E% University of
OPEN (2} ACCESS BRISTOL

Szalai, R., & Osinga, HM. (2007). Invariant polygons in systems with
grazing-sliding. http://hdl.handle.net/1983/948

Early version, also known as pre-print

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the

published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/


http://hdl.handle.net/1983/948
https://research-information.bris.ac.uk/en/publications/21699e7d-641c-4873-b0e0-2d1d0a867663
https://research-information.bris.ac.uk/en/publications/21699e7d-641c-4873-b0e0-2d1d0a867663

Invariant polygons in systems with grazing-sliding

R. Szalai* and H.M. Osingal
7th August 2007

Abstract

We investigate generic three-dimensional non-smooth systems with a periodic
orbit near grazing-sliding. We assume that the periodic orbit is unstable with
complex multipliers so that two dominant frequencies are present in the system.
Because grazing-sliding induces a dimension loss and the instability drives every
trajectory into sliding, the attractor of the system will consist of forward sliding
orbits. We analyze this attractor in a suitably chosen Poincaré section using a
three-parameter generalized map that can be viewed as a normal form. We show
that in this normal form the attractor resides on a polygonal-shaped invariant set
and classify the number of sides as a function of the parameters. Furthermore,
for fixed values of parameters we investigate the one-dimensional dynamics on the
attractor.

There are several physical |5, 7], biological [16] and engineering |3, 24| systems
that are best described using piecewise-smooth models. In these systems the phase
space is partitioned by smooth codimension-one hypersurfaces so that different vector
fields govern the dynamics depending on which side of the surface the actual system
state is. At the partitioning boundary the vector field is typically not continuous.
Due to this discontinuity, trajectories either cross the surfaces or leave them invariant,
which is called sliding [9]. In mechanical systems with friction this is equivalent to a
sticking motion. Sliding parts of the switching surface are strongly attracting so that
nearby orbits reach the surface in finite time unlike in smooth systems, where invariant
manifolds are reached in infinite time. As a result, in a system with sliding the dynamics
is noninvertible in some parts of the phase space. We consider the case where all orbits
are eventually trapped in a neighbourhood of the switching surface such that they will
contain sliding segments. This means that an attractor exists and it is obtained from
the forward trajectories of points where the switching surface ceases to be invariant. In
a two-dimensional Poincaré map of a three dimensional piecewise-smooth system this
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attractor consist of the forward images of a line. We investigate the case when this
attractor is polygonal-shaped and occurs as a result of a bifurcation where a periodic
orbit becomes unstable due to the removal of its sliding segment. This phenomenon is
similar to a supercritical Neimark-Sacker bifurcation in the sense that the polygonal-
shaped attractor resembles a torus. On the other hand, the attractor is not a topological
circle and its intrinsic dynamics can be more complicated than is possible on a smooth
torus.

1 Introduction

We are concerned with a focus-type unstable periodic orbit that is close to grazing
with a switching surface containing a sliding region. We show that a polygonal-shaped
attractor coexists with the unstable periodic orbit, provided it is close enough to grazing.
If we were to change a parameter such that the orbit starts to slide, then the periodic
orbit becomes stable and the polygonal-shaped attractor is gone. Hence, we could think
of this phenomenon as a supercritical Neimark-Sacker bifurcation. The bifurcation
occurs when the sliding region vanishes from the periodic orbit through grazing. At the
grazing point the orbit is still stable, after grazing it becomes unstable and a polygonal-
shaped attractor is born. Note that the bifurcation is mediated by the presence of a
sliding region. If we disregard the switching, the stability properties of the periodic orbit
typically do not change in the neighbourhood of the bifurcation (it remains unstable).
As it turns out, the polygonal-shaped attractor is not a topological circle, because the
dynamics extends to the lines drawn through the sides and is not restricted to the
sides of the polygon. Our goal is to shed light on the question what is the appropriate
equivalent of a smooth torus in a piecewise-smooth system.

Our motivating example is a forced friction oscillator on a belt, which was studied
extensively in the literature [1, 8, 12, 14]. Due to discontinuities of the friction force
the mathematical model is only piecewise-smooth. The switching surface is defined
by the velocity at which the friction force changes sign. If the friction force on the
switching surface can balance the external forces and the inertia of the mass then the
block sticks to the surface; this is mathematically the sliding region. Otherwise the
block mass leaves the stick phase and starts to slip. An alternating sequence of these
phases is referred to as stick-slip motion, which can be periodic, quasi-periodic or even
chaotic as we will see later. The dynamics of stick-slip motion can be analyzed by
different techniques including phase maps [18], event maps [17] and discontinuity maps
[6]. In this paper we take the latter approach. We construct a local piecewise-linear
Poincaré map and devise a three-parameter normal form, that can be used to study the
phenomenon in greater detail. We show that for certain parameter values the attractor
resides on an invariant polygon, which has different number of sides depending on the
parameters. For a particular set of parameter values we also show how chaotic motion
develops in the system.

In |21] periodic orbits in delayed relay systems are studied, where the period is close
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Figure 1: A forced linear oscillator on a belt with friction.

to the delay. In this case the local Poincaré map has different dimensions depending
on how many times a trajectory crosses the switching surface during a delay interval.
Therefore, the global Poincaré map includes projections that causes the same type
of phenomena as sliding in piecewise-smooth ordinary differential equations and the
appearance of invariant polygons. Invariant polygons can also arise in other types of
piecewise-smooth systems, e.g., in the macroeconomics model of [22], or in a normal
form dervied at a corner collision bifurcation [26] due to different mechanisms.

The paper is organized as follows. In the next section we describe our friction
oscillator and obtain a Poincaré map with the help of the discontinuity map technique.
In section 3, we introduce a three-parameter normal form map, and show that it has an
invariant polygon-shaped attractor. We calculate the number of sides of the polygon
ans investigate how it depends on the parameters. We also demonstrate the complicated
dynamics that can occur on the attractor. In section 4 we summarize our results and
discuss future directions of research.

2 The friction oscillator

We consider a one-degree-of-freedom oscillator (see Fig. 1) with block mass m, spring
s and damper c. The block mass is sliding on a moving belt and is forced through the
spring. We assume that there is friction between the mass and the belt, which induces
a friction force with a decreasing slope near zero relative velocity. After rescaling time
by the natural frequency of the oscillator, the equation of motion for the displacement
x reads

&+ 20k +x =sgn(vg — ) Fy — k(vg — &) + ug cos wt, (1)

where ( is the relative damping, F} is the maximal steady friction force, « is the slope
of the friction force, vy is the speed of the belt, ug is the forcing amplitude and w is
the forcing (angular) frequency. The trivial periodic orbit of the system is a harmonic
vibration, which can be obtained by substituting the ansatz a + bsinwt + ccoswt into
(1) and solving for a, b and c. This periodic orbit is unstable if the slope of the friction
force satisfies k > 2(¢. Our system is piecewise-linear, but linearity is not necessary for
the general results of this paper. For further reference we use y = (z,4)” and rewrite



the system into first-order form

. Ay+b1(t) if & < vy, (2)
Y= Ay +bo(t) if &> vy,

0 1
A:(—1 m—zg)’

0=,y speonar )+ 0 =B0 ().

The switching line in this system is defined by & = vy. Our goal is to charac-
terize the dynamics close to the periodic orbit and the switching manifold. To this
end we construct a local Poincaré map that takes the discontinuity due to switching
into account. In order to construct the local piecewise-linear Poincaré map we make
our system autonomous by extending it into three dimensions (R? x S) with the new
coordinates

where

and

x = (x4, xg,xg)T = (z, &, t)T.

The switching surface is now defined as
Y={x€eR*xS : h(x) =0},

with h(x) = & — vy and divides the dynamics into two parts such that

| fix) = [ 4 ( 2 ) b)) ) <0,

1
£(x) = | 4 < . ) D20 )i ) >0,
1

\

Equation (3) defines a Filippov system [9] that can exhibit sliding motion along ¥.
According to Filippov’s definition, the vector field that describes the sliding is obtained
as

X = fsl = (1 — )\)fl(X) + )\fQ(X)7

where 0 < A < 1issuch that the dot product VA(x)-((1—M)f;(x)+Aa(x)) = 0. If there
is no such A at a point in X, then the corresponding trajectory crosses > transversally.
For our system (3) we can solve the above equation explicitly and obtain

Fs 4+ ugcoswrsz — x1 — 2v9C

A(x) o,

Note that the sliding vector field f;; = (vg,0,1)” is constant, which agrees with the
physics: when the mass sticks to the belt, it moves with the same constant speed vy as

4



b
sliding reg

D™,
=)

e

Figure 2: Schematic of the phase space of (3). The sliding region is shown in green.
A typical trajectory with a sliding segment (red) is shown as an example. When a
trajectory hits 3 in between £~ and L~ it starts sliding until it reaches £7.

the belt. The boundary of the sliding region is formed by the two curves L~ = {x €
Y Ax) =1} and £t = {x € ¥ : A(x) = 0}, where either f; or f; is tangent to
Y. A schematic illustration of the phase space with a typical trajectory is shown in
Fig. 2. When the trajectory reaches . in the sliding region a non-differentiable change
of motion takes place and the trajectory starts to slide until it reaches £*. Along L% f;
is tangent to X, so upon reaching £ the trajectory continues following the flow defined
by fl.

Recall that we assume « > 2( so that the trivial periodic orbit I' is unstable. Because
of this instability, system (1) exhibits a stick-slip motion that can lead to complicated
dynamics [2, 20]. Here we are interested in the case where I' is near grazing. The
grazing occurs exactly when the forcing amplitude is

‘“ _ (w2 — 1)
Uy = ’U()(Ii—2<>\/1 + m,

and the point on I' that grazes is

K

—1 w?—1 T
T + tan 2(—)

x" = | Iy — Ko, vo,
w

If we are not at grazing, x* refers to the point on I' with maximal velocity. We analyze
the dynamics in a neighbourhood of x* for some u, < ug so that the distance between X
and x* is 0 and I resides in the domain of f;. Hence, if I" is close to grazing, all nearby



Figure 3: The discontinuity map D(x) provides a correction for points on the f, side of
> that accounts for a sliding segment of a trajectory. It follows the flow back from II
to X and applies fy; until £ is reached, which by definition is contained in II.

orbits follow either f; or the sliding vector field f;;. We denote the flows corresponding
to f; and fy by ®;(x,t) and $(x,t), respectively.

We want to investigate the dynamics near the unstable periodic orbit in a Poincaré
section. To this end we need to select a Poincaré section II, that contains the line £
and is transversal to both > and I". The natural choice is

M={xecR*xS : g(x):= Vh(x) - fi(x) = 0},

which is exactly the surface where h is maximal with respect to the flow ®;(x,t) gener-
ated by f;. The construction of the associated local Poincaré map is done in two steps.
In the first step we disregard the discontinuity and calculate the linear return P map as
if 3 does not exist. In the second step we correct the error by constructing the so-called
discontinuity map D [15]. The actual Poincaré map is then the composition of these
two maps, where we first apply D and then P. Hence, let us first focus on this second
step and investigate the discontinuity map.

2.1 The discontinuity map

The discontinuity map D : II — II is a local correction to the smooth Poincaré map P
that ignores the switching. The switching surface X separates II into two regions. In
one region the flow ®; applies and D is the identity. In the other region applying ®,
makes an error that we correct by following a backward trajectory from II to Y and
applying the sliding vector field f;; back to II as should have happened. The schematic
of the correction can be seen in Fig. 3. We find ¢; < 0 such that x = ®y(x,t;) € X.
Then we determine ¢, such that &4 (X, ;) € II, which defines D(x).

To compute the map from II to ¥ we first approximate the travel time ¢; and then
substitute it in the Taylor expansion of the flow ®(x, ;). The time t; can be found by
solving the equation

0=nh(d(x,t1)), xeIll (4)
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The Taylor expansion of this equation at x* yields
2
0=Vh- (AX + 5Df1 . fl(x*)) + O(|t]? + || Ax|*),

from which we obtain time

—/ 2A$2

A 3/2
VI O]

th(x) =

and the backward mapping
A.T]_ . V2Az2(vo+Ax2)

w+/vo

Dy(x,11(x)) = x" 4 | VERmAntlnletndnl )| 4 O(]|Ax]?).
_ V5
A,Ig w\/%Q

where Ax = (Axy, Axo, Ax3)T = x—x*. The sliding part of the trajectory is calculated
from the constant sliding vector field f,; by solving the equation

0= g(x +taof 1 (x7)) = Vg(x) - (Ax + 1oy (x7)) + O([| Ax[]*).
The calculation of ¢, yields

= DB AR 2 A0\ ojax]?)

vow?

and the mapping from ¥ to £* C II by following f;; becomes

Axl o /U()Axg + UoA$3+A$2(H—2C)—A.’El

02

(I)SZ(X, tg) =x"+ Vo
voAzz+ Az (k—2¢)—Axq

vow?

Putting these two flows together we find the discontinuity map

(1—w?) (V2Az3 e (vo Aws — A1) /o))
w3 /vy
D(x) =x"+ 0
N <%)3/2 _ Am | s
: w?vg w?

w3 v

The discontinuity map D contains terms up to order 3/2 that vanish fast at x = x*, so
that it is sufficient to take its Jacobian

J = 0 0 0
1
w2

at x = x* and consider the linear mapping D(x) ~ x* + JAx. Note that J is a
projection with a one-dimensional range and a two-dimensional kernel. Therefore, the
composition with the smooth Poincaré map P will be piecewise-linear with one part
being a projection. In the next section we calculate P and find P o D.

7



2.2 The reduced piecewise-linear Poincaré map

The final piecewise-linear Poincaré map is a composition of the discontinuity map D
and a smooth return map P that ignores the presence of ¥. This return map P is
determined with respect to f; around the unstable periodic orbit I'. We wish to obtain
this map in the two-dimensional coordinates y = (x,%)”. At a constant time-slice the
linear Poincaré map of (2) is represented by the matrix eA% . To account for additional
variation of time on the linear approximation of II we must use a transformation and
obtain the return map y — My, with

M = (I —(A+bi(23)Vas(y") " e'T (I = (A+bi(23))Vas(y")). (5)

Here, x3(y) is the parametrization of the Poincaré section Il as a graph over the plane
r3 = x} = z3(y*) with y* = (2}, 23)" . In physical parameters of (1) the matrix M is

1) 14 (42-2)w? 41
coswyT + % sin wyT % sin wyT
M = e—CrT wa(w?-1) wqw? (w2—1) (6)
w? . C(W2+1) . )
oa—wZ, S wgl’ coswgl’ — Sy Sin wyT

where (. = 242_ £ wg = \/1—¢? and T = 2. The linear approximation of D(x)

transformed to the section II in these coordinates is given by

1 26 (2w?—1)
Jp = W .
=075 )

We are now ready to construct our local piecewise-linear Poincaré map as the compo-
sition
. y if =<9,
F'YH{MJQ(y—y*HMy* it &> (7)
where y* = (0,6)7.

Figure 4 compares direct simulation of (3) with iterations of the piecewise-linear
approximation (7). Since (3) is almost linear we expect a close match. Indeed, the
main difference between the non-smooth simulation (blue dots) and the iterated map
(red dots) is that in (7) we allow points on both sides of 3, while in the simulation the
actual sliding takes place, i.e., orbits cannot cross ..

3 Generalized map

In the previous section we constructed a local piecewise-linear Poincaré map from a
nonsmooth system with sliding defined by an application. As can be seen in section
2.2, the map F in (7) consists of a linear map with a focus-type unstable fixed point,
and a projection. If we consider the system with respect to the eigenvectors of matrix
(6) then the focus-type map may be written as

M—eﬁ< COS & sina)

—sina  cos«
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Figure 4: Simulation result for two different rotation numbers o = 0.338 x 27 and
a = 0.402x27. The blue dots are direct solution of the Filippov system using Piiroinen’s
software [19]. The red dots are iterations of the map (7). Other parameters are I = 1,
k= 0.03, ¢ =0.01, ug = ug, v§ = 0.1 and vy = v§ + 0.003.

where « is the rotation number, and [ is the expansion parameter. Similarly, the
projection part is of the form
1 —coty
J2 - ( 0 0 ) Y

where v is the angle between the projection direction and the line # = 0. We assume
that 5 > 0, so that the periodic orbit near grazing-sliding is unstable. Then the
generalized map is defined in (7) and can be interpreted as a normal form that describes
the phenomena occurring at grazing-sliding with low speeds.

As can be seen in Fig. 4 system (7) has a polygonal-shaped invariant set. Our goal
is to examine the properties of the attractor of (7). Since (7) is a normal form, this
will give us information about such attractors in all systems with focus-type unstable
periodic orbits near grazing sliding. Let us first determine some basic properties of the
attractor.

After a certain finite number of iterations every initial point in the phase space will
undergo a projection with J,. Therefore, the only attractor of the system must consist
of forward images K,, = M"Ky of Ky = {y € R? : & = ¢}. Note that the attractor
does not include Ky, because after the correction M is applied immediately. After a
finite number of iterations of [y a polygon is formed around the origin. The invariant
set resides on the lines going through the sides of the smallest polygon P around the
origin, which we call the minimal polygon. Because of the rotation and expansion, P;
is convex, which means that all vertices fall on the (non-projecting) side of K; that
contains the origin. This proves that all sides of P; are part of the invariant set.
Similarly, using Ky and its preimages, another (smaller) polygon P, is formed, which is
a downscaled and rotated version of the minimal polygon P;. These two polygons do



not intersect and the lines through the sides of the small polygon will separate regions
from which different numbers of iterations are necessary to reach the projecting side
of II. The maximal number of iterations required to reach the projection part of the
plane outside P, is equal to the number of sides of P,, which is the same as the number
of sides of P;. Hence, the minimal polygon P, is indeed the smallest polygon and its
determining lines /C;, ¢ € 1,..., ¢ contain the attractor.

In order to characterize the attractor further, we count the number sides of Py in
the next section.

3.1 Number of sides of P;

The number of sides of the minimal polygon P; varies with parameters; the number
changes when three different iterates of Ky intersect at the same point. This point can
be determined by stipulating that the intersection of KC,,, and K, lies on K,,,, for some
ny < ng < nz. The intersection point of KC,,, and ., is at

0 e cosnyar — €28 cos
e sinnia — e™Psinnga )

sin(ny — ng)a
Putting this point into the determining equation of IC,, we obtain the condition
" sin(n; — ng)a + e"F sin(ng — ny)a + P sin(ny — ng)a = 0. (8)

Note that equation (8) does not depend on either § or 7, so that the number of sides of
P; only changes when varying o or 5. Not all triple intersections create a new side on
P;, because they can be formed by higher iterates so that they are outside the minimal
polygon P;. We call triplets (n1,n2,n3) admissible if they create a new side on P;.
Note that if a triplet (ny, n2, n3) satisfies (8) then so does (ny +k, na+k,n3+k), k € Z.
Moreover if (nq,n2,n3) is admissible then (n; + k,ny + k,n3 + k) is also admissible as
long as the two smallest numbers in the triplet refer to sides of P;. Because K, is
always part of P; an equivalence class of triplets can be represented by (1, ng, n3).

Although the admissible triples are not known (yet), we can numerically construct a
chart in the («a, 3)-plane that shows all the admissible intersections. Obviously, there is
no two-sided polygon so we must iterate Ky at least three times. In fact, for o < 27/q
the minimal polygon will consist of at least max(3,¢/2) sides. Hence, in the first step
we construct an initial polygon by iterating Ky max(3,¢/2) times. At every further
iteration we check whether there is an additional intersection with the polygon. If so,
we update the polygon, else we record the number of sides. Figure 5 shows the result
of the computation.

As we can see in Fig. 5 the number of sides changes along lines that all originate
at § = 0 and connect two neighbouring rotation numbers on the Farey tree. There
are three sets of lines. Lines in the first set (red) start at 5 = 0, = 27/¢ and tend
to 0 = oo; these lines connect 0/1 and 1/q on the Farey tree. Along these lines only
one side is added or removed from P;. Lines of the second type (green) connect two

10
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Figure 5: The number of sides of the polygon. The red lines are correspond to polygons
with rotation number 1/¢, the green lines are connecting two neighbouring resonant
values at 3 = 0, and the blue lines connecting the singular rotation number 1/2 with
its Farey neighbours at different levels.

rational rotation numbers of a at 3 = 0. The third set of lines (blue) connect o« = 7
and its neighbours on the Farey tree at different levels. Note that P; is not defined at
a = 7. Let us now derive when a triplet of the form (1,72, n3) is admissible.

An empirical approach of constructing admissible triplets

As we noted, all lines in Fig. 5 originate at 5 = 0. In the limit 5 — 0 equation (8)
becomes
4sin(ny; — ng)asin(ng — ny)asin(ng — n3)a = 0. 9)

Assuming that o = 27p/q it follows that n; = n; + kq, i # j for some 4, j € {1,2,3}.
In order to obtain the minimal polygon we choose k& = 1.

We have also noted that lines in Fig. 5 connect two neighbouring numbers on the
Farey tree and that an equivalence class of the admissible triplets can be represented by
(1,n9,n3). This results in two equations for ny and n3, which yield the four possibilities
for the admissible triplets:

(a
(b
(c

(d

La+1La+q¢+1),
Lg+1,qg+q¢+1),
Lg+1,¢+1),

Legp—qa+1,¢+1).

) (
) (
) (
) (

11



We check these possibilities and find that the last one (d) describes all the lines in
the diagram if we allow 0/1 and 1/1 as valid rationals from which the Farey tree is
constructed.

The rigorous approach of constructing admissible triplets

In the previous section we based our findings on numerical observations, but we can
prove our result rigorously. First we need to prove that every polygon is conjugate to
a regular one, that is, the sides follow each other according to a rotation with rotation
number p/q. This occurs exactly when sides of the polygon are constructed sequentially
with each iteration. Hence, we need to prove the following two steps: a) no complete
sides are removed by any iterates of Ky; b) adding vertices stops at some iterate. The
proof of a) is trivial, since each iteration places lines farther from the origin. To prove
b) we assume a continuously constructed polygon such that K; does not add a vertex
and the closest vertex to this line is at the intersection of X, and IC,,,. Iterating Cj
forward, the closest vertex will be at (ny+j,n2+7) aslongasn;+j < gand no+j < g
and the distance uniformly increases, so there is no intersection. However, for further
iterates the distance from the vertices increases even more since other vertices of the
minimal polygon with smaller iterate numbers will follow, which are closer to the origin.
Hence, any further iterate does not intersect Py anymore.

Let us now assume that the order of the sides of Py corresponds to the rotation
number p/q. We write this rotation number as the Farey addition
D pP1tp2

9 ¢1+q

of two neighbouring rational numbers p;/q; and py/qs. We are looking for transitions
when three neighbouring sides of P, start to intersect at one point and the side in the
middle is removed. Without loss of generality we can assume that this happens at the
first iterate ;. Obviously, ; cannot be excluded from the polygon, therefore, either
its left or its right neighbour will vanish. If the rotation number is decreasing from
p/q then the left neighbour will vanish, and if it is increasing the right neighbour will
vanish. We assume that the right and left neighbours are the ngzth and the nyth iterate
of Iy, respectively; see also Fig. 6. Because of the p/q rotation these numbers can be
calculated as )

TLRB:]{?R—F— and TLLB:]{ZL—E,

q q q q

where ng,ny, kg and kj are integers. After a simple rearrangement it turns out that
these equations are the Farey conditions for neighbouring Farey numbers, i.e.,

p kg 1 kr p 1

g_hE_ - d X _2_ -

q MNr (4NR np q qnp

Because we constructed p/q from two consecutive numbers on the Farey tree, it follows
that ng = ¢1, n, = ¢, kg = p1 and k;, = py. Note that here the L and R indices

12
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Figure 6: A triple intersection at K; must cause removal of either neighbouring side
Ky, +1 or Ky, 41, depending on whether the rotation number is decreasing or increasing
from p/q, respectively.

might need to be interchanged. Regularity implies that the subsequent neighbours are
iterates 2ng mod ¢ and 2n; mod ¢q of K; to the right and left, respectively. Assuming
that ¢ < g2 we get the possible triplets

(17 2ng mod ¢,nR + ]-) = (17 QQI +1q+ 1) (10)

and
(L,2nymod ¢,np +1)= (L, o —qn + 1,q2 + 1). (11)

Substituting (10) into (8) gives sin ¢y = 0, which is a spurious result. However, (11)
yields a valid triplet, that represents the set of lines that start from § = 0 and connect
the rotations numbers p;/q; and py/qe. With this analysis we can now construct Fig. 5
by implicitly plotting the solutions of (8) for different admissible triplets.

3.2 One-dimensional dynamics on the attractor

The dynamics on the polygonal-shaped attractor can be reduced to the switching line
Ko by taking into account how many iterations are necessary to reach the projection
region again. Therefore, we subdivide the phase plane into regions .5,, from which
m iterations bring a point to the other side of Ky. These regions are separated by
preimages of Iy in such a way that the first preimage K_; divides the phase plane into
two half planes one of which maps to the other side of Iy after one iterate. The other
half plane is divided by the second preimage K _5 into two regions of which one maps to
the other side of Ky after two iterates, and so on. Assuming a p/q rotation number of
the minimal polygon, we need to consider up to g preimages to cover fully the switching
line with regions S;, 1 <7 < ¢. Recall that the number of regions covering Ky depends
on « and 3, but not on . The resulting equation is of the form

y oy + A(MMy —y*), y € SanKy, (12)

with y = (z,0). We note that this equation does not guarantee that the dynamics will
stay in between the vertices of the polygon, so that it is not possible to describe the
dynamics along the arclength of the polygon.

13
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Figure 7: Subdivision of the phase space into regions Sy from which £ iterations with

M are necessary to map points over the switching line. The picture holds qualitatively
for all « = 27/3, B > 0.

In what follows we present the special case, where the minimal polygon has three
sides at & = 27/3 and 8 = log1.2. The subdivision of the phase space can be seen
in Fig. 7. There are three regions S;, Sy and S3 that cover Ky, therefore the one-
dimensional map will consist of three pieces. Initial points from other regions Sy, £ > 3
will reach the attractor in finitely many steps. Figure 8 shows the one-dimensional
map for « = 27/3, = log 1.2 and four different projection angles . For v = 0.757 a
period-two attractor exists; see Fig. 8.(a). This attractor is stable because the product
of the absolute slopes of the map on the left and the right side is smaller than unity.
Note that a point in the middle interval must be interpreted as three iterations and
a point on the right half line indicates two iterations on the attractor. Therefore, the
period-two attractor has period three on the polygonal-shaped invariant set. Increasing
7 leads to period doubling after which immediate chaos arises; see Fig. 8.(b)-(c). Using
simulation it can be demonstrated that the attractor in Fig. 8.(c) is indeed chaotic. In
the inset of Fig. 8.(c) there are two intervals, denoted by 0 and 1, that are mapped onto
each other. Using the overlap of the intervals and their images a so-called transition
matrix can be constructed such that its (7, j)th element is one or zero depending on
whether the image of interval j contains the interval ¢ or not. The matrix for our

example is
11
(10)

This matrix is irreducible, because its second power has only non-zero elements. Ac-
cording to the theory of symbolic dynamics this means that the motion is chaotic
[13, 25].

Increasing v even further the attractor shrinks to a point at a certain parameter
value and after a crisis the attractor extends to a rather large interval. Because the
absolute slope of the map is greater than one everywhere, there cannot be any stable
periodic orbit, which again means that the attractor must be chaotic. In system (12)
quasi-periodicity is unlikely.
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Figure 8: Return maps on the switching line Xy as a function of the projection angle ~.
A period two attractor (a) undergoes a period doubling bifurcation (b), which induces a
chaotic motion (c). The chaotic attractor shrinks to a point and a new, lager attractor
arises (d).

Figure 9 shows the shape of the attractor (red) for all the four cases that are shown
in Fig. 8. It is apparent that not the minimal polygon P but the (black) lines defining
P; contain the attractor. The chaotic motion is a consequence of stretching and non-
invertibility of the dynamics on the attractor.

For polygons with higher number of sides it is not straightforward to give a char-
acterisation of the dynamics. Indeed, fairly complete theory is only developed for dis-
continuous maps on two intervals (see e.g. [10]), and only an abstract characterization
is available for more general systems [11].

4 Conclusions

In the previous sections we have seen that a polygonal-shaped attractor can arise when
a focus-type unstable periodic orbit is near to a generic grazing-sliding bifurcation. We
deduced a three-parameter piecewise-linear map that completely describes this phe-
nomenon in the plane. We counted the number of sides of this polygon and charac-
terized how it depends on the parameters. Finally, we showed that the dynamics can
be described by a discontinuous interval map which can exhibit periodic and chaotic
motions.

We think of the polygonal-shaped attractor as the analog of an invariant torus in a
smooth vector field. At the moment when the unstable periodic orbit inside it grazes

15



1 2 3
2
23
-4
() N =081 O (d)
2
/ 1
1 2 3 3 2

Figure 9: The shape of the attractor at the same parameter values as in Fig. 8. Note
that the minimal polygon P; does not contain the attractor indicated by red dots.

the sliding region, the polygonal-shaped attractor disappears and the periodic orbit
becomes stable. Hence, we could relate this bifurcation to a supercritical Neimark-
Sacker bifurcation. An invariant torus in a smooth vector field typically persists only
for relatively small smooth perturbations, but the polygonal-shaped attractor appears
to be far more robust than a smooth invariant torus. Similar analogs for invariant tori
have been studied in different contexts; for example in Filippov systems without sliding
|26] and systems with impact [4, 23|.

We believe that our analysis can also be applied in the context, where an attractive
smooth invariant torus undergoes a grazing-sliding bifurcation. Clearly, before grazing
we have an attracting torus in a smooth three-dimensional vector field. Hence, this
stable torus has an unstable object inside it, which is either a periodic orbit or another
torus. In general we would expect that the torus breaks up either before or at the
moment of grazing. However, if we assume that the torus persists up to the grazing
point, the inside unstable object will determine the dynamics. Regardless of whether
the object inside is an unstable periodic orbit or a repelling torus, our construction
of polygons will remain valid with the exception that the rotation and expansion now
will be completely nonlinear. Hence, a polygonal-shaped attractor appears and in this
sense the torus persists past the grazing-sliding bifurcation. On the other hand, most
probably the dynamics on the attractor is chaotic, so that in this sense the torus breaks
up at grazing-sliding.

Non-smooth bifurcations most of the time do not persist if the dimension of the
system changes. It remains to be analyzed whether this is the case of the polygonal-

16



shaped attractors. Therefore, our future work will include the study of systems where
a three dimensional attracting slow manifold contains the grazing-sliding dynamics.
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