in the future, is disregarding the e�ect of cluttered 
background on the choice of diagnostic features. It has been shown by many studies that object background has 
drastic impacts on the recognition performance of objects (i.e. also under variations) in humans4,46,64, and that 
background can also be considered diagnostic by humans in complex discrimination tasks30. �erefore, it seems 
relevant to study the e�ect of background on diagnostic features. �ese backgrounds can be constructed arti�-
cially to provide low-level control (e.g. random noise, scrambled phase images, etc.)46 or can be chosen from nat-
ural images2–4. �is is interesting since background, similar to current in�uences of object similarity on high-level 
cognitive processes, also involves top-down (e.g. attention and expertise35,65) and bottom-up (e.g. �gure-ground 
segregation4,18) mechanisms of the brain.

Although the psychophysical experiments of current study allowed us to investigate the dynamical nature 
of invariant object recognition at behavioral level, the relative contributions of diagnostic features against other 
task-related cognitive processes which were active during the experiments (e.g. decision making, attention, 
task-related motor preparation) and may have contributed to the observed responses have remained unknown. 
In order to evaluate the contribution of the diagnostic features in object recognition, neuroimaging techniques 
can be adopted in passive object presentation paradigms. �e use of methods such as EEG, EMG and fMRI, along 
with proper decoding schemes such as reverse-correlation50 would be suitable choices in that regard. Moreover, 
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methods such as Granger causality can be used to highlight the role of feed-forward and feedback mechanisms of 
the brain in feature-based object recognition17.

In summary, the quantitative investigation of feature-based object recognition in humans performed in this 
study, while posing many intact questions for future studies, suggests the reliance on view-invariant diagnostic 
features as a possible strategy which can explain how invariant object recognition is achieved by the human brain, 
but not by the state-of-the-art hierarchical machine vision algorithms.
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