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INVARIANT PSEUDO-DIFFERENTIAL OPERATORS
ON A LIE GROUP

by ROBERT S. STRICHARTZ

ABSTRACT. - The invariant pseudo-differential operators on a Lie grounp G with Lie alge-
bra @ are characterized in terms of a funetion on B* called the Lie symbol. A cal-
culus of Lie symbols is developed in terms of the algebraic structure of . We also
define global Sobolev spaces for non-compact groups.

§ 1. Introduction.

Let G be a Lie group and @ its Lie algebra. The universal enveloping
algebra ¢ of B, which is the free algebra over the complexification of (&
modulo the ideal generated by elements of the form XY — YX — [XY], is
naturally isomorphic to the algebra of left invariant partial differential ope-
rators on @. In this paper we define an analogous algebraic structure cor-
responding to classes of left invariant pseudo differential operators. Thus
to every left invariant operator on G we associate a function on B* (the
dual space of (3B considered as a vector space) called its Lie symbol. The
correspondence is bi-unique if we consider operators modulo smooth opera-
tors and Lie symbols modulo functions in J(B*. Composition of operators
corresponds to a rather complicated product operation on the Lie symbols.
This operation is described in § 3, and it is effectively computable from
the Lie algebra structure of (. In particular we may identity Y with the
algebra of polynomials on (3* under this composition law.

The usual gymbolic calculus for pseudo differential operators is of course
still valid in this context. It has the disadvantage, however, that left in-
variance of the operator i8 not conveniently expressible in properties of the
symbol, except for the top order symbol, and even then it is not clear
that to every top order symbol, which is invariant under the induced action
of @ on its cotangent bundle, there corresponds an invariant operator.

Pervenuto alla Redazione il 22 Maggio 1971.
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We refer the reader to Stetkaer-Hansen [20] and Rothschild [14] who
prove the non-existence of bi-invariant pseudo-differential operators which
are not differential operators for most non-compact non-abelian groups.

In Section 2 we review the facts about pseudo-differential operators
we will need. In Section 3 we construct the algebra of Lie symbols and
prove the main theorems of the paper. In Section 4 we extend the calculus
of Section 3 to operators with mixed homogeneity. In Section 5 we prove
that a compactly supported pseudo-differential operator of order zero is
bounded in L?(G) and use this fact to define global Sobolev spaces. We
show that the usual properties of Euclidean Sobolev spaces are true also
in this context. The results of Section 5 actually depend only on the top
order calculus. An appendix is devoted to sketching some aspects of the
local L? theory of pseudo-differential operators that do mnot seem to be
adequately dealt with in the literature.

The author is grateful to the many people who informed him of refe-
rences [20] and [14], and to E. M. Stein who pointed out an error in a
previous version of this paper.

§ 2. Pseudo-Differential Operators.
A C< function p (x, &) on R" > E" with compact support in the x va-
1
riable belongs to S," for m real and - <es1if

(2.1) |.D:;.Dgp(w, £)l£ca,ﬂ(1 +I§|)’mf—(’|ﬂl+(l_9)la'

for all multi-indices «, f. We denote S,°=US," and 8, =N 8,". Two

functions in 8," are equivalent if they differ by a function in S, *. Asso-
ciated with p (x, &) is the operator p (x, D) given by

(2.2) P (@, D) u (&) = (2=)™" fl’ (a, &) (&) €8 @&

= e [[wweevep @ ay ac

where the iterated integral is taken first with respect to y and then ¢&.

The classes S," and associated operators were introduced by Hormander
in [6] and the reader is referred to that paper for the proofs of the pro-
perties we state below :
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1. p (#, D) is a continuous operator on Cen (R")

2. If pe 8, then p (x, D) u (x) = fk(w, y) u{y) dy for some C > function

k (x,y) with compact support in x, and conversely.

3. The operator p (x, D) is quasi-local, i. e. if % is ¢ on any open set
2 then p(x, D)u is C* on £.

4. If pe S, then || p(x, D)u |, << O || ull, for w€ Com (| x| < k) for each
k. The same result holds for L? norms for 1< g < co provided o =1, as
will be shown in the appendix.

5. Given any sequence m; N\ — oo and p;€ 8,7 there exists p€ 8,1,
k—1
unique up to equivalence, such that p — 3 p; € §,%. We write p co Zp;.
=1
In fact we can find ¢; equivalent to p; such that p = 3 ¢; pointwise.

6. If peS™ and qe8,™ there exists r€S8,"™ guch that p (x, D)
-q (®, D)==1r(x, D). In fact r is given up to equivalence by

1 Jd \* J\*
v i) 2 () e

7. The class of operators p (x, D) for p€8," is invariant under diffeo-
morphism.

We also consider a subspace of S;" , denoted §;" of symbols which are
homogeneous in the following sense: p oo Zp; where pj;(w, t&) == t"7 p;(», £)
for t=1 and | £} =1 for m; \ — oo. These symbols and the corresponding
operators were the first class (locally) of pseudo-differential operators con-
gidered in Kohn-Nirenberg [10]. They are preserved under the operations
in 5, 6, 7 above. If p€S;" is a polynomial in & for each x, then p (», D)
is a differential operator.

Now let M be a paracompact C> manifold with smooth measure dx
equivalent to I.ebesgue measure in every coordinate patch. We say an

operator T: Cem (M) — CT (M) is smooth if it has the form Tu (x) =

=fk(w, y)u(y)dy for some k€ O (M < M) An operator T: Cem (M) —
it

~ O

® (M) is called a general pseudo-differential operator of class S, or
Si" if for any coordinate patch U and @ € Oup, (U) the operator T (pu) is

2. Annali della Scuola Norm. Sup. di Pisa.
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the sum of a smooth operator and an operator p (z, D) for p€§," or S;" in
the local coordinates of U. Because of property 7 this definition is inde-
pendent of the choice of local coordinates.

A pseudo-differential operator is said to be compactly supported if given
any compact neighborhood £ there exists a compact neighborhood 2, such
that Tu vanishes in £ whenever » vanishes in 2,, and Tu has support in
£, whenever » has support in £. It is easily seen that a compactly sup-
ported operator preserves Cem (M) and by extension preserves C*°(M). Thus
two such operators may be composed, while two general pseudo-differential
operators need unot have a well-defined composition. Note, however, that a
general operator may be composed with a compactly supported operator in
either order.

While many pseundo-differential operators naturally arising on non-com-
pact manifolds are not compactly supported, there is no real loss in gene-
rality in restricting consideration to compactly supported operators in view
of the following observation: every pseudo-differential operator differs from
a compactly supported one by a smooth operator. This may be seen by
considering a partition of unity @, ,... and observing that 7= X %‘ M%. TM,,

J

where Mq,j denotes the operator M,,,ju () = @;{x) u (x). If we take the sum
over those j and % such that ¢@;p,= 0 we obtain a smooth operator, and
the remaining summands give a compactly supported operator. Thus restri-
cting operators to be compactly supported is merely a technical device to
simplify the theory on non-compact manifolds.

§ 3. The calculus of Lie symbols.

Let G be a Lie group and (3 its Lie algebra. We use lower case ro-
man letters to denote elements of @, upper case for elements of (3, and
greek letters for elements of G*. Let X,,.., X, be a basis for (B, and
£,y .y &y the dual basis for G*. The pairing between 3 and G* is denoted
by the dot product X-.&.

‘We shall deal only with Lie algebra products which are associated
[..[XY]1Z]..] W] and which we denote bracket (XYZ ... W). For X€@B we
let ady X (Y ) = bracket (XY*); ad;X should be regarded as a polynomial
map of B to itself.

There exists ¢ >0 such that the exponential map exp: G— G is a
diffeomorphism of | X|< ¢ onto a neighborhood of the identity of &. For
X €@ we associate the left invariant first order partial differential operator

d
Xu(x) = %u(m exp tX) |s=p .



Operators on a Lie Group 591

We shall use the Campbell-Hausdorff formula (see [7]) which states
that for sufficiently small X and ¥ we have exp X exp ¥ = exp Z where

(— 1ym=1  bracket (X7 Y4 X% Y% .. ¥

(3.1) Z=2 X
m pig; ME (Pi + ¢ pilqllpzlqzl...pm!qm!

where m varies over the positive integers and, for each m, p; and ¢; for
t=1,..,m vary over the positive integers subject to p; + ¢;>>0. As a
consequence we have exp tX exp Y = exp Z; where

(3.2) Z,—Y4tX4 ¢ 3 e bracket (XY¥ 4 0 (22)
k=1

as t—> 0. The actual determination of the constants ¢; from (3.1) is a com-
binatorial problem.

Let us now consider a left invariant compactly supported pseudo-diffe-
rential operator T on @ of class §,°. Now G has a distingunished set of
coordinate patches, namely for each 2 € G we may coordinatize a mneighbor-
hood of # by xexp X for | X| <e Thus for each # € G there exists
P (X, £)€8," such that

(3.3) Tu({wexpX)=(2x)—" ffu (xexp Y) eX—T)¢ p (X, &) p(Y)dY d&

-+ @ smooth operator
where y € Ogom (| X|<Cé) and w =1 in a neighborhood of the origin.

Now the left invariance of 7' means we can choose p, to be indepen-
dent of # by wodifying the smooth operator in (3.3). The requirement that
(3.3) define the same operator in every coordinate neighborhood places ad-
ditional restrictions on p, (X, & which we shall not study directly. Instead
we set X = 0 in (3.3) and obtain

(3.4) Tu (x) == (2m)—™ ffu (expY)e~ ¥ ip &) w(Y)AY dEFux o

where p (&) =p (0, &), ¢ € Ceom (G) and u* @ = [u (xy~Y) @ (y) dy. Here we
&

have deduced the form of the smooth operator from the fact that 7 is in-

variant and compactly supported. We note that p (&) €S," or 8; if p(X,¢)
is. By p(&)€S,” we mean (2.1) holds without X derivatives.
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Thus we see that every left invariant pseudo-differential operator must
have the form (3.4). The couverse is also true:

THEOREM 1: T is a left invariant compactly supported pseudo-diffe-
rential operator of class S,  or 8" if and only if it has the form (3.4). The
correspondence 7 <—> p (&) is bi-unique between classes of operators modulo
convolutions with Cgn functions and classes of functions in S," modulo
functions in & (B*). T is a differential operator if and only if p (£) may be
chosen to be a polynomial.

ProoF: We must show how to go from (3.4) back to (3.3), deducing
the form of p (X, &) from p(£). To do this we replace # by zexp X in (3.4)
and set exp X exp Y =-expZ. To do this we must take X sufficiently
small, and Y may be forced to be small by shrinking the support of .
‘We note that changing y away from the origin only results in a change
in the smooth operator u * ¢. Thus we have

(3.5) Tu(rxexp X)= (2n)—”/fu(x exp Z) e Y& p (&) w(Y)J (X, Z)dZ dE

-+ a smooth operator

where ¥ muy be determined from exp Y = exp(— X ) exp Z by the Camp-
bell-Hausdorff formula (3.1). Now we claim that for small X and Z that
—Y=W(X,Z)(X— Z) where W (X,Z) is an invertible linear transfor-
mation on G which depends on X and Z in a O manner. Indeed (3.1)

1
gives — Y=X—Z2 -+ ?[X, Z]-+ ... where each subsequent term is ob-

tained by multiplying by a constant and applying adX and adY in various
orders to [XZ|=[(X—2Z2)Z|+ [ZZ]|= —adZ(X — Z). Thus — Y =X —
—Z 4 Q(adX,adZ)(X — Z) where € is a non-commutative power series
with values in the space of linear transformations on 3. If we take X and
Z small enough then || adX || and || adZ || will be small and the power series
will converge because of the decrease of the coefficients in (3.1). Since ¢
has no constant terms we may make || Q(adX,adZ)| <1 and obtain the
invertibility of W(X,Z)= I+ € (adX, adZ ). Thus

w(X) Tu(xexp X)= (2n)~" ffu (x exp Z) ¢{X—2) WX, 2)% p (§),

JX, Z)y (X)y(— WX, Z2) (X — Z))dZ d;

-+ a smooth operator.
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Changing variables in the £ integration we obtain

(3.6) w(X)Tu(wexp X)= (?ﬂ)_"ffu(m exp Z) e\ X-2)Ep (W (X, Z)*-1¢).

R(X,7)azZ d¢

-+ @ smooth operator

where R (X, Z)€ Con (B < B). We note that

o\ [ oN[ Y *_1
a0 (&) () (Eewazmara )<

Oavﬂ-r(l +Ifl)m—917|+(l—-9)(la|+|'3‘,.

Thus we may apply a lemma of Kuranishi (see [13], p. 1565) which allows
us to conclude from (3.6) and (3.7) that T is a pseudo-differential operator
of class §,", and
(3.8) p(X oSt (i) (i) (0 (W (X, 2*-18) B (X, Z)) lrx -

’ « al \i8&) \6Z ’ !

We note that p (X, &) €Sy if p(£) does, and p (X, &) may be taken to
be a polynomial in & if p (£) may. Also p(£)€S, ™ if and ounly if p (&) €d.
The theorem follows immediately from the above and the properties of
pseudo-differential operators outlined in § 2. Q. E. D..

We call &, =8,/ the space of Lie symbols of class g, and loosely
speaking we call p (&) the Lie symbol of T. We call p (X, & the full sym-
bol of T.

‘We turn now to the question of what operation on the Lie symbols
corresponds to composition of operators. From property 6 of § 2 it is clear

that the key step in answering this question is to compute (5%) P (X, &) |x=0

in terms of p(£). While it is in principle possible to deduce this from (3.8),
we have found it easier to do this by computing X;7T« using (3.3) and
(3.4) and comparing the two results.

LemyaA 1: If T has full symbol p(X,¢&) then X;T bas full symbol
g;(X, & where

(3.9) 05X, &) = i (x,- + 5 (- 1F ety Xj(X)>-Ep (X, &) +

(X]-l— %’0(— 1)k0ka,dej(X)>-pr(X, &)
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and Lie symbol ¢;(%) given by

(3.10) 08 = X580 (&) + 5 » (5 8 [x—0.
J

Here ¢, are the constants appearing in (3.2).

ProoF: We have, using (3.3),

d
XjTu(xexp X)= ¥ Tu (x exp X exp tX)) |emo =

d (DT
E@”)'”ffu(xexp Y)e % p(Z, &) ¢ (Y)dY dE iz
-+ a smooth operator

where Z;= X - tX; 4+t 3 (— 1)* oy ade X;(X) + 0 (t*) from (3.2). We may
1

now differentiate, ignoring the 0 (t?) terms, and set ¢ = 0 to obtain (3.9).
Setting X = 0 we obtain (3.10). Q. E. D..

LeEMMA 2: If T has Lie symbol p (&) them X;T has Lie symbol ¢ ()
where

(3.11) 4 () coiXyp (E) - iE- 3 o ad X,-(.i)p@).
k=1 1 (95

PROOF: We have, using (3.4),

7
X; Tu (@) = — (

271)“"//% (wexptX;exp Y)e Y p (&) w(Y)dY df |-
<+ @ smooth operator.

For fixed ¢ we set exptX; exp Y = exp Z or exp Y = exp (— tX;)exp Z and
change the Y integration to a Z integration, absorbing the cange in v into
the smooth operator :

d i (—Z+zxj+t s cpady X (2 )+0(t*)>-5
X,-Tu=%(2n)"”ffu(mepo)e 1

- (&) det (6—‘92—<Z—m’,._tEGkadk,g(Z)+0(tz)>).
1

@ (Z)dZ d¢ =y + @ smooth operator
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where we have used (3.2). Using the fact that %det (I+t4+0(?) ==

=tr A we have
(3.12) X;Tu(x)=(2a)™" ff u(xexp Z)eZéip(f) (iX;-E +

i (2 e ade,-(Z)) E—tr aiz S adej(Z)) v (Z)dZ dk
k=1 1

-+ a smooth operator.

Since this is a Fourier integral we may integrate by parts and neglect
boundary terms to replace the polynomials in Z by differentiations of p (&)

Indeed % i = (— 1)l el Z2 ¢—Z¢ go ady X; (%) e=iZ¢ = (— 1)l ady-
-X;(Z)e~#%. By Leibnitz’ rule we have

) 8 . . d .
tady X; (E)E et = (— 1)l (m,, X;(2) — tr o 0di X (Z))-wz £

so when we integrate by parts we have

jfu (wexp Z) e—%¢ p (&) (iadk X;(Z) —tr GiZ ady X; (Z)) w(YdZ A& =

[ f u (@ oxp Z) e~ i ady (T%E)‘” © v (Z) Z dé.

Substituting this in (3.12) for k=1,..., N and handling the remainder in
the usual way we deduce (3.11). Q. E. D..

LEMMA 3: There exist infinite order partial differential operators A («)
on B* with polynomial coefficients such that

(3.13) (;—f)ap (X, &) |x=0 00 A (a) p ().

14
If we write A (a) = =X ¢ (x, f,y) & (%) then non-zero terms occur only
Br

when |B|<|y|and|f|<<|a|. Thus A (x) preserves the classes 8,"/S and
8a/S. A (z) may be computed recursively from the following relation :

3.14) II (@-5,(,) + J_) P (X, &) |xm0 = sym 11 (i + B (Xig) p (&)
r=1 0 X re=l
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where the symmetric product sym II is the average of the product for all
m ! orderings of the factors and

(3.15) B(X) =it 3 cpady X (i) .

k=1 i o0&
An explieit algorithm for computing 4 (a) is: 1) expand out the right side
of (3.14); 2) commute all terms where B (X; stands to the left of & by
replacing B (X;) & by & B(X;) -+ [B(Xj), &]; 3) similarly commute any mul-
tiple commutator of B (X;) which stands to the left of & ; 4) delete all
terms in which any & oceurs outside a commutator.

ProoF: We deduce relation (3.14) by computing the Lie symbol of
sym II Xj, T by iterating Lemma 1 and 2. Indeed by iterating Lemma 2
r=]1

we obtain easily the right side of (3.14). In iterating Lemma 1 we must be
careful to apply all the differential operators before setting X = 0; thus
we obtain that the Lie symbol is

sym III [’b (Xj(,-) + 2 (-— l)k Cr a«dk Xj(r) (X ))-E +
r= 1

(Xj(r) + %o (— 1 ¢ ady X (X)>'VXJP (X, &) |x=0-

Now it appears that in addition to the commuting terms on the left side
of (3.14) there are many more terms arising from applying the X derivatives
to the coefficients. We claim, however, that all those terms that survive
setting X = 0 will cancel when the product is symmetrized. To see this
we observe that ad; X; (X) is a homogeneous polynomial of degree ¥ in X
0 ]
RS Pl o
All terms that arise contain such expressions, and by interchanging the
role of X; and Xj; we obtain exactly the negative since each index j{r)
occurs only once in each term. Thus they all cancel in the symmetric
product.

Once (3.14) has been established the rest of the Lemma follows easily.

ady X;(X) = bracket (X; Xjq) ... Xjm) 4 similar brackets.

4
We observe that B (X;) contains terms of the form &7 (%) for || =1 and

| 7| =1 so the corresponding observations about the terms in A4 (a) follow.
The algorithm for computing A («) is easily established by induction.
Q. E. D.
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THEOREM 2: Let 8§ and T be left invariant compactly supported pseu-
do-differential operators of class S, and S," respectively. Let 8 have Lie
symbol p (§) and T have Lie symbol ¢ (&). Then ST is a left invariant com-

pactly supported pseudo differential operators of class 8, with Lie symbol
(3.16) r@ o3 = () b 4@ g
. > 1\isE P ) g (£)-

Proor: It is obvious that ST has all the properties except perhaps

a 14
(3.16). Now the terms <%) p (&) &F (%) ¢ (&) appearing in (3.16) are in
»S’;"+m’+|ﬁl_9(|“'+”“ so there are only a finite number of order > M for
1
any real M (here we use |f|<|al|, |f|<<|y]| and Q>-2—'). If we denote

the sum of these terms by »,(£) and the Lie symbol of 8T by (§) it

suffices to show (&) —r, (E)ES;M to establish (3.16). But we know from
Lemma 3 and property 6 of § 2 that there exists a pseudo differential ope-
rator Ry (which need not be left invariant) with symbol rgu(X, &) in the

coordinate neighborhood about the identity with » (X, §) — ) (X, E)ESQM

, o , 1 {0\
and r, (&) —r, (0,8 €8, . Indeed we take r} (X, ¢) =]a§2‘5k ] (E) p (X, &)

(fi) ¢ (X, §) for large enough k (so that m + m’ — g < M). The desired

result follows by setting X = 0. Q. E. D.

REMARK : It is clear that the product (3.16) preserves the class Sj"
and also the subclass of homogenebus polynomials. Thus we have obtained
a faithful representation of <¢ as the polynomials on (B* with the product
(3.16), in this case co may be replaced by =.

‘We next consider adjoints. We do not use the standard adjoint formula
for pseudo-differential operators because it gives the adjoint with respect
to the wrong measure.

THEOREM 3: Let T be a left invariant compactly supported pseudo-
differential operators of class S, with Lie symbol p(£). Then the adjoint
operator T* with respect to left Haar measure is also a left invariant
compactly supported pseudo-differential operators of class S," and 7'* has

symbol ¢ (&) = p (¢ if G is unimodular or

1 4\ —
(3.17) q(E)cvf ;—!(E") (z 35) P&
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in general where
(3.18) Aexp X) = X%,

A the modular function.
PROOF : By definition [Tu (w)QTx)dxz[u (@) T*v(x) dr 80 we com-
Q

é
pute, neglecting smooth operators,

jlu() 2n)—"/ff (wexp Y)e—T¢ p (&) v (@) w(Y) dY d& dw
@

‘)n—n/-/:/ ) e—1TE p (£) v (@ exp (— Y )) w (¥) A (exp ¥) dY d& dw

= (27:)‘”/11,(.70) ffv(x exp Y) e~ T A(exp (— Y)w(— Y)p (&) dY d& da.

G

Now 4 (exp X)=eX'¥ for some £’ € G*; in fact X-&° = tr adX (see Helgason
[5] pp. 366-367). Thus we conclude that

T*y (x) = (2m)~ ff wexp Y) e T4 eV ¥ p &) ¢ (Y)Y de.

Now this appears to require an analytic continuation of p_(E) to p (£ + i&9)
to obtain the form (3.4). Sinece the Lie symbol is only defined modulo fun-
ctions in o, however, we have available a substitute for analytic continua

tion even when p isn’t analytic. Indeed we let p;(5) = = '(50)“
la| <k & -

(12 E) p(f), note this is just the partial power series expansion of

p (& -+ 8% if it existed. In order to establish (3.17) we murt show
(3.19) (2 f f v (@ exp ¥) =¥ (678 5 (5] — iy (&) p (V) AT dE

is a pseudo-differential operator of class SQM for any real M provided %k is
large enough. But by integration by parts we easily transform (3.19) into

(3.20) (22— f f v(@exp Y)e i TEp (&) (ey'f"——— zk‘ %(Y-Eo)f>w(Y)de§.
j=0J*
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We now repeat the argument given in the proof of Theorem 1, replacing
(3.4) by (3.20). We may thus conclude that (3.20) detines a pseudo-differen-
tial operator whose symbol is given by a variant of (3.8). Note that since
W | .
ey — ¥ j—'(Y-§°)J vanishes to order k, the function R (X, Z) in (3.8) will
=0 J
contain a factor that vanishes to order k& in X — Z. Thus we must take
=k in (3.8) in order to obtain a non-zero contribution, so in fact the

. —k(20— . 1
symbol is of class S, =1 Since o> 5 We may make m — k{20 — 1)
arbitrarily small by taking %k large. Q. E. D.

All the above results have obvious extensions to systems of operators.
It is not necessary to formulate results for vector bundles with group ac-
tion over @ because all such bundles are frivial. Indeed if n: E— G is a
vector bundle on which @ acts by L, covering left multiplication ((L,e) =
= 7 (¢)) then we map E to G Xzl (1) by e —(n(e), L, 1 6. It is clear
this a bundle isomorphism and L,e — (x % (e), L(ﬂm(P))-l Ly e) = (xn (€), Ln(.e)_1 €)
80 the induced action on G < n—1(1) is left multiplication cross the iden-
tity. Note, however, if we are also given an action R, of G on E covering
right multiplication it need not be trivialized by this map.

For our next result we do not assume 7 compactly supported, which
means the convolution hernel ¢ in (3.4) need not have compact support.

THEOREM 4: Let 7 be a left invariant pseudo-differential operator of
class S,° with Lie symbol p (£). If we have ¢ = 1 and

(3.21) |[p()|=c|&|™ for |£|=¢" then T is elliptic.

If we assume merely that

(3.22) |p ()| =c|é|™ for || =¢ and some m’, and
(3.23) (i‘2§>ap(§)’sca|p(é)l(1+|6)—e|a|
(4

then 7 is hypoelliptic.

Proor: This is a simple variant of Theorem 4.2 of Héormander [6].
The point is that we are assuming only estimates on the Lie symbol and
not on the full symbol.

We construct a parametrix S of class Sy ™ for the elliptic case and
class §,° * for the hypoelliptic case. The theorem then follows by standard
arguments. We construct only a right parametrix because the hypotheses
of the theorem are easily seen to hold for T'*.
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1 0&
A () g(&)co1. We do this by setting ¢, (&) =p (5~ for large £and O™

Thus we need to construct a Lie symbol ¢ (&) with 2 ( g ) (&)

/ a
elsewhere and then solving p (£) gjp1 () co — 2 L (i> P (&) A(a) g; ().
aszo @1 \1 &

m'—i2e=D Thus we may set

We have ¢,€8,”" and by induction ¢; €8,

1O 2 g@es
j=

and obtain

1 Jd \*
fm(m)]’(f) ()Q(E)C\?EZ (zz) (6) A (@) g; (&) cop (&) g4 (&)

+£()%9+2 (Q“@A@%@y

The last terms cancel and p (&) g, (&) co 1. Q. E. D.

REMARK : While the theorem applies to differential operators given by
non commutative polynomials in X,,...,X,, except in the elliptic case it
may be difficult to verify the hypotheses since computing the Lie symbol
of such an operator requires using (3.4).

§ 4. Pseudo-differential operators with mixed homogeneity.

In this section we indicate how to extend the results of Section 3 to
operators with mixed homogeneity. The Euclidean theory of singular inte-
gral operators with mixed homogeneity may be found in Fabes and Riviere
[4]. The compatibility requirements we place on the structure constant of
the Lie algebra may be verified for many examples of nilpotent groups.
However they do not apply to the singular integral operators studied by
Knapp and Stein [9].

Let ¢ =(a,,...,a,) be a fixed n-tuple of positive reals. Let 0 (r)x =
= (", ..,r"z,) and let w(x) be a C> positive valued function on
E»\_ {0} which satisfies w (6 (r)2)=rw (x). It is easy to see fthat such
functions exist and and any two give equivalent theories. We then define
the class 8;', in analogy with §7", to be the set of €™ functions on R"<R"
with compact support in the x variable, and satisfyng

(4.1) | Dy DEp(a, &) | < Cu p(1 + w (@)™ "7
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for all «, . We may then define an operator p (z, D) by (2.2) and verify
properties 1-6 of Section 2. Property 7 does not hold in general since w (&)
is not invariant under rotations. Nevertheless if we are given a fixed set
of coordinate neighborhoods and local coordinates for a manifold M we

may define pseudodifferential operators of class S as in Section 2; the
definition now will depend on the choice ef local coordinates.

We will also need a version of Kuranishi’s lemma: if p (%, &, ¥) is a
C= function on R" < R* < R® with compact support in the # and y variables
and satisfyng

(4.2) | D: Dg D;p ((L‘, 5, y) ‘ < Ca, by (1 + w (5))1)1—-‘;./?
then
(4.3) (Qn)*n[f,u (y) 6 @08 p (2, £ g) dy dE

defines a pseudo-differential operator of elas S; with symbol g (z, &) sati-
sfing

1{3\[d)\
(4.4) q (x, ‘E)Nfa_!(ﬁ> (—@> D@ EY) ly=z-

The proof is a trivial modification of the proof given in Nirenberg [13].

Now let G ve a Lie group with Lie algebra (3. We say that a Dbasis
X,y ., X, of @ with dual basis &, ,...&, of B* is compatible with a if the
structure constans ¢; = [X;, Xj|-& vanish whenever a; > a;.

THEOREM 5: Assume there exists a basis X,,.., X, for G compatible
with . Then the class of left-invariant compactly supported pseudo-diffe-

rential operators of class ;' with respect to the canonical coordinate

systems may be deseribed in analogy with the class S7' as follows: they
are of the form

(4.5) Tu (x) = (2n)‘“fju (@exp Y) e Tép &) w(Y)dY df + ux ¢
where ¢,y are ag in theorem 1 and p (£)€ Sy (B*), that is p € C* (B*) and

(4.6) | DEp ()| << ep (X + w (E)"F

for all §.
The correspondence T <—> p is bi-unique between operators mod
smooth operators and Lie symbols mod simbols in o (B¥).
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Proo¥: We may use the same argument as in the proof of theorem 1
with the appropriate modificdtions except for one point: to establish the
analogue of (3.7) we must use the fact that X,,..., X, is compatile with a.
Indeed the compatibility implies (W (X, Z) Xj)-& =0 if a; > a;, hence
bip = Xj. W(X,Z*1& = 0 f a; > a; because matrices of block triangular
form are preserved under inversion. Thus we have

[(p (W(X, Z1&) | << ¢ (1 + w (Z by &)™

<o (U T | Sty &™)
J
=1+ 3|6 1™ < 67 (1 4w (&)™

1 1
since by == 0 only if a—g — Reasoning similarly we obtain
j k

‘ SN (2N (2) (W (X, 271 &) R(X, 2)| < 6 5.,(1 + 0 (B8
5x) \a&) \oz % A A

which is the desired analogue of (3.7). Q. E.D.

REMARK : A similar argument may be used to show that the class of
S operators is invariant under those diffeomorphisms whose Jacobian
matrices at each point are block triangular in the sense that J (#)=0 if
a; = g .

Theorems 2 and 3 are easily seen to hold in this context also.

§ 5. Global Sobolev Spaces.

In this section we construct Banach space L?(@) for real a and 1 <
p < oo whith the property that LY (G) = L?(G, dx) for left Haar measure
dr, and if T is a left invariant compactly supported ‘pseudo-differential
operator of class S, then T is continuous from L), to LY. Here and
throughout we assume that p = 2 unless ¢ = 1. The requirement that 7'
be compactly supported is important, since the theory of L? estimates for
convolutions with kernels which are not compactly supported is quite in-
volved (see Stein [17]).
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If @ is compact we do not need the group structure and the theory
is well-known [16]. If @ is not compact the best we can do with these

local methods is to define Frechet spaces 1}3: com aNd Lﬁloc of compactly
supported and locally LP functions. We will of course want L .m € L; ©
c LE .

Using the results of Section 3 it will be easy to comstruct the spaces

LY using the local theory (property 4 of Section 2) together with the fol-
lowing simple principle of uniform localization :

LeMMA 5: Let ¢ be any non-zero continuous function with compact
1p
support on @. Then f¢ L2 if and only if ( [|f(x Ve |? dy) € L? with
¢
equivalence of norms.

PRroOOF :

1p
H (Jif(“-’”q”(y) lpdy)

=fflf(w)<p W | Ayt dedy =c||f|} ¢. E. D.

r

f |f(@y) @@y |?dy do

Vg

THEOREM 6: Let T be a left invariant compact supported pseudo-dif-
ferential operator of class Sg. Then T is bounded in L? for p =2 and
1<p<oo if p=1, The L? boundedness for 1 < p < co remains true
for operators of class S -

PROOF: Let @ € Coon (G). Since T is compactly supported there exists

W€ Oeom(G) With v =1 on a mneighborhood of the support of ¢ such that
¢ Tu = @T (yu). From the local theory we bave ||pTu ||,<<c¢|lyu|,. Applying

this to L, » and using the invariance of 7' we obtainﬁ Tu (xy) @ (y) |Pdy <

= ¢? f |u(xy)y(y)|?dy. The theorem follows by integrating with respect
to x and applying the lemma Q. E.D.

DEFINITION :

Let P, u (&) = (Zn)-”fj w(@exp Y)e V51 4 | &])o2 9 (Y)dY dé.
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This will play the role of the Riesz potentisl of order — « in the Euclidean

case [1]. We note that P, is of class S8i and is elliptic. These are the
only properties of P, we will use. If we could show that 7, (or some sub-
stitute) were invertible then it could play the role of the Euclidean Bessel
potential and much of what follows could be simplified.

For a« =0 we define L) < L” to be completion of Cion(G) in the norm
lu:LZ || =] wl|ly + | Paw ||1’,”)1/”. For < 0 we define L €@’ to be the

completion of Con (@) in the norm [w:LZ || = inf {( || £ ||F*+ || 9|9 u=f+
+ P_,g}. Note that the L} norm is invariant under left translations.

THEOREM 7: Let 7' be a left invariant compactly supported pseudo-
differential operator of class S, . Then

(5.1) | Tu: Ly || << e w:Liml|

for any « and p =2 or 1 < p < oo if ¢ = 1. Thus T extends to a bounded

operator from L2, to L} .

PROOF : Since P, is elliptic for all « we may write T'= P_, Q) Poym-+ E
where ¢, is of class 8) and R is convolution with a Cgn function. It is

easy to show that R is bounded from L2 to L3 for any « and S, so it
sufficies to show

(5.2) | P—au: Ly || < || u: Lf || and
(5.3) | Paw: L || < ||u: Lg || for all o

First let « = 0. Then (5.3) is obvious and if v € L? then P_, u € L? and

P, P_,u€LP ginece both P_, and P, P_, are of class Sg . Thus (5.2) holds.
Next let « < €. Then (5.2) is obvious and if u =f-+ P_, g with f,
g€ L? then Pyu=2P,f+ P, P_,g¢L? gince both P, and I, P_, are of

class S; . Thus (5.3) holds. Q.E.D.
COROLLARY :

(@) L € L} if f < o

n
b) |w: LX| and ||u: Li_; 3 || Xju: LY, || are equivalent norms.
P

(0) There exists a smooth convolution operrator B, u = @, * U, ¢ € Coom ,
such that |[w: Ll w| and || P, u||p+ || Ra ||, are equivalent norms.
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(d) fu(w)mdx <ce|lu: LY ||v:Lfl,,|| for

way LZ and Lf’a are dnal spaces.

1.1
—=+ — = 1. In this
1’+P

(¢) If k¥ i8 a positive integer then w € L if and only if w€ L? and
Xjy. Xjpyu € L? in the distribution sense for all sequences j(1),...,j (k).

PROOF: (a) The identity operator is of class S? hence of class 87 F .
(b) We have || Xju: L¥ 1| < ¢|ju: L?|| since X; is of class S, and
|lw: LZ || < ¢|ju: LZ|| by (a). Conversely, since > X is elliptic by theo-
j=1
n
rem 4, we may write [ = 3 T;X;+ R where Tj is of class 8; ' and R is

j=1
smooth, and deduce

Jus 22l e 2 ) Xu: L] +[|u: B2
=

(¢) We have || Poully + || Raw|lp<<e||u: L] immediately from the
theorem. For the converse we write I = F_, @, P, + E,.1f & << 0 we have
w=Rotu+ P_,(Qy Pow) so |[u: L] < (|| Raullf +]| Q PaulZ)?. It
>0 [lully < || Pa @ Pat)flp+ || Barlly < ¢l| Par|lp + [ Raul, since
P_, Q, is of order << 0 so ||u:LJ||<<¢ || Pattl|lp+ || Raullp.

(d) We may as well assume o > 0. Write v=f 4 P_, g with f, ge L?.
Then

l/u(m)v—(?)dm

_—_\fu(w)]Tx)dw—l— P*, u (@) g (x) dx

S [ulls [/l + 1 Paulls |l g

”
<cllut L]} || v: LY -

Thus L? g(Lfla)* and Lf'ag(l)f)*. 1t remains to establish the reverse
inclusions.

Suppose then 21€(LY)*. Let B = }(u, PFu):ue LI{Cc L L. We
define a linear functional i, on B by 4, (u, P;u) = A (). Since 2 is bounded
on LY we have 1, bounded on B in the L” @ L” norm, so by the Hahn-
Banach theorem we may find an extension 1, bounded on L? (B L?. But

(LPP L2y * = L¥ ¢ L¥ so there exist f, g€ L? such that A (u)= f w(e) f () dae+

4 f PXu(x)g () de. Since Crp is dense in L? " we may approximate fandg

3. Annali della Scuola Norm. Sup. di Pisa.
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in the L? metric by fi, g1 € Coom and so 1 (u) = lim ] (@) f5(®) + Pogr(®))dx.
k—

But fi + Pa gx € Coom since P, is compactly supported hence A€ LY.
Next let A€(LZ)*. Then |i(f)|<<¢|f: L% ||<c]|f

» 80 We may

identify 2 with w€ L2, 1 (v)=fv(w) u (x) dz for every v € (L. It suffices to

show P,u€ L*. Note P,u€ L2, is defined by taking uz —> w in L?, uz € Cop ,
and P,u = lim P,u; in L¥,. Thus for ¢ € Con we have

k— o0

lim f Py, (@) @ (&) do = lim f u () P% u () doe = f u &) P* o (x) da

k-~ oo k-~ oo

=1 (Pa* (P)
and since |1 (P*¢)|<c¢||P¥e: LY, || <c¢| @[ we conclude that Lim P,u,
k — co
may be identified with a funetion in L».
(e) This follows by induction from (b) and (d). Q.E.D..

REMARK : Part (d) above shows that by defining LY to be the com-
pletion of Cem we have not made the space too small; indeed (L,)* is
the largest space that might be considered to define LZ.

We next consider the extension of Lemma 5 to LZ.

THEOREM 8: Let ¢ € Ogn be not identically zero. Then ||u: L} | and
1/p
([“ @ Lyu: L:’H"dw) are equivalent norms for o = 0.

PROOF : Let ¢, € Oeom be identically one on a large enough neighbor-
hood of the support of ¢ so that ¢, P,(¢f) = P, (@pf). We may then write
P,(pf) = QP,(f)-+ BEf where @ and K are compactly supported pseudo-
differential operators of class 8, and ST ™ respectively (not left invariant
of course) such that ¢, @ = ¢ and ¢, B = E. From the local theory we have

(5.4) | Patf) o+ Nl @ llo < e (1l @6 Pa (f) o+ || @0 f |-

If we substitute L,u for f in (5.4) and then take the LP norm in x we
1jp )
obtain (f“ oL, u: Lf“pdw) <c¢l||u: LY|| by Lemma 5.

For the converse we choose ¢, , @, € Coom 80 that @, is supported on a
compact set on which ¢ is bounded away from zero, and @p,—1 on a
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neighborhood of the support of ¢,. If necessary we modify the definition
of P, by changing the function v (Y) to have so small a support that
@y Pof =@, P,(p, ¢f ); this change does not affect the L. spaces. Again
from the local theory we obtain

(5.5) les Paflls + 1l @ S llp << o (1| Patef ) o + & [l

and the proof is completed as before. Q.E.D,

From this theorem we may pass from local properties of functions in
L2 which do not depend on the group structure to global properties of the
class LY. In this way virtually all properties of the Euclidean L2 spaces
proved in [3] and [19] generalize to L} (G). We state a few of these, pro-
ving only the first since the other proof are analogous:

1 1
COoROLLARY : (a) Ly € L} continuously if o> =0 and R

r
«—p
n

y 1< p << q<oo.
(b) L forms an algebra under pointwise multiplication if o > n/p.

(¢) f€ L for 0 <<a < 1 if and only if fe L2 andf [{f(w exp Y)—
¢

G

ay
— f@)? I—W dxr < co with equivalence of norms.

(@) fe L, for 0 <« <1 if and only if f€ L¥ and S, f¢€ L? with equi-
valence of norms, where

oo

Sef = (/ ( [ | f(x exp tY) — f(x)] dY)gt—l—“’“ dt)m.

PROOF : (a) Let @, ¢, € Ocom With ¢, =1 on a neighborhood of the sup-
port of @. It follows from the local theory (see Calderon [3] and Seely [16])
that || @f: Lf|| e @of: TA||. Thus ||g Lew: T||<c| g, Lou: L2 | <
< ||u: LY. f we L, we have ||¢ Lyu: L}|| in L? and L™ hence LY
since p < ¢ < co.

(D) (c) and (d): Use the local results in [19] and reason similarly.
Q. E. D.

A more general study of global Sobolev spaces on a Riemannian ma-

nifold is given in [2] with less precise results.



608 R. S. StricsarTz @ Invariant Pseudo-Differential

APPENDIX.

Lr» THEORY OF PSEUDO-DIFFERENTIAL OPERATORS

Most works on pesudo-differential operators deal only only with the
I? theory. The L” theory for the class S, is developed by Seeley in [15];
his method depends on spherical harmonic expansions and appears unlikely
to generalize to the class §;". Results for more general classes than 8"
are given in Kagan [8] and extended in Kumao-go and Nagase [12]. However
P. Szeptycki, in reviewing Kagan’s paper (MR 37 # 4392), has cast doubt
on its validity. In any case Kagan’s paper is not available in translation
80 we present here a brief proof which covers the classes 8, and the mo-
re general S classes defined in Section 4. The reader will note that our
method is really a straightforward generalization of the usual L? theory.
In contrast with Seeley {15] we require more rapid decrease in the x va-
riable for our symbols.

Let p (x, £) be a symbol of class 8] with rapid decrease in x. Thus we
assume p € C= (R" < R* and

A A
Al L CANRS L8 | < ey g w(1 r—181
(a1) o1 () () 28 | < conwia 16D
for all a, # and all non-negative N. For f€J (B, 1 <p < oo, a real, de-
fine || £: L2|| = || F ' + |£[®"2 (&) ||, and let L% denote the completion
of & in the L% norm. We wish to prove:

THEOREM 9: Under the above hypotheses the operator p (x, D) is boun-

ded from LZ, to L;, for 1 <p < oo and all real a.

Our main tool, which replaces the Plancherel theorem in the L? theory,
is the Marcinkiewicz multiplier theorem. There are many versions of this
theorem ; the following will suffice for our purposes (see [18]):

MARCINKIEWI0Z MULTIPLIER THEOREM: Let M5 denote the space of
bounded functions m (§) on R” such that F—1(m (5)?(5)) is a bounded ope-
rator on L?, with the operator norm. A sufficient condition for m (&) to
belong to M} is that m be bounded and C” on the complement of the set
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{&: & & b= O} and &° (;E) m (£) be bounded for all « such that each

A
¢ (ﬁ) ’”‘f)Hw)'

LEMMA 6. (Peetre’s inequality): Far every real s there exist positive
constants ¢ and ¢ such that

a; is zero or one. We then have || m: M} || gc(Z

I+ [P+ 1640 M@l <o +[n])

PROOF : In fact we may take ¢t=|s|- n. We use the usual form of
Peetre’s inequality, (1 4 | &[22 (1 + | &+ B2 << e (1 4 |9 |)!°!, and apply
the Marcinkiewicz multiplier theorem; it is easy to see that the differen-
tiation at most produces an additional factor of (1 + || Q. BE. D.

LeMMA 7: Let R (&, 5)€ C* (R" >< R*) satisfy

IBEq+8A+|E+qP) 7 M) @) ey +|gh™"

P

for every positive N. Then the operator 7' given by (Zf)* (&)= | R(&,7n)f(n)dy is

bounded from Lf+, to LY for every real s.
PROOF; Let f€ L&, . Then (14 | &2 Fi&) = g (& for ge I with

I f: Lhr| =gl To show Tfe LP we must show F'((1 + |&|®y ™ -
-(£))€ L?, Thus we must show that the operator

8g = F—1 ( fR(E, M e A+ g B (1 4| &P d,,)

is bounded in L?. Replacing s by n -+ & and applyng the hypotheses we
obtain

= oNfa D) F G 04 @ |k E PR (L | P | dn.

From Peetre’s inequality we then obtain

||SQHP—<—0N"](1+\"7\)—1\7(1+l’7|)t”ngd’7£c'H9Hp

if we take N large enough. Q. B. D,
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Proo¥ oF THEOREM: Since

(P (@, D)f)* &) =f?<n> PE—n, o) dy

where the Fourier transform Eo\ is taken in the x variables alone, it suffices
to verify the conditions of lemma 7 for R (& )= p(— y, 5 -+ &). After a

change of variables this amounts to estimating ||27\(17, H(L 4R M &1
But from (Al) we obtain

0

'(E)ﬁg("’ £) |£0N(1 + g D& 1EL

Thus an application of the Marcinkicwicz multiplier theorem gives

P, & 4+ [ R ME @& || < On (1 4| )Y

ag desired. Q. E. D.

The above arguments may be modified to deal with the classes S,
defined in Section 4. We let 1(&)€ C~(R") be chosen equal to w (&) in
|&| =1 and non-vanishing in |£]|<C1. We define LY, to be the closure
of J in the norm

1 LR e =1 F 7 @ &" 1 (&) -
We may then show that an operator with symbol of class S,  satisfying

(& (& o] e

is bounded from L} .1, to L{ ,. The key point is that

sc(%)“z (® ‘g 0i(8)

gso the Marcinkiewicz multiplier theorem may be applied as before.
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