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Invariant Regions for the Nernst-Planck Equations (*). 

GIOVANNI CIMATTI - ILARIA FRAGAL.~ 

A b s t r a c t .  - We consider a coupling between the Nernst-Planck equations and the Navier-Stokes 
system; we study the stationary and the evolution problems. The crucial property turns out 
to be the existence of an invariant region. An  asymptotic result in the case of Neumann 
boundary conditions is also given. 

1.  - I n t r o d u c t i o n .  

In this paper we study a model describing ionic concentrations, electric potential, 
and velocity field in an electrolitic solution. 

The model is a coupling between the Nernst-Planck equations and the Navier- 
Stokes system. We refer to the books [1], [12], [13] and [14] for a detailed description of 
the physical background, and simply summarize here how the basic equations are 
derived. 

If N ionic species, with concentrations Pi (x ,  t) and Ni (x ,  t) of positive and negative 
charges respectively, i = 1, ..., N,  are assumed to exist in the solution, the correspond- 
ing current densities Ji  are given by: 

(1.1) J+ = - D i  + VPi + ki + P i E  + P~v , 

(1.2) J~ = - D (  VNi - ki- N~E + N i v  , 

where E is the electric field, v is the velocity of the fluid, Di +- > 0 are the diffusion coef- 
ficients, and ki +- > 0 are the ionic mobilities. Since a quasi-stationary situation is as- 
sumed with all magnetic effects considered as negligible, the electric field is derivable 
from an electric potential r  

(1.3) E = - V(/). 

(*) Entrata in Redazione 1'11 novembre 1996. 
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The balance equations are 

(1.4) 

(1.5) 

where 

(1.6) 

(Pi)t + V.J~  = R(Pi ,  N i ) ,  

(N~)t + V.J~ = R(P~, N~), 

R(P , Ni )  = - a P Ni 

is the law of mass describing the process of dissociation and recombination which oc- 
curs in the solution. 

In (1.6) Pio = Ni0 > 0 is the value of the concentrations at equilibrium, while a i is a 
recombination constant, typical of each ionic family, which cannot exceed the Langevin 
limit value, (see [11]) 

(1.7) 

If we define 

(C~ i)LIM -- 
k (  + k (  

(2i 
(1.8) Ai - 

(a i)LIM 

then 

(1.9) Ai ~< 1. 

Experimental studies, see [3] and [1], show that in liquid dielectrics Ai is approximately 
equal to one. 

Substituting (1.1) and (1.2) into (1.4) and (1.5) and taking into account (1.3) and (1.6), 
we have: 

(1.10) (Pi)t = Di + zJPi + ki + V" (P iVr  - V. (Piv)  + aiPioNio - a i P i N i ,  

(1.11) (Ni)t = Di-  ANi  - ki- V. (N  i VO) - V-(Ni v) + a iPioNio - a i P i N i .  

This system is coupled with the Poisson equation 

N 
E - N j ) ,  

j = l  
(1.12) - d r = 

and the Navier-Stokes equations 

N 
(1 .13 )  O(vt + Vxk Vk) = - V x c +  r]LJV - • (P j  - N j )  Vq~ , 

j=l 

(1114) V.v = 0. 

We remark that a solution of (1.10)-(1.14) is physically meaningful only if it satisfies the 
condition Pi (x ,  t) >t O, N i ( x ,  t) ~ O. We take ko O o /do as a characteristic velocity, and 
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define the following non dimensional starred quantities: 

ko 4) o do 2 
v - - -  v * ,  x i  = d o x * ,  t - t * ,  

do ko cp o 

~ = (/) 0 ~b*, Pi =PioP{ * , N i = N i o  N *  , 

P do 
§ + * + +_ * 

c* - , Di-  = D o ( D (  ) , ki-  = ko(k~ ) , 
~qb o 

[ kodPo 12 Qkoq)o eO ~=Q,-----=--_ z * ,  R * -  , T * -  o ] \ r] k~] 

If we let hi = c i A { ( k i  + + k ( )  and suppress the star in the nondimensional quantities, we 
arrive at the system 

(1.15) (P{)t = D{ + AP{ + k{ + V. (P~ Vr - V. (P{v)  + h{(1 - P{Ni )  , 

(1.16) (NOt = D (  AN~ - k (  V.  (Ni  VO) - V. ( N i v )  + hi(1 - P i N i ) ,  

N 
(1.17) - A d p  = E c j ( P j -  N j ) ,  

j= l  

(1.18) V.v = 0, 

(1.19) 
N 

R ( v  t + Vxk Vk) = -- RVT~ + / I v  - T ~ cj(Pj - N j )  VqS . 
j= l  

This paper is organized as follows. Section 2 deals with the stationary problem. The 
evolution problem is studied in parts 3 and 4, where the existence of an invariant region 
for the concentrations is discussed in detail, and a theorem of existence and uniqueness 
for the initial-boundary value problem is presented. Finally, in section 5 the decay of 
the concentrations to a simple equilibrium solution is proved under the assumption of 
Neumann boundary conditions for both concentrations and potential. 

We end this introduction with a list of preliminary results and notations that we use 
throughout the paper. 

Let t9 be an open, bounded and connected subset of R ~, with a regular boundary 
at9. We use the customary spaces C m' a(~), Lp(~9), Hmp(~9), Lq((0, T); HmP(tg)), re- 
ferring to the book [2] for definitions and properties. We use the notations 

L2(tg) = L2(t9) x L2(tg), H~(t9) = H0~ (tg) • H~ (t9). 

Scalar product and norm are denoted by (,) and I" I in both L2( tg )  and L2(~9), while for 
H0~(t)) and Hl( tg)  we write ((u, v)) = (Vu, Vv) and tlull = (Vu, Vu)  1/2. 

Let AI: H l ( t 9 ) - - - > H - l ( t 9 )  be the canonical isomorphism given by 

(1.20) <nl(]), ~> = ((~, ~) ) ,  V~ EHI(~r~). 

We still denote by A1 the corresponding operator in D(A1)=Hi ( t9 )N  H2(Q) with 
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range in L2(t)). We recall the Poincar~ inequality 

(1.21) )~1 l~12- < IV~l ~, V ~ e H ~ ( ~ )  

where ~ 1 is the first eigenvalue to the operator A1. Let 

v =  {v e (Co~(~)  x Co~(~));  V.v = o }  . 

and denote by H and V the closures of \9 in L2(Q) and HI(Q).  Let Ao: V---->V' be the 
canonical isomorphism given by 

(1.22) (Aov, w)  = ((v, w)) ,  Vw e V. 

As above we denote by Ao the corresponding operator in D(Ao)= V ~ H 2 ( Q )  with 
range in H.  The counterpart of (1.21) is now 

(1.23) t t l l w l ~ <  IVwl ~, V w ~ ,  

where/~ 1 is the first eigenvalue of the operator A0. 
As usual with problems involving the Navier-Stokes equations, we set 

b(u, v,  w) = [ uiDi vjwjdx , 
Q 

whenever the integral exists. The identity 

(1.24) b(u, v, w) = - b ( u ,  w,  v) 

follows immediately from the definition, while the proof of the following lemmas can be 
found in [16]. 

LEMMA 1.1. - I f  n = 2  and u, v, wEH~(Q) ,  we have 

(1.25) [b(u, v, w) l <-21/2 lull/~llull'~llvl[Iwll/~llwl[l/2. 

LEMMA 1.2. - I f  n = 2 and u eL2((0 ,  T); H1(~2)) N L ~ ((O, T); L2(Q)),  then 

u ~ L 4 ( ( 0 ,  T); L4(Q)) . 

Given u, v e ~, let B(u ,  v) be the distribution defined by 

(B(u,  v), w) = b(u, v,  w) ,  Vw e ~ .  

For u = v, we write 

B(u) = b(u, u).  

LEMMA 1.3. - I f  n = 2, B(u)  belongs to ~' and satisfies the estimate 

(1.26) IIB(u)ll~ -< cl[ullb(~>, 

where c is a positive constant. 
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2. - The stationary problem. 

The steady-state system corresponding to (1.15)-(1.19), i.e. 

(2.1) Di+APi + ki + V. (P iVr  - V- ( P i v ) +  hi(1 - PiNi )  = O, 

(2.2) D (  AN~ - k (  V. (NiVr  - V. (N iv )  + h~(1 - PiNi )  = 0 ,  

N 
(2.3) - A q )  = • ci(P j - N i ) ,  

j = l  

(2.4) V.v = 0 ,  

N 
(2.5) Rvxkvk = - R V z  + Av - T ~, cj(Pj - Nj)  VcP , 

j = l  

has the trivial equilibrium solution 

(2.6) (P1, . . . ,  PN, N1, . . . ,  NN, 4 ,  V)=  (1, . . . ,  1, 1, . . . ,  1, ~bA, 0), 

where OA is an harmonic function defined in D. Let  us consider (2.1)-(2.5) with bound- 
ary conditions of the form 

Pi = Pib(x, 20, Ni  = N ~ ( x ,  4) on a t2 ,  

on t'2~ 

on a Q ,  

(2.7) 

(2.8) ~ = r b 

(2.9) v = 0 

where ~t e ( -  4, 4) is a parameter.  Assume 

(2.10) Pib, Nib e C 2' ~( a ~ )  , 

(2.11) 

(2.12) 

V~ ~ ( - :~ ,  ~), 

Pib, Nib > 0 on 3•, V)~ e ( - 4 ,  4),  

Pib(X, O) = Nib(X, 0) = 1 on a ~ .  

Our goal is to prove the existence of an unique continuous branch of physically accept- 
able solutions start ing from the trivial one (2.6). We shall t reat  the problem in HSlder 
spaces, assuming a52 so regular that  Ce '~(8~)  is meaningful. Le t  

X = (C ~' %~))2N X C 2' ~(~) X V0, 

y =  (C o, a(~))2N )< C 0, a ( ~ )  )< (C 0, a (~) )3  x (C 2, a ( ~ ) ) 2 N  X C 2' a (~r~) X (C 2, a(~r , 

where 

~ =  { v � 9  2'~(~))8; V.v in f2}. 
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Define the map F :  X • ( - )L, 4) --> Y as follows: if u = (P1, ... ,  PN, N1, "" ,  NN,  C, V), 
then 

- Di + ziP i - ki + V. (P~ Vr  + V. (Piv)  - hi(1 - P ~ N i )  

- D (  /1Ni + k i- V. (Ni VC) + V. (N iv )  - hi(1 - PiNi )  
N 

- z t C -  • c j ( P j - N  j) 
j= l  

N 
RvxkVk- R W  + Av - T E c~(P~- Nj) VC 

F(u ,  4) = j :  1 

V .v  

Pi l a ~ -  Pib(x, 4) 

Y~ l a. - Nib(x, 4) 

Cla~ - Cb 

l) 15~2 

The operators  F(u ,  4) and Fu(u ,  4) are both continuous, and we have F(uo, O) = O, 
with Uo = (1, . . . ,  1, 1, . . . ,  1, CA, 0). To prove that  Fu(uO, 0) is continuously invertible, 
we need the following algebraic 

LEMMA 2.1. - Let us consider the 2 • 2 matrices: 

- ci k~ + - hi ci ki + - hi ] i = 1, . . . ,  N ,  
(2.13) Di = L c~k( - hi - c i k (  - hiJ ' 

[ - c j k i +  cjk i+]  i , j = l , . . . , N .  
(2.14) LiJ= L c~k( - c j k (  j ' 

Let  M be the 2 N  • 2 N  matr ix  defined by the blocks D~ and Lij  as 

(2.15) 

'D1 

L21 

M = L a  

LN] 

L12 L13 ... LIN" 

D2 L23 ... L2N 

L32 D3 ... L3N 

: : 

LN2 LN3 ...  D N 

Then M has the fol lowing eigenvalues 

{ N } 
(2.16) - 2 h i ,  . . . ,  - 2 h N ,  -- E cj(kj + + kj-) ,  O , 

j= l  

and the corresponding multiplicit ies are 

(2.17) {1, . . . ,  1, 1, N -  1}.  
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PROOF. - We first prove by elementary operations the equality 

(2.18) d e t ( M -  21)=  [ fi~=~ ( -  2 h / -  2)] .det  (M*) ,  

= * is the N • N matrix defined by where M* [ m i j ] i , j =  1 . . . . .  N 

1 if i ~ j ,  

= 2 if i = j .  m/~ 1 + c/(k/+ + ki- ) 

To this aim, take the matrix (M - 2I) and replace the (2k - 1)-th column by the sum of 
the ( 2 k - 1 ) - t h  column plus the (2k)-th column, for k= 1, ..., N;  then replace the 
(2k - 1)-th row by the difference between the (2k - 1)-th row and the (2k)-th row, for 
k = l  . . . .  , N .  We get 

de t (M - ;if) = [ I  ( - 2 h / -  2) .de t (M**) ,  
/=1 

where the matrix M** ** is given by = [m/j ] i , j : l  . . . . .  N 

{ cj(k/+ + k(  ) if i ~ j ,  

m/~*= c/(k/+ + k ( ) + 2  if i = j .  

We obtain (2.18) if we divide the (i)-th row of M** by (k/+ + k ( ) ,  for i = 1, ..., N,  and 
the (j)-th column by cj, for j =  1, ..., N.  Let now 

y/=c/(k/+ + k ( ) ,  i = l  .. . .  , N .  

We prove, by induction on N, that 

d e t ( M * ) =  Y/ "2N-l" --2-- ~ Y/ �9 
/=1 i=1 

When N = 1 the assertion is obviously true. Suppose that the formula holds whenever 
the size of M* is less or equal to N - 1. Replace the first row of M* by the difference 
between the first and the second row, and the first column by the difference between 
the first and second column. It follows 

(1 
= - - +  .4. 7/ - 2 - ~  7/ + 

71 ~=e ~=2 

( 1 .22 7i "2N-3" --2 E 7i 7i "2N-1" --2 E 7i 
7 2  i=3 /=1 i = l  

and the lemma is proved. �9 



100 GIOVANNI CIMATTI - ILARIA FRAGALA: Invariant regions, etc. 

COROLLARY 2.2. - The quadratic form 

] (2.19) Q(P1, N1, ..., PN, NN) = - k (  P~ cj(Pj - ~ . ) .  + 
i = l  

] - E hiPi(Pi + Ni) + ki- Ni cj(Pj - Nj) - 
i =1  i =1  j 

is negative semidefinite. 

N 

~, hiNi(Pi + Ni) 
i=1 

PROOF. - This is an immediate consequence of Lemma 2.1 since 

Q(P1, N1, ..., PN, NN) = M(Px, N1, ..., PN, NN)" (P1, N1, ..., PN, NN). 

LEMMA 2.3. - The operator F~(u0, 0) is continuously invertible. 

PROOF. - By the closed graph theorem, we only need to prove that the linear bound- 
ary value problem: 

N 

(2.20) Di + APi + ki + VPi 'VCA - ki + ~ ej(Pj - Nj) - hi(Pi + Ni) = 0,  
j=l 

N 

(2 .21)  D i - A N i - k i - V N i ' V C d + k (  ~ c j ( P j - N j ) - h i ( P i + N i ) = 0 ,  j=l 

N 
( 2 . 22 )  - A ( P - -  ~ c j ( P j - N  j ) ,  

j ~ l  

N 
(2.23) Aov - T ~, cj(Pj - Nj)  ~(~) A " ~  O, 

j = l  

(2.24) Pi = 0 on 3~9, 

(225) Ni = 0 on a~2, 

(2.26) ~ = 0 on a~2, 

(2.27) v = 0 on at~, 

has only the trivial solution (PI, N1, ..., PN, NN) = (0 ,  0, . . . ,  0,  0).  We observe that 
equations (2.20) and (2.21) are uncoupled with (2.22) and (2.23). Therefore it is suffi- 
cient to show that the unique solution of (2.20)-(2.21), which satisfies also the boundary 
conditions (2.24)-(2.25), is the trivial one. Let us multiply (2.20) by Pi and (2.21) by Ni. 
Since (~A is harmonic we have, after integration by parts, 

N 

Q ~ Q 

N 

f lVY J +k, - 
s Q s 
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The sum over i gives us 

N 

f2 

N 

Di-  ~ IVN~ I z + J Q(P1, N1, . . . ,  PN, N N )  
i= 1  

By Corollary 2.2 we get  Pi = Ni = 0. �9 

= 0 .  

LEMMA 2 . 4 . -  The concentra t ions  P i ( x ,  ~), N i ( x ,  ;t) are posi t ive  i n - ~ f o r  I~1<~. 

PROOF. - Define 

m(;t) = min {inf Pi(x ,  2), in_f Ni(x ,  ;t): i = 1, . . . ,  N } .  
~2 ~J 

Then m(0)  > 0, and we can consider 

;to = sup {;t e [0, ~[); m(~) > 0} .  

If, by contradiction, ;t o < ~, there exists a point Xo e ~ and a concentration, e.g. P1, such 
that 

P l ( x ,  2 o ) > ~ P l ( X o , ; t o ) = O ,  V x E ~ 2 .  

Since Plb(X, ;t) > 0, we cannot have Xo e 3f2 and therefore Xo must  be an interior point 
of ~ .  In this case, putting x--Xo into the equation for the concentration P1, we 
obtain 

- D i  + ZIPx = hi ~< 0 .  

This proves the required positivity. �9 

I t  would clearly be interesting to prove a result  of existence valid for arbi trary 
boundary conditions. For  the case of one ionic family, i.e. for the system 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

- D  + ziP + (v - k + V r  + ck + P ( P  - N )  - h(1 - P N )  = O, 

- D  - A N  + (v + k - Vq~).VN - ck - N ( P  - N )  - h(1 - P N )  = 0 ,  

- z i ~  = c (P  - N ) ,  

R ( v t  - V~kVk) = - R V v r  + AV - T c ( P  - N )  V ~ ,  

V ' v  =0,  

The implicit function theorem in Banach spaces can now be applied to the equation 
F ( u ,  ;t) = O. We conclude that  there  exists a local branch of solutions to the corre- 
sponding boundary value problem (2.1)-(2.9), i.e. 

(2.28) ( P l ( x ,  ,~), . . . ,  PN(X,  ;t), N I ( x ,  ~), . . . ,  NN(x ,  )L), r  ;t), V(X, ~ ) ) ,  

which is defined for ];tl < ~[, with ~ small enough. The solutions given by (2.28) are 
physically realistic because we have the following 
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(2.34) 

(2.35) 

(2.36) 

we have 

THEOREM 2.5. - Let 

(2.37) 

P = N = 0  on at0, 

r = ~b b on 3t9, 

v = 0 on at9, 

ck + ck-  } 
h >~ max ~ -  , ---~-- . 

Then there exists at least one solution of problem (2.29)-(2.36) which satisfies 

(2.38) P(xy >~ O, N(x) >I 0 in f2. 

PROOF. - We apply the Schauder fixed point theorem. Let 

X =  {(P, N) eL2(tg); P(x) >~ 0, N(x)>10 a.e, ]PI2~<~] +, 

where 

h41n[ + 

(n • ~ 

(Itg[ denotes the Lebesgue measure of Q). 
Z is a closed and convex subset of L2(f2). Define the map 

T: X~ (P, 1~7) ~ ( P ,  N) ~L2(tg), 

via the following linear problem: 

(2.39) (P - O ~ ~Hol(Q), f V~-V~ = c f ( P - ~ ' ) ~ ,  V~ ~ Hol (52), 
t~ Q 

(2.40) b~V, Rb(b,b,u)+((b,u))=-Tc f(P-Sl)V~.u, Vu~V, 

Q ~ 9 

+hlPN~=h~, 
Q t~ 

(2.41) P eHo~(Q), 

V~Ho~(~), 
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(2.42) N ~ H I ( t T ) ,  D- f VN.V~-k- f m~,.V~- f N~.V~ + 
f~ t2 $2 

+h f ~N~=h f ~, V~H3(~). 
Q Q 

T is well defined and continuous by standard arguments from the linear theory. We 
claim that T is compact and T(X)c_F,. Setting ~ = P in (2.39) and using (2.41), we 
find: 

s ( D + IVPIZ+ P +  h - -  
2 Q 

P2=h P.  
2 

We get the following estimate: 

j f f h'l-QI Oil h'l~l D + IVPI2~h IPI <~ D§ iPiZ+ < IVPIZ+ 
2 2D +;tl 2 2D+21 

where we have used hypothesis (2.37), the Young inequality, and inequality (1.21). 
Therefore we have: 

[ h4J~J h41~l IPI 2< )2 -r/+ IvPI2-< ( D + ) 2 ~  1 ' (D + ;t~ 
~9 Q 

In a similar way, we find the analogous estimates for the concentration N. Thus T(X) is 
compact by Rellich's Theorem. Setting ~ = P -  = min{O, P} in (2.41) we obtain 

o - . - s  ,,,-,., s s 
{x  ~ ~ : P(x)  <~ 0 } { x e Y2: P(x)  <<- 0 } {x  e Y2: P(x)  <- 0 } 

P .  

It follows P - = 0 a.e. on ~9. After repeating the same argument for N, we conclude that 
T(Y,) oZ. This completes the proof .  �9 

REMARK 2.6. - In liquid dielectrics, h is approximately equal to c(k ++ k - )  by 
Langevin's theory. Therefore (2.37) is quite accettable from the physical point of 
view. 

3. - Invar iant  r e g i o n s  for the  c o n c e n t r a t i o n s .  

We recall the definition of invariant region for weakly coupled parabolic systems, 
together with related results. We refer for the proof to the excellent book by Smoller 
[15]; we also quote, among the numerous papers related to invariant regions, [4], [5], 
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[6], [7], [8] and [17]. Attention will be focused on the solutions of 

n 

(3.1) 8ui _ diAui + ~,  bib(x, t) 8ui 

where  u = ( u l ,  ...,urn), d i > 0  for i = 1 ,  . . . , m ,  and F ( u ) = ( f l ( u ) ,  ...,fro(u)) is a 
smooth vector field defined on R ~. Le t  Gk, k = 1, ... ,  s, be real functions of class C ~ on 
R ~ such that  VGk ~ 0. The set  

8 

(3.2) X = f] {u e Rm; Gk(u) <<. 0} 
k = l  

is called an invariant region for (3.1) if any regular solution u(x, t) of (3.1), such 
that  

(3.3) 

(3.4) 

satisfies 

(3.5) 

u(x, 0 ) e X ,  V x e  t9 ,  

u(x, t) e X ,  V(x, t) e8 /2  • (0, T),  

u(x , t )  e X ,  V(x , t )  e ~ •  

THEOREM 3.1. - Let X, defined by (3.2), be an invariant region for (3.1). Then at 
every point u ~ aX where Gk(u) = O, we have 

(3.6) VGk(u) 'F(u)  <~ O . 

THEOREM 3.2. - Let di ~ dj when i ~ j .  I f  X is an invariant region for (3.1), then it 
has the special form 

m 

(3.7) X =  [7 { u e R m ;  ai~ui<<.bi}. 
i = l  

We also quote the following sufficient conditions. 

THEOREM 3.3. - Assume di = d > 0 and let X, given by (3.2), be convex. Moreover, 
suppose F(u) never points out of X for u on the boundary of X. Then X is an invariant 
region for (3.1). 

THEOREM 3.4. - Let X be given by (3.7) and assume F(u) never points out of X when- 
ever u belongs to 8X. Then X is an invariant region for (3.1). 

Equations (1.12) and (1.13) are not of the type (3.1); however, they can be writ ten in 
a form suitable for applying Theorems 3.1 and 3.4. More precisely, if we substi tute 
(1.14) in (1.12) and (1.13), and take into account (1.15), we obtain 

(3.8) (Pi)t = D~ + AP~ + (ki + V r  - v) .VPi + j~ (P ,  N) ,  

(3.9) (Ni)t = D (  zlNi - (k(V(/ )  + v) 'VNi + g~(P, N) ,  
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where 

N 
(3.10) f~(P, N) = - ki+ Pi E cj(Pj- Nj) + hi(1 - PiNi), 

j=l 

N 
(3.11) g~(P, N) = ki- N~ • cj(Pj - Nj) + hi(1 - P~N~). 

j=l  

The cases N = 1 and N > 1 are considerably different. In fact, we have 

THEOREM 3.5. - Let N = 1 and define 

Q = {(P, N) eR2 :0  ~<P~< 1 + r ,  0 ~<N~ < 1 + r } ,  

where r is a positive constant. Then, there exists ~" > 0 such that Q is an invariant re- 
gion for the concentrations for all r >I ~'. 

PROOF. - In the present case of one ionic family, (3.10)-(3.11) become 

f ( P ,  N) = - k c P ( P  " N) + h(1 - PN) ,  

g(P, N) = kcN(P - N) + h(1 - PN) .  

To apply Theorem 3.4, we put 

where 

aQ = F1 U F2 tJ F3 U F4,  

F1 = {(P, N); N =  0, 0 ~<P~< l + r } ,  

F~= {(P, N); P =  1 + r ,  0 ~<N~ < 1 + r } ,  

F3 = {(P, N); N =  1 + r ,  0 ~<P~< 1 + r } ,  

F4 = {(P, N); P =  0, 0 ~<N~< 1 + r } .  

If  v is the exterior unit normal vector to aQ and F(P,  N) = ( f ( P ,  N), g(P, N) ) ,  we 
have 

F .v [ r i  = - h < 0 ,  P E [ 0 ,  l + r ]  

and, in the same way, 

F . v l r t < 0 ,  N e [ 0 ,  l + r ] .  

Moreover, F .  v I 1"2 is a linear function of N, which is negative for N = 0 and N = 1 + r if 
r I> ~, with ~ sufficiently large. Similarly we have F .  v I r~ < 0. Hence, by Theorem 3.4, 
the result follows. �9 
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THEOREM 3.6. - A s s u m e  N >t 1 and 

(3.12) Di + = D i -  = D ,  i = 1, . . . ,  N .  

Let  r,  a l, . . . ,  aN  be posit ive constants and define 

N 
O i = ci(Pi - N~) , Q= ~, O j , 

j=l  

Q =  { (P ,  N) eR2n; 0 <<-Pi, Ni  <~ 1 + r ,  i = 1, . . . ,  N }  , 

S + = { ( P , N )  eR2n; e>~O, ~i~< a i ,  i =  1, . . . ,  N } ,  

S -  = { ( P , N ) e R 2 ~ ;  Q ~<0, ~i>~ai ,  i =  1, . . . ,  N } .  

Then, there exists  a posit ive constant  ~ such that the convex sets 

Y,+ = Q ( 3 S  + , 2:-  = Q A S -  

are invar ian t  f o r  the concentrations when  r >i ~. 

PROOF. - In view of (3.12), we can apply Theorem 3.4 to the vector field F ( P ,  N )  and 
the convex set 2:+, where  F ( P ,  N )  = ( ~ ( P ,  N), gi (P ,  N)) ,  i = 1, . . . ,  N. The boundary 
of 2: § can be decomposed as follows: 

(3.13) 32: + = {(3S + ) F3 Q} u {(gQ) (3 s + }. 

Using the notation F~ to denote the set where  y = a,  we can write 

aS = F o U i ~ _ I F  o N S  

(3.14) 

l \i=1 J ~=~ / ~U 1+~ i=.Ni  ] j n Q .  

Then, successively we have 
N 

I. F'vlrO~= Z ~-g~l~=o=O, 
i=1 

II. F ' v [ r ~ i = f i - g i [ ~ i = a ~  = -k(Pi+N~)Q]Q~=ai<~O on S +, 

I I I . a  F'v[r?~ = - f i  [P~=O = - h i  < 0, 

III.b F ' v I r %  = - g i  IY~=O = -- hi < 0, 
A A  

IV.a F ' v ] r ~ = f i  [p~=l+~ = eli(P1, . . . ,  PPi ,  . . . ,  NN) ,  with 

q ~ i ( P 1 , . . . , - P i , . . . , N y ) = - k ( l + r )  c i [ ( l + r ) - N i ] +  ~ ~)j + h i [ 1 - ( l + r ) N i ] .  
j = l  
j~ i  
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We claim that the function ~ is nonpositive on the polyhedron 8, of R 2 N - 1  given by 

8,= 

"O<~Pj<<.l+r, V j = I ,  ..., N ,  

O<~Nj<l+r, V j = I ,  . . . , N  

N 
ci[(l +r)-Ni]+ ~ ~j>~O 

j= l  
j~i 

ci[(1 + r) - Ni] ~< a~ 

Qj<~aj, Vj= 1, ..., N ,  j~i 

j~i" 

Since ai  >1 0, 8' is non empty. For r large enough, we can write 8, as 

8 , = ~ A  c i ( l + r ) - a i < ~ c i N i < ~ c i ( l + r ) ,  ~. Qj>Ici[Ni-(l+r)] , 
j= l  
j~i 

where 

~={O<~Pj<l+r,O<~Nj<<.l+r, Qj<<.aj V j = I , . . . , N ,  j~i}. 
We observe that cp i is a linear function of its variables, and therefore it will be non posi- 
tive on 8,, provided it is non positive on 38,. Iterating this argument (2N - 1) times, we 
conclude that we only need to check the sign of cf i on the vertices of the polyhedron 8,. 
Let us consider the superior and inferior faces 

5:+=~N{ci(l+r)}, 5~-=~n{ci(l+r)-ai} 
and the halfspace 

~C= {~.~ Qj>>-Ci[Ni-(1 + r)]}. 

The intersection between each face with the halfspace gives 

O?Pj<.l+r, O<.Nj<.l+r, Qj~Ctj, 

~+ N~C---- ] j ~ l ~ ) J ~ 0  , eiYi-~ei(1-~r)  

tJ ~ i 

Vj=I,...,N, jai t 

[ o?p~< l+r, 
~ - n ~ = ] j ~ l C ) j ~ > _ a i  ' =  

l j~ i  

O<~Nj<~l +r, Qj~aj, 
eiNi = ci(1 + r) - a i  

Vj= 1, ..., N ,  j~i}. 
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If we recall the expression of of i, we obtain 

N 
~ ]~+ n~ = - k ( 1  + r ) .  ~ ~j+hi[1 - (1 + r )  2] <~hi[1 - (1 + r )  2] ~<0, 

j = l  
j ~ i  

where we have chosen r large enough in the last inequality. Similarly we have, again for 
r large enough, 

In particular cpi is 
condition 

nonnegative on all the vertices of ~. The last remaining 

IV.b F. V]r~V <<. 0 can be proved in the same way as before, and the conclusion 
follows. �9 

Theorem 3.1 implies a non-existence result: 

THEOREM 3.7. - I f  N > 1, then hyperrectangular sets of the form 
N 

X= n {(P,N)~R2N;o<~Pi<.ai ,  O<<.Ni<~fii, i = l ,  N} 
i=1  " " '  

cannot be invariant for the concentrations. 

PROOF. - Let us suppose, by contradiction, 2: to be invariant. Consider the two parts 
of 92: given by 

FI= { P x = a l } ,  Fz = { N y = f l y } .  
We have 

F'v[rl =f l (a l ,  [2, ..., N1, ..., NN) = 

= - k l a l [ c l ( a l -  ] N1) + ~, cj(Pj - Nj) hi(1 - N~) 
j=2 

and, in particular, 

J ~ ( a l ,  0 . . . .  , 0 ,  f iN)  : - k l a l [ c l a l -  CNflN] "~hl ~ 0  ; 

on the other hand 

F'v]r~ =gy(P1, P2, ..., NN-1, flY) = 

[N-= : cj(Pj -- Nj) + eN(PN -- fi N)] + hN(1-- PNfl N) = kNl~ N j 
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and thus 

gN(al,  O, ..., O, BIN) = k N ~ N [ C l a l  -- CN~N] -{- h N ~  O. 

Therefore we get the coupled inequalities 

{ - k l a l [ c l a l -  CNflN] + hl <<- O , 

kN~ N[Cl a 1 -- eN~ Y] "~- hg ~ O. 

hi hN 
- - < < . o ) < ~  
k 1 a 1 kN~N ' 

Put ~ = via 1 --CN•N, then 

which is impossible. Hence, by Theorem 3.4, Z is not invariant. �9 

As and immediate consequence of Theorems 3.7 and 3.2 we have 

COROLLARY 3.8. - I f  N > 1 and the diffusion coefficients Di + , D (  are different, no 
invariant region can exist for  the concentrations. 

4. - The evo lu t ion  problem. 

In this section we prove existence and uniqueness for the initial-boundary value 
problem given by equations (1.15)-(1.19), coupled with 

(4.1) P = Pb, N -  Nb on a t ) ,  

(4.2) P(x ,  0) = Po(x), N(x,  0) =No(x) in t ) ,  

(4.3) ~ = ~ b on a t ) ,  

(4.4) v = 0 on a t ) ,  

(4.5) v(x ,  O) = Vo(X) in t ) .  

Since uniqueness for the Navier-Stokes equations in dimension 3 is an open problem, 
we limit our treatment to the case t ) c  R ~. However, the result of existence remains 
true in higher dimensions. Our proof is based on the existence of the invariant region 
given by Theorems 3.5 and 3.6. No special hypotheses on the data Po, No, P0, N0, apart 
from regularity, are needed ff N = 1. When N > 1, we assume 

(4.6) Di + = D i -  = D  > 0 ,  i =  1, . . . ,  N 

and the existence of positive constants ~ and a i such that, with the notations of Theo- 
rem 3.6, 

(4.7)1 (Po, No) ~X + , Vx~ a t ) ,  (Po, No) ~X + , Vx~ t ) ,  
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o r  

(4.7)2 ( P ~ ,  N ~ )  e X - , Vx  e 8 ~ 9 ,  ( P o ,  N o )  e Z - , Vx  e ~9 .  

We recall below a lemma of functional analysis [9], and a resul t  of regular i ty  [10]. 

LEMMA 4.1. - Let B be a Banach space and T(w, ,~) a continuous and compact 
mapping of B • [0, 1] into B, such that T( w , O) = ~ e B for  every w e B .  Suppose there 
exists a constant M such that 

Ilwll  M ,  

for  all ( w , ,~ ) e B • [0, 1] satisfying 

(4.8) w = T(w, )~). 

Then the map T(w, 1) of B into itself  has a f ixed point. 

THEOREM 4.2. - Let q > 2, s > 2, 8Q e C 2 and define QT = t~ • (0, T), ST = 8 ~  • 
• (0, T). Consider the problem 

ut = d A u  + ~ a~(x, t) u~ + a(x, t) u ,  
~=1 

u = ub on ST, u ( x ,  O) = uo(x )  in  ~9 ,  

(4.9) 

(4.10) 

and suppose 

(4.11) 

(4.12) 

(4.13) 

Ila llL (Q ) < , Ilall.(Q ) < oo, 

u o ~ W 2 - 2 / q ' q ( ~ ) ,  ubeWl-1 /2q 'q ( (o ,  T); W2-1/q 'q (Q)) ,  

uo Is = ub(x, 0).  

Then problem (4.9)-(4.10) has a unique solution u e W l ' q ( ( o ,  T); W2'q($2)) which 
satisfies 

(4.14) ]lUlIwl,~((o, T), W2,q(~)) <<- C{I]Uollw2-2/q,q(a) + IlU~IIWI-V2q, q((O,T); W2-1/q,q(,))}. 

Furthermore u satisfies an H61der condition in -QT. 

The main resul t  of this section is the following 

THEOREM 4.3. - Let  Q be an open and bounded subset of R 3 such that 8t~ e C 2 and 
let QT = ~ • (0, T). Assume q > 2 and 

(4.15) Pio, Nio e W 2 -2/q, q(tg), 

(4.16) Pib, Nib e W 2 - 1/q, q(~,~), 

Pio, Nio >I 0 in ~2 , 

Pib, Nib >1 0 in ~ . 

Let  (4.6) and (4.7)1 or (4.7)2 hold. Then there exists a unique solution (P ,  N,  q~, v) to 
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(4.17) 

(4.18) 

(4.19) 

Moreover, 
in QT. 

problem (1.15)-(1.19), (4.1)-(4.5) such that 

Pi, N i e  Wl'q((  O, T); W2'q(t~)) , 

r e W~'q((0, T); W4'q(~9)), 

v �9  T); V ) A L ~ ( ( 0 ,  T); H) .  

Pi, Ni are nonnegative functions which satisfy an HSlder condition 

PROOF. To prove existence, we apply Lemma 4.1. Let B=L2((O,T) ;  
Hi( t2) )  NL| ((0, T); L2(y2)) and ~ = (t),~r 2N. Define T: B2Nx [0, 1 ] ~ W e  
e B  2N via the following linear problem: 

(4.20) Pi - Pib �9 B ,  (Pi)t = Di + APi + 

+)~[(ki + V ~  - ~).VP i - ciki + Pi(D~ - Ni) + h(1 - PiNi)], 

(4.21) N i - N i b e B ,  ( N i ) t = D (  ANi+ 

+4[ - ( k i -  V ~  + ~)-VN + ciki- N~(P~ - ~ )  + h(1 - DiNi)], 

(4.22) Pi(x, O) = Pio(X) , Ni(x,  O) = Nio(X) , 

N 

(4.23) ~ - ( / ) b � 9 1 7 4  T); H i ( t0 ) ) ,  - A ~ =  ~, c j ( P j - N j ) ,  
j = l  

(4.24) ~ eL2((0 ,  T); v ) N L ~ ( ( O ,  T); H ) ,  R(vt + VxkVk) = 

(4.25) V-~ = 0 ,  

(4.26) ~ = 0 on 9t2, ~(x, O) = Vo(X). 

As by Lemma 1.2 we have (Pi, hTi)eLt(QT), by elliptic regularity (4.23) implies 

V ~  eL2((0 ,  T); H2(t)))  AL ~ ((0, T); H1(~9)) 

and 

V ~  e L  4((0, T); L r (Q) ) ,  r < 

Considering again Lemma 1.2, we infer 

( P -  2~r)V~ eL~((0,  T), L4(t2)),  s < 4 ,  

(V~ - ~) eL4(QT).  
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Applying Theorem 4.2, we conclude that 

(4.27) Pc, N i � 9  Wl'q(( 0, T); w2 'q( tg)) ,  q > 2 ,  

(4.28) Pc, N~ �9 C ~ ~(QT) �9 

Because of (4.14) T is compact; the proof of the continuity of T is quite elementary and 

is omitted. For every w e B ,  we have T(w,  0 ) = ~ ,  where ~ i=  (P~,Ni) is the sol- 
ution of 

(4.29) I (Pe)t = De + APe, Pe = Pib on aQ,  P~(x, O) = Peo(X) in ~9, 

[ (N~)t = D (  ANe, hie = N~b on a~9, Ne(x, 0) = N~o(X) in Q .  

It remains to prove that all solutions of (4.8) are a priori bounded. If w = (P~, Ni) satis- 
fies (4.8) we have (4.28) and this in turn implies, by the regularity of the solutions of the 
Navier-Stokes system 

(4.30) Vq~ - v �9 C O, a ( Q T ) .  

If N = 1, (4.30) allows us to apply Theorem 3.5 and to conclude that there exists r > 0, 
independent of ~t�9 [0, 1], such that 

(4.31) 0 <~ P(x ,  t) <~ 1 + r ,  

(4.32) 0 <~ N ( x ,  t) <. 1 + r ,  

(x, t) �9 QT , 

(x,  t) �9 ~ , 

where the index i is omitted as we are dealing with only one ionic family. When N > 1 
we use Theorem 3.6, recalling hypotheses (4.6) and (4.7), and we conclude: 

(4.33) 

or  

(4.34) 

(P(x, t), N (x ,  t ))  �9 X + , (x, t) �9 Qr ,  

(P(x ,  t), N (x ,  t ))  �9 Z -  , (x,  t) �9 -QT. 

By the usual bootstrap argument, w = (Pi, Ne) is bounded in the B-norm. Hence, by 
Lemma 4.1, there exists at least one solution (Pc, Ne, r  v) to the initial-boundary 
value problem (1.15)-(1.19), (4.1)-(4.5). Moreover, the crucial positivity condition for Pe 
and Ni is satisfied by (4.31)-(4.34). 

Uniqueness is proved as an elementary application of the Gronwall inequality. Let 
(P, N, r  v), (P ' ,  N' ,  O ' ,  v ' )  be two solutions and define Pi = P e -  P ( ,  ne = N e -  N ( ,  
cp = O - q)', w = v - v'. Then (p, n, ~, w) solves 

(4.35) 

(4.36) 

(Pi)t = Di + APi + ke + V. (Pc Vr + ke + V. (P(Vc;) - V- (P(w)  + 

- V. (per) - he(peN~ + P ( n e ) ,  

(ne) t  -= D (  An~ - k (  V. (ne V(/)) - k (  V- (N(V~) - V. (N(w)  + 

- V. ( n e v ) -  hi(piN~ + P ( n i ) ,  
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(4.37) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

Pi = 0 on atg,  pi(x,  0) = 0 in tg,  

ni = 0 on 0tO, ni(x,  0) = 0 in tg,  

N 
- A r  = Y_, c j ( p j - n ~ ) ,  

j=l  

q~ = 0 on ag2, 

N 
R ( w t  + B y  - By ' )  + Al w = - T ~ cj(Pj Vcp + pj V O ' - N j  Vq~ - njVqb'), 

j=l 

V - w = 0 ,  

w = 0 on 0t2, w(x, 0)  = 0 on g2. 

Define D = min {Di + , Di-  , i = 1, ..., N}. From (4.39) we have 

(4.44) i.V~(t ) 12~ Cl( ip( t ) [z+ in(t ) [2). 

Let us multiply (4.35) by Pi and (4.36) by ni and integrate by parts over ~9. Using (4.44) 
and the elementary inequality 

a 2 ~]b2 labl <<. _ _  + -- , 
2y  2 

we find, for ~/> 0 and for suitable constants Ci = Ci(~/), 

1 d 
2 dt (IP(t) le + In(t) 12) + D(IVp(t) 12 + IVn(t)  12) ~< 

< C2([p(t)12 + In(t)12) + ~]Cs(IVp(t)12 + I Vn(t)12) + C4 Iw(t)12 �9 

Choosing q = D/C3, we have 

d 
(4.45) d---[(Ip(t) 12+ In(t) I2)<<.Cs(Ip(t)12+ In(t) 12)+C6]w(t)l  2 . 

We take, a.e. in t, the scalar product of (4.41) with w(t) in the duality between ~Vand ~' ,  
and use (4.44). We get 

] (4.46) R --~ + 2b(v(t), v(t), w(t)) -2b(v ' ( t ) ,  v'(t), w(t)) + 

+2Hw(t)ll 2 ~< CT(Ip(t)12 + In(t)12). 

Proceeding as in the proof of uniqueness for the 2-dimensional Navier-Stokes system, 
we have, using Lemma 2.1 and Young's inequality, 

d 
(4.47) d-t ]w(t) ] 2 <. Cs(Ip(t)12 + In(t)]2) + Cgl]v(t)ll2 iw(t ) 12 
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Adding (4.45) and (4.47) we obtain 

d 12 2) 2 (4.48) --~(Ip(t) 12+ In(t) + ]w(t)] <<.(Cv+Cs)(Ip(t) z + In(t ) [2)+  

+ (C6 + 69 IIv(t)II 2) I w(t) 12 �9 

The function t~llv(t)H 2 is integrable, therefore we conclude, by Gronwall's inequality, 

(4.49) Ip(t ) 12 + in(t ) ]2 + ]w(t)]2 = O 

and, by (4.39), ](p(t) [ = O. Thus, the solution is unique. " 

5. - D e c a y  t o  e q u i l i b r i u m  w i t h  n o  f l u x  a t  t h e  b o u n d a r y .  

It is reasonable to expect that the asymptotic behaviour of our initial-boundary 
value problem could be quite complex; here we limit ourselves to treat a particular case, 
in which we have convergence to the trivial solution of the stationary problem, 
i.e. 

(5.1) (P1 ,  . . . ,  PN, N1,  . . . ,  NN, 4 ,  v) = (1, ..., 1, 1, ..., 1, ~bA, 0). 

We suppose the medium electrically insulated. This implies 

(5.2) a ~  _ O on 3t~. 
3v 

Moreover, ~he concentrations (Pi, Ni) are subjected to homogeneous Neumann bound- 
ary data 

9Pi 
(5.3) - -  = 0, 

9v 

The other conditions are unchanged: 

(5.4) Pi(x ,  O) = Pi0(x), 

(5.5) 

(5.6) 

aN~ 
- -  = 0 on at2. 

9v 

Ni (x ,  O) = Nio(X) 

v = 0 on a~9, 

v(x ,  O) = Vo(X) in ~9. 

in ~ ,  

If (P,  N, 4 ,  v) is a solution corresponding to the new boundary conditions, we have, 
integrating (1.12), 

N 

(5.7) E ] [Pj(x, t) - Nj (x ,  t)] dx = O. 
j = l  

As a consequence, the total electric charge is zero and the present problem makes 
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sense only if the compatibility condition 

(5.8) 
N 

~ [Poj(x) - Noj(X)] dx = O, 
j = l  

Y2 

is satisfied. With minor changes, all considerations regarding the existence of invariant 
regions can be repeated even with Neumann boundary conditions. For  the present  
problem it is also possible to give a result  of existence and uniqueness similar to Theo- 
rem: 4.3. 

Let  

- 1 I Pi(x, t )dx ,  N i ( t ) -  1 f Ni(x, t) dx. (5.9) Pi(t)- 

Our result  on the large time behaviour of solutions holds if the diffusion is sufficiently 
intense, and is based on the following 

LEMMA 5.1. - Define 

D = m i n { D i  § D ( ,  i =  1, ... ,  N } .  

Let (P, N, r  v) be any solution which admits a bounded invariant region in R 2N for 
the concentrations (P, N). Then there exist positive constants D, T, ~, and ~', such 
that, when 

D>~D, 

we have 

(5.10) 

(5.11) 

(5.12) 

[ VP(t)12 + I VN(t)I ~ < ~e -~t 

[P(. ,  t) - P ( t )  I ~< •' e -~t, 

IN(-, t) - N(t)  I ~< Y' e -~t 

PROOF. - Let  X be an invariant region, i.e. if (P(x ,  0), N(x, 0)) eY, for every x c ~9, 
then (P(x,  t), N(x, t ) )~X for every xe~9  and t e  (0, T). Set  

1 = sup [VO(x, t) [ , it2 = sup Iv(x,  t) I , 
(P,N) eX (P,N) eX 

tt3= sup [ P [ ,  tt4 = sup IN] .  
(P, N) eX (P, N) EX 

By the definition of invariant region and the regularity of O and v, the constants tt k, 
k = 1, . . . ,  4, are well defined. Put  

(5.13) 1 [ 2 IvN(t) 12) ~g(t) = ~ ( IvP( t )  + 
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C a l c u l a t i n g  VPjt and VNjt from (1.15) and (1.16), we estimate 

N 

(5.14) T(t) = E [(VPj, VPjt) + (VNj, VNjt)]. 
j = l  

Integrating by parts, in view of (5.2)-(5.6) and using the Cauchy-Schwartz inequality, 
we get 

(5.15) ~(t) << . -D(IAP(t)  I2+ IAN(t) I2)+C~(IAP(t)Is+ IAN(t) I2)+ 

+C2(Ivg(t) 12 + IVN(t)12), 

where C1 and C2 are constants which depend only on the tt k's. The Neumann's condi- 
tions (5.3) imply the existence of a positive constant m, depending only on t?, such 
that 

(5.16) IdP(t) 12>~mlVP(t)l 2 , IAN(t) lS>~mlVN(t)l 2 . 

Therefore, if v -- D m -  C2 - C1 m and 

(5.17) 

we infer 

(5.18) 

i.e. 

(5.19) 

D> 
C2 + C~ m 

m 

~u(t) ~< [Cs + (C1 - -  D) m] (I VP(t) 12 + I VN(t) [2), 

~(t) <~ - vgJ(t). 

This implies (5.10) and, by the Poincar6 inequality, (5.11) and (5.12). �9 

The spatial averages of Pi and N~ satisfy the following coupled equations, obtained 
integrating (1.15) and (1.16) over t?: 

f dPi _hi  1 1 PiNidx , 

(5.20) 

Defining 

(5.21) h~ ~ [Pi(t)Ni(t) - Pi(x, t) Ni(x, t)] dx , g i ( t ) -  it?l ~ 
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we can write (5.20) as a system of ordinary differential equations; more precisely we 
have 

f dP~ 
T (t) = h~ (1 - P~(t) N~(t)) + g~(t), 

(5.22) dN~ 
- - ~  (t) = h~(1 -P~( t )  Ni ( t ) )  +g~(t).  

The term gi(t) can be es t imatedus ing  (5.11) and (5.12). We obtain 

(5.23) Igi(t) I <~ C~e -~ , 

where the constants C~ depend only on tt s and tt 4. Let a > 0. By (5.23) there exists a 
time t(a) such that 

(5.24) Ig~(t) I ~< o ,  Vt > t(a).  

THEOREM 5.2. - Suppose 

(5.25) Pi (0) = Pio = Nio = Ni (0), 

Then we have 

(5.26) lim Pi(x ,  t) = 1, lira Ni(x ,  t) = 1 
t - - )~ t--~ :o 

i = l ,  . . . , N .  

in  L2(•) ,  i =  1, ..., N .  

PROOF. - In view of (5.25) and (5.22), w_e obtain Pi(t) = Ni(t). Therefore (5.22) re- 
duces to a single equation. Let Pi = Pi(t) and consider the following Cauchy 
problems 

(5.27) { dP~ 
- ~  = hi(1 - P~) + gi(t),  

P~d) = P~, 

{ dcf~ 

(5.28) dt 
• (b = P~. 

- (cf i )  ] -+a ,  - h i [ 1  § 2 

Assume 1 -  a/hi  > 0. Comparing the solutions of (5.27) and (5.28), (see [18]), we 
obtain 

(5.29) I> lira sup Pi(t) I> lim_.inf Pi(t) I> ~1  
/ 

G 

1 + h--~ t - . =  h i 
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Since a > 0 is arbi trary,  it follows 

lim Pi(t) = 1. 
t - ~  

Taking into account (5.11) and (5.12), we have (5.26). 

R E F E R E N C E S  

[1] I. ADAMCZEWSKI, Les phdnom~nes d'ionisation et de conduction dans les didlectriques 
liquides, Masson, Paris (1968). 

[2] R. A. ADAMS, Sobolev Spaces, Academic Press, London (1975). 
[3] P. ATTEN, Stabilitd electrodynamique des liquides de faible conductivitd, J. M~canique (3), 

14 (1975), pp. 465-495. 
[4] J. F. G. AUCHMUTY, Positivityfor elliptic and parabolic systems, Proc. Roy. Soc. Edinburgh, 

Set A, 79 (1977-78), pp. 183-191. 
[5] C. BARDOS, Comportement asymptotique de solutions d'equations de rdaction-diffusion, J. 

Phys., Colloque C5 (Supplement au n. 8), 39 (1975), C5, pp. 61-67. 
[6] K. N. CHUEN - C. CONLEY - g. SMOLLER, Positively invariant regions for systems ofnonlin- 

ear diffusion equations, Ind. Univ. Math. J., (2), 26 (1977), pp. 373-391. 
[7] E. CONWAY - D. HOFF - J. SMOLLER, Large time behaviour of solutions of systems ofnonlin- 

ear reaction-diffusion equations, Siam J. Appl. Math., (1), 35 (1978), pp. 1-16. 
[8] E. FEIREISL, A stabilizing effect of vanishing diffusion in electrodynamics, to appear. 
[9] O. A. LADYZHENSKAYA, The Mathematical Theory of Viscous Incompressible Flow, Gordon 

and Breach, New York (1969). 
[10] O. A. LADYZHENSKAYA - V. A. SOLONNIKOV - N. N. URAL'CEVA, Linear and Quasilinear 

Equations of Parabolic Type, Transl. of Math. Monographs, American Mathematical 
Society, Providence (1968). 

[11] P. LANGEVIN, Recherches sur les gaz ionisds, Ann. Chimie Physique, 28 (1903), pp. 
223-235. 

[12] A. B. LIDIARD, Ionic Conductivity, Electrical Conductivity, Springer-Verlag, Berlin 
(1957). 

[13] A. OCCHIALINI, I gas compressi come dielettrici e come conduttori, Tipografia Editrice 
F. Mariotti, Pisa (1906). 

[14] I. RUBINSTEIN, Electrodiffusion of Ions, SIAM, Philadelphia (1990). 
[15] g. SMOLLER, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, Berlin 

(1983). 
[16] R. TEMAM, Navier-Stokes Equations, North-Holland, Amsterdam (1984). 
[17] H. F. WEINBERGER, Invariant sets for weakly coupled parabolic and elliptic systems, Rend. 

Mat. Univ. Roma (6), 8 (1975), pp. 295-310. 
[18] Z. ZHANG, Qualitative Theory of Differential Equations, Transl. of Math. Monographs, 

American Mathematical Society, Providence (1968). 


