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ABSTRACT

Invariant properties of the elastic coefficient matrices of laminated composite plates are
presented. The use of these invariants in materials evaluation and design optimization is
discussed. Simple formulas, based upon micromechanics results, are derived for the in-
variants in terms of constituent material properties.
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SYMBOLS

elastic constants of laminated composites, Equation 9
elastic stiffness matrix of 3-dimensional bodies
reduced stiffness matrix for bodies under plane stress
invariants of Qi j

coefficients of transformation equations in Table I, defined by
Equation 14

Constant terms in Al »B, ., and Di defined by Equation 22

iy
integrals defined by Equation 23

)

invariants of AU' Bil' and D, ,, defined in Equations 27 and 28

i)
stress resultants

stress couples

components of curvature

cos 8, or cross-ply ratio which is the ratio of the thickness of 0° to

90° layers in a cross-ply composite

sin 8, or number of layers in Equations 38, 39, and 40
total thickness of laminated composites

Young’ss modulus

shear modulus

functions defined by Equations 48, 49, and 50

temperature
volume fraction

thermal expansion coefficients
strain components

stress components
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SYMBOLS (CONTD)

v Poisson’s ratio

8,¢ angles of rotation

subscript f pertaining to fibers

subscript m pertaining to matrix

bar average quantities or isotropic constants
prime transformed component
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SECTION 1
INTRODUCTION

The superior performance of composite materials over lightweight metals has been well
publicized in recent years. Composites have been claimed to possess improvements in stiff-
ness and in strength of severalfold over ordinary materials. The claim, however, is based
on either the properties of the fibers alone or the longitudinal properties of a unidirectional
composite against those of the metals. Since composites are normally used in laminated forms
which consist of unidirectional layers, a more realistic measure of the performance of the
composites than that based on the fiber or longitudinal properties is needed.

In this work, the transformation properties of unidirectional and laminated composites are
derived in terms of multiple angles, instead of the classical relations using powers of sines
and cosines, The effect of lamina orientation is then examined. It is shown that the invariant
properties of both the unidirectional and laminated composites have the same components,
and can be used as an effective measure of the performance of the composites. Simple
formulas are derived, from which the invariant properties of composites, irrespective of the
lamina orientation, can be determined from the properties of the constituents, This work
should be of value to system analysts who must evaluate the performance of composites, to
structural designers who must establish a rational design procedure, and to materials engi-
neers who may need guidance in the selection and fabrication of composite materials,

The elastic moduli of laminated composites have been reported by many investigators in
recent years, examples of which include Reissner and Stavsky (Reference 1), Dong, et al.
(Reference 2), and Tsai, (References 3 and 4). The usual assumptions in all these studies are:

(a) All layers are in a state of plane stress relative to the x-y or 1-2 plane, so that

a"tcr‘za.so (1)

(b) All layers are bonded together and the strain components in the 1-2 plane are linear
functions of z,

o
¢ = ¢ + I (2)

where i = 1, 2 refers to the normal components; i = 6, the engineering shear strain
component.

(¢) All layers obey generalized Hooke’s law,

. - G“ I'j (3)

With these assumptions, the constitutive equations for a laminated composite can be derived.
The stress-strain relation for the assumed plane stress condition including the thermal effect
for each layer is

cl=°|]‘j-°|°T (4)

i)
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where

C.. C
373
Q. =C,. - : = reduced stiffness motrix
] ij Cas

a 1 = anisotropic thermal expansion matrix

T = temperature increase from a reference (stress-free)
temperature.

Stress resultants (Ni) and stress couples (Mi) can be defined as:

h/2

(v ] = [ o [1.2]e:

-h/2

Substituting Equations 2 and 4 into 6 renders

- T.
N' N, ¢+ N| z Ail‘lo+ a”u)
= T . o
Mi ] M' + "i s Bil‘i + D'lkl
where
h/2
T T .
[w, R [m o, alT[l,z]dz
h/2
2
[A”.B”.t)ll !;1/2 Q” [l,z.z ]dz

(5)

(6)

(7

(8)

(9)

The brackets above and for the remaining part of this report are symbolic rather than oper-
ational; the equality applies to the corresponding terms in the bracket. The limits of inte-

gration are from -h/2 to h/2, and remain the same unless otherwise specified.

The constitutive equations of laminated composites are givenby Equation 7, and the material
coefficients are expressed by the A, B, and D matrices. Our present work is concerned with

the nature of the Q, A, B, and D matrices.
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SECTION 11

TRANSFORMATION OF Qi j

We would like to establish the transformation equations of the reduced stiffness matrix Qi,'l'
This can be done by the use of Equation 5 and the transformation equations for Cu tabulated
by Hearmon (Reference 5), and Tsai (Reference 4). A typical example is as follows:

Clat
9, * c:l-_’L

Cas

] 2 2 4 2 2
mc"+2mncn+ ncn+ 4mnc‘.

3 3 [ 2 2 2
+ 4m nc“ + 4mn c”- ?,',('" c', +n C“ + Zmnc”)
c [

. i3
mi(C -
Cys

C“ cll )

Cys

X ) + 2mfat(c,, -

% (10)
23

Css

c?
2 2 - 38
) + 4m'n"(Cy, Tas )

+ n‘l c"-

cll cﬂ

+ 4m’n(C,o - c"c“l+4m’tﬂ ey )
mottie Cas &0 T
4 2 2 4 2 2
= mOu + 2mn le + n Qn+ 4m n Q“

+ 4m3n Ol. + 4 mn’Q”

The transformation of the other components of QU can also be shown, The transformation is
a rotation through an angle 8 about the 3-axis, for which 033 = Caé = invariant, and

m = cos § and n = sin@ . It is assumed that a plane of symmetry exists in the 1-2 plane.
Based on Equation 10 and similar results for the other components of QU' we conclude that

Qij transforms the same as CU' Having established the transformation equations, we can

apply the usual material symmetries like orthotropy, isotropy, etc,, and the invariants of
the transformation can be determined.



AFML-TR-67-349

For our present study, it is more convenient to express the transformation equations in
terms of multiple angles than the conventional powers of sines and cosines, The following
trigonometric identities shown by Cox (Reierence 6) can be used:

m = (3 +4cos20 + cos 48)/8

mn = (2sin20 + sin40)/8

min = (1- cos 46)/8 iy
mn = (2sin 20-sin 46)/8

(3- 4 cosf + cos 468)/8

b=
11]

By direct substitution of Equation 1 into the conventional transformation equations, a new

form of the transformation equations for Qi] (also Ci]) can be derived with the results shown
in Table I,

TABLE I
TRANSFORMATION EQUATIONS OF Q;;
Constant cos 26 sin 26 cos 40 sin48

Q,, y u, 2v, u, v,
v, -3 -2y, R v,
Q, v, 0 0 -, -u,
Q.u Ug 0 0 ~Ys ~Y,
20, 0 2u, -u, 2u, -2u,
2Q,, ) 2U, -v, -2vu, 2u,
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where
U, = (3, + 3Q,,*+ 2Q,, + 4Q,.)/8
u, = (Q, - Q,,)/2
Ug = (Q, + Q,p - 20, - 4Q44)/8
Ug = Q) + Qy + 60Q,; —4Q4,)/8
U‘ = (0" + sz - 20!2 + 40“)/8
Ug = Q4% Q)72
Up = (Qq - Q)72

(12)

From Table 1 and Equation 12, the following two invariants can be estallished by observation:

o

By combining Equations 12 and 13, we can show that among the U’s:

C
"

(™
"

(=4
1]

Q + 0 +20

T 22 12
2(U, + U,)
Q, *+ Q,*20,
Q;o ) 0:2
Us -V,
Qs ~ %2

(3L, + 4L,)/8

(L, - 4L,)/8

(L, + 4L2)/8

(13)

(14)

e*re
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are invariant as expected because the
are independent because

v

y are the constant terms in Table I. But only two of them

(15)

(U'-U‘)IZ

U2. U3. Us. and U7. on the other hand, are not invariant,

If Qi i is orthotropic,

Qe= Q=0
from Equation 12, we see that
u, = U, =0.
If Qlj is isotropic,
Q, * sz
Qe (O” N 0'1)/2 (16)
0‘. . Qu Sl
From Equation 12, we see that
U = Qy
u, = Q
Ug = (Q, = Q,)/2 = Q.
Uz= U,=U‘* U7=0.
The components of QU can be expressed in terms of engineering constants if and only if Qi i is
orthotropic:
Q= E /-y, v,)
°u= Eul(l-v'z vzl)
(18)
Q2% Y2 9 7,0,
Q= 642

We have shown in this éection the transformation equations of Q
and the meaning of the coefficients Ui

i in terms of multiple angles,
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SECTION I
TRANSFORMATION OF A, B, D MATRICES

If a laminated composite consists of constituent layers of the same orthotropic material
(06 = U7 = 0) with arbitrary lamina orientations and thicknesses, the elastic moduli of the

laminated composite, Aii' Bil' and Dll' can be expressed from Equation 9, for example, by

[A",B",D"] : fo”[l,z.z’]dz (19)

where Q11 is a function of z, i.e., it varies from layer to layer because of the varying lamina
orientations. From Table I (where Q,, in Equation 19 is actually Ql'l):

Q, = U, + U, cos28 + U, cos 48 (20)

The transformation Equation 20 consists of one constant plus two cyclic terms. If the same
material is used in a laminated composite, say, boron-epoxy composite, Ul' Uz. and U3 re~

main constant for all the layers and Equation 19 can be expanded in terms of multiple angles
as follows:

(4,08, .0, ] = Jwu,[12,2%] +u, cos2B [1.2.2]

+ Uy cos 46 [n,z.z’])dz
(21)

u, [h,o,n’nz] + U, fcosza[l,z.z']dz

+ Uy fcos 49[!.:,12]&

The same derivation can be applied to the other components of Aii' BU' and DU' and the
final relations are summarized in Table II.
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TABLE 1L
A,B,D MATRICES IN TERMS OF LAMINA PROPERTIES
Yo[a.,8,0] Yi[a,8,0] Y2[a,8,0]|"% [2.8,0] ‘a[a,8,0]
_Au’ Bu X Du_ U‘ 0 Us 0
.Azz’ Bzz’ Dzz. U. 0 Us 0
:Alz 18,21 0, ] U, Y —Uy Y
A g Wiy igg ] U, 0 0 - Uy 0
2[Ag: Byqr D, 0 0 -u, 0 -2u,
2[A 20 Byq, D) 0 0 -u, 0 2u,

where the Ui are the same as those in Equation 18, and the Vi [ A. B D] are defined as follows:

“o[a.,8.0]" [n.0.n¥2 ] (22)
[ao] Jcos 28 [1,2,2%] oz
Va[a.8.0]° [ sin28(1,2,] oz
vs[A,a,o] = [oos 48[1,2,2%] 4z (23)

VQ[A.B.D] z fsin 48 [I, z,z']dz

Since the constituent layers are assumed to be (macroscopically) homogeneous, the integrals
above can be replaced by the following summations:

n

Y k};' W hy 4y =h)
| @ 2 2
v|B z ?kgl w, (h S h) (24)
n
- | 3 3
i0 Tk{:. Wil ey = )
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such that, when

iz, W, = cos 26,
= 2, : sin 29“
= 3, = cos 46,
= 4, = sin 48,

where k is the index of summation and n, the number of layers. Table II is not a transfor-
mation relation as in Table I, although the appearance is very similar, Table II is an ex-
pression of Equation 9 in terms of multipie angles and is valid for a laminated composite
consisting of layers of the same material, otherwise the U’s cannot be taken out of the integral
signs, The purpose of expressing A1 § Bi §" and Dij in this format is to aid the understanding

of laminated composites which may not be as apparent by use of Equation 9. The derivation
for the case of an anisotropic material (Ue. U7 # 0) can be carried out in a similar fashion,

The transformation equations of Ai 5 Bi i and Dij can be derived by using the expressions
in Table 1I. For example, Al'1 can be obtained by rotating the entire laminated composite
through an angle ¢. This is accomplished by substituting (8 -¢) for 8. Thus

A= Unht szcos 2(9-¢)dz+usfcos4(9-¢>)dz (25)

Since ¢ is constant for the entire laminated composite, thus, independent of z we get

Aj, = U h+ U, cos 2¢fcoo 26dz2 + U, sin 2¢[:in 20 dz

+ Uy cos 4 [ coraBaz + Uysin 4¢ [ sinaf ez

(26)
= U h+UV, cos 2¢p + UV, sin 2¢
* Uy Vau cosdep + UV, , sind ¢
where V1 Al V4 A represent the integrals defined in Equation 23 or the summations in

Equation 24, and the subscript A signifies that a component of Aij is being evaluated. Similar

’

results can be obtained for the other components of Ai g The final transformation equations
for A,, can be shown in tabular form (Table III),

i
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TABLE II
TRANSFORMATION EQUATIONS OF A,
Constant cos2¢ sin2 ¢ cosd ¢ sind ¢
A Y Voa Y2Yia Y2¥2a UsV3a UsVaa
A22 UiVoa “UaVia “UaVoa UsVsa UsVaa
A2 Y4Voa . v TV “Y3Vea
Ase s Yoa = 9 “UsV3a “UsVaa
24.¢ 0 UaVaa “UaVia 2U3Va "2U3Vaa
2 ¢ Y2¥2a “Y2Yia ~EU Ve 2350

The transformation equaticns for B“ and Di ] are the same as those shown in Table III except
the le must be replaced by Vm and ViD' respectively, where i = 0, 1, 2, 3, 4. Comparing

Tables I and III, in conjunction with Table II, the corresponding transformation relations are
identical. U6 and U7 do not appear in Table III because we are investigating the case of Qij

being orthotropic. Thus Ai] transforms the same as Qi]' Similarly, it can be shown that Bl j
and I)i i also transform like Qi.‘l" The transformation is needed for establishing the materiai

symmetries like orthotropy, isotropy, etc., and the invariants of this transformation, From
Tables II and Il and Equation 14, the following invariants exist:

A= Ay A, +28, = Lh=(q, + Qu *+ 20, )0
) - (27)
Fo ™ Bae = Ap s Lh=1Q - Q)

R ———

*These relations can be shown in general by appropriate integrations of the tensor transfor-
mation equation of the elastic stiffness tensor.

10
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Similarly, invariants for Bij and DU are:

PS : Bl! 5 822 +28!2 510

4
(28)
B < . T 2
B =D, *+0,*+2,= Lh/2z:Pnh 712
P =D -0 = L.n12= P a2
¢ o e = "2 2

There are several features of the invariants above.

(a) The invariants of the A and D matrices are the same as thoze for the Q matrix except
for correction factors involving the thickness h,

(b) The invariants of the A, B, and D matrices impose definite limits on the variability of
their components, If A11 and A22 are selected to meet certain loading requirements, we no

longer have any freedom in specifyingA12 and A 66 because of invariants P1 and P2. A similar

statement can be made about the D matrix.

(c) When B11 + 322 = 0, which occurs in a cross-ply composite (Reference 3), we know

immediately from invariants P3 and P 4 that

soz s Bu = 0.

Thus, in a lamina optimizationprocedure of a given material, say, a boron-epoxy composite,
bounds exist on the range of variability of the elastic properties. As shown in Table II, each
of the six independent components of the A, B, D matrices is governed by a constant term,
which is not affected by lamina orientation, and variable terms expressed by Vl [A B, D] in

Equations 23 and 24,

11

L T2
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SECTION IV
SPECIAL PROPERTIES OF LAMINATED COMPOSITES

We will examine a number of special laminated composites and hope to shed light on the
nature of Vi A. B. DI’ in this section. Since the limits of integration are + h/2, integration

of an odd function (antisymmetric function with respect to z = 0) will be zero; that of an even
function, not zero. Let us examine the following cases:

(a) 1f 6 is an odd function of z, which may be represented by a 2~layer angle-ply with + @
orientation shown in Figure 1a, the following integrands are odd:

cos p8 [z] sin p@ [l,z2 ] )
The following integrands are even:
cos pb [ B z'] sin pb [z]

where p = 2 or 4.

Thus, the following integrals among those in Equation 23 vanish:

Yie " V3e " V2a " V20" Van T Vao T ¥ e
From Table II:
Alg = Ay = 0
B,, = B,, =B, = B, = 0 (30)
Dig = Dpg = O

Hence, Ai j and Dij are orthotropic,

(b) If 8 is an even function of z, which is known as a symmetric laminate and may be
represented by Figure 1b, the following integrands are odd:

cos pb [z] sin p8 [z]
The following integrands are even:

cos p8[1,2%] sin p8[1,2%]

12
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Thus, the following integrals among those in Equation 23 vanish:

Vig “Vop * Y3p " YaB * © (31}

From Table II:

B..=0 (32)
which means that there is no coupling between bending and extension in the laminated
composite. Furthermore, Aij and DU are, in general, anisotropic.

(¢c) Let 6 be a random function of z, i.e,, layers are randomly oriented, as shown in
Figure 1c, and define Vi as the space average of V (Reference 5):

| m/e
V, s = [mz v, 46
/2 h2 0 (33)
=_'.f f (::’n'p )[Izz]dzde
T Jesz -ni2 p6

where p is even. We have dropped the second subscript in Vi [ A.B D] since it is im=-
147
material here. Interchanging the order of integration, we get

N R AT P

= h/2 -w/2

h/2

=0 (34)

Thus, for random orientation of the constituent layers, all the-\-"i with the exception of
the constant terms in Table II will vanish, The laminated composite becomes isotropic,

since
A= Ay = U
A, = Unh (35)
A“ H Ush
Au F Azc £ 0
and from the above and Equation 15,
A“ - A, = 2A,, (36)

13

tre
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which satisfies the condition of isotropy of AU' The isotropy of Ai § only implies that

the moduli of a laminated composite are isotropic, The stress distribution, however,
is not the same as that in an isotropic body. Similarly it can be shown that

B. = 0
! (37)

2
A. h/12
D” ij h

Thus Dij is also isotropic. The laminated composite satisfies the condition of homo-

geneity as well, although the stress distributionisdifferent from that in a homogeneous
material.

(d) If a laminated composite has n equal layers (n > 2) and the orientation angles of the
layers are at increments of 7/n, the integral V, , may be expressed as

VIA 2 (cos 2w/n+ cos4w/n+ - - - cos2w)h/n (38)

From Pierce’s table (4th Edition), Formula (639):

sin(n+-£-)x '
cosx + cos2x- - - + cos Nx = - (39)
2sin—1x 2
2
For x=2w/n
le = /12 ~ 172 = 0
Similarly, from Pierce, Formula (637),
. I*n . N
sin —>- x sin 5~ x
sinx + sin2x - - - + sinnx = = (40)
sin —
2
Forx=2 w/n
\’5“ T 0

Using Equations 39 and 40, we can show for x = 4 7/n:

Voie & Vgy 0 O

Since V1A (i# 0) vanish for this type of laminated composite, Aij is isotropic. The

same relations as those in Equations 35 and 36 are obtained. This, of course, is the
well-known result for in-plane quasi-isotropic composites, where the lamina orien-
tations are (-60) - 0 - 60, (-90) - (-45) - 0 - 45, etc,, shown in Figures 1d and le.
Bi i and Dij can be made quasi-isotropic by more complex stacking sequences than that

for Aij’

14
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Finally, the area under the A’ij versus ¢ curve from ¢ =0 to ¢ = 2w can be obtained by the
integration of the transformation equations listed in Table III. Since,

2T cos ¢
{ (Sinpp ) d¢ = 0 (41)

where p is an integer, only the constant terms remain, Thus the areas under the Ai' are con-

§
stant and the average numerical values are the isotropic constants in Equation 35 for the

randomly oriented lamina composites and those quasi-isotropic laminates described in the
previous subsection. This leads to the conclusion that the invariant properties of constants U1

and U

orthotropic materials and laminates. Lamina orientation variations only change the shape of
the A/, curve as ¢ variesbutthe area under the curve remains constant, We can also conclude

i)
that the area under the Bi'j curve is zero and that under Di'j’ constant,

5° U, being dependent on U, and U5. may constitute a measure of the performance of

15
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SECTION V
ISOTROPIC CONSTANTS

We have shown that the elastic properties of a unidirectional composite are strongly in-
fluenced by two independent invariants,

Uy = (30, + 30,, + 2Q,, + 4Q,,)/8 (42)

U, = (0” * Qg - 20'2 + 40“)/8 (43)

For laminated composites, the same invariants exist, except that corrections for thickness of
h and h3/12 must be applied for the A and D matrices, respectively. The invariants for B“
are identically zero, as shown in Equation 28,

If the material is isotropic, the resulting relations shown in Equation 17 are

u = Q,, Ug = Qg (44)

Because U1 and U5 reduce to the stiffness and shear rigidity of an isotropic material, we
shall designate U1 and U5 defined in Equations 42 and 43 as the isotropic stiffness and iso-

tropic shear rigidity, respectively. These isotropic properties, which are specific com-
binations of orthotropic properties, represent a realistic measure of the minimum stiffness
capability of composite materials, which can be compared directly with isotropic materials
as well as other orthotropic materials. This measure of stiffness is different from the common
practice of comparing the longitudinal stiffness Q11 with isotropic materials, Although Q11

for many modern composites can be several times higher than lightweight metals on the
weight basis, this is not a fair comparison because the weakness of most composites in
transverse stiffness and shear rigidity is ignored.

In addition to affording a basis of comparison with isotropic materials, the proposed use
of invariant or isotropic properties may lead to a better understanding of the variability
of lamina optimization of composite materials. If we start initially with a unidirectional
composite, for which

A = Q.hn
ij i

any change in fiber orientation of some layers within the same composite will change Ai j ac-
cording to Table II. These changes are governed by the integrals Vl. V2. V3 and V 4 while
V0 remains invariant. The V’s dictate the magnitude of the variability in the elastic properties

of a laminated composite and the variation oscillates above or below the isotropic constants,
Since the absolute value of sine and cosine functions are bounded between 0 and 1, the
variability of the V’s are also bounded,

16
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The concept of invariant properties may simplify the lamina optimization process. Struc-
tural optimization can begin with the isotropic constants. They should represent the minimum
stiffness of composite materials. Any lamina design that falls below the performance of that
based on isotropic constants should be automatically rejected.

Z 4
T +8 r=h/2 t
R ';J s
z2=-h/2 - )
-8 -mw/2 w2
s b
4 F 4 F 4
X T T/3 :ns2 ‘ w/4
—— I__|-—'—~-- ‘_,—'_]——-9
s J z==-h/2
-w/2 wr/2 /3 -mw/2
¢ d,(nz3) d,(n=4)

Figure 1. Examples of Lamina Orientations

Figure 2 shows the variation of A'11 for various boron-epoxy composites, using the following
data:

Q, = 40 x 10° psi
e _.
Q,, = 4 x |0 psi
22 ¥ (45)
Q|2 = 1,0 x 10 psi
Qee > 15 IO‘psi

17
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A 7, 10%psi
40

UNIDIRECTIONAL

ANGLE - PLY
as= 30*
a= 45°

ISOTROPIC

20

10

CROSS - PLY
m

The unidirectional and isotropic composites are shown in both diagrams, On the left diagram,
two cross-ply composites with cross-ply ratio m equal to 1 and 3 are shown. Cross-ply ratio
is the ratio of the thickness of ‘he O-degree to 90-degree layers, On the right diagram, two
angle-ply composites with helics! angle a equal to 30 degrees and 45 degrees are also shown.
Angle-ply composites consist of equal numbers of layers oriented at + @ and -a. These dia-
grams illustrate that the areas under all the Al’l curves are the same. If a cross-ply with

m = 1 {8 combined with an angle-ply with a = 45 degrees, the resulting composite is isotropic.
This agrees with the conclusion of the previous section and is shown in Figure le, All the
cross-ply composites have the same value at ¢ = 45 degrees. This can be shown from the
transformation equation. Finally, when the number of lamina orientations increases, the re-
sulting laminated composite will approach the isotropic state. Thus, depending on the nature
of the design data, a more effective lamina optimization program may be achieved by begin-~
ning with the isotropic laminate, rather than the unidirectional composite,

It may be useful to determine approximately the numerical values for the invariant prop-
erties represented by Equations 42 and 43, We will define

u = E, Ug = G (46)

For the highly orthotropic composites like glass-epoxy and boron-epoxy composites

Q, ¥ E,, Q,%E,, (47)
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because the minor Poisson ratio v,, is usually less than 0.1. If Y12 is 03,1 - Vig¥92 0.97.

The approximatior of Equation 47 introduces an error less than 3%. From elasticity solutions
by Adams and Doner on longitudinal shear (Reference 7) and transverse loading (Reference 8)
of a unidirectional composite, we have

G.z/Gm

Q“/Gm F" (G,/Gm,v') (48)

/ 2
22 Em E22/ Em

F
s (E' /Em,v' ) (49)
Although E22 also depends upon the Poisson ratios of the constituents, this dependence is not

considered in Equations 48 and 49 since representative values of the Poisson ratio for typical
plastic matrix composites were assumed in Reference 8, We also assume that small changes
in constituent Poisson ratios do not greatly affect the transverse modulus E22. Let

F, = BF,

where [3 is a function of constituent stiffness ratio and fiber volume fraction, By comparing
Figure 5 of Reference 7 and Figure 4 of Reference 8, it can be seen that

3
4<B<| (50)

for a fiber volume of 70% or less. Since

G, = E s2(1 + y ) (51)
we obtain from Equations 48 and 49, for o ® 0.33,

Qge = = BE,, (52)

Hence, if we substitute

22 22

g 0.25 E22 (53)

o

"
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into Equations 42 and 43, we obtain approximately

|
E, + ,5(7*33)522 i)

I
E, * g\ BB)E,,
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Since E22 < E11 for fiber-reinforced composites, the error introduced by putting B=11in

E
Equation 54 is quite small. For example, if -Ell

L 22
and 0.9% in G and E, respectively, owing to variations ir 3. Setting B=1 then, yields

= 10, the maximum possible errors are 3.3

Isotropic stiffness : E=3g + ¢ (55)
8 n 8 22
Isotropic shear rigidity = G = -‘!';- E, * -:—Eu (56)

These approximate equations are simple to use and give reasonable values to represent the
invariant properties,

Cox (Reference 6) derived isotropic constants for randomly oriented fiberous composites as
€ : g /3, G = E /8 (57)

These values are lower than those of Equations 55 and 56. Loewenstein (Reference 9) also
showed the 3/8 factor for in-plane random orientation (the transverse stiffness is taken to be
zero). Bishop (Reference 10) also derived a theory which has results similar to that reported
by Loewenstein (Reference 9). Both References 9 and 10 may be considered as having

u" = uu z n“ = 0 (58)

The conditions implied by this equation, however, are not reasonable for modern fiber-
reinforced composites. The transverse and shear moduli are significant quantities in de~
termining the elastic behavior of composite materials.

An estimate of the performance of fiber-reinforced composites is shown in terms of in-
variant properties in Figure 3. The normalized E is derived from

5 .3 F3
E/E. = E(E”/Em) + 5 (E,/E )
: 3l + 3 (59)
* 3 [\s vf)+v'Ef/Em] s F2

where the rule of mixtures equation is used:

E" z (I-v')Em + vaf (60)

and F2 is expressed in Equation 49, the numerical values of which are obtained from
Reference 8. From Equation 56, using ﬁ= 1 as discussed earlier,

5.3
LA (61)

= 2.66
G/Gm T [(l-vf)"' vaf/Em]+
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where Equation 51 is used with B 0.33. Comparing Equations 59 and 61, we notice that

E/E, = G/G (62)

Figure 3 shows the normalized E and G for fiber-reinforced composites with Ve = 70 and

40%. For convenience, absolute units for E are also shown for boron-aluminum, glass-epoxy,
and boron-epoxy composites, Figure 3 represents the minimum capabilities of the composite
materials; the advantage of designed anisotropy to meet a specific loading condition has not
been claimed.

E/E

m or G/G
oo}

1o}

10 100 1000

Elem

Figure 3. Isotropic Constants of Fiber-Reinforced Composites
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SECTION V1
SUMMARY

We have shown that the transformation equations of tensors can be expressed in multiple
angles instead of the usual powers of sines and cosines, In the multiple angle representation,
the transformation properties consist of invariant terms, which correspond to the isotropic
constants, and cyclic terms, which control the variation and directionality of properties due
to anisotropy. The transformation equations for the moduli of two-dimensional layers (Qij)
and laminated composites (Al g Bil' and DU) can be readily derived.

The elastic properties of laminated composites as functions of lamina orientation are shown
in Table II. The components of Ai j'Bi j.and Di i are governed by invariant terms, plus variable

terms in terms of integrals Vl' It is proposed that isotropic properties for anisotropic

materials be used as s :aeasure of the minimum stiffness capability. They may be considered
intrinsic propertiss of tne material because they are independent of the lamina orientations,
Direct comparisons of the stiffness represented by E and G with isotropic materials appear
to be more realistic than the use of the longitudinal stiffness of unidirectional composites,
Approximate expressions for these isotropic constants are shown in Equations 55 and 56 and
their numerical results in Figure 3. The results may be helpful in systems application of
composite materials, The relative merits of controllable variables like E f/Em and v; can be

determined directly from Figure 3 which should be of value to materials engineers,

Finally, the basis of lamina optimization may be more easily carried out and better under-
stood by the multiple-angle relations than the conventional treatment. The degree of vari-
ability can be determined from tise values of the integrals Vl. If anisotropy is to be beneficial

for a given loading condition, the performance of the composite should in all cases exceed that
of the isotropic laminate. Thus optimization can begin with the isotropic constants, The iso-
tropic constants, the integrals Vl and the invariants P1 should be considered as additional

constraints to lamina optimization procedures, For practical design, the number of lamina
orientations in a laminated composite may be kept to, say, no more than four orientations,
The variation of the properties may be more effectively controlled through the lamina thick-
ness than the orientation. The reduction in lamina orientations may introduce immediate
simplification in structural analysis, design procedures, and automated fabrication techniques
of laminated composites. The present concept may lead to an optimum design based on strain
energy from which the advantage of anisotropy in a composite material may be readily
established for specific load conditions, A simtilar approach to the problem of strength seems
possible.
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