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Invariant Regions for the Nernst-Planck Equations (*).

G10vANNI CIMATTI - JLARIA FRAGALA

Abstract. — We consider a coupling between the Nernst-Planck equations and the Navier-Stokes
system; we study the stationary and the evolution problems. The crucial property turns out
to be the existence of an invariant region. An asymptotic result in the case of Newmann
boundary conditions is also given.

1. — Introduction.

In this paper we study a model describing ionic concentrations, electric potential,
and velocity field in an electrolitic solution.

The model is a coupling between the Nernst-Planck equations and the Navier-
Stokes system. We refer to the books [1], {12], [13] and [14] for a detailed description of
the physical background, and simply summarize here how the basic equations are
derived.

If N ionie species, with concentrations P;(x, t) and N,(x, t) of positive and negative
charges respectively, i =1, ..., N, are assumed to exist in the solution, the correspond-
ing current densities J; are given by:

(1.1) J1+= —Di+VPi+ki+PiE+Piv,
1.2) Jz_ = "D.,;_ VNi— ki_‘ NzE +Niv ,

where E is the electric field, v is the velocity of the fluid, D;* > 0 are the diffusion coef-
ficients, and k;* > 0 are the ionic mobilities. Since a quasi-stationary situation is as-
sumed with all magnetic effects considered as negligible, the electric field is derivable
from an electric potential @:

1.3) E=-Vo.

(*) Entrata in Redazione I'11 novembre 1996.
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Pisa, Italy.
E-mail: cimatti@dm.unipi.it; fragala@dm.unipi.it
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The balance equations are

(14) (P + V-Ji =R(P;, Ny),
(15) N+ V-Ji =R(P;, Ny),
where

(1.6) R(P;, N;) = a;P; N, —a;P;N;

is the law of mass describing the process of dissociation and recombination which oc-
curs in the solution.

In (1.6) P;;= N, > 0 is the value of the concentrations at equilibrium, while a; is a
recombination constant, typical of each ionic family, which ecannot exceed the Langevin
limit value, (see [11])

kit + ki
.7 (ai)m = —— .
£

If we define
(1.8) A= —1

(@)L
then
1.9) A <1,

Experimental studies, see [3] and [1], show that in liquid dielectrics A; is approximately
equal to one.

Substituting (1.1) and (1.2) into (1.4) and (1.5) and taking into account (1.8) and (1.6),
we have:

(110) (P’i)t :Di+ APZ + kiJr V(P1V¢) - V(Plv) + aiPiON,-O - (111’)l2\7z ,
(1.11) (Nl)t =Di— ANl - ki— V‘(NZV¢) - V'(NQU) + aiPioNio - aiPiNi .

This system is coupled with the Poisson equation

(1.12) —edd =]§1 (P;— Ny,

and the Navier-Stokes equations

(1.13) oy + v, 1) = —Va + ndv —jgl (Pi—N;) Vo,
(1.14) Vo=0.

We remark that a solution of (1.10)-(1.14) is physically meaningful only if it satisfies the
condition P;(x, t) =0, N;(x, t) = 0. We take k, P, /d, as a characteristic velocity, and
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define the following non dimensional starred quantities:

2
= @v*’ :L‘l=d0xi*, t= dO t*,
dy ky®,
@ =, 0% P;=P,P N;=N, N7,
P’Lodoz + * + *
¢ = ) D& =Dy(DiY*, ki = k(™ )*,
8@0
2
=0 kodso .7'[*, R* = Qk0¢0 ’ T* — 8¢0 .
do 7 kn

If we let h; = ¢;A;(k;* + k;”) and suppress the star in the nondimensional quantities, we
arrive at the system

(1.15) (P,), = Di* AP; + k" V- (P,V) — V- (P;v) + hy(1 — P;N,),
(1.16) (N, =D, AN; — k" V- (N; V@) — V+(N,;v) + hy(1 — P;N;),
N
(1.17) —-49 = 3 ¢;(P;—N,),
i=1
(118) Vo=0,
N
(1.19) R, +v,v)= —RVn+dv—T X ¢;(P;—N;) Vo.
i=1

This paper is organized as follows. Section 2 deals with the stationary problem. The
evolution problem is studied in parts 3 and 4, where the existence of an invariant region
for the concentrations is discussed in detail, and a theorem of existence and uniqueness
for the initial-boundary value problem is presented. Finally, in section 5 the decay of
the concentrations to a simple equilibrium solution is proved under the assumption of
Neumann boundary conditions for both concentrations and potential.

We end this introduction with a list of preliminary results and notations that we use
throughout the paper.

Let 2 be an open, bounded and connected subset of R”, with a regular boundary
9. We use the customary spaces C™ *(Q), L?(Q), H™ (), L1((0, T); H™()), re-
ferring to the book [2] for definitions and properties. We use the notations

LX(Q) =L*(2)x L*(Q), H}(Q)=H}(Q)xH(Q).

Scalar product and norm are denoted by (,) and |- | in both L2(82) and L*(Q), while for
H} () and HO(Q) we write ((u, v)) = (Vu, Vo) and |ju| = (Vu, Vu)'2.
Let A;: Hg(2)—H ~'(R2) be the canonical isomorphism given by

(1.20) (Ao, &) =g, &), VEecH(Q).
We still denote by A; the corresponding operator in D(4,) = HH(RQ) N H3(R2) with
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range in L2(Q). We recall the Poincaré inequality

(1.21) A |EIPS |VER, VEeH{H(RQ)

where 4, is the first eigenvalue to the operator A;. Let
V={ve(Cy (@) XCy(Q)); Vio=0}

and denote by H and V the closures of ¥ in L2(Q) and H}(R). Let Ay: V— V' be the
canonical isomorphism given by

(1.22) (Ao, w)=((v,w)), VYweV.

As above we denote by A, the corresponding operator in D(4,) =V N H*(Q) with
range in H. The counterpart of (1.21) is now

(1.28) uilw|*s |Vw|?, Vwew©,

where u, is the first eigenvalue of the operator A,.
As usual with problems involving the Navier-Stokes equations, we set

u, v, w)= IuiDivjwjdx ,
Q

whenever the integral exists. The identity
(1.24) bu,v,w)=-blu, w, v)

follows immediately from the definition, while the proof of the following lemmas can be
found in [16].

LEMMA 1.1. - If n=2 and u, v, we H}(RQ), we have

(1.25) [b(u, v, w)| <2 |u| ]2 oll|w| 2 |w][2 .

LEMMA 1.2. - If n=2 and we L2((0, T); HY(2))NL (0, T); L*(R)), then
ueL*((0, T); LYQ)).
Given u, ve 'V, let B(u, v) be the distribution defined by
(B(u, v), w)=b(u, v, w), Ywe?©.

For u =v, we write

Bu)=btu, u).

Lemma 1.3. - If n =2, B(u) belongs to V' and satisfies the estimate
(1.26) 1B@)|lo < cllulff s »

where ¢ 18 a positive constant.
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2. — The stationary problem.

The steady-state system corresponding to (1.15)-(1.19), i.e.

@.1) Dt AP; + kit V-(P;V®) — V-(P;v) + hy(1-P;N;) =0,
2.2 Dy AN; -k V-(N;V®) - V-(N;v) + hi(1 - P,N;) =0,
N
2.3) —AP = _21 ¢(P;—N;),
7=
(2.4) Vo=0,
N
(2.5) Rv,v,= —RVa+Av ~T 3 ¢;(P;— N;) V&,
ji=1

has the trivial equilibrium solution
(2.6) (Py,...., Py, Ny, ..., Ny, P, 0)=(1,...,1,1, ...,1, Dy, 0),

where @ 4 is an harmonic function defined in Q. Let us consider (2.1)-(2.5) with bound-
ary conditions of the form

(27) Pi—__Pib(x’ 2’), Ni=Nib(x3 A’) on ag’
2.8) o=d, on 2,
2.9) v=0 on 9,

where 1€ (—12,72) is a parameter. Assume

(2.10) Pib’ NibECZ’ “(89), Vie (—I, Z),
(211) Pib’ Nib>0 on 89, VAE(—I, I),
(212) Pib(:x:, 0) —_—Nib(x, 0) =1 on 9% .

Our goal is to prove the existence of an unique continuous branch of physieally accept-
able solutions starting from the trivial one (2.6). We shall treat the problem in Holder
spaces, assuming 3R so regular that C% “(3Q) is meaningful. Let

X=(C?*(@))*" x C>*(Q)x W9,
Y=(C"*(Q))*N x C*+(Q) x (C”*(Q)) x (C**(8Q)*N x C* *(882) x (C**(3RQ))?,
where

W= {ve(C>*(Q))*; V-v in Q}.
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Define the map F: X x (=2, 1) =Y as follows: if u = (Py, ..., Py, Ny, ..., Ny, @, v),
then

f—DZ+AP,—kl+V-(PZV¢)+V-(Plv)—hz(l—PZNZ) A
_Di_ANl‘i”kl_V’(NZV¢)+V'(NIU)—]’LZ(1-‘P.LN,L)

_A<I>—jév:1 ¢(P;— N;)
N

1) = Rv, v, — RVz + Av — Tjgl ¢;(P;—N;) VP

Vv

Py a0 — Py, 4)

Nilae—Ny(x, 1)

7

The operators F(u, A) and F,(u, A) are both continuous, and we have F(u,y, 0) =0,
withug=(1,...,1,1, ..., 1, @4, 0). To prove that F,(u,, 0) is continuously invertible,
we need the following algebraic

LEMMA 2.1. — Let us consider the 2 X 2 matrices:

—cik" — hy kit — :
2.13) p,=|°¢ v ¢ . i=1,..,N,
ek -k —cki Mk
-k ciki”
(2.14) Li=| 7" Y, di,j=1,..,N.
cik;” —c;k;”
Let M be the 2N x 2N matrix defined by the blocks D; and L;; as
Dl L12 L13 Z41N
L21 DZ L23 LZN
(2.15) M= |Lss L Ds ... Lgy|.
|Lyy Lyz Lys ... Dy

Then M has the following eigenvalues

N
(2.16) —2hy, ..., —2hy, = 2 ¢kt + k), 0,
j=1

and the corresponding multiplicities are
2.17) {1,...,1,1, N—-1}.
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ProoF. — We first prove by elementary operations the equality
N
(2.18) det(M — il = [1’[ (—2hi—i)]-det(M*),
i=1

where M* = [mj]; j-1, . ~ is the N X N matrix defined by

1 ifi=g,
X =
" _t iy
ci(ki+ + ki_)

To this aim, take the matrix (M — 1) and replace the (2k — 1)-th column by the sum of
the (2k —1)-th column plus the (2k)-th column, for £ =1, ..., N; then replace the
(2k — 1)-th row by the difference between the (2% — 1)-th row and the (2k)-th row, for
k=1,...,N. We get

N
det (M — AI) = [.[[1(—2@ —A)]-det(M**),

where the matrix M ** = [m}*]; ;_,,  n is given by

ak _ Cj(k;f + ki—_) if ?/¢_] y
! ek +k7)+A ifi=j.

We obtain (2.18) if we divide the (i)-th row of M ** by (k;* + k), fori=1, ..., N, and
the (j)-th column by ¢;, for j=1, ..., N. Let now

yizci(ki++ki_)7 ’i=1,...,N.

We prove, by induction on N, that
' N N
det (M*) = (Hl Vi)'iN—l'(—}L - Vi)-
i= i=1

When N =1 the assertion is obviously true. Suppose that the formula holds whenever
the size of M * is less or equal to N — 1. Replace the first row of M * by the difference
between the first and the second row, and the first column by the difference between
the first and second column. It follows

det (M*) = (-1“ + i)'1[(1121 yi).lzv_z.(*/l —ﬁ; yl)] '

Y1 vz

{2l g oo -8

and the lemma is proved. =
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COROLLARY 2.2. — The quadratic form
N N
@19 QM PN = | S k] -]+

N

N N N
_ ‘21 h; P;(P; + N,) + [}jl ki Ni][zl ¢;(P;— Nj)] - ‘21 h;N,(P;+ N,)
1= = J= 2=

i
is megative semidefinite.

PRoOF. — This is an immediate consequence of Lemma 2.1 since

Q(Pl’ N17 tee PN7 NN) =M(P17 Nla ceey PN’ NN)'(PI; le (RN PN7 NN)~ L

LEMMA 2.3. — The operator F,(uy, 0) is continuously invertible.

PRrOOF. — By the closed graph theorem, we only need to prove that the linear bound-
ary value problem:

N
(2.20) Di* AP+ kit VP;-V® 4~ k™ Y ¢;(P;— N;) — hs(P; + N)) =0,
j=1

N
(2.21) D AN; — k7 VN-V® 4 + ki > ¢;(Pj— N;) — y(P; + N;) =0,
i=1

N
(2.22) —A® = 3 ¢;(P;—N;),
i=1
N
2.23) Ao —T > ¢i(P;—N) Vb, =0,
j=1
(2.24) P;=0 on 99,
(2.25) N;=0 on 39,
(2.26) $=0 on 3R,
(2.27) v=0 on 99,

has only the trivial solution (P, Ny, ..., Py, Ny) =(0,0, ..., 0, 0). We observe that
equations (2.20) and (2.21) are uncoupled with (2.22) and (2.23). Therefore it is suffi-
cient to show that the unique solution of (2.20)-(2.21), which satisfies also the boundary
conditions (2.24)-(2.25), is the trivial one. Let us multiply (2.20) by P; and (2.21) by N,.
Since @ 4 is harmonic we have, after integration by parts,

N
=D [ |VPi |2~k [ Py 3 (P~ Np)—h; [ PAPi+Np) =0,
i=1
2 (o} 2

N
~D; [ |VN; |2+ k7 fNi 2 C,-(Pj—~Nj)—h,ifNi(Pi+Ni)=0.
e e 7 0
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The sum over ¢ gives us
N N
= 2D [ VPP~ Z D7 [ VNP + [ QPy, Ny, ..., Py, Ny) =0.
i= P i= ° P

By Corollary 22 we get P;=N,;=0. ®

The implicit function theorem in Banach spaces can now be applied to the equation
F(u, A) =0. We conclude that there exists a local branch of solutions to the corre-
sponding boundary value problem (2.1)-(2.9), i.e.

(2.28) (Py(x, A), ..., Py(z, A), Ny(x, A), ..., Ny(x, 1), D(x, A), v(x, 1)),

which is defined for |A| <, with 7 small enough. The solutions given by (2.28) are
physically realistic because we have the following

LEMMA 24. — The concentrations P;(x, 1), N;(x, A) are positive in @ for |1|<7.
PROOF. - Define
m(A) = min {i%fPi(ac, A), irﬁlfNi(a:, Api=1,...,N}.
Then m(0) >0, and we can consider
Ao=sup{Ae[0,2); m(1)>0}.

If, by contradiction, A, < 4, there exists a point x, € 2 and a concentration, e.g. P;, such
that

Pl(x,lo)ZPl(xo,/lo)=0, V:L'Eﬁ.

Since Py,(x, 1) > 0, we cannot have &, € 322 and therefore x, must be an interior point
of . In this case, putting x =, into the equation for the concentration P;, we
obtain

_Di+AP1=h1S0.
This proves the required positivity,. m

It would clearly be interesting to prove a result of existence valid for arbitrary
boundary conditions. For the case of one ionic family, ie. for the system

(2.29) —D AP+ (@w—-k*V®P)-VP+ck*P(P—N)-h(1~-PN)=0,
(2.30) -D"AN+@®+k~VP)-VN—-ck " N(P-N)-mM1-PN)=0,
2.31) —-AP =c¢(P - N),

(2.32) R(v;~ v, v) = —RVn+Adv —Te(P—-N) VP,

(2.33) Vio=0,
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(2.34) P=N=0 onoQ,
(2.35) d=¢, on d2,
(2.36) v=0 on 3Q2,
we have

THEOREM 2.5. — Let

+ —_
2.37) h?max[Ck fk—]

2 2
Then there exists at least one solution of problem (2.29)-(2.36) which satisfies

(2.38) P(xy=0, N =0 in Q.

Proor. ~ We apply the Schauder fixed point theorem. Let
3= {(P,N)eL*(Q); P(x) =0, N(x) =0 ae, |P|*’<n*, |N|*sn"},
where

k]
(D*)* 2

-

’7 =

(|82]| denotes the Lebesgue measure of £).
Y is a closed and convex subset of L*(R2). Define the map

T: 3P, N) (P, N)eL*(Q),

via the following linear problem:

(2.39) ®-®,e HN(Q), fvavg=cf(?—i\7>§, VEe HX(RQ),
2 Q
240) beV, Rb(ﬁ,a,u)+((a,u))=—ch(ﬁ-z’\“r)vas-u, YueV,
o
@41) PeHLQ), D* [VP-V§+k+ fpvavg—fpﬁ-vH
Q 2 2

+hfpﬁg=hf§, VEe Hi (D),
Q2 2
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242) NeHMQ), D- jVN-vg—k— jNvézS-vg—jNa-vg+
Q 2

Q

+thN§=hj§, VEe HHQ).
2 2

T is well defined and continuous by standard arguments from the linear theory. We
claim that 7 is compact and T(X)cX. Setting £= P in (2.39) and using (2.41), we

find:
+ +
D*f]VP|2+f[Ck P+(h—0k ) th
Q Q2 2

We get the following estimate:

+ 4 4
pe [rwp<n f1p< 22 s 8L < 21 SIIES 21al
2 2

2D* A, 2D* A,

where we have used hypothesis (2.37), the Young inequality, and inequality (1.21).
Therefore we have:

Rt 2] h4]Q|
IIVP|2< D )2 , J’| (D )212 =g5"*.
Q

In a similar way, we find the analogous estimates for the concentration N. Thus T(2) is
compact by Rellich’s Theorem. Setting £ =P~ =min {0, P} in (2.41) we obtain

+ +
ck Py ck 7
2 2

D* j \VP|?+

{xeQ: P(x) <0} {reQ: Px)<0}

Pi=h f P.

{xeQ: P(z) <0}

It follows P ~ = 0 a.e. on Q. After repeating the same argument for N, we conclude that
T(2)cX. This completes the proof.  m

REMARK 2.6. — In liquid dielectrics, # is approximately equal to ¢(k* + k™) by
Langevin’s theory. Therefore (2.37) is quite accettable from the physical point of
view.

3. — Invariant regions for the concentrations.

We recall the definition of invariant region for weakly coupled parabolic systems,
together with related results. We refer for the proof to the excellent book by Smoller
[15]; we also quote, among the numerous papers related to invariant regions, [4], [5],
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(61, [7], [8] and [17]. Attention will be focused on the solutions of

ou; N ou;
@.1) T Gdu+ Y by, ) 28 = fu),

ot h=1 axh
where u = (uy, ..., u,), d;>0 for i=1, ..., m, and F(u)=(fi(u), ..., f,(w)) is a
smooth vector field defined on R™. Let G, k=1, ..., s, be real functions of class C! on
R™ such that VG, = 0. The set
(3.2) szf_]l{ueRm; Gi(u) <0}

is called an invariant region for (3.1) if any regular solution u(x, t) of (3.1), such
that

3.3) u(x,0)es, Veel,

(34) ux,t)ex, V(x,t)edx (0,7,
satisfies

3.5) v u(x,t)eX, V(x,{)e2x(0,T).

THEOREM 3.1. — Let X, defined by (3.2), be an invariant region for (3.1). Then at
every point u € 3% where G(u) =0, we have

3.6) VG (u)-F(u) <0.

THEOREM 3.2. — Let d; # d; when 1# j. If 2 is an invariont region for (3.1), then it
has the special form

m
(3.7) 2= .Ul{ueRm;aiSui$bi}.
We also quote the following sufﬁcient. conditions,

THEOREM 3.3. — Assume d; =d >0 and let X, given by (3.2), be convex. Moreover,
suppose F(u) never points out of X for u on the boundary of Z. Then X is an invariant
region for (3.1).

THEOREM 3.4. — Let X be given by (3.7) and assume F(u) never points out of = when-
ever u belongs to 3%. Then X is an invariant region for (3.1).

Equations (1.12) and (1.13) are not of the type (3.1); however, they can be written in
a form suitable for applying Theorems 3.1 and 3.4. More precisely, if we substitute
(1.14) in (1.12) and (1.13), and take into account (1.15), we obtain

(3.8) (P;),=D;* AP; + (ki V& —v)-VP; + f,(P, N),
3.9 (Ni)y=Di” AN; — (k7 V@ +v)-VN; + g;(P, N),
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where
' N
(8.10) filP,N)= -k P; _21 ¢j(P;— N;) + hy(1 - P;N;),
i=
N
(3.11) gi(P,N)=k; N, '21 c;(P;— N;) + hi(1— P;N;).
j=

The cases N =1 and N > 1 are considerably different. In fact, we have

THEOREM 3.5. — Let N =1 and define
Q={(P,N)eR:0sP<1+r,0sN<1+r},

where 1 is a positive constant. Then, there exists ¥ > 0 such that Q is an invariant re-
gion for the concentrations for oll r= 7.

PROOF. — In the present case of one ionic family, (3.10)-(3.11) become
f(P,N)= —kcP(P—N)+ k(1 - PN),

g(P, N) =kcN(P — N) + (1 — PN).

To apply Theorem 3.4, we put

Q=r,ur,ur,ur,,

where
riy={P,N;N=0,0sP<1+r},
I's={(P,N;P=1+r,0sN<1+r},
Is={(P,N;N=1+r,0sP<1+r},
ry={(P,N; P=0,0sN<1+r}.

If v is the exterior unit normal vector to 8Q and F(P, N) = (f(P, N), g(P, N)), we
have

F-v|r,=-h<0, Pe[0,1+7]
and, in the same way,
F-v|;, <0, Nel[0,1+7].

Moreover, F-v|r, is a linear function of N, which is negative for N=0and N=1+rif
r =7, with 7 sufficiently large. Similarly we have F-v|,, <0. Hence, by Theorem 3.4,
the result follows. m
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THEOREM 3.6. — Assume N =1 and
(312) Di+=Di_=D, ?::].,...,N.

Let r, a1, ..., ay be positive constants and define
N
0i=¢;(P;— Ny), Q=_219ja
=

Q={P,N)eR";0<P,N;<1+7r,i=1,...,N},
S*={P,N)eR*™ 020,9;<0a;,i=1,...,N},
S ={(P,N)eR™; 0<0,9;20a;,i=1,...,N}.
Then, there exists a positive constant + such that the convex sets
Zt=QnNnS*, X =QNnS-
are invariont for the concentrations when r= 7.
Proor. — In view of (3.12), we can apply Theorem 3.4 to the vector field F(P, N) and

the convex set £, where F(P, N) = (f;(P, N), g;(P, N)),i=1, ..., N. The boundary
of X* can be decomposed as follows:

(3.13) 85X+ ={(88*)NQIU {(8Q)NS~}.

Using the notation I to denote the set where y =a, we can write

N
a8+ = [rgu,u rgl]mS*,
t=1

. N N N N
5@=1{lU re)ul U ry)ul U rkr|ul U ri)ing.

Then, successively we have

(8.149)

L F'V|rg=i§1fi‘“gi|g=0=0,

IL. F-v|rsi=fi=iloi=a;= —#(P; + N;) 0] p;=a, <O 0n S,
IILa  F-v|r, = —f|p-o=—h <0,

IILb  F-v|py, = —gi|w-0=—hi<0,

IVa  F-v|rr=fi|p-1+e=0:iPy, ..., PP, ..., Ny), with

N
@i;Py, ..., ﬁi, ., Ny) = — k(1 +1‘)[ci[(1 +7)—N;]1+ _21 Qj] + Rk [1-(1+7) N;].
j=

j=i
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We claim that the function ¢ ; is nonpositive on the polyhedron & of RZ¥~! given by

(0<Pjsl+r, Vj=1,..,N, j=0
OSN;S1+r, Vj=1,..,N

N
3)=<Ci[(1+’r)_Ni]+.§:IQj>0

T
Gl(1+7)~N;I<a;
lej<a;, Vi=1,..,N, j=i

/

Since a; =0, & is non empty. For r large enough, we can write & as

~ N .
P=PN ci(1+T)—aiSciNi$ci(1+7'), 2 QJZQ[N»L—(].'*"")] ,
i=1
j#i

where

={0<P;j<l+7,0sN;<1l+7,90;Sa; ¥j=1,..,N, j=i}.

We observe that ¢ ; is a linear function of its variables, and therefore it will be non posi-
tive on &, provided it is non positive on 0. Iterating this argument (2N — 1) times, we

conclude that we only need to check the sign of ¢ ; on the vertices of the polyhedron &.
Let us consider the superior and inferior faces

§+=§ﬂ{ci(l+'r')}, 3"’"=§’ﬂ{ci(1+7')—ai}
and. the halfspace

XM= .21 Qj?Ci[Ni— (1+’l")] .
j=

=i
The intersection between each face with the halfspace gives

(0<P;<1+7r, 0SN;S1+r, g;Sa;, Vj=1,..,N, j=i)
Frnac= 4 ’

(0<P;<1+7r, 0SN;S1+7r, g;Sa;, ¥j=1,...,N, j=i)
F NI =3
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If we recall the expression of ¢;, we obtain

N
@i |s+noe=— k(1 +r)~_§1 0;+ k1 +rPI<h[1-(1+7F]<0,
i
where we have chosen 7 large enough in the last inequality. Similarly we have, again for
r large enough,

A

)

N .
@ils = —k(1 +7“)'[ai+ _21 Q]] +hi[1 - (1+7")[(1 +7)— -(E—Z”
1= .

j=i

shi{1—(1+r)[(1+r)— ﬂ”so.

G

In particular ¢; is nonnegative on all the vertices of #. The last remaining
condition

IVb F-v| riz <0 can be proved in the same way as before, and the conclusion
follows. ™

Theorem 3.1 implies a non-existence result:

THEOREM 3.7. — If N > 1, then hyperrectangular sets of the form

N
2=igl{(P,N)eR2N;OSPiSai,OSNiSﬁi,i=1, ,N}

cannot be invariant for the concentrations.
PRrOOF. - Let us suppose, by contradiction, X to be invariant. Consider the two parts
of 3% given by
F1={P1=a1}, F2={NN=ﬂN}~
We have
Fw"Vlr1 =f1(a1, Pz, ceey Nl’ eey NN) =

N
= _k1a1[01(061 -Np)+ ‘22 Cj(Pj_Zvj)} (1 = Ny)
i=

and, in particular,

fila, 0, ..,0,88)=—kalca;—cyByl+h <0
on the other hand
F-v|r,=gy(Py, Py, ..., Ny_1, By) =

N-1
:kNIBNl:jgl ¢;(P;— N;) + CN(PN_ABN)] + hy(1—PyBn)



G10VANNI CIMATTI - ILARIA FRAGALA: Inmvariant regions, etc. 109

and thus
gv(a1, 0, ..., 0, Bx) =kxBnlcia, —cyByl+hy<0.
Therefore we get the coupled inequalities
—kialc;a,—ceyfyl+h <0,
{ kxBnlciai—cyBnl+hy<0.

Put w =c¢,a; —cyBy, then

) Sws — hoy ,
kyoy knBw

which is impossible. Hence, by Theorem 3.4, X is not invariant. ®

As and immediate consequence of Theorems 3.7 and 3.2 we have

COROLLARY 8.8. — If N > 1 and the diffusion coefficients D;*, D;” are different, no
mvariant region can exist for the concentrations.
4. - The evolution problem.

In this section we prove existence and uniqueness for the initial-boundary value
problem given by equations (1.15)~(1.19), coupled with

4.1) P=P,, N=N, onodQ,

4.2) P(x,0)=Py(x), Nx,0)=Ny(x) 1in £,
4.3) ®=¢;, on 2,

4.4) v=0 on 3R,

(4.5) _ v(x,0) =vy(x) in Q.

Since uniqueness for the Navier-Stokes equations in dimension 3 is an open problem,
we limit our treatment to the case Q¢ R®. However, the result of existence remains
true in higher dimensions. Our proof is based on the existence of the invariant region
given by Theorems 3.5 and 3.6. No special hypotheses on the data Py, Ny, P;, IV,, apart
from regularity, are needed if N =1. When N > 1, we assume

4.6) Dt =D =D>0, i=1,..,N

and the existence of positive constants # and a; such that, with the notations of Theo-
rem 3.6,

@7y (P,,Ny)eZ*, VYzed®, (P, Np)eZ*, VeeQ,
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or
4.7) Py, Ny)eX™, VxedR, Py, NpeZ , VzeQ.

We recall below a lemma of functional analysis [9], and a result of regularity [10].

LEMMA 4.1. — Let B be a Banach space and T(w, 1) a continuous and compact
mapping of B x [0, 1] into B, such that T(w, 0) =u B for every w e B. Suppose there
exists a constant M such that

lells < 2,
Jor all (w, 1) e B x [0, 1] satisfying
4.8) w=T(w, 1).
Then the map T(w, 1) of B into itself has a fixed point.

THEOREM 4.2. — Let ¢>2, s> 2, 32 e C? and define Qr=2 x (0, T), Sp =392 x
x (0, T). Consider the problem

4.9) w=dAu+ > a;(x, t) u, + alx, t)u,
i=1

(4.10) u=1u, on Sy, u(xz, 0) =up(x) in Q,

and suppose

(4.11) laillsgm < @, lallsgy < =,
(4.12) upe W22/09(Q),  we W1204((0, T); W21/ 9(Q)),
(413) ’M/()lS:’M/b(x,O).

Then problem (4.9)-(4.10) has a unique solution we W 2((0, T); W*9(R)) which
satisfies

(4.14) l|u|lwlvq((o, ™, W2 9(@) S C{“uo HWZ-Z/M(Q) + [l ”W“I/Z‘I"I((O, ) WZ”/‘I"I(Q))} .
Furthermore w satisfies an Holder condition in Qp.
The main result of this section is the following

THEOREM 4.3. — Let Q be an open and bounded subset of R® such that 32 € C? and
let Qr= 2 X% (0, T). Assume g>2 and

(4.15) Py, Npe W2209(Q), Py, Ny=0 in Q,
(4.16) Py, Npe W2~ 10UQ), Py, Np=0 in Q.
Let (4.6) and (4.7); or (4.7); hold. Then there exists a unique solution (P, N, @, v) to
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problem (1.15)-(1.19), (4.1)-(4.5) such that

4.17) P;, N;e W-4((0, T); W>9(Q)),
(4.18) DeWh1((0, T); WH1(Q)),
4.19) : veL((0, T YNL=(0, T); H).

Moreover, P;, N; are momnegative functions which satisfy an Hélder condition
m QT'

Proor. To prove existence, we apply Lemma 4.1. Let B=L%((0,T);

H ()NL* (0, T); L*(R)) and @& = (P, N) e B?". Define T: BN x [0, 1]3® —we
e B%N via the following linear problem:

(4.20) Pi—PibEB, (Pi)tzDi+APi+
+A[(k;* V& — 0)-VP; — ¢;k;* Py(P,— N,) + (1 — P;N))1,
(421) Ni—NibEB, (Nz)tlenANz_i_
+ Al —(k; V& +8)-YN + ¢;k; N;(P; — N,) + k(1 — P;N,)],
(4.22) Pi(x,0) =Py(x), Ni(x, 0) = Nyp(x),
_ N
423) @-@,eL=((0,T); HY(Q), -A®=2 ¢(P;-N,),
j=1
(@424) eL®*(0, T v)NL=(0, Ty H), R@;+0u4d,)=

N
= —RVn+ Ap —A[T > ¢;(P;—N;) V<1>],
j=1

@425 V-6=0,
426) ©0=0 ondR, vx, 0)=vx).
As by Lemma 1.2 we have (&;, N;) e L*(Qp), by elliptic regularity (4.23) implies
V& eLE((0, T); H*(2)) N L= (0, T); H'(2))
and
Vo eL*((0, T); L7(2)), r<w.
Considering again Lemma 1.2, we infer
P-N)VSeL*(0, ), LYRQ)), s<4,

(Vo -5)eL*(Qr).
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Applying Theorem 4.2, we conclude that
(4-27) Pi’ NiEWI’q((O, T)) Wz,q(g))’ q>2’
(4.28) P;, N;eC"*@r).

Because of (4.14) T is ecompact; the proof of the continuity of T is quite elementary and
is omitted. For every we B, we have T(w, 0) =%, where %, = (P;, N;) is the sol-
ution of
(4 29) (pi)t = D,L'+ A?i! Fl = ?ib on a.Q, I_Ji(x, 0) = Pio(x) in 9] 5
' (N;)y=D; AN;, N;=N; on 82, N;(z,0)=Ny(x) in Q.

It remains to prove that all solutions of (4.8) are a priori bounded. If w = (P;, N;) satis-
fies (4.8) we have (4.28) and this in turn implies, by the regularity of the solutions of the
Navier-Stokes system

(4.30) Vo —veC® Q).

If N =1, (4.30) allows us to apply Theorem 3.5 and to conclude that there exists » >0,
independent of A1 €[0, 1], such that

(4.31) 0P, t)sl+r, (x,t)eQr,
4.32) 0<N@,t)<l+r, (x,t)eQr,

where the index 7 is omitted as we are dealing with only one ionic family. When N > 1
we use Theorem 3.6, recalling hypotheses (4.6) and (4.7), and we conclude:

(4.33) (P(x, t), Nz, t))eZ*, (x,t)eQr,
or
(4.34) (P(x, t), Nz, t))eZ~, (%, t)eQr.

By the usual bootstrap argument, w = (P;, N;) is bounded in the B-norm. Hence, by
Lemma 4.1, there exists at least one solution (P;, N;, @, v) to the initial-boundary
value problem (1.15)-(1.19), (4.1)-(4.5). Moreover, the crucial positivity condition for P;
and N; is satisfied by (4.31)-(4.34).

Uniqueness is proved as an elementary application of the Gronwall inequality. Let
(P,N, ®,v),(P',N, &', v") be two solutions and define p; = P, — P/, n;=N; — N/,
e=@~P', w=v—v'. Then (p, n, ¢, w) solves

(435) (p)y=D;" Ap; + k" V- (p; V@) + k;* V- (P{ Vo) — V-(P/ w) +

=V-(piv) — hi(p; N; + P{ n;),
4.36) (m)y=D; An;—k; V-(n; VD) —k; V-(N;/ Vo) — V- (N;/ w) +

=V (nv) = hy(piN; + P{ ny),
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(4.37) p;=0 on 82, p(x,0)=0 in 2,
(4.38) n;=0 on 9%, n;(x,0)=0 1in 2,
N
(4.39) —-Ap= 21 ¢(p;—my),
J:
(4.40) =0 on 3Q,

N .
(441) R, +Bv—-Bv')+Ajw= T 3 ¢;(P;Ve +p; V&’ — N;Vg —n, Vo),
j=1

(4.42) Vw=0,

(4.43) w=0 on JdQ, w(x,0)=0 on Q.
Define D =min{D;", D;,t=1, ..., N}. From (4.39) we have
(4.44) [Ve(®) [2< Cy(|p@®) 2+ [n(®)|2).

Let us multiply (4.35) by p; and (4.836) by »; and integrate by parts over Q. Using (4.44)
and the elementary inequality

2
lab| < 2+ Lpe,
2n 2

we find, for # >0 and for suitable constants C;= C;(%),

1d
P (|p® |* + |n(®) |?) + D(|Vp@) |* + | VR() |?) <

< Cy(|p@) |2+ |n() |2) + nCs(|VP®) |2+ |VR@) |2) + Cy |w(@) |2 .
Choosing 7 = D/Cs, we have

d
(4.45) Z (lp@®) |2+ [n@®) |2) S C5(|p@) |* + |r(®) |?) + Cs |w(t) | .

We take, a.e. in ¢, the scalar product of (4.41) with w(Z) in the duality between © and V',
and use (4.44). We get

4.46) R % lw(t) |2+ 2b(v(?), v(t), w(t)) — 2b(L'(t), v'(t), w(t)) | +

+2llw@®)|F < C;(|p(t) |2+ ) [2) .

Proceeding as in the proof of uniqueness for the 2-dimensional Navier-Stokes system,
we have, using Lemma 2.1 and Young’s inequality,

(4.47) % |w(t) |2< Cs(|p@) |2+ |r@)|2) + Collo @) |w(t) |2.
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Adding (4.45) and (4.47) we obtain
d
(4.48) % (Ip@) |2+ [n@) |2 + |w(t)|?) < (C7+ Ca)(|p@) |2 + |n(8) |?) +

+(Cs + Gyl [F) lw(®) |*.
The function ¢~ |w(t)|F is integrable, therefore we conclude, by Gronwall’s inequality,
(4.49) () |2 + |n(t) |* + |w(®)|> =0

and, by (4.39), |@(t)| =0. Thus, the solution is unique. =

5. — Decay to equilibrium with no flux at the boundary.

It is reasonable to expect that the asymptotic behaviour of our initial-boundary
value problem could be quite complex; here we limit ourselves to treat a particular case,
in which we have convergence to the trivial solution of the stationary problem,
ie.

(6.1) (P1y ooy Py Ny, ..., Ny, @, 0)=(1,...,1,1,...,1, D4, 0).
We suppose the medium electrically insulated. This implies

b
(6.2) i— =0 on 392.
v

Moreover, the concentrations (P;, N;) are subjected to homogeneous Neumann bound-
ary data

; ON;
(5.3) éﬂ:o, =0 on 8.
v v

The other conditions are unchanged:

(54) Pi(®,0) =Py(x), Ni(x,0)=Ny(x) in Q,
(5.5) v=0 on 392,
(5.6) v(xz,0)=vy(x) in Q.

If (P, N, &, v) is a solution corresponding to the new boundary conditions, we have,
integrating (1.12),

N
.1 > [ 1Py, 1) = Nj(w, )] dw =0.
=g

As a consequence, the total electric charge is zero and the present problem makes
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sense only if the compatibility condition
N
69 3 [ [Py(@) ~ Noj@)] do =0,
i=
Q

is satisfied. With minor changes, all considerations regarding the existence of invariant
regions can be repeated even with Neumann boundary conditions. For the present
problem it is also possible to give a result of existence and uniqueness similar to Theo-
rem.4.3.

Let

- 1 — 1
(56.9) P(t)=—— | Pi(a, t)dx, N;(t)= — | Nj(z, t)dx.
2] J 2] J

Our result on the large time behaviour of solutions holds if the diffusion is sufficiently
intense, and is based on the following

LEMMA 5.1. - Define
D=min{Di+,Di_, 7:=1, ...,N}.

Let (P, N, ®, v) be any solution which admits a bounded invariant region in R*N for
the concentrations (P, N). Then there exist positive constants D, T, y, and y’, such
that, when

D=D,
we have
(5.10) |[VP(t)|%+ |VN(@) |2 < ye ™,
(5.11) |PC, &) —P@)| sy'e™,
(5.12) |NG, ) -=N(@) | < y'e T

PROOF. — Let X be an invariant region, i.e. if (P(x, 0), N(x, 0)) € X for every x € 2,
then (P(x, t), N(x, t)) e X for every xe 2 and te (0, T). Set

#1= sup IVQD(OG, t)l ’ Ugz= sup Iv(x’ t)l H
P,N)eZ P,N)eX

pus= sup |P|, uy= sup [N|.
(P,N)eX P,NeZ

By the definition of invariant region and the regularity of @ and v, the constants u,,
k=1, ..., 4, are well defined. Put

(5.13) Wt) = % (|VP(#) |2+ | VN |2) .
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Calculating VP;; and VN, from (1.15) and (1.16), we estimate
N

(5.14) )= 3 [(VP;, VPy) + (N, W]
i<

Integrating by parts, in view of (5.2)-(56.6) and using the Cauchy-Schwartz inequality,
we get

(.15)  W(t) < —D(|AP®) | + |AN() |2) + CL(|AP(®) |2 + |AN(®) |?) +

+Co (|VP) |2+ |VN(H) |2),
where C; and C, are constants which depend only on the u,’s. The Neumann’s condi-
tions (5.3) imply the existence of a positive constant m, depending only on £, such
that
(5.16) |4P(t) |2 = m|VP(®) |2, |AN(@) |2 = m|VN@) |2

Therefore, if v=Dm — Cy; — C;m and

(6.17) D> M ,
m
we infer
(5.18) W(t) < [Cy + (C, — D) m}(|VP(t) |2+ |YN(®) |2),
ie.
(5.19) () < —7P(1).

This implies (5.10) and, by the Poincaré inequality, (5.11) and (6.12). =

The spatial averages of P; and N, satisfy the following coupled equations, obtained
integrating (1.15) and (1.16) over :

P; 1
d zzhil——IPiNidUC ,
dt 2]

(5.20) B
ANy _pli- L J’PiNidm .
at 2]
Defining
b [ om
(5.21) ZORET j [B,()N:(t) - Py(, ¢) Ny, )] dw ,

g
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we can write (5.20) as a system of ordinary differential equations; more precisely we
have

d;:i @) = b (1 = Bo(t) M) + g:(0),
(5.22) AN
dt" () = h; (1 = P;(8) N;(})) + g(t).

The term g;(t) can be estimated using (5.11) and (5.12). We obtain.
(5.23) lgz(t) | < Cie — ,

where the constants C; depend only on ug and u,. Let 0> 0. By (5.23) there exists a
time (o) such that

(5.24) lg; (| <o, Vt>1Ho).

THEOREM 5.2. — Suppose
(5.25) P,(0)=Py=Ny=N,;0), i=1,..,N.
Then we have
(5.26) tlim Pix,t)=1, tlim N, t)=1 i L%3(Q), i=1,...,N.
PrOOF. — In view of (5.25) and (5.22), we obtain P;(t) = N;(t). Therefore (5.22) re-

duces to a single equation. Let P;=P;(t) and consider the following Cauchy
problems

dP; —
27) il )+ 4:0)
ﬁi(z_)zﬁi’
do?
. =hi 1- 1?:2 to,
(5.28) dt [1-(giylxo

et =P;.

Assume 1—o0/h;>0. Comparing the solutions of (5.27) and (5.28), (see [18]), we
obtain

(5.29) \/1 + _h‘i > lim sup P;(¢) = lim inf P;(t) \/1 - hi .
i t— —>® i
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Since o > 0 is arbitrary, it follows
tlim P(t)=1.

Taking into account (5.11) and (5.12), we have (5.26). m
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