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Existence theorems in analysis deal with functional transformations. This
suggests that such existence theorems may be obtained from known theorems
on point transformations in space of two or of three dimensions by generalization,
first to space of n dimensions, and then to function space by a limiting process.
This direction of attack has been followed out and has resulted in the theorems
given below. For instance it is found that theorems on invariant points for
the sphere or for its surface yield respectively by generalization existence theo-
rems in analysis of non-homogeneous and of homogeneous type.

The treatment is here confined to the case of real functions of a real variable,
although extensions to real functions of several real variables are indicated.
Only the case of a single unknown function is considered. In many cases, of
course, apparently more general problems can be reduced to this case by a
process which is familiar in the theory of integral equations, namely the juxtaposi-
tion of intervals.

The applications include the classical existence theorems for differential and
integral equations, linear and non-linear.

Incidentally, it is proved that an algebraic manifold/i = Ci, ft = ct, .. .,
fm = cm> where /i, ft, . .., fm are real polynomials in the real variables Xi,
Xt, . . .,xn, has no singularity for general values of the real constants C\, c2, ...,
cm. The authors have not been able to find any earlier proof of this simple and
important theorem.

The literature on the subject of invariant points does not appear to be exten-
sive. For a geometric treatment of one-valued transformations with one-valued
inverses, we may refer to L- E. J. Brouwer.f   Some existence theorems of un-

* Presented to the Society, Dec. 30, 1920 and Feb. 25, 1922.
•f Ueber eindeutige stetige Transformationen von Flächen in sich, Mathematische

A n n a 1 e n, vol. 69 (1910), p. 176. See his references there to the Proceedings of
the Section of Sciences of the Royal Academy at Am-
sterdam, and in addition, ibid., vol. 13 (1911), pp. 771, 777.

Since the writing of this paper (see, however, footnote on p. Ill), we have learned from
Professor J. W. Alexander that he has obtained results on the existence of invariant points,
which, had we known of them, would have sufficed as the basis in n-space for a considerable
portion of our theory. The importance of the subject, however, and the difference in method
appear to us to warrant the inclusion here of our proofs of the needed theorems. Professor
Alexander's paper will be found in these Transactions, vol. 23, 1922, pp. 89-95.
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INVARIANT POINTS IN FUNCTION SPACE 97

usual generality have been developed previously. Thus Mason has given a
simple theorem for the linear non-homogeneous problem.* Evans has treated
certain extensions of the integral equation of Volterra type. | Mrs. Pellt has
considered linear transformations of general type.

1.     A LEMMA ON ALGEBRAIC EQUATIONS

Our proofs of the theorems on the existence of invariant points in «-space
will be based on the method of analytic continuation. In this paragraph we
shall establish a lemma affirming the validity of this method under certain con-
ditions by means of the following theorem, a corollary of which is that the gen-
eral algebraic manifold is non-singular.

Theorem. Letfuft, ..., f m be m polynomials in the n variables xu xt, ...,
x„, where m < n. If ci is chosen not to have one of a finite number of values, after
which ct is chosen not to have one of a finite number of values, and so on, until cm
is chosen, then the equations /i = Cu ft — c2, .. ., fm = cm will have no solution
for which the rank of the m-rowed matrix

M =

i)Xj dxi

W àft
àxi   dxi

àxn

àft
bxn

WmtWst *Jm
àxi    àxt ' àx„

is less than ra.

This may be proved by induction. Let us first consider the case m = 1.
It is known that any set of algebraic equations is satisfied at a finite number
of isolated points and on a finite number of analytic manifolds of various di-
mensions.! On any manifold for which all the partial derivatives of /i
vanish, it is clear that dfi = 0, and hence /i = const.    The value of Ci will be

* Selected topics in the theory of boundary value problems of differential equations, New Haven
Colloquium Lectures, Yale University Press, 1910, pp. 174 ff.

t Proceedings of the Fifth International Congress of Mathematicians at Cambridge (1912),
p. 387. See also Functionals and their applications, Cambridge Colloquium Lectures, New
York, 1918.

X Biorthogonal systems of functions, these Transactions, vol. 12 (1911), p. 135,
and Applications of biorthogonal systems of functions to the theory of integral equations, ibid.,
p. 165.

§ The facts are due to Weierstrass. Complete proofs of them will be given in the second
volume of Osgood's Funktionentheorie. They can also be established by means of Kronecker's
theory of elimination. See his Grundzüge einer arithmetischen Theorie der algebraischen Grossen,
Journal    für   Mathematik, vol. 92 (1889), p. 28 ff.
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98 G. D. BTRKHOFF AND O. D. KELLOGG [January

taken distinct from any of the finite number of values of /i on these manifolds
or at the isolated points referred to. Thus the surface fx = Ci will be non-
singular, and the theorem holds for m = l.

We now assume the theorem for »t — 1 polynomials. Let the values of Cu
Ct, ■ ■ ., cm_i be so chosen that the equations

(1) /l = Ci,ft = Ct,  . . .,fm-l  = cm~l

define non-singular manifolds, i. e., such that th ematrix M' obtained from M
by omitting the last row is of rank m — 1 at all points of the manifolds.

Consider the locus defined by the equations (1) together with those obtained
by equating to 0 all the determinants of order m of the matrix M.   As before,
this locus consists in a finite number of isolated points and of analytic manifolds
On any such manifold, /„ = const.   For, differentiating (1), we have

dfl = *Adxi + àAdXi+.  .  .+ %Ldxn = 0,
bXi bxt bx„

dfi - ¥i ax, + p. dxt + ■ ■ ■ + P. dxn - 0,
bXi bXi bxn

dfm-X   -  %*&k + %¿¿ft +   «    •    •  +    ¥?=±dXn   =   0,
O^i bXf. bx„

and since the matrices M and M' are both of rank m — 1, these equations have
as consequence

dfm = p> dxi + ^5 dxt + •  •  ■ + ¥a dxn = 0,
bxi bxt bx„

or, /„ = const. If, therefore, the constant cm is distinct from the values of
fm at the isolated points and on those manifolds for which the equations (1)
hold and all the determinants of order m of the matrix M vanish, it will follow
that the locus/i = ci,/2 = c2, .. .,/m = cmis non-singular, as was to be proved.

Of course the precise conditions for singularities consist in certain algebraic
relations between ci, c2, .. ., cm. In the non-singular case the manifolds are
of dimensions » —m. It is not difficult to extend the theorem to the case where
the functions /; are merely restricted to be analytic.

We are now hi a position to prove the desired lemma.
Lemma. Let G, G, .... G«-r denote n — \ polynomials with real coefficients

in the » variables xx, xit ..., xn, and let C denote a bounded open continuum of
the real space of these variables. If there exists a point A on the boundary of C at
which the polynomials G a^ vanish, while one of their functional determinants
with respect to n — 1 of the variables x, does not vanish, and if there exists in every
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1922] INVARIANT POINTS IN FUNCTION SPACE 99

neighborhood of A both points in C and points without C at which the G¡ all vanish,
then there exists a point B on the boundary of C. distinct from A, at which they all
vanish.

From the theorem just proved, we know that, given any positive e, there exist
sets cf less in absolute .value than e such that any curve, Ke, satisfying the « — 1
equations in x¡, x2,  ..., xn

(2) Gi = ci, Gt — Ct,... , Gn-i = c„_i

is non-singular. But for Ci = c» = ••• cn-.x = 0 there is, according to the
theory of implicit functions, a curve branch PJ0 through A satisfying the cor-
responding equations (2) and passing into C.

As the constants c¡ are varied, the coordinates and direction cosines of Kc
vary analytically. It is possible to describe a small sphere S about A, which
Ko will cut twice, and but twice, one of these times in a point interior to
C. The number e can be taken so small that for all c„ less in absolute value
than í, the curve Kc will, on the one hand, cut the sphere twice and only twice,
one of these times in the interior of C, and, on the other hand, will contain points
exterior to C and to S.

Now consider an infinite sequence of these curves, corresponding to sets of
values of the c¡, for each of which the curves Kc defined by (2) are non-singular,
while lim c¡ = 0. Each such curve can be continued analytically until it leaves
C at some point B' outside of the sphere S. The set of points B' corresponding
to the infinite sequence of curves Kc is bounded, and hence must have at least
one limit point B, outside of S. Such a point B is a boundary point of C be-
cause the points B' are boundary points of C. Finally, since the functions G¡
are continuous, the functions G vanish at B.   Thus the lemma is established.

2.   Invariant points in «-space

We proceed to the proof of the following theorem:
Theorem I.   Let Rn denote a bounded connected region of real n-space contain-

ing an interior point 0 (the origin for a set of rectangular coordinates X\, xt, .. .
xn) such that every half-ray originating in 0 contains but one boundary point of R .
Let T denote a one-valued and continuous transformation

(3) x'i = /i(*i, xt, ..., xn), x't = ft(xi, xt, ..., *,,), ...,
*'« - /«(*i.  *î. • ••. *«). or briefly, x' = /(at),*

which transforms each point of Rn into a point of Rn.

* A symbol without index will, in the following, be understood as standing for the totality
of the corresponding symbols with indices.
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100 G. D. BIRKHOFF AND O. D. KELLOGG [January

Then there exists a point, a, of R„, which is invariant under T, i.e., such that
a = / (a).*

We will prove the theorem first under the assumption that the functions
f(x) are polynomials, and will then pass to the general case by means of Weier-
strass's theorem on the approximation to continuous functions by polynomials.

Consider the transformation T\

(4) *' =   \f(x)

in which the parameter X lies in the closed interval (0, 1). For X = 0, this
transformation has the single invariant point x = 0. Our object is to show
that it has an invariant point for X = 1. We are thus led to study the set of
» algebraic equations
(5) x' - \f(x) = 0

in the cylindrical region RnX of (» + 1)-space: x in R„ and X in (0, 1).
For x = 0, X = 0, the functional determinant of the functions x — \f(x),

with respect to the » variables íc, is 1. Hence, in the neighborhood of this
point, the values x are determined by (5) as real analytic functions of X, and,
for small negative and positive values of X, these equations have solutions with-
out and within RnX, respectively. The hypotheses of our lemma are thus satis-
fied, and there exists a second point, B, on the boundary of PXtt, whose
coordinates satisfy (5). For this point X is not 0, since x = X = 0 is the only
point on X = 0 whose coordinates satisfy the equations (5). Furthermore B
does not he on the boundary of P„x for 0 < X < 1, since 7\ carries all such
points into the interior of R„. Hence B must lie on the boundary X = 1 ; and,
if (a, 1) denote the coordinates of B, .fe have a = f(a), as was to be proved.

Suppose the functions f(x) are not polynomials. We shall find it convenient
to develop first a property of the region Rn. Let a stand for the direction cosines
of a half-ray originating in O, and let r(a) denote the distance from O to the single
boundary point of RH on this half-ray. Then r(a) is a continuous function of
the variables a. For, if discontinuous, say at a point a0, there would exist a
positive number n, and an infinite sequence [aA of directions with a0 as limit,
such that | r(a,) —r(a0) | ^ n- Since R„ is bounded, the boundary points corre-
sponding to [a,] would have at least one limit point on the half-ray a0 with
distance from 0 different from r(ao). Such a limit point would be a boundary
point of Rn, a conclusion in contradiction with the hypothesis that each half-

* The theorem is stated and proved in a degree of generality sufficient for our later pur-
poses. It will be seen that the proof holds if merely the boundary points of Rn are transformed
into points of Rn, and the theorem admits the obvious extension to any region susceptible of
continuous one to one mapping on a region Rn of the kind described. See also Alexander,
loc. cit.
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ray from O contains but one boundary point of P„. Hence r(a) is continuous,
and, because of the closure of the domain of the variables a, uniformly continu-
ous. There exists, therefore, a function, ¡p(Ad), approaching 0 with A0, but
positive for A0 > 0, such that | r(ct') —r(a) \ :S <p( A0) for any two directions a
and a' making an angle A0 or less with each other. This function may be so
chosen as to exceed in magnitude the corresponding chord also. This is the
needed property of P„.

Now for any small positive e there exist « real polynomials, p(x), suchthat

(6) | pi(x) -m\ *«
for i = 1, 2, .. ., « and for all x in P„. The transformation 11:*' = p(x)
would be of the type for which we have proved the existence of an invariant
point, if it transformed points of P„ into points of P„. In this event the theorem
would follow immediately inasmuch as a limit point of the invariant points under
II as « approaches 0 is clearly an invariant point under P.

In case II does not transform all points of Rn into points of P„, we shall modify
n slightly to a suitable new polynomial transformation JJt : x' = kp(x) where k
is slightly less than 1. Let A be any point of R„, and B the point into which the
transformation x' = p(x) carries A. We are only interested in the possible case
that B is not in R„, since otherwise the point Bk given by x' = kp(x) lies in RH
also. On this assumption, let C be the nearest point of Rn to B. Then BC ^
Vwt, because P carries A into a point of R„ and because of the inequalities
(6). If m denote the positive minimum of r(a), the angle subtended by BC at
0 is not greater than 2 sin~l(^ne/2m). Then, if D is the boundary point of P„
on the half-ray OB, CD ^ 4>(2 sin-W«t/2m.    Hence

BD g BC+'CD g VtK 4- 0(2 sin-KVwe^ra)),

and thus there is a small upper limit for the distance from B to the nearest point
D of P„ on the half-ray OB.

If now k is taken not greater than the least value of OD/OB, all points B will
be brought within Rn by Uk. If the upper limit for BD be denoted by ô, we
have

OD/OB á 0D/(0D + o) = r(a)/(r(a) 4- S)

which is least when r(a) has its least value, ra.   Hence if k — m/(m 4- $), the
transformation Uk will carry each point of P„ into a point of Rn.

The degree of approximation of Uk to P follows from the identity

U(x) - kpt (x) ** k\fi(x) - Pi(x)\ 4- (1 - k)fi(x)

whence, if M is the maximum of r(a),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



102 G. D. BIRKHOFF AND O. D. KELLOGG [January

(7) \f{(x) -kPi(x)\St+(l-k)M.

Since k approaches 1 as t approaches 0, the approximation may be made arbitra-
rily close.

Thus we infer as before the existence of an invariant point under T as a limit
of the invariant points of n.k for lim e = 0.

3.   The transition to function space; first method

The transition from «-space to function space may be made in a variety of
ways. First we give one based on interpolation; in §5 we shall give one based
on the mediation of a Hubert space.

It will be convenient to define a few terms in advance. We shall be concerned
with real functions, f(s), defined on some interval, say (0, 1). A set of such
functions will be bounded, B, provided a constant B exists such that |/| ^ B
for every function of the set, and for every j in (0, 1). The set will be said to
be equicontinuous, ij(«), provided there exists a function,n(e),defined and bounded
for 0 i£ e ^ 1, and approaching 0 with e, such that \f(s + h) — f(s) | ^ ij(e),
whenever \h\ g e, and s and 5 + h are in (0, 1), for every function of the set.*
A single function of such a set will be said to be continuous, n(e). An infinite
sequence of bounded equicontinuous functions has the fundamental property
that a subsequence can be so chosen as to approach a function of the set uni-
formly.

A function 17(e) will be said to be convex, provided that, for every a, b, and 8
in (0, 1),

v(a + 8(b - a)) £ »(a) + 0(rj(b) - v(a)).

If a set of functions is equicontinuous, £(«), there exists a convex function,
v(t) è £(«), approaching 0 with «. Of course the same set of functions is equi-
continuous, r/(e).

A primary property of functions continuous, rj(e), 77(e) convex, is that any
function g(s), which meets the continuity requirement for 5 + h, s on the set
ii = 0, St, ..., sH = 1 and which is linear between these values of s, will be
continuous, n(e), throughout.

This is self-evident when r/(e) = ce, when the continuity requirement is
merely that every chord of the given curve y = f(s) has a slope which does not
exceed c; for this is true of the polygonal curve y = g(s).

Moreover, in any case, we have by hypothesis,

I g(sj) - g(s¡) I á v(sj - sf)

* Cf. Ascoli, Le curve limite di una varietà data di curve, Atti délia Reale Ac-
cad e m i a    d e i   L i n c e i, M e m o r i e, ser. 3, vol. 18 (1882-83), pp. 545-549.
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1922] INVARIANT POINTS IN FUNCTION SPACE 103

for Sj > sit say. Since the curve y = r¡(s — s¡) is convex in the positive y di-
rection for 5 > Sj, it follows that for any s > s¡

I g(s) - g(sd \ £ r,(s - s¡).

If now j; á s' á si+1 ^ s, and we write

\ -     *   ~ s'      „ — s'+1 ~ 5'
A   —    -   ,   p   —    -   ,

S, + l — íf S,-+i  — S{

so that X + M = li the polygonal character of g (s) yields

I «(*) - f(iO| =|x(g(*) - g(si+1)) + M(g(s) - t(ßu)\Smiß - si+l) + m(s-s¿.

But the right hand side of this last inequaUty represents the ordinate of the
chord of y = r¡(x) at 5 — s', with end points at s — s,+1 and s — s„ so that

\g(s) - g(s')\ g r,(s - s').

This same inequality obviously holds for s, s' lying on one and the same interval
(s¡, si+1).   Hence g(s) is continuous, 17(e).

It may be observed that the proofs of the paper become somewhat simpler
for the important case ij(e) = ce, referred to above.

A transformation/' = Sf will be said to be continuous in a region Rf of function
space provided for every e > 0, and for every function g(s) in Rf, there exists a
positive number S, such that | Sf—Sg \ SI e for all s in (0, 1) whenever \f—g \ ^
5, uniformly with respect to s, / being in Rf.

Theorem II. Let Rf denote the totality of real functions f(s), defined on the
closed interval (0, 1), which are bounded, B, and equicontinuous, ij(«), ij(«) being
convex. Let f = Sf denote a one-valued, continuous transformation which carries
each point of Rf into a point of Rf.

Then there exists a point of Rf which is invariant under this transformation.

e'" *' - v/1The "distance," Sf = -d J     (f(s) — Sf(s))*ds, by which a point/ is moved

by the transformation S, has a lower limit 50 è 0 in Rf. This limit is attained
at some point, say/o, of Rf. For if [/¿] is an infinite sequence of points for which
ôf approaches S0, there exists a subsequence which approaches uniformly /0 in
Rf so that bft = 5o

If 5o = 0, it is clear that /o is an invariant point and the theorem follows.
To show that 50 = 0 we choose a positive « and define a region Rn of «-space

by the inequalities

|*<|g B, \xi+j -Xi\úv(j/(n- 1))    (« = 1,2, ...,«;/=1,2,...,ä-0.
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This «-dimensional region satisfies the requirements of Theorem I, being convex
toward the interior point 0. Next we define the transformation, T, of R„,
as follows. For x in Rn, we construct the continuous polygonal function of
s, w(s, x), equal to x, for s = s4 = (i — l)/(» — 1), (i = 1,2, .. . , «), and linear
for intermediate values of S. This function is in Rf, for it is evidently bounded
B, and is continuous, 17(e), as has been seen (p. 102.)

Let ir'(s, x) denote the function of Rf into which ir(s, x) is transformed uy S.*
Then, if %' be defined by the equations x'',• = x'(s,-, x), the transformation T is
determined. This transformation is easily seen to have the properties re-
quired in Theorem I, and so has an invariant point, a, in R„.

The function x(s, a), formed for this point, is transformed by S into a function
t'(s, a) which coincide^ with it at the « points s{. Between these points, the
variation of either function is not greater than i?(l/(« — 1)). Hence, through-
out the interval (0, 1), | x(s, a) — Sx(s, a) \ ^ 2tj(1/(» — 1)). Consequently,
K ^ 2?)(1/(m — 1)), a quantity which approaches 0 as » increases indefinitely;
and 5o = 0, as was to be proved.

4.    Extensions

It is, of course, evident that any other finite interval than (0, 1) might have
been used. Even infinite intervals may be used if the equicontinuity hypothesis
holds for some new variable, such as 1/s.

Moreover, the reasoning requires no essential modification in order to be appli-
cable to functions of two or more variables. For instance a set of functions
f(s, t) defined on the square 0 = s, t ^ 1 can be defined as equicontinuous,
77(e), if equicontinuous, 17(e), in each variable separately. We should compare
the function space thus defined with a space of »2 dimensions. To the point
f(s, t) of function space, we can make correspond the point x of »2-space defined
by coordinates Xfj = /((*' — l)/(» — 1), (j — l)/(» — 1)), the subscripts of
x corresponding to a network of vertices of squares of sides l/(» — 1) in the ori-
ginal square 0 á i, < á 1. Given a point in this »2-space, the intermediate co-
ordinates of points of function space can be defined as the value of the bilinear
function ast + bs + et + d which has the same values at the vertices of the
corresponding square.

Another definition of equicontinuity, 17(e), of funetions/(s,i) might be employed
namely that | f(s2, t2) - f(su h) | = 17(e) for V(s2 - sx)2 + (i2 - h)2 = e. It
is readily seen that this type of equicontinuity involves the preceding, and that
conversely if the preceding type holds so will this second type, provided that
17(e) is replaced by 2i)(e)

* To avoid possible confusion attention is called to the fact that the prime is used to denote
the result of the given transformation, 5.
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Theorem II may, in fact, be regarded as a type of a large body of theorems
that can be established. The region Rf may be modified in a variety of ways.
Important for the present method of proof are the closure and convexity of Rf,
and the continuity of P. One direction of modification of the theorem is, how-
ever, of sufficient importance to warrant more detailed attention. We for-
mulate it in the following theorem.

Theorem IIt Let Rf denote the totality of real functions f defined on (0, I),
which are boundea, Bo,,and whose first derivatives exist and are hounded, Pi, and are
equicontinuous r¡(e), r¡(e) being convex. Letf = Sf denote a transformation which
is one-valued, carries each point of Rf into a point of Rf, and which is continuous
in such wise that, given any function, g, of Rf, and any positive number e, there
exists a positive number & such that | Sf—Sg | ̂  efor all s, whenever fis any function
of Rffor which \f — g\ ^ 5 and \ df/ds — dg/ds | g h for all s.

Then there exists an invariant point under S in Rf.
It will be noted that the hypothesis on the continuity of S is weaker than in

Theorem II, while the region Rf is more restricted in the present theorem. The-
orem III is given with applications to differential equations in view.

The kernel of the proof of the theorem lies, as before, in the choice of a suit-
able region R„+i, and a transformation, P.

In this case we shall define P„+1 by the inequalities

| *,■ | = Bi, | xi+j - Xj | á r,(j/(n-l)) (t - 1, 2.n; / - 1, 2, ..., » - i),

xo   Ú Bo,
k

*o + D *. + ! + Xj

f=i 2(« - 1)
g. Bo (k = 1, ...,«-l).

This (n + 1)-dimensional region meets the requirements of Theorem I with O
as an interior point.

An appropriate determination of P may be made as follows. Given x in
P„+1, as defined in the above inequalities, we form the polygonal function
ir(s, x), assuming the values x{ for s => s{ = (i — !)/(« — 1).   We then write

£
i(s, x) = l(xo +   I    t(s, x)ds) (0 <l< 1).

The absolute value of the ordinate of the curve y = fa(s, x) for 5 — sk is I times
the left hand member of the last inequality defining PB+1. Hence it is clear
that fa(s, x), for 5 = sk, does not exceed IBo in numerical value. Since | dfa'ds \ g
IBi, we infer that

I +(s, x) I ^ l(Bo + Bi/(n - 1)) á Po

for n large, while dfa'ds is bounded, Pi, and continuous, t](t).    Thus fa(s, x)
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lies in Rf, and consequently so does S\¡/(s, x).   The definition of T is then given
by the equations

where

x'o = *'(0, x), x\ =  J- 4>'(su x)
ds

4>'(s, x) = / S*(s, x).

(i- 1,2, ...,»,)

It is immediately evident that T is a one-valued continuous transformation
throughout PM+1 because of the corresponding restriction on S. In order
to prove that T has an invariant point, we need only show further that the point
x' lies in PM+1.    Since \p' is bounded, IB0, we have

no,x)+ fSd±'ds
Jo   ds

whence, for 5 = sk, we infer

ÛIBo,

inasmuch as d^'/ds is continuous, /17(e). Consequently, for any fixed positive
/, « may be chosen so large that the last inequality defining PB+1 is satisfied
by x'. And since d^'/ds is bounded, Bu and continuous, 17(e), it is clear at
once that the other requirements are satisfied by x'. Hence an invariant point,
a, exists for any such I, if » is large enough.

For the function \¡/(s, a) of Rf corresponding to this invariant point, it follows
from the invariance of a under T that

I - S<lt(s, a) = — i> (s, a), for s = s¡
ds ds

ISUO, a)  = *(0, a).

From the first of these equations results the inequality

(i = 1,2, ..., «),

—■S\L(s, a) - - i(s, a)
ds ds

è (1 - I)B

for the same values of s, so that for any 5 the left hand member is less than

(1 - 0 Bi + „(l/(» - 1)).
From the second equation follows

I Si(0, a) - ¿-(0, a) j g (1 - l)Bo.
Hence

I S*(s, a) - *(s, a) I á (1 - I) (Bo + Pi) + n (^~\
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so that the "distance," 5^, between \f/ and Srp in Rf, can be made arbitrarily small
by taking I near enough to 1 and n large enough.

By the argument used in the proof of Theorem II it follows that there exists
an invariant function in Rf.

We close this paragraph with a formulation of a generalization of Theorem
III which is useful in applications, and which may be proved by a simple ex-
tension of the reasoning used to establish that theorem.

Theorem IV. Let Rf denote the totality of real functions defined on (0, 1)
which, with their first n — 1 derivatives are bounded, Po,'Pi, P2, . • . , P»_i,
respectively, and whose nth derivatives are bounded, Bn, and equicontinuous, t](e),
ti(e) being convex. Letf = Sf denote a transformation which is one-valued, carries
each point of Rf into a point of Rf, and is continuous in such wise that given any
function g of Rf and any positive number e, there exists a positive number ô such
that | Sf—Sg I ^ efor all s, whenever f is any function of Rffor which f—g and its
first « — 1 derivatives nowhere exceed 5 in absolute value.

Then there exists an invariant point under S in Rf.

5.     THE   TRANSITION   TO   FUNCTION   SPACE;   A   SECOND   METHOD

A second method of establishing the existence of an invariant point in a func-
tion space consists in setting up a correspondence with a certain Hubert space,
i. e., a space of countably infinitely many dimensions such that the sum of the
squares of the coordinates of each point converges. The correspondence is
based on a closed set of continuous bounded orthogonal functions [<p], such as
the set appearing in Fourier's series, so that no function with summable square
is orthogonal to the set unless it vanishes except on a set of zero measure. We
shall denote the generalized Fourier coefficients of a function/by a¡, i. e.,a¡ =»

J'   ffa ds.   We may then state
o

Theorem V. Let Rf denote the totality of summable functions with summable
squares, f(s), (0 Í s Í 1), such that

(a) there exists a constant B such that j   f*ds 5¡ Bi, and
Ja v2-»   2

(b) there exists a function v(m), approaching 0 with 1/ra, such that ¿^ <*, ¿
m

ij(ra). Let f = Sf denote a transformation which is one-valued, carries each point
of Rf into a point of Rf, and is continuous in such wise that given g in Rf and

« > 0, there exists a 6 > 0 such that I (Sf — Sg)*ds g e for all points f of R/ for

which  f  (f - gYds Ú «•
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Then there exists an invariant point under S in Rf, where it is understood that
two points are to be regarded as identical provided their coordinates differ at most on
a set of zero measure.

We first establish the closure of the space Rf. Given an infinite set [/] of
points of Rf, an infinite sequence [/,], can be selected from this set which con-
verges in the mean to a function / of Rf. To show this, we consider the first
Fourier coefficients of the set [/,]. As these first coefficients are bounded, B,
and infinitely numerous, an infinite sequence can be selected from the set
[/_,], whose first Fourier coefficients approach a limit, av From this sequence
can be selected an infinite sub-sequence whose second Fourier coefficients
approach a limit a2. And from this subsequence, in turn, another, whose third
Fourier coefficients approach a limit a3, and so on.

These constants (a[, a2, a'3, . . .), axe the Fourier constants of a function /
of Rf. For, the sum of the squares of the constants a\ converges to a limit not
exceeding B2. But this, together with the properties assumed for the set [<£,]
at the outset, is sufficient, according to the Riesz-Fischer theorem,* for the
existence of a summable function with summable square, whose Fourier coef-
ficients are the a,. This is the function/ whose existence was asserted, for it is
easily verified that the hypotheses (a) and (b) are fulfilled.

If now we select the first function of the first sequence, the second function
of the second sequence, and so on, we have a single sequence [/,] which converges
in the mean to /, as may be seen by use of hypothesis (b) and the equation

'    (Jj —f)2ds = ¿2 (aji ~ a'iY-   Thus the region Rf is closed in the sense that
o i

every infinite set of points in it-contains a sequence which converges in the mean
to a point of Rf.

It is a consequence of this closure, and of the continuity of the transformation,

that the distance ôf = W / (Sf — f)2ds, by which the transformation S dis-

places the point/, attains its lower limit 50 in Rf. That this lower limit cannot

be different from 0 is seen by a comparison with a region R„ of «-space, namely
n n

the region defined by ]£ x\ =: B2, ̂  x\ ^ r,(m), (m =  1, 2, ... , »).   To a
1 m n

point x of this region corresponds the point 4>(s, x) = 2^ xfa of Rf.   Let 4>'(s, x)
i

denote the function into which S transforms <b(s, x).   Then the transformation

T is defined by the equations x{ = ../    <b'(s, x)<bi(s)ds, (i = 1, 2, ... , «).   The
_ Jo

* Cf. E. Fischer, Sur le convergence en moyenne, Paris Comptes Rendus,
vol. 144 (1907), pp. 1022-24.
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hypotheses of Theorem I are fulfilled, and an invariant point, a, exists. More-
over, 5^ approaches 0 with 1/«, so that 50 = 0. But the point for which
5o = 0 is an invariant point, in the specified sense.

6.   Applications

There are evidently numerous applications of the above theorems to the exis-
tence problems of analysis.    We give two instances in this paragraph.

In the first place, let us consider a differential equation

(8) y(n> «F(*,y, /,..., yin~l))

for which a solution is desired which satisfies « linear conditions on the interval
(0,o)

«h     P E PaWW* + £ Ê la^bk) = c<
W JO      .7 = 0 3=0 k=l

(i = 1,2, ....n;0 ¿ *i £¡ «*,...,*», Ú a),

where the functions ptj(x) are continuous and the conditions are such as to
determine uniquely a polynomial y of degree « — 1. The problem of proving the
existence of a solution of the differential equation (8) with auxiliary conditions
(9) is identical with the problem of proving the existence of an invariant point
of the transformation z = Sy;

'  ■■■ £XF(x,y,y', .. ,/"-1))dxdx...dx

4- oo 4- aix 4-   •■ 4- o„_i xn~\

the coefficients a, being explicit functionals of y determined by the demand that
z satisfy the conditions (9). But here Theorem IV gives information, so that
we may state the following corollary:

If there exists a set of n constants, Bo, Pi, . . ., P»_i, such that when \y\ g
Bo, | y' | S Pi, ■ •■, | y(n~l) | á P«-i, the same inequalities hold for z and its
derivatives., and if F is a one-valued and continuous function of its arguments thus
restricted and with 0 Í ¡c á o, then there exists in Rf a solution of the differential
equation and the auxiliary conditions.

The region Rf will be determined by the given inequalities on y, y', ...,
y("-1) together with the requirement that y(n-1) is continuous, tj(«) = Me,
where M is the maximum numerical value of P for y, .. ., y restricted as
in the theorem.    It is apparent that z("-1 is also continuous, ij(e).

For a sufficiently small value of a, the conditions stated will be satisfied,
so that the above includes the classical existence theorem for the solution of a
differential equation with initial values assigned to this solution and its first
« — 1 derivatives at a single point.

' - J'J
Jo   Jo

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



110 G. D. BIRKHOFF AND O. D. KELLOGG [January

Secondly, let us consider an integral equation:*

(10) f(s) = y(s) - \£ F(y(t))dt

in which f(s) is known, and F(y(t)) is a given functional of y(t), which may also
depend on s and i. We suppose for simplicity that F does not contain de-
rivatives of y(t). If, in this integral equation, y(s) be replaced, outside of the
integral sign, by z(s), the equation defines a transformation z = Sy, an invariant
point of which is a solution of the integral equation. We may therefore con-
clude from Theorem II, that, if for continuous functions y(t) such that \y(t)\ ÚB,

B greater than the maximum of \f(s) I, the set of functions of s,   I    F(y(t))dt, isJo
bounded, B, and equicontinuous, 17(e), and if f(s) is continuous, 17(e), then, for
sufficiently small values of X, the integral equation has a continuous solution, y(s).
Various extensions will occur to thé reader.

7.   Invariant directions in a space of an odd number of dimensions

In the above theorems and applications, the invariant point may, in certain
cases, turn out to be/ = 0. For homogeneous problems, however, this would
yield only a trivial solution. We therefore now turn our attention to invariant
directions, in which there is no essential difference between/and kfior k j¿ 0.

We begin with the case of »-space. It will be convenient to think of the trans-
formations of directions as transformations of points of the hypersphere, H„ :
¿jx2 = 1, the transformation carrying these points into points other than

the origin.
Theorem VI. Let n be odd, and let T denote a transformation with the follow-

ing properties:
(a) it transforms any reai point of HH into one real finite point different from

the origin;
(b) it is continuous, i. e., the point x of H„ is transformed by it into the point x'

whose coordinates are continuous functions of the coordinates of x on H„.
Then there exists a direction invariant under T on HH, i. e., a point x of H „such

that x' = ex, c 7a 0.
The restriction that « be odd is necessary, since there exist transformations

(rotations) in spaces of even dimensionality which have no invariant directions.
Suppose the transformation given in the form px' = f(x), the f¿(x) being con-

tinuous, one-valued functions, such that p1 — ^/<(*) vanishes nowhere on
Hn.   If the functions fi(x) are defined only on the hypersphere HH, their defini-

* See E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen, Mathe*
m a t i s c h e     A n n a 1 e n, vol. 65 (1908), pp. 370-399.
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tion can easily be extended continuously, so that the functions /,■(*) are pro-

portional to the distance ~\¿2 x* °* the point x from the origin.

If, then, the transformation have no invariant direction, a sufficiently close
polynomial approximation on HH will have no invariant direction. Assuming,
therefore, that the transformation has no invariant direction, we are at liberty
to suppose that the/,(*) are polynomials, and such that 2/f(z) > 0 on Hn.
We now form the tangent vector, t(x) = f(x) — *(/, xj4(x)), which never
vanishes on Hn since £«?(*) = £/?(*) - <£*JMV = £/?(*) sin20,
where 0 is the angle between the vectors x and f(x). Moreover, ¿2 t)(x) will re-
main positive in a finite neighborhood of Hn, and in particular in a closed region
S„ bounded by ¿^ x] = r2 and P/„, where r is sufficiently near 1.

We then form the vector s(x) = t(x) -yj/^] / ^j\(x) ; it vanishes nowhere

in S„, is perpendicular to the radius x, and its components are analytic through-
out S„. Then x' = F(x, X) = x cos X 4- s(x) sin X is a transformation of S„ into
itself, which is analytic for x in S„ and for all X, and which preserves distances
from the origin. As its jacobian, J, is 1 for X = 0, the transformation has, for
small X, a one-valued inverse, and the volume S„ may be expressed, for such X.
by the integral

V = J J   ■  f Jdxi dx*. ,.dxn.

Hence this integral is constant for small X, and, being analytic in X, for all X.
But J = 1 f or X = 0, and J = — 1 f or X = m. We thus arrive at a contradiction,
and an invariant direction must exist.*

8.   Invariant directions in function space
From Theorem VI may be derived the following :
Theorem VII. Let Rf denote the region of function space corresponding to

real continuous functions on the interval (0, 1), and let R'f denote the subregion of
Rf corresponding to functions which are bounded, B, and equicontinuous, r¡(e),
ij(e) being convex.

Let f = Sf denote a transformation applicable to all normalized functions (i.e.,

such that J   Pds = \)of Rf, which yields a unique function in R'fWhen so applied,

* After the authors had found proofs of a number of special cases of the above theorem,
including the important symmetric case, /(—*) = —/(*) (which includes the linear case),
they became acquainted with the details of Professor Alexander's elegant paper, from which the
theorem above can readily be inferred. They then completed the general proof-above. No
other changes in the text have been made since they learned of his results.
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is continuons, and is such that the functions f into which it transforms all normalized

functions of Rf have norms,   I   f'2ds = c2, a definite positive number.
Jot

Then there exists in Rf an invariant direction, i. e., a normalized function f such
thatf = kf, where k ^ 0.

We consider the distances

ST =-uy = \Jo (f * kf)2ds

between the point/of the hypersphere//^,   / f2ds = 1, and the points/' on H¡

corresponding to/by the transformation, and the diametrically opposite point,
— kf, respectively. We shall show that the lower limit of either of or bj
must be 0. The existence of an invariant direction will then follow, since the
region Rf is closed.

To show that there are points of Hf in Rf for which one of these distances
is arbitrarily small, we consider an »-space, with » odd, and subject to inequalities
to be given presently. We define the transformation T as follows : to a: on the
hypersphere H„: 2_j x\ = n — 1, corresponds the continuous function ir(s, x),
equal to x¡ for s = s, = (i — l)/(w — 1), (i = 1, 2, .. . , »), and linear for other
values of 5. This function is then normalized, giving a function f(s, x). De-
noting Sf(s, x) by f'(s, x), we define the point x' on H„ into which T transforms
x by the equations

» »—i

Our first restriction will be to make » so large that T is continuous and Theorem
VI applicable. This will be seen to be the case provided the denominator in
the expression for x¿ does not vanish.    But it is clear that

(n — l)'—' Jo \n— 1/

since the difference in question cannot exceed the maximum variation oif'2(s, x)
in a sub-interval of length l/(» —1), and in turn this variation does not exceed

2Br¡(l/(n — 1)).    Inasmuch as / f'2(s, x)ds ^ c2, « can be chosen so large that
Jo

the denominator in the expression for x, is greater than c/2.   This is the first
condition imposed on ».
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Under these circumstances the transformation P has an invariant direction,
a, for which ¿J a,2 = « — 1.    Observing that

a,- = r(s{, a) = f'(sit a) / ^J-J^f'Ksj, a),
'*—l*"-

we conclude that/(s, a) = c„Sf(s, a) for 5 = s¡(i = 1, 2, ...,«) where cn j¿ 0.
It follows at once that the S * corresponding to the invariant point a in «
dimensional space approaches 0 as « increases, inasmuch as the norm of Sf ji
c/2.   This completes the proof of the theorem.

A simple illustration of the Theorem VII is given by the non-linear integral
equation

4>(s) = X   f K(s, t)<p\t)dt,

where K(s, t) is continuous and has a positive lower bound. The right hand side
of this equation defines a transformation of functions d>(s), an invariant direction
of which yields a solution of the integral equation. The hypotheses of the
theorem are fulfilled, as may be verified by use of the law of the mean, so that a
function <j> exists for which the equation has a continuous normalized solution.
A continuous solution, not normalized, evidently exists, then, for every real

9.   The existence  of inverse directions in «-space

In this, and in the following paragraph, we shall consider the existence of
points inverse to a given point for a given transformation. We begin with
a transformation in «-space.

Theorem VIII. Let Px denote a transformation x' = x 4- \<p(x), in which
the functions <p(x) are bounded, B, and continuous, on the hypersphere H„, ¿2 A
= « — 1. Let Xo be a number such that the transformation Px transforms no point
of H„ into the origin for any value of X in the closed interval (0, Xo). Let b be any
point on Hn.

Then there exists an inverse point a of H„, i. e., such that pb = Px, (a), p > 0.
In other words, any direction has an inverse by PXo provided Qx : x' = — \<p(x)

has no invariant direction f or 0 ^ X ^ Xo-
The proof of the theorem resembles that of Theorem VI and an outline will be

sufficient, nrst assume that the functions f(x) are polynomials, and consider
the equations

x 4- Xy>(x) — pb = 0,       2^ *t = n ~ *
in the region PB+2 :[|#, | Û 2 V«, X2 ̂  Xo, | 0 g p ^ 1 + b, B being an upper
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bound for \a$(x) on H„ where $2(x) = ¿J <t>i(x)/(n — l). From the first
equations we obtain by squaring and adding

p2(n-l) = («-1) + 2\£xi<pi(x) + \2J2<P2

sothat|p]< 1+Bforany solution | x| < X0. For X = 0 the equations have a
unique solution, for which the functional determinant with respect to the set x
and p is not 0. The second solution on the boundary of Rn+2 which by the
lemma of §1 exists, necessarily corresponds to the value Xo of X, and a positive
value of p. If the x have here the values a, then a is the required inverse, and
pb = Tua.

If the functions f(x) are merely continuous, the conclusion remains valid,
and the proof by a limiting process is immediate.

10.   The existence of inverse directions in function space

A theorem in function space which corresponds to Theorem VIII may be for-
mulated as follows.

Theorem IX. Let f = Sf denote a one-valued transformation applicable to
continuous functions on Hf and of the form Sf = / + \Qf, where Xo Qf is bounded,
B, and equicontinuous, 17(e), with ij(e) convex. If, in addition, S is continuous, and
transforms no function f on Hf into 0 for 0 á X ^ X0 then, for any continuous
function g of Hf there exists a direction inverse to g under Sx, ». e., such that pg =

5X./, p > 0.
Take any set of variables *, such that ^ x2 = n — 1 and form the corre-

sponding polygonal function x (s, x).   It is not difficult to establish the inequality

- á   f tc\s, x)dx £ -.3      Jo 3

In fact this flows at once from the evident equality

/   '      T2(S, X)dx = (XJ + XfXf+1 + x2i+1)
Ju 3(m—1)

by summation, since

xI±ph z x* + XiXi+i + *4, ^ 2(x\ + xUr).

Hence, if we normalize x(s, x) to f(s, x), the multiplicative factor required lies
between V3 and V»/4, and it evidently approaches 1 as « becomes infinite, pro-
vided t(s, *), approaches a limit uniformly.
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Write now/' = r 4- X Qf and

x'i = f'(s¡, x), (s¡ = — ; «' - 1, 2, ..., «),
«—1

thus defining a transformation Px of P„ of the form in theorem VIII, namely

x\ = Xi + X QfyO,-, *))
which is clearly one-valued and continuous. Furthermore, by hypothesis*
X Qf is bounded, B, and continuous, tj(«), for the function/(s, #) on Hf.

Hence by the theorem of §9 we can assert the existence of an inverse point
under P unless for 0 *S X *a Xo and some x on Hn,

0=f(Si,x) + \Qf
for s = s i (i = 1, 2, ...,«). Here X Qf is bounded, B, and continuous, tj(e),
so that/(s, x) is bounded, B 4- i?(1/(m —1)), and, on account of its poly-
gonal character, continuous, tj(c). If such a function f(s, x) exists for in-
definitely large values of w, we infer the existence of a limit function/o, bounded,
P, and equicontinuous v(e), such that Sx(/0) = 0 for a value of X between 0 and
Xo- Furthermore since the approximating functions are bounded and equicon-

tinuous, it follows that /   /¡¡ds = 1, on account of the property ¿J #,• = « —1,

which holds at every stage.   This is in contradiction with the hypotheses of
the theorem.

Hence, by Theorem VIII, we have for some set x¡

g(s) = r(s, x) 4- Xo Qf
for s = S{ (i = 1, 2, ..., «). -The form of this equation shows that t(s, x)
is bounded, 2P, and continuous, 2v(e). Consequently, as « increases without
limit, there exists a set of polygonal functions t(s, x) approaching a limit function
/o uniformly, where /o is bounded, 2P, and continuous, 2ij(e). The same limit
is approached by f(s, x) of course, and /0 will lie on Hf. We have then g =
SXr/oi and the theorem is proved.

It should be remarked that X need not be positive in the above reasoning,
and that an inverse direction exists for any value of X between the largest negative
and smallest positive values of X for which Sf = 0 for some function of Rf.

In the linear case the field of functions on which the transformation operates
extends at once to all continuous functions. Also the factor p can be suppressed
since for invariant directions we can replace//p by/. The above result evidently
includes wnat is essential for the solution of integral equations of the Fredholm
type, at least in the case of symmetric kernels.

Harvard UmvBRSrrY,
Cambridge, Mass.
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