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1. Introduction

In bond percolation on an in�nite locally �nite graph G = (V;E), each edge is randomly
assigned value 0 (absent) or 1 (present) according to some probability measure on f0; 1gE. One
then studies connectivity properties of the random subgraph of G which arises by removing
each edge with value 0. Maximal connected components of that subgraph are called clusters,
and of particular interest is the possible existence of in�nite clusters.

Here we focus on the case where G is the regular tree Tn of order n � 2. That is, Tn is
the (unique) in�nite connected graph that has no circuits and in which there are exactly n+ 1
edges emanating from each vertex. We write En and Vn for the edge and vertex sets of Tn.

The most studied choice of probability measure on f0; 1gE is i.i.d. measure. When G =
Tn, this reduces to the study of Galton{Watson branching processes with binomial o�spring
distribution. Here we consider the more general class of automorphism invariant probability
measures on f0; 1gEn, i.e. measures that are invariant under graph automorphisms of Tn; a
graph automorphism for Tn is a bijection 
 : Vn ! Vn that preserves adjacency, together with
the induced mapping 
0 : En ! En.

There are several interesting examples (besides i.i.d. measure) of such probability mea-
sures, including the random-cluster model and uniform spanning forests; see e.g. H�aggstr�om
(1996, 1997, 1998).

In H�aggstr�om (1997), we showed that any automorphism invariant probability measure
on f0; 1gEn whose marginal probability that an edge is present is at least 2=(n + 1), produces
in�nite clusters with positive probability (this bound was also shown to be sharp). The proof
involved a mass-transport argument, which was extended and exploited with great success by
Benjamini, Lyons, Peres and Schramm (1998a). The mass-transport method is discussed in
Section 2.

Several results concerning the number and topological structure of in�nite clusters were
also given in H�aggstr�om (1997). For space reasons, some of the proofs were omitted in the �nal
version of that paper. In Section 3 we shall recall these results and give new proofs, which are
short and simple, based on the mass-transport method.

2. The mass-transport method

Let Aut(Tn) denote the set of graph automorphisms for Tn. If � is an automorphism
invariant probability measure on f0; 1gEn, then every 
 2 Aut(Tn) acts as a measure-preserving
transformation on the probability space (f0; 1gEn; �). Let m(x; y; !) be a nonnegative function
of three variables: two vertices x; y 2 Vn, and ! 2 f0; 1gEn. Intuitively, m(x; y; !) should be
thought of as the mass transported from x to y given the con�guration !. We assume that
m(�; �; �) is invariant under the diagonal action of Aut(G), i.e., m(x; y; !) = m(
x; 
y; 
!) for
all x; y; ! and 
 2 Aut(Tn).



Theorem 2.1 (The mass-transport principle for Tn) Given m(�; �; �) as above, let

M(x; y) =
Z
f0;1gEn

m(x; y; !) d�(!) :

Then the expected total mass transported out of any vertex x equals the expected total mass

transported into x, i.e., X
y2Vn

M(x; y) =
X

y2Vn

M(y; x) :

This is a special case of the mass-transport principle proved by Benjamini et al. (1998a).
Their result extends to the case where Tn is replaced by an arbitrary Cayley graph, or more
generally by a so called unimodular transitive graph (without unimodularity, the result fails).
The mass-transport method has turned out to be extremely useful in the study of percolation
on nonamenable graph structures, where it replaces density arguments which are available
only in amenable settings; see e.g. Benjamini et al. (1998a, 1998b), H�aggstr�om and Peres
(1999), H�aggstr�om, Peres and Schonmann (1998) and Lyons and Schramm (1998) for numerous
interesting applications. The usefulness and simplicity of the mass-transport method will also
be exempli�ed in the next section.

3. Some results on in�nite clusters

It is natural to ask for the number of in�nite clusters produced by a percolation process.
Theorem 3.1 below says that the number of in�nite clusters in automorphism invariant perco-
lation on Tn is a.s. either 0 or 1, except in the trivial case where all edges are present. To
avoid this triviality, we call a probability measure � on f0; 1gEn nice if it assigns probability
0 to the con�guration where all edges are present, and we write An for the class of all nice
automorphism invariant probability measures on f0; 1gEn. For ! 2 f0; 1gEn, write K(!) for
the number of in�nite clusters in !.

Theorem 3.1 For � 2 An, we have

�(! : K(!) 2 f0;1g) = 1 :

Proof. Let X be a f0; 1gEn-valued random element with distribution �. Obtain X� 2 f0; 1gEn

from X as follows. If K(X) 2 f0;1g, then let X� = X. Otherwise pick one of the in�nite
clusters of X uniformly at random, and delete all edges that are not in that in�nite cluster.
Hence, if K(X) 2 f1; 2; : : :g, then K(X�) = 1. Furthermore, if � 2 An, then the distribution
�� of X� is clearly in An, and we have therefore reduced the problem to showing that

�(! : K(!) = 1) = 0 (1)

for all � 2 An.
Assume for contradiction that � 2 An and (1) fails. Consider the mass-transport where

if K(!) 6= 1, no mass at all is sent, while if K(!) = 1, then each vertex x which is not in the
in�nite cluster sends unit mass to the (unique) vertex y in the in�nite cluster which is closest
to x. Then the expected mass sent from any vertex is at most 1. On the other hand, each
vertex on the boundary of a unique in�nite cluster receives in�nite mass, so that the expected
mass received at any vertex is in�nite. This contradicts the mass-transport principle (Theorem
2.1). QED



The number of ends of an in�nite cluster C in Tn, is de�ned as the number of di�erent (but
not necessarily disjoint) in�nite self-avoiding paths in C leading out of a given vertex x in C.
Note that this de�nition is independent of the choice of x. Say that an in�nite cluster is of
type j if it has exactly j ends. For j 2 f1; 2; : : :g [ f1g and ! 2 f0; 1gEn, write Kj(!) for the
number of in�nite clusters of type j in !.

Theorem 3.2 For � 2 An, we have

�(! : all in�nite clusters are of type 1, 2 or 1) = 1 : (2)

Moreover, for j = 1; 2;1, we have �(Kj(X) = 0 or Kj(X) =1) = 1.

Proof. Call x 2 Vn in an in�nite cluster C an encounter point, if there are at least three disjoint
in�nite self-avoiding paths from x in C. It is easy too see that if C is of type j 2 f3; 4; : : :g,
then C contains a �nite nonzero number of encounter points.

To prove the �rst part of the theorem, assume for contradiction that � 2 An and (2) fails.
Consider the mass transport where each vertex sitting in an in�nite cluster C containing a �nite
nonzero number of encounter points sends away unit mass, and distributes it equally among all
encounter points in C. Then any encounter point in an in�nite cluster of type j 2 f3; 4; : : :g
receives in�nite mass. Hence the expected mass received at a vertex is 1, while the expected
mass sent is at most 1. This contradicts the mass-transport principle.

To prove the second part of the theorem, �x j 2 f1; 2;1g, letX have distribution � 2 An,
obtain X� from X by deleting all edges that are not in in�nite clusters of type j, note that the
distribution of X� is in An, and apply Theorem 3.1. QED

Call an end of an in�nite cluster C isolated if the corresponding in�nite self-avoiding open path
starting at a given vertex x in C eventually does not intersect any other in�nite self-avoiding
open path in C starting at x, and note that this de�nition is independent of the choice of x.

Theorem 3.3 For � 2 An, we have that � assigns zero probability to the existence of isolated

ends in in�nite clusters of type 1.

Proof. In�nite clusters of type 1 contain encounter points, and therefore each isolated end in
an in�nite cluster has a \last" enounter point, which we call the shoulder of that end. Assume
for contradiction that � 2 An assigns positive probability to the existence of isolated ends in
in�nite clusters of type 1. Consider the mass-transport where each vertex sitting \beyond"
the shoulder in such an end sends unit mass to its shoulder. Then a shoulder receives in�nite
mass. Hence, the expected mass sent from a vertex is at most 1, and the expected mass received
is 1, giving the usual contradiction. QED

Suppose now that measure � 2 An satis�es the �nite energy condition, i.e. the conditional
probability of an edge being present given all other edges is always strictly between 0 and 1.
Suppose also that � assigns positive probability to the existence of in�nite clusters of type 1
or 2 (in which case there are in�nitely many such clusters, by Theorem 3.2). By using the (by
now standard) arguments of Newman and Schulman (1981) involving �nite modi�cations of
con�gurations, we see that this implies that the existence of in�nite clusters of type 3 also has
positive �-probability. But this contradicts Theorem 3.2, so we have proved the following.

Theorem 3.4 If � 2 An satis�es the �nite energy condition, then �-a.s. each in�nite cluster

has in�nitely many ends.



REFERENCES

Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (1998a) Group-invariant percolation on
graphs, Geom. Funct. Anal., to appear.

Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (1998b) Critical percolation on any
nonamenable group has no in�nite clusters, Ann. Probab., to appear.

H�aggstr�om, O. (1996) The random-cluster model on a homogeneous tree, Probab. Th. Relat.

Fields 104, 231{253.

H�aggstr�om, O. (1997) In�nite clusters in dependent automorphism invariant percolation on
trees, Ann. Probab. 25, 1423{1436.

H�aggstr�om, O. (1998) Uniform and minimal essential spanning forests on trees, Random Struc-

tures Algorithms 12, 27{50.

H�aggstr�om, O. and Peres, Y. (1999) Monotonicity of uniqueness for percolation on Cayley
graphs: all in�nite clusters are born simultaneously, Probab. Th. Relat. Fields 113, 273{285.

H�aggstr�om, O., Peres, Y. and Schonmann, R. (1998) Percolation on transitive graphs as a coa-
lescent process: relentless merging followed by simultaneous uniqueness, to appear in Perplexing

Probability Problems: Papers in Honor of Harry Kesten, Birkh�auser, Boston.

Lyons, R. and Schramm, O. (1998) Indistinguishability of percolation clusters, Ann. Probab.,
to appear.

Newman, C.M. and Schulman, L.S. (1981) In�nite clusters in percolation models, J. Statist.
Phys. 26, 613{628.

SUMMARY

Some results concerning in�nite clusters in automorphism invariant percolation on a reg-

ular tree, are recalled from a 1997 paper by the same author. New simple proofs, using the

mass-transport method, are presented.

R�ESUM�E

Nous rappelons certains r�esultats d'un article de 1997 par le même auteur concernant les

amas in�nis dans la percolation invariante �a l'automorphisme sur des arbres r�eguliers. Pour

ces r�esultats, nous pr�esentons des nouvelles preuves simples bas�ees sur la m�ethode de transport

de masse.


