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Abstract 

This paper describes an approach to 2-dimensional object recognition. Complex-log con­

formal mapping is combined with a distributed associative memory to create a system 

which recognizes objects regardless of changes in rotation or scale. Recalled information 

from the memorized database is used to classify an object, reconstruct the memorized ver­

sion of the object, and estimate the magnitude of changes in scale or rotation. The system 

response is resistant to moderate amounts of noise and occlusion. Several experiments, us­

ing real, gray scale images, are presented to show the feasibility of our approach. 

Introduction 

The challenge of the visual recognition problem stems from the fact that the projec­

tion of an object onto an image can be confounded by several dimensions of variability 

such as uncertain perspective, changing orientation and scale, sensor noise, occlusion, and 

non-uniform illumination. A vision system must not only be able to sense the identity of an 

object despite this variability, but must also be able to characterize such variability -- be­

cause the variability inherently carries much of the valuable information about the world. 

Our goal is to derive the functional characteristics of image representations suitable for in­

variant recognition using a distributed associative memory. The main question is that of 

finding appropriate transformations such that interactions between the internal structure 

of the resulting representations and the distributed associative memory yield invariant 

recognition. As Simon [1] points out, all mathematical derivation can be viewed simply as 

a change of representation, making evident what was previously true but obscure. This 

view can be extended to all problem solving. Solving a problem then means transforming it 

so as to make the solution transparent . 

We approach the problem of object recognition with three requirements: 

classification, reconstruction, and characterization. Classification implies the ability to dis­

tinguish objects that were previously encountered. Reconstruction is the process by which 

memorized images can be drawn from memory given a distorted version exists at the in­

put. Characterization involves extracting information about how the object has changed 

from the way in which it was memorized. Our goal in this paper is to discuss a system 

which is able to recognize memorized 2-dimensional objects regardless of geometric dis­

tortions like changes in scale and orientation, and can characterize those transformations. 

The system also allows for noise and occlusion and is tolerant of memory faults. 

The following sections, Invariant Representation and Distributed Associative 

Memory, respectively, describe the various components of the system in detail. The Experi­

ments section presents the results from several experiments we have performed on real 

data. The paper concludes with a discussion of our results and their implications for future 

research. 

© American Institute of Physics 1988 
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1. Invariant Representation 

The goal of this section is to examine the various components used to produce the 

vectors which are associated in the distributed associative memory. The block diagram 

which describes the various functional units involved in obtaining an invariant image 

representation is shown in Figure 1. The image is complex-log conformally mapped so that 

rotation and scale changes become translation in the transform domain . Along with the 

conformal mapping, the image is also filtered by a space variant filter to reduce the effects 

of aliasing. The conformally mapped image is then processed through a Laplacian in order 

to solve some problems associated with the conformal mapping. The Fourier transform of 

both the conformally mapped image and the Laplacian processed image produce the four 

output vectors. The magnitude output vector I-II is invariant to linear transformations of 

the object in the input image. The phase output vector <1>2 contains information concern­

ing the spatial properties of the object in the input image. 

1.1 Complex-Log Mapping and Space Variant Filtering 

The first box of the block diagram given in Figure 1 consists of two components: 

Complex-log mapping and space variant filtering. Complex-log mapping transforms an 

image from rectangular coordinates to polar exponential coordinates. This transformation 

changes rotation and scale into translation. If the image is mapped onto a complex plane 

then each pixel (x,y) on the Cartesian plane can be described mathematically by z = x + 

jy. The complex-log mapped points ware described by 

w =In{z) =In(lzl} +jiJ 
z 

(1) 

Our system sampled 256x256 pixel images to construct 64x64 complex-log mapped 

images. Samples were taken along radial lines spaced 5.6 degrees apart. Along each radial 

line the step size between samples increased by powers of 1.08. These numbers are derived 

from the number of pixels in the original image and the number of samples in the 

complex-log mapped image. An excellent examination of the different conditions involved 

in selecting the appropriate number of samples for a complex-log mapped image is given in 

[2J. The non-linear sampling can be split into two distinct parts along each radial line. To­

ward the center of the image the samples are dense enough that no anti-aliasing filter is 

needed. Samples taken at the edge of the image are large and an anti-aliasing filter is 

necessary. The image filtered in this manner has a circular region around the center which 

corresponds to an area of highest resolution. The size of this region is a function of the 

number of angular samples and radial samples. The filtering is done, at the same time as 

the sampling, by convolving truncated Bessel functions with the image in the space 

domain. The width of the Bessel functions main lobe is inversely proportional to the eccen­

tricity of the sample point. 

A problem associated with the complex-log mapping is sensitivity to center 

misalignment of the sampled image. Small shifts from the center causes dramatic distor­

tions in the complex-log mapped image. Our system assumes that the object is centered in 

the image frame. Slight misalignments are considered noise. Large misalignments are con­

sidered as translations and could be accounted for by changing the gaze in such a way as 

to bring the object into the center of the frame. The decision about what to bring into the 

center of the frame is an active function and should be determined by the task. An exam­

ple of a system which could be used to guide the translation process was developed by 

Anderson and Burt [3J. Their pyramid system analyzes the input image at different tem-
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poral and spatial resolution levels. Their smart sensor was then able to shift its fixation 

such that interesting parts of the image (ie . something large and moving) was brought into 

the central part of the frame for recognition . 

1.2 Fourier Transform 

The second box in the block diagram of Figure 1 is the Fourier transform. The 

Fourier transform of a 2-dimensional image f(x,y) is given by 

F(u,v) = j j f(x,y)e-i(ux+vy) dx dy (2) 
-00 -00 

and can be described by two 2-dimensional functions corresponding to the magnitude 

IF(u,v)1 and phase <l>F(u,v). The magnitude component of the Fourier trans~rm which is 

invariant to translatIOn, carries much of the contrast information of the image . The phase 

component of the Fourier transform carries information about how things ar} placed in an 

image. Translation of f(x,y) corresponds to the addition of a linear phase cpmponent. The 

complex-log mapping transforms rotation and scale into translation and tije magnitude of 

the Fourier transform is invariant to those translations so that I-II ivill not change 

significantly with rotation and scale of the object in the image. 

1.3 Laplacian 

The Laplacian that we use is a difference-of-Gaussians (DOG) approximation to the 

function as given by Marr [4). 

2 2 
'V2G =h [1 - r2/2oo2) e{ -r /200 } (3) 

'1rtT 

The result of convolving the Laplacian with an image can be viewed as a two step process. 

The image is blurred by a Gaussian kernel of a specified width oo. Then the isotropic 

second derivative of the blurred image is computed. The width of the Gaussian kernel is 

chosen such that the conformally mapped image is visible -- approximately 2 pixels in our 

experiments. The Laplacian sharpens the edges of the object in the image and sets any re­

gion that did not change much to zero. Below we describe the benefits from using the La­

placian. 

The Laplacian eliminates the stretching problem encountered by the complex-log 

mapping due to changes in object size. When an object is expanded the complex-log 

mapped image will translate . The pixels vacated by this translation will be filled with 

more pixels sampled from the center of the scaled object. These new pixels will not be 

significantly different than the displaced pixels so the result looks like a stretching in the 

complex-log mapped image. The Laplacian of the complex-log mapped image will set the 

new pixels to zero because they do not significantly change from their surrounding pixels. 

The Laplacian eliminates high frequency spreading due to the finite structure of the 

discrete Fourier transform and enhances the differences between memorized objects by ac­

centuating edges and de-emphasizing areas of little change. 

2. Distributed Associative Memory (DAM) 

The particular form of distributed associative memory that we deal with in this pa­

per is a memory matrix which modifies the flow of information. Stimulus vectors are asso­

ciated with response vectors and the result of this association is spread over the entire 

memory space . Distributing in this manner means that information about a small portion 

of the association can be found in a large area of the memory. New associations are placed 
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over the older ones and are allowed to interact. This means that the size of the memory 

matrix stays the same regardless of the number of associations that have been memorized. 

Because the associations are allowed to interact with each other an implicit representation 

of structural relationships and contextual information can develop, and as a consequence a 

very rich level of interactions can be captured. There are few restrictions on what vectors 

can be associated there can exist extensive indexing and cross-referencing in the memory. 

Distributed associative memory captures a distributed representation which is context 

dependent. This is quite different from the simplistic behavioral model [5]. 

The construction stage assumes that there are n pairs of m-dimensional vectors that 

are to be associated by the distributed associative memory. This can be written as 

"l.K:::+. = -r. ~or 1· 1 n IV~ I' = , ... , 
1 1 

(4) 

h -d h ·th . I d -d h .th d· were s. enotes tel stlmu us vector an r. enotes tel correspon mg response Vec-

tor. W~ want to construct a memory matrix M such that when the kth stimulus vector S; 
is projected onto the space defined by M the resulting projection will be the corresponding 

response vector r;. More specifically we want to solve the following equation: 

MS=R (5) 

h S [ - 1 - 1 1 -] d R [ - 1 - 1 1 -] A· I· ~ h· were = s1 1 s2 1 · ··1 S an = r 1 1 r 2 1 ···1 r. umque so utlOn lor t IS equa-
tion does not necessarily n exist for any arbitrary gr~up of associations that might be 

chosen. Usually, the number of associations n is smaller than m, the length of the vector to 

be associated, so the system of equations is underconstrained. The constraint used to solve 

for a unique matrix M is that of minimizing the square error, IIMS - RJ1 2, which results in 

the solution 

(6) 

where S+ is known as the Moore-Penrose generalized inverse of S [6J. 

The recall operation projects an unknown stimulus vector s onto the memory space 

M. The resulting projection yields the response vector r 

r =Ms (7) 

If the memorized stimulus vectors are independent and the unknown stimulus vector s is 

one of the memorized vectors S;, then the recalled vector will be the associated response 

vector r;. If the memorized stimulus vectors are dependent, then the vector recalled by 

one of the memorized stimulus vectors will contain the associated response vector and 

some crosstalk from the other stored response vectors. 

The recall can be viewed as the weighted sum of the response vectors. The recall 

begins by assigning weights according to how well the unknown stimulus vector matches 

with the memorized stimulus vector using a linear least squares classifier. The response 

vectors are multiplied by the weights and summed together to build the recalled response 

vector. The recalled response vector is usually dominated by the memorized response vec­

tor that is closest to the unknown stimulus vector. 

Assume that there are n associations in the memory and each of the associated 

stimulus and response vectors have m elements. This means that the memory matrix has 

m2 elements. Also assume that the noise that. is added to each element of a memorized 
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stimulus vector IS independent, Zero mean, with a variance of O'~ The recall from the 
1 

memory is then 

(8) 

where tt is the input noise vector and t1 is the output noise vector. The ratio of the aver­

age output noise variance to the averagg input noise variance is 

2 2 1 [MMT] 0' /0'. = -Tr 
o 1 m 

(9) 

For the autoassociative case this simplifies to 

(10) 

This says that when a noisy version of a memorized input vector is applied to the memory 

the recall is improved by a factor corresponding to the ratio of the number of memorized 

vectors to the number of elements in the vectors. For the heteroassociative memory ma­

trix a similar formula holds as long as n is less than m [7]. 

(11) 

Fault tolerance is a byproduct of the distributed nature and error correcting capa­

bilities of the distributed associative memory. By distributing the information, no single 

memory cell carries a significant portion of the information critical to the overall perfor­

mance of the memory. 

3. Experiments 

In this section we discuss the result of computer simulations of our system. Images 

of objects are first preprocessed through the sUbsystem outlined in section 2. The output of 

such a subsystem is four vectors: I-I , <1>1' 1-12, and <1>2' We construct the memory by associ­

ating the stimulus vector I-II with £he response vector <1>2 for each object in the database. 

To perform a recall from the meJIlory the.. unknown image is preprocessed by the same_sub­

system to produce the vectors I-II' <1>1' 1-12, and <1>2' The resulting stimulus vector I-I is 

projected onto the m~mory matrix to produce a respOJlse vector which is an ~stimatel of 

the memorized phase <1>2' The estimated phase vector cI> 2 and the magnitude I-II ate used 

to reconstruct the memorized object. The difference between the estimated phase <1>2 and 

the unknown phase <1>2 is used to estimate the amount of rotation and scale experienced by 

the object. 

The database of images consists of twelve objects: four keys, four mechanical parts, 

and four leaves. The objects were chosen for their essentially two-dimensional structure. 

Each object was photographed using a digitizing video camera against a black back­

ground. We emphasize that all of the images used in creating and testing the recognition 

system were taken at different times using various camera rotations and distances. The im­

ages are digitized to 256x256, eight bit quantized pixels, and each object covers an area of 

about 40x40 pixels. This small object size relative to the background is necessary due to 

the non-linear sampling of the complex-log mapping. The objects were centered within the 

frame by hand. This is the source of much of the noise and could have been done automat­

ically using the object's center of mass or some other criteria determined by the task. The 

orientation of each memorized object was arbitrarily chosen such that their major axis 
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was vertical. The 2-dimensional images that are the output from the invariant represen­

tation subsystem are scanned horizontally to form the vectors for memorization. The da­
tabase used for these experiments is shown in Figure 2. 

a) Original 

Figure 2. The Database of Objects Used in the Experiments 

b) Unknown c) Recall: rotated 135· 

Figure 3. :Recall Using a Rotated and scaled key 

d) Memory:6 

SNR: -3.37 Db 

The first example of the operation of our system is shown in Figure 3. Figure 3a) is 

the image of one of the keys as it was memorized. Figure 3b) is the unknown object 

presented to our system. The unknown object in this caSe is the same key that has been 

rotated by 180 degrees and scaled. Figure 3c) is the recalled, reconstructed image. The 
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rounded edges of the recalled image are artifacts of the complex-log mapping. Notice that 

the reconstructed recall is the unrotated memorized key with some noise caused by errors 

in the recalled phase. Figure 3d) is a histogram which graphically displays the 

classification vector which corresponds to S+S. The histogram shows the interplay between 

the memorized images and the unknown image. The" 6" on the bargraph indicates which 

of the twelve classes the unknown object belongs. The histogram gives a value which is 

the best linear estimate of the image relative to the memorized objects. Another measure, 

the signal-to-noise ratio (SNR), is given at the bottom of the recalled image. SNR com­

pares the variance of the ideal recall after processing with the variance of the difference 

between the ideal and actual recall. This is a measure of the amount of noise in the recall. 

The SNR does not carry rr.uch information about the q"Jality of the recall image because 

the noise measured by the SNP.. is jue to many factors such as misalignment of the center, 

changing reflections, and dependence between other memorized objects -- each affecting. 

quality in a variety of ways. Rotation and scale estimate~ are made using a vector_ D 

corresponding to the dlll'erence between the unknown vector <1>2 and the recalled vector <I> 2' 

In an ideal situation D will be a plane whose E;radient indicates the exact amount of r:.ota­

tion and scale the recalled object has experienced. In our system the recalled vector <I> 2 is 

corrupted with noise which means rotation...and scale have to be estim:ned. The estimate is 

made by letting the first order difference D at each point in the plane vote for a specified 

range of rotation or scale. 

a) Original b) Unknown c) Recall d) Memory:4 

Figure 4 Recall Using Scaled and Rotated" S" with Occlusion 

Figure 4 is an example of occlusion. The unknown object in this case is an "s" 
curve which is larger and slightly tilted from the memorized "s" curve. A portion of the 

bottom curve was occluded. The resulting reconstruction is very noisy but has filled in the 

missing part of the bottom curve. The noisy recall is reflected in both the SNR and the in­

terplay betw~en the memories shown by the hi~togram. 

a) Ideal recall b) 30% removed c) 50% removed d) 75% removed 

Figure 5. Recall for Memory Matrix Randomly Set to Zero 

Figure 5 is the result of randomly setting the elements of the memory matrix to 
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zero. Figure 5a) shows is the ideal recall. Figure 5b) is the recall after 30 percent of the 

memory matrix has been set to zero. Figure 5c) is the recall for 50 percent and Figure 5d) 

is the recall for 75 percent. Even when 90 percent of the memory matrix has been set to 

zero a faint outline of the pin could still be seen in the recall. This result is important in 

two ways. First, it shows that the distributed associative memory is robust in the presence 

of noise. Second, it shows that a completely connected network is not necessary and as a 

consequence a scheme for data compression of the memory matrix could be found. 

4. Conclusion 

In this paper we demonstrate a computer vIsIon system which recognIzes 2-

dimensional objects invariant to rotation or scale. The system combines an invariant 

representation of the input images with a distributed associative memory such that objects 

can be classified, reconstructed, and characterized. The distributed associative memory is 

resistant to moderate amounts of noise and occlusion. Several experiments, demonstrating 

the ability of our computer vision system to operate on real, grey scale images, were 

presented. 

Neural network models, of which the di~tributed associative memory is one example, 

were originally developed to simulate biological memory. They are characterized by a 

large number of highly interconnected simple processors which operate in p2..rallel. An ex­

cellent review of the many neural network models is given in [8J. The distrib-uted associa­

tive memory we use is linear, and as a result there are certain desirable properties which 

will not be exhibited by our computer vision system. For example, feedback through our 

system will not improve recall from the memory. Recall could be improved if a non-linear 

element, such as a sigmoid function, is introduced into the feedback loop. Non-linear neur­

al networks, such as those proposed by Hopfield [9] or Anderson et. al. [10J, can achieve 

this type of improvement because each memorized pattern js associated with sta~le points 

in an energy space. The price to be paid for the introduction of non-linearities into a 

memory system is that the system will be difficult to analyze and can be unstable. Imple­

menting our computer vision system using non-linear distributed associative memory is a 

goal of our future research. 

We are presently extending our work toward 3-dimensional object recognition. Much 

of the present research in 3-dimensional object recognition is limited to polyhedral, non­

occluded objects' in a clean, highly controlled environment. Most systems are edge based 

and use a generate-and-test paradigm to estimate the position and orientation of recog­

nized objects. We propose to use an approach based on characteristic views [llJ or aspects 

[12J which suggests that the infinite 2-dimensional projections of a 3-dimensional object 

can be grouped into a finite number of topological equivalence classes. An efficie:.t 3-

dimensional recognition system would require a parallel indexing method to search for ob­

ject models in the presence of geometric distortions, noise, and occlusion. Our object recog­

nition system using distributed associative memory can fulfill those requirements with 

respect to characteristic views. 
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