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INVARIANT PSEUDO-DIFFERENTIAL OPERATORS
ON A LIE GROUP

by ROBERT S. STBIOHABTZ

ABSTRACT. - The invariant peendo-differential operators on a Lie gronp G with Lie alge-
bra d3 are characterized in terms of a function on (~* called the Lie symbol. A cal-
culus of Lie symbols is developed in terms of the algebraic structure of o. We also
define global Sobolev spaces for non-compact groups.

§ 1. Introduction.

Let G be a Lie group and (3 its Lie algebra. The universal enveloping
algebra U of (3, which is the free algebra over the complexification of G
modulo the ideal generated by elements of the form XY - YX - [XY], is

naturally isomorphic to the algebra of left invariant partial differential ope-
rators on G. In this paper we define an analogous algebraic structure cor-

responding to classes of left invariant pseudo differential operators. Thus
to every left invariant operator on G we associate a function on 0* (the
dual space of (3 considered as a vector space) called its Lie symbol. The
correspondence is bi-unique if we consider operators modulo smooth opera-
tors and Lie symbols modulo functions in cS (1;*). Composition of operators
corresponds to a rather complicated product operation on the Lie symbols.
This operation is described in § 3, and it is effectively computable from
the Lie algebra structure of 0. In particular we may identity cm with the
algebra of polynomials on 0* under this composition law.

The usual symbolic calculus for pseudo differential operators is of course
still valid in this context. It has the disadvantage, however, that left in-
variance of the operator is not conveniently expressible in properties of the
symbol, except for the top order symbol, and even then it is not clear

that to every top order symbol, which is invariant under the induced action
of G on its cotangent bundle, there corresponds an invariant operator.

Pervenuto alla Redazione il 22 Maggio 1971.
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We refer the reader to Stetkaer-Hansen [20] aDd Rothschild [14] who
prove the non-existence of bi invariant pseudo-differential operators which
are not differential operators for most non-compact non-abelian groups.

In Section 2 we review the facts about pseudo-differential operators
we will need. In Section 3 we construct the algebra of Lie symbols and

prove the main theorems of the paper. In Section 4 we extend the calculus

of Section 3 to operators with mixed homogeneity. In Section 5 we prove
that a compactly supported pseudo-differential operator of order zero is

bounded in EP (G) and use this fact to define global Sobolev spaces. We
show that the usual properties of Euclidean Sobolev spaces are true also
in this context. The results of Section 5 actually depend only on the top
order calculus. An appendix is devoted to sketching some aspects of the
local Zp theory of pseudo differential operators that do not seem to be

adequately dealt with in the literature.

The author is grateful to the many people who informed him of refe-
rences [20] and [14], and to E. M. Stein who pointed out an error in a
previous version of this paper.

§ 2. Pseudo-Differential Operators.

A C °° function p (x, $) on Rn X Rn with compact support in the x va-

riable belongs to S’n for m real and - ~ p ~ 1 if
2

for all multi-indices a, fl. We denote S~ = U S; and = 2’woLO iln0 ’l1l. 
e

functions in 8fi are equivalent if they differ by a function in Asso-

ciated with p (x~ ~) is the operator jp (x, D) given by

where the iterated integral is taken first with respect to y and then ~.
The classes 8§’ and associated operators were introduced by Hormander

in [6] and the reader is referred to that paper for the proofs of the pro-
perties we state below :
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1. P (x, D) is a continuous operator on (Rtf)

2. If p E then p (x, D) u (x) = k (x, y) u (y) dy for some C °° function
lc (x, y) with compact support in x, and conversely.

3. The operator p (x, D) is quasi.local, i. e. if u is CC° on any open set
Q then is C °° on D.

4. If p E 8§ then ] p (x~ D) u ( I2 ~ C~ I ~ u ~ I2 for u E ( ] r  k) for each
k. The same result holds for .Lq norms for 1 ~ q  00 provided o =1, as
will be shown in the appendix.

5. Given any oo and p; E there exists p E 
k-1

unique up to equivalence, such that We write 
~==i

In fact we can find qj equivalent to Pj such that p = qj pointwise.

6. If 1 and $ there exists such that p (x, D).
. q (x, D) = r (x, D). In fact r is given up to equivalence by

7. The class of operators p (x, D) for p E Sme is invariant under diffeo-

morphism.
We also consider a subspace of denoted of symbols which are

homogeneous in the following where Pj (x, t~) = (x, ~)
for t ~ 1 and 1 for oo. These symbols and the corresponding
operators were the first class (locally) of pseudo-differential operators con-
sidered in Kohn-Nirenberg [10]. They are preserved under the operations
in 5, 6, 7 above. If p E Sh is a polynomial in $ for each x, then p (x, D)
is a differential operator.

Now let M be a paracompact C °° manifold with smooth measure dx

equivalent to Lebesgue measure in every coordinate patch. we say an

operator T : C~o (l~) -~ C °° (.Il~) is smooth if it has the form Tu (x) =

- k (x, y) u (y) dy for some k E C °° (M X M). An operator T : (~) 2013~
jtf

- C°° (M) is called a general pseudo differential operator of class Bern, or
if for any coordinate patch U the operator T (g;u) is

2. Annali della Scuola Norm. Sup. di Pisa.
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the sum of a smooth operator and an operator p (x, .~) for p E S~ or Shm in
the local coordinates of U. Because of property 7 this definition is inde-

pendent of the choice of local coordinates.
A pseudo-differential operator is said to be compactly supported if given

any compact neighborhood S~ there exists a compact neighborhood ~2. such
that Tu vanishes in Q whenever u vanishes in 7 and Tu has support in

tJ1 whenever u has support in S~. It is easily seen that a compactly sup-
ported operator preserves (M) and by extension preserves C °° (M). Thus
two such operators may be composed, while two general pseudo-differential
operators need not have a well-defined composition. Note, however, that a
general operator may be composed with a compactly supported operator in
either order.

While many pseudo-differential operators naturally arising on non corn
pact manifolds are not compactly supported, there is no real loss in gene-

rality in restricting consideration to compactly supported operators in view
of the following observation: every pseudo differential operator differs from

a compactly supported one by a smooth operator. This may be seen by
considering a partition of and observing that T 

j k ’

where M gli denotes the operator Mlpj u (x) = ggj (x) it (x). If we take the sum

over those j and k such that cPj CPk = 0 we obtain a smooth operator, and
the remaining summands give a compactly supported operator. Thus restri-
cting operators to be compactly supported is merely a technical device to

simplify the theory on non-compact manifolds.

§ 3. The calculus of Lie symbols.

Let G be a Lie group and G its Lie algebra. We use lower case ro-
man letters to denote elements of G, upper case for elements of G, and
greek letters for elements of G*. Let .~1, ... , Xn be a basis for G, and
$1 , ... , ’n the dual basis for G. The pairing between G and (3* is denoted

by the dot product X.$.
We shall deal only with Lie algebra products which are associated

Z] ...] ] W J and which we denote bracket (XYZ ... 1lT). For X E 0 we
let adk lK ( Y ) = bracket should be regarded as a polynomial
map of ($ to itself.

There exists e ~&#x3E; 0 such that the exponential map is a

diffeomorphism of  ~ onto a neighborhood of the identity of G. For
we associate the left invariant first order partial differential operator

Xu(x)= tX’ .Xu exp tX) It=o .
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We shall use the Campbell-Hausdorff formula (see [7]) which states
that for sufficiently sma,ll g and Y we have exp X exp Y = exp Z where

whe.re m varies over the positive integers and, for each m, p~ and qi for
i = 1, ... , m vary over the positive integers subject to 0. As a

consequence we have exp tX exp Y = exp Zt where

as t -~ 0. The actual determination of the constants ck from (3.1) is a com-

binatorial problem.
Let us now consider a left invariant compactly supported pseudo-diffe-

rential operator T on G of class Now G has a distinguished set of

coordinate patches, namely for each x E G we may coordinatize a neighbor-
hood of x by x exp X for I  8. Thus for each x E G there exists

px (X, ~) E Bum such that

where V E ~ I  e) and y == 1 in a neighborhood of the origin.
Now the left invariance of T means we can choose px to be indepen-

dent of x by modifying the smooth operator in (3.3). The requirement that
(~i.3) define the same operator in every coordinate neighborhood places and.

ditional restrictions on px (X, ~) which we shall not study directly. Instead
we set X = 0 in (3.3) and obtain

have deduced the form of the smooth operator from the fact that T is in-

variant and compactly supported. We note that p (~) E Bem or Bhm if p (X, ~)
is. By p (~) E Bern we mean (2.1) holds without derivatives.
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Thus we see that every left invariant pseudo-differential operator must
have the form (3.4). The converse is also true:

THEOREM 1: T is a left invariant compactly supported pseudo-diffe-
rential operator of class or Sh if and only if it has the form (3.4). The

correspondence T -&#x3E; p (~) is bi-unique between classes of operators modulo
convolutions with CIm functions and classes of functions in Sp modulo
functions in c5 (C3*). T is a differential operator if and only if p (~) may be
chosen to be a polynomial.

PROOF : We must show how to go from (3.4) back to (3.3), deducing
the form of p (X, ~) from p ($). To do this we replace x by x exp X in (3.4)
and set exp X exp Y = expZ. To do this we must take X sufficiently
small, and Y may be forced to be small by shrinking the support of 1jJ.

We note that changing V away from the origin only results in a change
in the smooth operator u * 99. Thus we have

where Y may be determined from exp Y = exp (- X ) exp Z by the Camp-
bell-Hausdorff formula (3.1). Now we claim that for small X and Z that

- Y = where W (X, Z) is an invertible linear transfor-

mation on G which depends on X and Z in a C °° manner. Indeed (3.1)

gives - Y = X - Z 1 [x7 Z + ... where each subsequent term is ob-
2

tained by multiplying by a constant and applying adX and adY in various
orders to [XZ] = [(X - Z ) Z] + [ZZ] _ - adZ (X - Z). Thus - Y = X -

where Q is a non-commutative power series

with values in the space of linear transformations on G. If we take X and
Z small enough then 11 adX ~~ and adZ I will be small and the power series
will converge because of the decrease of the coefficients in (3.1). Since Q
has no constant terms we may make 11 Q (adX, adZ) ~I  1 and obtain the
invertibility of W (X, Z ) = I + Q (adX, adZ). Thus
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Changing variables in the ~ integration we obtain

where R (X, Z ) E CIn (~ X G). We note that

Thus we may apply a lemma of Kuranishi (see [13], p. 155) which allows
us to conclude from (3.6) and (3.7) that T is a pseudo-differential operator
of class and

We note that p (X, ~) E Sn if p (~) does, and p (X, ~) may be taken to
be a polynomial in $ if p (~) may. Also p (~) E if and only if p (~) E cS.
The theorem follows immediately from the above and the properties of

pseudo- differential operators outlined in § 2. Q. E. D..
We call Cp = the space of Lie symbols of class e, and loosely

speaking we call p ($) the Lie symbol of T. We call p (X, 8) the full sym-
bol of T.

We turn now to the question of what operation on the Lie symbols
corresponds to composition of operators. From property 6 of § 2 it is clear

/ 9 a
that the key step in answering this question is to compute (X, s) lx=oax / 
in terms of p (E). While it is in principle possible to deduce this from (3.8),
we have found it easier to do this by computing using (3.3) and

(3.4) and comparing the two results.

LEMMA 1 : If ~’ has full symbol p (X, $) then has full symbol
q j ( X, 8) where

- ,
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and Lie symbol qj (~) given by

Here ek are the constants appearing in (3.2).

PROOF : We have, using (3.3),

m

where Zt = X + t ~ (-1)k + 0 (t2) from (3.2). We may
1

now differentiate, ignoring the 0 (t2) terms, and set t = 0 to obtain (3.9).
Setting X = 0 we obtain (3.10). Q. E. D..

LEMMA 2 : If T has Lie symbol p (~) then Xj T has Lie symbol q (~)
where

PROOF : We have, using (3.4),

For fixed t we set exp tXj exp Y = exp Z or exp Y = exp (- exp Z and

change the Y integration to a Z integration, absorbing the cange in V into
the smooth operator :
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where we have used 3.2 . Using the fact that d det (I + tA + 0 (t2)) lt=o =( ) g dt
= tr A we have

Since this is a Fourier integral we may integrate by parts and neglect

boundary terms to replace the polynomials in Z by differentiations 

= (- 1)1 a so = (_. 1)|a| adk.i ia ) B c’?/
By Leibnitz’ rule we have

so when we integrate by parts we have

Substituting this in (3.12) for k === 1~... N and handling the remainder in

the usual way we deduce (3.11). Q. E. D..

LEMMA 3 : There exist infinite order partial differential operators A (a)
on (3* with polynomial coefficients such that

If we write A (a) = Z c (a, #I y) then non-zero terms occur onlyp, Y ~88~ 
when I fl  I y . Thus A (a) preserves the classes and

A (a) may be computed recursively from the following relation:
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where the symmetric product sym Z7 is the average of the product for all
m ! t orderings of the factors and

An explicit algorithm for computing A (a) is : 1) expand out the right side
of (3.14) ; 2) commute all terms where B (Xj) stands to the left by
replacing B ~k by ~k B (Xj) + [B (Xj), ~k]; 3) similarly commute any mul-
tiple commutator of B (Xj) which stands to the left 4) delete all
terms in which any 8k occurs outside a commutator.

PROOF : We deduce relation (3.14) by computing the Lie symbol of
m

sym H T by iterating Lemma 1 and 2. Indeed by iterating Lemma 2
r=l

we obtain easily the right side of (3.14). In iterating Lemma 1 we must be
careful to apply all the differential operators before setting .X = 0 ; thus
we obtain that the Lie symbol is

Now it appears that in addition to the commuting terms on the left side
of (3.14) there are many more terms arising from applying the X derivatives
to the coefficients. We claim, however, that all those terms that survive

setting X = 0 will cancel when the product is symmetrized. To see this
we observe that (X) is a homogeneous polynomial of degree lc in X

and ... Xj (X) = bracket (Xj ... + similar brackets.* 

All terms that arise contain such expressions, and by interchanging the
role of Xj and Xj(,) we obtain exactly the negative since each index j (r~
occurs only once in each term. Thus they all cancel in the symmetric
product.

Once (3.14) has been established the rest of the Lemma follows easily.
r

We observe that B contains terms of the form 
- for =1 

and

I y|&#x3E; 1 so the corresponding observations about the terms in A (a) follow.
The algorithm for computing A (a) is easily established by induction.

Q. o E. D.
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THEOREM 2 : Let S and T be left invariant compactly supported pseu-
do-differential operators of class S~ and respectively. Let S have Lie

symbol p (~) and T have Lie symbol q (~). Then ST is a left invariant com-
pactly supported pseudo differential operators of class Sem+m’ with Lie symbol

PROOF : It is obvious that ST has all the properties except perhaps

(3.16). Now the terms (h) P 8&#x3E; 8° (h) 9 8&#x3E; appearing in (3.16) are in

S +m’+ so there are only a finite number of order &#x3E; if for

any real if here we use C a , 8 C |y| and o &#x3E; 2013]. If we denoteI 
the sum of these terms by rM. (E) and the Lie symbol of ST by r (E) it

suffices to show ~(~)2013r~(~)6~ to establish (3.16). But we know from

Lemma 3 and property 6 of § 2 that there exists a pseudo differential ope-
rator Bm (which need not be left invariant) with symbol ~(~~) in the
coordinate neighborhood about the identity with r (X, E) 2013 r’M (X, e)E S’

M i m a

and)-(0)6. M M 
a 

a

. q (.1, E) for large enough k (so that m + if). The desired

result follows by setting X = 0. Q. E. D.

REMARK : It is clear that the product (3.16) preserves the class Sn
and also the subclass of homogenebus polynomials. Thus we have obtained
a faithful representation of ~ as the polynomials on 0* with the product
(3.16), in this case oo may be replaced by = ,

We next consider adjoints. We do not use the standard adjoint formula
for pseudo-differential operators because it gives the adjoint with respect
to the wrong measure.

THEOREM 3 : Let T be a left invariant compactly supported pseudo-
differential operators of class SQ with Lie symbol p ($). Then the adjoint
operator T~ with respect to left Haar measure is also a left invariant

compactly supported pseudo-differential operators of class Sm and 1’* has

symbol q (~) = p (~) if G is unimodular or
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in general where

A the modular function.

PROOF : By definition .f Tu (x) dx f u (X) 1’*v (x) dx so we com-

G e

pute, neglecting smooth operators,

Now J (exp X) = egv° for some $° E (1;*; in fact X. 6° = tr adX (see Helgason
[5] pp. 366-367). Thus we conclude that

Now this appears to require an analytic continuation of p (~) to p (~ + i~0)
to obtain the form (3.4). Since the Lie symbol is only defined modulo fun-
ctions in cS, however, we have available a substitute for analytic continua-

tion even when p isn’t analytic. Indeed we let Pk (E) = 
] 
J 2013, ()"’

/ a 
_

-(-:2013.:)p(f) note this is just the partial power series expansion of

p (6 + if it existed. In order to establish (3.17) we murt show

is a pseudo-differential operator of class for any real M provided k is

large enough. But by integration by parts we easily transform (3.19) into
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We now repeat the argument given in the proof of Theorem 1, replacing
(3.4) by (3.20). We may thus conclude that (3.20) detines a pseudo-differen-
tial operator whose symbol is given by a variant of (3.8). Note that since

k 1z - 1 (Y - 0) i vanishes to order k, the function R (X, Z) in (3.8) will) ~ ( ~ )

contain a factor that vanishes to order in X - Z. Thus we must take

0153 in (3.8) in order to obtain a non-zero contribution, so in fact the

symbol is of class we may make m - k (2Lo - 1)e ~ 2

arbitrarily small by taking k large. Q. E. D.
All the above results have obvious extensions to systems of operators.

It is not necessary to formulate results for vector bundles with group ac-

tion over G because all such bundles are trivial. Indeed if n : ~ ---~ G is a

vector bundle on which G acts by L,, covering left multiplication =

Xn (e)) then we map jE7 to G X :n;-1 (1) by e -+ (~ (e), e). It is clear

this a bundle isomorphism and Lx e -+ (e), = (e), e)
so the induced action on G &#x3E;C (1) is left multiplication cross the iden-

tity. Note, however, if we are also given an action Rx of G on E covering
right multiplication it need not be trivialized by this map.

For our next result we do not assume T compactly supported, which
means the convolution hernel g~ in (3.4) need not have compact support.

THEOREM 4: Let T be a left invariant pseudo-differential operator of
class with Lie symbol p (~). If we have e =1 and

If we assume merely that

then T is hypoelliptic.

PROOF : This is a simple variant of Theorem 4.2 of Hormander [6].
The point is that we are assuming only estimates on the Lie symbol and
not on the full symbol.

We construct a parametrix S of class 80-’n for the elliptic case and
class for the hypoelliptic case. The theorem then follows by standard
arguments. We construct only a right parametrix because the hypotheses
of the theorem are easily seen to hold for T*.
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1 
Thus we need to construct a Lie symbol q (8) j20132013) ()-

a ex 1 B~ c’~/ 
p

. A (a) q () c 1. We do this by setting qo (E) = p (E)-1 for large E and C °°

1 
elsewhere and then solving p () (E) co 2013 2013 (E) A (a) qj (E).elsewhere and then solving p (E) qj+l (E) ~ - 

:¿ x I B c/ p (E) A (rx) qj (E).
We have qo E and by induction qj E Thus we may set

and obtain

The last terms cancel and p (~) qo (~) oo 1. Q. E. D.

REMARK : While the theorem applies to differential operators given by
non commutative polynomials in except in the elliptic case it

may be difficult to verify the hypotheses since computing the Lie symbol
of such an operator requires using (3.4).

§ 4. Pseudo-differential operators with mixed homogeneity.

In this section we indicate how to extend the results of Section 3 to

operators with mixed homogeneity. The Euclidean theory of singular inte-
gral operators with mixed homogeneity may be found in Fabes and Riviere
[4]. The compatibility requirements we place on the structure constant of
the Lie algebra may be verified for many examples of nilpotent groups.
However they do not apply to the singular integral opcrators studied by
Knapp and Stein [9].

Let a (al , ... ~ an) be a fixed n-tuple of positive reals. Let 6 (r) x =

and let w (x) be a C°° positive valued function on

I which satisfies u j3 (r) s) = r u (x). It is easy to see that such

functions exist and and any two give equivalent theories. We then define

the class Sm in analogy with ~’~ ’, to be the set of C°° functions on 
with compact support in the x variable, and satisfyng
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for all oc, fl. We may then define an operator p (x, D) by (2.2) and verify
properties 1-6 of Section 2. Property 7 does not hold in general since w (~)
is not invariant under rotations. Nevertheless if we are given a fixed set

of coordinate neighborhoods and local coordinates for a manifold M we

may define pseudodifferential operators of class S’: as in Section 2 ; the
definition now will depend on the choice ef local coordinates.

We will also need a version of Kuranishi’s lemma: (x~ ~, y) is a

C°° function on Rn m Rn with compact support in the x and y variables
and satisfyng

then

defines a pseudo-differential operator of clas Sma with symbol q (s, J) sati-

sfing .

The proof is a trivial modification of the proof given in Nirenberg [13].
Now let G ve a Lie group with Lie algebra G. We say that a basis

... , Xn of 0 with dual 6n of ~~‘ is connpatible with a if the
structure constans = vanish whenever ak &#x3E; aj.

THEOREM 5 : Assume there exists a basis ... , Xn for (5 compatible
with a. Then the class of left-invariant compactly supported pseudo.difie-
rential operators of class ~ with respect to the canonical coordinate

systems may be described in analogy with the class 8t as follows : they
are of the form

where are as in theorem 1 and p (~) E 8§7 (G*), that is p E C°° (~~) and

for all fl.
The correspondence T  &#x3E; p is bi-unique between operators mod

smooth operators and Lie symbols mod simbols in cS (~~).
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PROOF : We may use the same argument as in the proof of theorem 1

with the appropriate modificdtions except for one point : -. to establish the

analogue of (3.7) we must use the fact that ... , Xn is compatile with a.
Indeed the compatibility implies ( W (X, 8k = 0 if ax &#x3E; hence

bjk = W (X, Z)*-1 8k = 0 if ak ) aj because matrices of block triangular
form are preserved under inversion. Thus we have

since bjlc =F 0 only if 1  2013. Reasoning similarly we obtain
aj ak

which is the desired analogue of (3.7). Q. E. D.

REMARK : A similar argument may be used to show that the class of

tll7 operators is invariant under those difseoniorphisms whose Jacobian

matrices at each point are block triangular in the sense that J = 0 if

ak.

Theorems 2 and 3 are easily seen to hold in this context also.

§ 5. Global Sobolev Spaces.

In this section we construct Banach space for real « and 1 

p  oo whith the property that .L~ (G) = LP (G, dx) for left Haar measure

and if T is a left invariant compactly supported pseudo-differential

operator of class S~ then T is continuous from L£+m to L! . Here and
throughout we assume that p = 2 unless Lo =1. The requirement that T
be compactly supported is important, since the theory of .Lp estimates for

convolutions with kernels which are not compactly supported is quite in-
volved (see Stein [17]).
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If G is compact we do not need the group structure and the theory
is well known [16]. If G is not compact the best we can do with these

local methods is to define Frechet spaces and of compactly

supported and locally Lfi functions. We will of course want C 

C ice’ ·

Using the results of Section 3 it will be easy to construct the spaces

Zf using the local theory (property 4 of Section 2) together with the fol-

lowing simple principle of uniform localization :

LEMMA 5 : Let cp be any non zero continuous function with compact

support on G. Then if and only if / ~/(~)~)~~/ r f (x (y) ~r ay with

G

equivalence of norms.

PROOF :

THEOREM 6 : Let T be a left invariant compact supported pseudo-dif-
ferential operator of class S~ . Then T is bounded in .Lp for p = 2 and

1  p  00 if e = 1. The LP boundedness for 1  p  00 remains true

for operators of class ·

PROOF : Let q E CIm (G). Since T is compactly supported there exists
with y =1 on a neighborhood of the support of qJ such that

~ Tu = ~T From the local theory we bave II  c II Applying

this to .Lx u and using the invariance of T we obtain Tu 

The theorem follows by integrating with respect
to x and applying the lemma Q. E. D.

DEFINITION :
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This will play the role of the Riesz potentisl of order - a in the Euclidean
case [1]. We note that Pa is of class 8? and is elliptic. These are the

only properties of Pa we will use. If we could show that Pa (or some sub-
stitute) were invertible then it could play the role of the Euclidean Bessel
potential and much of what follows could be simplified.

For a ~ 0 we define to be completion of O:m (G) in the norm
" u : Lt.11 = + !! For x  0 we define to be the

completion of in the norm ||u:Lap || ] 
+ P_a g}. Note that the Zf norm is invariant under left translations.

THEOREM 7 : Let T be a left invariant compactly supported pseudo-
differential operator of class /8~. Then

for any a and p = 2 or if to =1. Thus T extends to a bounded

operator from L£+m to L,,P.

PROOF : Since Pa is elliptic for all a we may write T = P_« Qo Pa+m + R
where Qo is of class So and R is convolution with a C’om function. It is

easy to show that R is bounded from La to L) for any a and fl, so it

sufficies to show

First let x &#x3E; 0. Then (5.3) is obvious and if u E LP then P -a U E LP and

Pa P_~ u E LP since both and Pa P -a are of class S~ . Thus (5.2) holds.
Next let a  0. Then (5.2) is obvious and if u =f + with j,

then since both Pa and are of

class Thus (5.3) holds. Q. E. D.

COROLLARY :

(o) There exists a smooth convolution operrator Ra E O:m,
such that 111t: and )) Ra u lip are equivalent norms.
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In this

way 1/f and Lpa are dual spaces.

(e) If k is a positive integer then u E Lt if and only if u E LP and
in the distribution sense for all 

PROOF : (a) The identity operator is of class 81° hence of class Sr-p .
(b) We have I since Xj is of class 81B and

n 

II u :  c II u : by (a). Conversely, since 2 xl is elliptic by theo-
j=l

n 
2013i

rem 4, we may write I = where Tj is of class Sl 1 and R is
j=i

smooth, and deduce

(e) We have P~ u Ra it  c ) ) u : II immediately from the

theorem. For the converse we write I P-,,, Qo Po. + If a  0 we have

u = Ra U + P_a ( Qo Pa u) so I u : -Ra u  + 11 Qo Pa If

oc &#x3E; 0 since

P-a Qo is of order  0 so 11 u ; c’ I Po. u lip Ba u ~ lip.
(d) We may as well assume a ) 0. Write v = f -+- P_« g with f, g E LP’.

Then

Thus and It remains to establish the reverse

inclusions.

Suppose then Let We

define a linear functional Â.o on B by Â.o (u, P/ u) = I (u). Since Â. is bounded

on L£ we have ;’0 bounded on B in the L’ EB LP norm, so by the Hahn-

Banach theorem we may find an extension Â.t bounded on LP. But

(LP EB = LP’ so there exist f, g E LP’ such that 1 (u) = 
Since is dense in Lp we may approximate f and g

3. Annali della Scoula Norm. Sup. di Pi,a.
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in the LP’ metric by gk E and so Â (u) = lim 

But fk + since Po. is compactly supported hence Â E 
Next so we may

identify Â. with u E LP, Â. (v) = v (x) u (x) dx for every v E O:m. It suffices to
show Po. u E Note Po. u E is defined by taking uk - u in E y

and Po. u = lim Pa uk in L!o.. Thus for cp E we have

and since I Â (Po- p) C c II  c lip’ we conclude that lim Pauk
may be identified with a function in LP.

(e) This follows by induction from (b) and (d). Q.E.D..

REMARK : Part (d) above shows that by defining Lfi to be the com-
pletion of we have not made the space too small; indeed (.L~«)~ is

the largest space that might be considered to define L!.
We next consider the extension of Lemma 5 to .La.

THEOREM 8 : be not identically zero. Then I and

~ ~ are equivalent norms for a &#x3E; 0.

PROOF : Let g~~ E C m be identically one on a large enough neighbor-
hood of the support of q so that (gf) = Po We may then write

and R are compactly supported pseudo-
differential operators of class 810 and respectively (not left invariant

of course) such that qJo Q = Q and qJo R = R. From the local theory we have

If we substitute u for f in (5.4) and then take the LP norm in x we

obtain ] by Lemma 5. 
’

For the converse we choose 991 so that ~ is supported on a
compact set on which qJ is bounded away from zero, and 99P2 === 1 on a
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neighborhood of the support of If necessary we modify the definition

of Pa by changing the function V (Y) to have so small a support that

this change does not affect the Lap spaces. Again
from the local theory we obtain

and the proof is completed as before. Q.E.D,
From this theorem we may pass from local properties of functions in

Zf which do not depend on the group structure to global properties of the
class Lp. In this way virtually all properties of the Euclidean Lh spaces
proved in [3] and [19] generalize to We state a few of these, pro-
ving only the first since the other proof are analogous:

COROLLARY : (a) La continuously 0 and

(b) Li forms an algebra under pointwise multiplication if x &#x3E; n/p.

(c) f E La for 0x  1 if and only and  f (x exp Y) -
G ae

- x J2 00 with equivalence of norms.

(d) f E L a for 0  a  1 if and only if f E LP and L’ with equi-
valence of norms, where

PROOF : (a) Let cp, p E Om with CPo == 1 on a neighborhood of the sup-
port of g. It follows from the local theory (see Calderon [3] and Seely [16])
that ° Thus 

~ c’ ~ . If u E Z a we have ] in L ~ and Loo hence .L q

since p  q  00.

(b) (c) and (d) : Use the local results in [19] and reason similarly.
Q. E. D.

A more general study of global Sobolev spaces on a Riemannian ma-

nifold is given in [2] with less precise results.
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APPENDIX.

LP THEORY OF PSEUDO-DIFFERENTIAL OPERATORS

Most works on pesudo~differential operators deal only only with the

.L2 theory. The .L~ theory for the class 8::" is developed by Seeley in [15];
his method depends on spherical harmonic expansions and appears unlikely
to generalize to the class Sm . Results for more general classes than S
are given in Kagan [8] and extended in Kumao-go and Nagase [12]. However
P. Szeptycki, in reviewing Kagan’s paper (MR 37 # 4392), has cast doubt

on its validity. In any case Kagan’s paper is not available in translation

so we present here a brief proof which covers the classes ~j~ and the mo-
re general Sa classes defined in Section 4. The reader will note that our

method is really a straightforward generalization of the usual .L2 theory.
In contrast with Seeley [15] we require more rapid decrease in the x va-

riable for our symbols.
Let p (x, ~) be a symbol of class Sr with rapid decrease in x. Thus we

assume p E C °° X Rn) and

for all a, # and all non-negative N. For 1  p  00, a real, de-

= ]] 7(1 + I 12)aJ2 . ()) I I and let .L « denote the completion
of c5 in the .L « norm. We wish to prove :

THEOREM 9 : Under the above hypotheses the is boun-

ded from to .L « , for 1 [ p  00 and all real a.

Our main tool, which replaces the Plancherel theorem in the L2 theory,
is the Marcinkiewicz multiplier theorem. There are many versions of this

theorem ; the following will suffice for our purposes (see [18]) :

MARCINKIEWICZ MULTIPLIER THEOREM : Let denote the space of

bounded functions m (E) on Rn such that yl (m (E) f (E)) is a bounded ope-
rator on LP, with the operator norm. A sufficient condition for m (~) to

belong to Mp is that m be bounded and on on the complement of the set
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8 a
E2...En-=0} and Ça iR) m(E) be bounded for all cx such that eachBc’/ 

I .. I - I -

is zero or one. We then have

LEMMA 6. (Peetre’s inequality): Far every real s there exist positive
constants c and t such that

PROOF : In fact we may take t = ~ s ~ 1+ ~c. We use the usual form of
Peetre’s inequality, (1 + ~ J2)-O/l (1 + ) ~ + ~ I2)s~2  c (1 + ~’~ ~~ ~ s ~ , and -apply
the Marcinkiewicz multiplier theorem ; it is easy to see that the different-

tiation at most produces an additional factor of (1-,- ~ Q. E. D.

LEMMA 7: Let R (~, iy) E C°° (Rn X lln) satisfy

for every positive N. Then the operator T given by (T f )" (~)= ~ is

bounded from to Ls for every real s.

PROOF ; Then (1 + ) 8 (~)~~~"~ §i($) = ~($) for with

· To show we must show ~-1 ((1 -f- I ~ 12~ a~2( ~’ f " .
.($)) E LP. Thus we must show that the operator

is bounded in LP. Replacing q by q + $ and applyng the hypotheses we
obtain

From Peetre’s inequality we then obtain

if we take N large enough, Q. E. D.
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PROOF OF THEOREM : Since

n

where the Fourier transform p is taken in the x variables alone, it suffices
"I

to verify the conditions of lemma 7 for B (E,n) = p (- q, q + E). After a

change of variables this amounts to estimating 11 p (n, ~) (I + 1 $ 1 2)-r/2 : 1 ~ ($) 11 -
But from (Al) we obtain

Thus an application of the Marcinkicwicz multiplier theorem gives

as desired. Q. E. D.
The above arguments may be modified to deal with the classes 8l~’

defined in Section 4. We E C °° (~n~ be chosen equal to w (~) in

I ~ I ¿ 1 and non vanishing in 1$1 1. We define to be the closure

of c5 in the norm

We may then show that an operator with symbol of class 811~ satisfying

8 a
is bounded from to Lp,,. The key point is that 8« - 1 ($) ,c A (E)X, 

so the Marcinkiewicz multiplier theorem may be applied as before.
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