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Abstract: Using canonical 1-parameter family of Hermitian connections on the tangent
bundle, we provide invariant solutions to the Strominger system on certain complex Lie
groups and their quotients. Both flat and non-flat cases are discussed in detail. This paper
answers a question proposed by Andreas and Garcia-Fernandez in Comm Math Phys
332(3):1381–1383, 2014.
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1. Introduction

In [Str86], Strominger analyzed heterotic superstring background with nonzero torsion
by allowing a scalar “warp factor” for the spacetime metric. Consideration of supersym-
metry and anomaly cancellation imposes a complicated system of PDEs on the internal
manifold known as the Strominger system. Ever since then, there has been much ef-
fort devoted to finding solutions to the Strominger system. For threefolds, Strominger
described some perturbative solutions in [Str86]. Many years later, Li and Yau [LY05]
obtained the first smooth irreducible solutions to the system for U (4) or U (5) principal
bundles on Kähler Calabi-Yau manifolds, which was further developed in [AGF12]. As
for non-Kähler Calabi-Yau inner spaces, the first solution was constructed by Fu and
Yau [FY08]. Later, more non-Kähler solutions were found, especially on nilmanifolds,
see [FIUV09], [Gra11] and the references therein. Some local models were studied in
[FTY09].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-015-2374-0&domain=pdf
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From a mathematical point of view, the Strominger system can be formulated as fol-
lows. Let (Xn, g, J ) be an Hermitian n-fold (not necessarily Kähler) with holomorphi-
cally trivial canonical bundle and let� be a nowhere-vanishing holomorphic (n, 0)-form
on X . We denote the positive (1, 1)-form associated with g by ω and the curvature form
of (TCX, g) with respect to certain Hermitian connection by R. In addition, let (E, h)

be a holomorphic vector bundle over X and F its curvature form with respect to the
Chern connection. The Strominger system1 consists of the following equations (mostly
people are solely interested in the n = 3 case):

F ∧ ωn−1 = 0, F0,2 = F2,0 = 0, (1)
√−1∂∂ω = α′

4
(Tr R ∧ R − Tr F ∧ F), (2)

d(‖�‖ω · ωn−1) = 0. (3)

From now on, we will call Eqs. (1), (2) and (3) the Hermitian–Yang–Mills equation, the
anomaly cancellation equation and the conformally balanced equation respectively.

If ω is a Kähler metric, then Eq. (3) implies that ‖�‖ω is a constant. That is to say,
(X, g) has SU (n)-holonomy. From Yau’s theorem [Yau78], we know that there is a
unique such metric in the given cohomology class, assuming that X is compact.

For a general Hermitian manifold, Eq. (3) implies that the rescaled metric ω̃ =
‖�‖

1
n−1
ω · ω is balanced, i.e., d(ω̃n−1) = 0, in the sense of Michelsohn [Mic82]. This

condition imposes certain mild topological restriction for the internal manifold X , (see
[Mic82] for the intrinsic characterization of balanced manifolds), which excludes, for
instance, certain T 2-fiber bundles over Kodaira surface using a construction of Goldstein
and Prokushkin [GP04]. As ω̃ is balanced, it is also Gauduchon, i.e., ∂∂(ω̃n−1) =
0. Hence by the theorem of Uhlenbeck-Yau [UY86] and Li-Yau [LY87], Eq. (1) is
equivalent to the statement that E is poly-stable. Consequently, the main difficulty in
solving Strominger system is to deal with the anomaly cancellation equation.

As an analogue of the Kähler situation we discussed, we can think of the Strominger
system as a guidance on finding canonical metrics on balanced manifolds, at least for
non-Kähler Calabi-Yau’s, which further sheds light on understanding Reid’s fantasy
[Rei87]. Reid’s proposal basically says all Calabi–Yau’s are connected via conifold
transition by going into the non-Kähler territory.

The prototype of conifold transition is the transformation between smoothing and
deformation of the conifold {z21 + · · ·+ z24 = 0} ⊂ C

4. Therefore, it is of vital importance
to understand the Strominger system on the smoothing of the conifold, which can be
identified with the complex semisimple Lie group SL2C.

In 2013, Biswas and Mukherjee published a paper [BM13], claiming that they have
found an invariant solution to the Strominger system on SL2C. However, it was soon
pointed out byAndreas andGarcia-Fernandez [AGF14] that there was an error in Biswas
andMukherjee’s calculation and there is actually no solution to the Strominger system in
that setting. Furthermore, Andreas andGarcia-Fernandez proposed looking for solutions
to the Strominger system using Strominger-Bismut connection. Inspired by their idea,
we are able to obtain a few interesting invariant solutions to the Strominger system on
complex Lie groups and their quotients, which is the main result of this paper.

This paper is organized as follows. In Sect. 2 we briefly review the theory of Her-
mitian connections on an almost Hermitian manifold. Section 3 focuses in the flat (i.e.,

1 Here we follow the formulation in [LY05].
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F ≡ 0) case. Using the canonical 1-parameter family of Hermitian connections de-
scribed in Sect. 2, we obtain a class of invariant solutions to the Strominger system on
various complex Lie groups, giving a rather complete answer to the problem discussed
by [BM13] and [AGF14]. In Sect. 4 we take non-flat bundles E into consideration. In
particular, for the SL2C case, we construct invariant solutions to the Strominger system
for trivial but non-flat bundle E of any rank.

2. The Canonical 1-parameter Family of Hermitian Connections

Asargued in [Str86], Strominger system requires the connection on TCX to beHermitian,
i.e., it preserves both the metric g and the complex structure J . A natural choice of such
connection is the Chern connection. However, as shown in [AGF14], the ansatz used by
[BM13] always yields R = 0, violating the anomaly cancellation equation. Therefore
we need to consider more general Hermitian connections other than Chern. Following
[Gau97],wewill review the general theory ofHermitian connections and the construction
of the canonical 1-parameter family of Hermitian connections.

Let (Xn, g, J ) be an almost Hermitian n-fold. Using the Riemannian metric g, we
may identify any real TRX -valued 2-form B ∈ �2(TRX)with a real trilinear formwhich
is skew-symmetric with respect to the last two variables:

B(U, V,W ) = 〈U, B(V,W )〉 for any vector fields U, V,W.

Let ω be the associated Hermitian form, we also introduce the real 3-form dcω by

dcω(U, V,W ) = −(dω)(JU, JV, JW ).

If J is integrable, dc coincides with the usual notation dc = √−1(∂ − ∂). LetM be the
involution on �2(TRX) defined by

(MB)(U, V,W ) = B(U, JV, JW )

and we denote the (+1)-eigenspace ofM by �1,1(TRX).

Definition 2.1. AHermitian connection∇ on TRX is an affine connection that preserves
both the metric g and the complex structure J , i.e., ∇g = 0 and ∇ J = 0.

It is easy to see that the space of Hermitian connections forms an affine space modelled
on �1,1(TRX).

The canonical 1-parameter family of Hermitian connections ∇ t is defined by

〈∇ t
U V,W 〉 = 〈DUV,W 〉 + 1

2
〈(DX J )JY, Z〉

+
t

4
((dcω)+(U, V,W ) + (dcω)+(U, JV, JW )),

where D is the Levi-Civita connection and α+ denotes the (2, 1)+(1, 2)-part of a 3-form
α.

Theorem 2.2 ([Gau97]). The canonical 1-parameter family of Hermitian connections
forms an affine line. To be precise, it satisfies

∇ t = ∇0 +
t

4
((dcω)+ +M(dcω)+),

where we have to identify the 3-form (dcω)+ as an element of �2(T M). This affine line
parameterizes all the known “canonical” Hermitian connections:
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(a) t = 0, it is known as the first canonical connection of Lichnerowicz.
(b) t = 1, it is known as the second canonical connection of Lichnerowicz. When J is

integrable, it is nothing but the Chern connection.
(c) t = −1, this is the Strominger-Bismut connection.
(d) t = 1/2, it has been called the conformal connection by Libermann.
(e) t = 1/3, this is the Hermitian connection that minimizes the norm of its torsion

tensor.

When X is Kähler, this line collapses to a single point, i.e. the Levi-Civita connection.

In our case, J is always integrable thus (dcω)+ = dcω. Therefore we have the
following simplified expression

∇ t = ∇1 +
t − 1

4
(dcω +M(dcω)).

3. Flat Invariant Solutions

In this section, we will solve the Strominger system on complex Lie groups using the
ansatz proposed in [BM13]. As we will see, this is the most natural and symmetric
solution one can expect. The name “flat” comes from the assumption that the extra bundle
E is flat, i.e., F ≡ 0. Under such assumption, the Hermitian–Yang–Mills equation (1)
is satisfied automatically, and therefore the Strominger system reduces to the following
equations

√−1∂∂ω = α′

4
Tr R ∧ R, (4)

d(‖�‖ω · ωn−1) = 0. (5)

Now we assume that X is a complex Lie group and let e ∈ X be the neutral element.
Obviously X is holomorphically parallelizable, hence it has trivial canonical bundle.
Given any Hermitian metric on TeX , we can translate it to get a left-invariant Hermitian
metric on X . Let us still denote the associated Hermitian form byω. It follows that under
such metric, ‖�‖ω is a constant and the conformal balanced Eq. (3) dictates that ω is a
balanced metric. The straightforward calculation from [AG86] shows that ω is balanced
if and only if X is unimodular. Moreover this condition is independent of the choice of
the left-invariant metric.

From now on we will assume that X is a unimodular complex Lie group and ω

is left-invariant. So Eq. (3) holds and we only have to consider the reduced anomaly
cancellation equation (4). The new idea here is to use the canonical 1-parameter family
of Hermitian connections described in Sect. 2 to compute R. In order to do that let us
fix some notations first.

Let g be the complex Lie algebra associated with X and let e1, . . . , en ∈ g be
an orthonormal basis under the given left-invariant metric. In addition we define the
structure constants cki j in the usual way

[ei , e j ] = cki j ek .

Let {ei }ni=1 be the holomorphic 1-forms on X such that ei (e j ) = √
2δij . Then we can

express the Hermitian form ω as

ω =
√−1

2

n∑

i=1

ei ∧ ei .



Invariant Solutions to the Strominger System on Complex Lie Groups and Their Quotients 1187

Furthermore, the Maurer–Cartan equations give

dei = − 1√
2

∑

j<k

cijke
j ∧ ek . (6)

Now we shall compute the canonical 1-parameter family of Hermitian connections
∇ t . We may trivialize the holomorphic tangent bundle TCX by {ei }ni=1. Under such
trivialization, the Chern connection ∇1 is simply d and we thus get

∇ t = d +
t − 1

4
(dcω +M(dcω)) � d + At .

Now

dcω = √−1(∂ − ∂)ω = 1

2

∑

i

dei ∧ ei + ei ∧ dei

= − 1

2
√
2

∑

i

∑

j<k

(cijke
j ∧ ek ∧ ei + cijke

i ∧ e j ∧ ek)

= − 1

2
√
2

∑

i

∑

j<k

cijk(e
j ⊗ (ek ∧ ei )−ek ⊗ (e j ∧ei ) + ei ⊗ (e j ∧ek))+conjugate,

and therefore

dcω +M(dcω) = − 1√
2

∑

i, j,k

cijke
j ⊗ (ek ∧ ei ) + conjugate.

If we write ei = xi − √−1J xi , then {xi , J xi }ni=1 form a real orthonormal frame of
T ∗
R
X , and

dcω +M(dcω)

= −√
2

∑

i, j,k

Re(cijk)
(
x j ⊗ (xk ∧ xi + J xk ∧ J xi )+ J x j ⊗ (xk ∧ J xi − J xk ∧ xi )

)

−Im(cijk)
(
x j ⊗ (xk ∧ J xi − J xk ∧ xi ) − J x j ⊗ (xk ∧ xi + J xk ∧ J xi )

)
.

Using

At (U, V,W ) = 〈At (U )V,W 〉
that identifies At ∈ �2(TRX) as an element in �1(End TCX), we can rewrite the above
equality as

At = 1 − t

2
√
2

∑

i, j,k

Re(cijk)(x
j ⊗ Aki +

√−1J x j ⊗ Ski )

−Im(cijk)(
√−1x j ⊗ Ski − J x j ⊗ Aki )
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= 1 − t

4
√
2

∑

i, j,k

e j ⊗ cijk(Aki − Ski ) + e j ⊗ cijk(Aki + Ski )

= t − 1

2
√
2

∑

i, j,k

cijke
j ⊗ Eki − cijke

j ⊗ Eik .

Here, Aki is the skew-symmetric matrix whose (i, k)-entry is 1 and (k, i)-entry is -1,
Eki the matrix whose (k, i)-entry is 1 and Ski the symmetric matrix whose both (i, k)
and (k, i)-entries are 1. If k = i , Skk is the matrix with (k, k)-entry being 2. All other
entries not mentioned above vanish.

It is straightforward to verify that the above expression gives exactly

At = t − 1

2
√
2

∑

i

ei ⊗ ad(ei )
T − ei ⊗ ad(ei ). (7)

Consequently,

Rt = dAt + At ∧ At = t − 1

2
√
2

∑

i

dei ⊗ ad(ei )
T − dei ⊗ ad(ei ) + At ∧ At .

As Tr At ∧ At = 0, it follows directly from unimodularity that the first Chern form

c1 =
√−1

2π
Tr Rt = 0.

Remark. From the expression of At , we know that, as an element of �1(End TCX),
At does not depend on the left-invariant metric we begin with. It follows that Rt =
dAt + At ∧ At does not depend on the metric either. However the canonical 1-parameter
family of Hermitian connections does depend on the choice of the metric.

Now we want to compute

Tr Rt ∧ Rt = Tr dAt ∧ dAt + 2 · Tr At ∧ At ∧ dAt + Tr At ∧ At ∧ At ∧ At .

It is well-known that the last term Tr At ∧ At ∧ At ∧ At is 0. Let us compute the first
two terms separately.

The first term is

Tr dAt ∧ dAt = (t − 1)2

8

∑

i, j

Tr
(
(dei ⊗ ad(ei )

T − dei ⊗ ad(ei ))

∧(de j ⊗ ad(e j )
T − de j ⊗ ad(e j ))

)

= (t − 1)2

8

∑

i, j

dei ∧ de j · Tr
(
ad(ei )

T ad(e j )
T
)

− dei ∧ de j · Tr
(
ad(ei )

T ad(e j )
)

+ conjugate of the above line.
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Proposition 3.1.
∑

i, j

dei ∧ de j · Tr(ad(ei )T ad(e j )T ) = 0.

Proof. We first make two observations. For the dimension in which physicists are most
interested, i.e. n = 3, Proposition 3.1 is trivially true since dei ∧ de j = 0. If X is
nilpotent (hence unimodular), the above equation holds because Tr(ad(ei )T ad(e j )T ) =
κ(ei , e j ) = 0, where κ is the Killing form.

For the general case, we use Eq. (6) to expand the LHS and we only have to proof
the following identity

∑

i, j,r,s,a,b,c,d

ciabc
j
cdc

r
isc

s
jr · ea ∧ eb ∧ ec ∧ ed �

∑

a,b,c,d

Fabcd · ea ∧ eb ∧ ec ∧ ed = 0.

Like Riemannian curvature tensor, Fabcd has many symmetries. It is straightforward
from the definition that

Fabcd = −Fbacd = −Fabdc = Fcdab.

It follows that Proposition 3.1 is equivalent to the Bianchi identity

Fabcd + Facdb + Fadbc = 0.

Using the Jacobi identity

cijkc
r
il + ciklc

r
i j + cil j c

r
ik = 0

repetitively, we deduce that2

Fabcd = (ciabc
r
is)c

j
cdc

s
jr = −(cibsc

r
ia + cisac

r
ib)c

j
cdc

s
jr = c jcd(c

s
jr c

i
sb)c

r
ia − c jcd(c

s
jr c

i
sa)c

r
ib

= −c jcd(c
s
rbc

i
s j + csbj c

i
sr )c

r
ia + c jcd(c

s
rac

i
s j + csaj c

i
sr )c

r
ib

= c jcdc
i
s j (c

r
ibc

s
ra + crai c

s
rb) + c jcdc

i
sr (c

s
jbc

r
ia − csjac

r
ib)

= c jcdc
i
s j c

r
abc

s
ri + c jcdc

i
sr (c

s
jbc

r
ia − csjac

r
ib)

= −Fabcd + c jcdc
i
sr (c

s
jbc

r
ia − csjac

r
ib).

Using the symmetry Fabcd = Fcdab, we get

4Fabcd = c jcdc
i
sr (c

s
jbc

r
ia − csjac

r
ib) + c jabc

i
sr (c

s
jdc

r
ic − csjcc

r
id).

Rotate the indices (b, c, d) and sum them up, after a rearrangement of terms, we get

4(Fabcd + Facdb + Fadbc)

= (c jcdc
s
jb + c jdbc

s
jc + c jbcc

s
jd)c

r
iac

i
sr − (c jcdc

s
ja + c jdac

s
jc + c jacc

s
jd)c

r
ibc

i
sr

+(c jabc
s
jd + c jbdc

s
ja + c jdac

s
jb)c

r
icc

i
sr − (c jabc

s
jc + c jbcc

s
ja + c jcac

s
jb)c

r
idc

i
sr = 0.

2 We adopt the Einstein notation for summation here.
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As a consequence of Proposition 3.1, we conclude

Tr dAt ∧ dAt = − (t − 1)2

4

∑

i, j

dei ∧ de j · Tr(ad(ei )T ad(e j )).

Now we proceed to compute the second term.

2 · Tr At ∧ At ∧ dAt = (t − 1)3

16
√
2

∑

i, j,k

Tr
{(

dei ⊗ adT (ei ) − dei ⊗ ad(ei )
)

∧
(
e j ∧ ek ⊗ ad[ek, e j ]T + e j ∧ ek ⊗ ad[e j , ek]

−2e j ∧ ek ⊗ [ad(e j )T , ad(ek)]
)}

.

Like before, we have the following

Proposition 3.2.
∑

i, j,k

dei ∧ e j ∧ ek · Tr(ad(ei )T ad[ek, e j ]T ) = 0.

Proof. This is actually equivalent to Proposition 3.1. ��
Proposition 3.3.

∑

i, j

dei ∧ e j ∧ ek · Tr(ad(ei )T [ad(e j )T , ad(ek)]) = 0.

Proof. The proof is very similar to the one of Proposition 3.1 but with less
complexity. ��
Proposition 3.4.
∑

j,k

dei ∧ e j ∧ ek · Tr(ad(ei )T ad[e j , ek]) = −2
√
2

∑

l

dei ∧ del · Tr(ad(ei )T ad(el)).

Proof. Direct calculation.

Combining Propositions 3.2, 3.3 and 3.4, we get

2 · Tr At ∧ At ∧ dAt = − (t − 1)3

4

∑

i, j

dei ∧ de j · Tr(ad(ei )T ad(e j )),

Tr Rt ∧ Rt = − t (t − 1)2

4

∑

i, j

dei ∧ de j · Tr(ad(ei )T ad(e j )).

Corollary 3.5. Whenwe choose theHermitian connection to be either theChern connec-
tion (t = 1) or the first canonical Lichnerowicz connection (t = 0), we haveTr R∧R = 0
and thus the Strominger has no solution using our ansatz. This generalizes the result in
[AGF14].
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Remark. From calculation above, it is tempting to conjecture that Tr(Rt )k is always a
real (k, k)-form. However, Rt itself in general contains both (2, 0) and (0, 2) parts, and
therefore it does not satisfy the so-called equation of motion derived from the heterotic
string effective action.

As

√−1∂∂ω = 1

2

∑

i

dei ∧ dei ,

the anomaly cancellation Eq. (2) reduces to

∑

i

dei ∧ dei = − t (t − 1)2

8
α′ ∑

j,k

de j ∧ dek · Tr(ad(e j )T ad(ek)). (8)

It seems that in general whether Eq. (8) has a solution or not is not easy to answer.
However, we have the following result.

Theorem 3.6. If we further assume that X is semisimple, then there is a unique left-
invariant Hermitian metric up to scaling, i.e., the one coming from the Killing form,
such that our ansatz of solution does exist. If we pick t < 0, for instance the Strominger-
Bismut connection, we obtain solutions with α′ > 0; if we pick t > 0 with t �= 1, we get
solutions with α′ negative.

Proof. When X is semisimple, then {de1, . . . , den} are linear independent 2-forms.
Therefore Eq. (8) requires that Tr(ad(ei )T ad(e j )) = cδi j for some positive c. This
determines the metric uniquely. ��

We can say a little more about Eq. (8) in complex dimension 3. Actually we can
classify all the 3-dimensional complex unimodular Lie algebras.

Proposition 3.7. Let g be a 3-dimensional unimodular Lie algebra over C, then g must
be isomorphic to one of the follows:

(a) g is abelian,
(b) dimC[g, g] = 1, g = span{h, x, y} with [h, x] = [h, y] = 0, [x, y] = h,
(c) dimC[g, g] = 2, g = span{h, x, y} with [h, x] = x, [h, y] = −y, [x, y] = 0,
(d) g = sl2C.

Remark. Cases (a), (b), (c) and (d) each corresponds to the abelian, nilpotent, solvable
and semisimple Lie algebra respectively. They are listed in Page 28 of [Kna02]. For their
Lie groups, Case (a) and (d) are well-known. Case (b) corresponds to the Heisenberg
group and Case (c) corresponds to the complexification of the group of rigid motions
on R

2.

For case (a), any invariant metric is actually Kähler and our ansatz solves the Stro-
minger system because both sides of the anomaly cancellation equation (2) are 0. Case
(d) has been treated in Theorem 3.6, so we only discuss the other two situations.

For Case (b), we have Z(g) = [g, g] is 1-dimensional, and we may assume it is
spanned by e1. Under such assumption, the only nontrivial structure constant is c123 =
−c132 �= 0, others are 0. It follows that ad(e1) = 0 and de2 = de3 = 0. One can calculate
easily that Tr Rt ∧ Rt = 0 while Rt �= 0 for t �= 1. This gives an example of a non-flat
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connection on a bundle such that all the Chern forms are 0. In particular Eq. (8) has no
solution in this case.

For Case (c), [g, g] is 2-dimensional. Without loss of generality, we may assume it
is spanned by {e1, e2}. Under such assumption, we have

ad(e1) =
⎛

⎝
0

0
α β 0

⎞

⎠ , ad(e2) =
⎛

⎝
0

0
γ −α 0

⎞

⎠ , ad(e3) = −
⎛

⎝
α β

γ −α

0

⎞

⎠

with α2 + βγ �= 0. In addition, we have the following formulae for computing exterior
derivatives:

de1 = − 1√
2
(αe1 ∧ e3 + γ e2 ∧ e3),

de2 = − 1√
2
(βe1 ∧ e3 − αe2 ∧ e3),

de3 = 0.

It follows that de1 and de2 are linearly independent and

√−1∂∂ω = 1

2
(de1 ∧ de1 + de2 ∧ de2),

Tr Rt ∧ Rt = − t (t − 1)2

4

∑

i, j=1,2

dei ∧ de j · Tr(ad(ei )ad(e j )T ).

It follows that the anomaly cancellation equation has a solution if and only if ad(e1)
and ad(e2) are orthonormal (up to a positive scalar) under the metric 〈x, y〉 = Tr(x ȳT ).
Or equivalently, under the induced metric, ad(h) : [g, g] → [g, g] is unitary (up to a
positive scalar).3

To summarize, we have the following result:

Theorem 3.8. For any Lie group with Lie algebra (b), there is no flat invariant solution
to the Strominger system. For any Lie group with Lie algebra (c) with the basis {h, x, y}
chosen. As long as x and y are orthogonal to each other in the Hermitian metric, our
ansatz solves the Strominger system with α′ > 0 for t < 0 and α′ < 0 for t > 0 and
t �= 1.

Remark. As our ansatz are invariant under left translation, solutions to the Strominger
system on X descend to solutions on the quotient �\X for any discrete closed subgroup
�. By Wang’s classification theorem [Wan54], such quotients include all the compact
complex parallelizable manifolds.

4. Non-flat Invariant Solutions

In this section, we will consider invariant solutions to the Strominger system with non-
trivial F .

Let ρ : X → GLnC be a faithful holomorphic representation, then X naturally acts

on C
n from right by setting v · g := ρ(g)

T
v for g ∈ X which we abbreviate to ḡT v.

3 Note this condition does not depend on the choice of h.
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Consider the following Hermitian metric H defined on the trivial bundle E = X × C
n :

at a point g ∈ X , the metric is given by

〈v,w〉g = (v · g)T B̄(w · g) = vT ḡ B̄gT w̄,

where B = B̄T is some fixed positive Hermitian matrix, v,w ∈ C
n are arbitrary column

vectors. Choose the standard basis for Cn as a holomorphic trivialization, then

Hg = (hi j̄ )g = ḡ B̄gT .

Let us compute its curvature F with respect to the Chern connection. Now F0,2 =
F2,0 = 0 is satisfied automatically, and by the formula F = ∂(H̄−1∂ H̄), we get

F = ∂[(ḡT )−1(B−1g−1∂g · B)ḡT ]
= −(ḡT )−1[(∂ ḡT · (ḡT )−1)(B−1g−1∂g · B) + (B−1g−1∂g · B)(∂ ḡT · (ḡT )−1)]ḡT .

Notice that g−1∂g is the Maurer-Cartan form

g−1∂g = 1√
2

∑

i

ei ⊗ ei .

Therefore

F = −1

2
(ḡT )−1

⎛

⎝
∑

i, j

ei ∧ e j ⊗ [B−1ei B, eTj ]
⎞

⎠ ḡT

and thus Tr F = 0. Furthermore, if we set e′
m = B−1/2em B1/2, then we have

Tr F ∧ F = 1

4

∑

i, j,k,l

ei ∧ ek ∧ e j ∧ el · Tr([B−1ei B, eTk ][B−1e j B, eTl ])

= −1

8

∑

i, j,k,l

ei ∧ e j ∧ ek ∧ el · Tr([e′
i , e

′
k
T ][e′

j , e
′
l
T ] − [e′

i , e
′
l
T ][e′

j , e
′
k
T ])

= −1

8

∑

i, j,k,l

ei ∧ e j ∧ ek ∧ el · Tr([e′
i , e

′
j ][e′

k
T
, e′

l
T ])

= 1

8

∑

i, j,k,l

cmi j c
n
kle

i ∧ e j ∧ ek ∧ el · Tr(e′
me

′
n
T
)

=
∑

m,n

dem ∧ den · Tr(e′
me

′
n
T
).

Similar calculation shows that the Hermitian–Yang–Mills equation (1) is equivalent to

∑

i

[e′
i , e

′
i
T ] = 0.

From now on, we will restrict ourselves to the SL2C case.
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Let ρ be the standard representation on C
2. The Strominger equation is reduced to

∑

i

[e′
i , e

′
i
T ] = 0, (9)

− 2

α′ δi j = t (t − 1)2

4
Tr(ad(ei )ad(e j )

T
) + Tr(e′

i e
′
j
T
). (10)

If we set the metric on sl2C to be 〈U, V 〉 = Tr UV
T
and B = id, then (9) holds and

the three terms in (10) are proportional. As along as t (t − 1)2 + 4 �= 0, we may choose
the coupling constant α′ properly to obtain invariant non-flat solutions to the Strominger
system. If t = 0 or 1, then (10) becomes

− 2

α′ δi j = Tr(e′
i e

′
j
T
)

and more solutions can be found. In fact, if we identify sl2C ∼= C
3 ∼= Sym2

C
2, then as

long as the metric on sl2C is induced from a metric on C
2, our ansatz gives a solution

to the Strominger system with vanishing R and negative α′.

Remark. It is well-known that all the irreducible representations of SL2C are generated
by the standard representation onC2. Therefore from any solution above,we can produce
solutions to the Strominger system with trivial bundle E of arbitrary rank. In addition,
this argument generalizes to many other complex semisimple Lie groups.

Remark. Some new phenomenon occur when g is the Heisenberg algebra (b). For
example, X = XH is the Heisenberg group

XH =
⎧
⎨

⎩

⎛

⎝
1 a b

1 c
1

⎞

⎠ : a, b, c ∈ C

⎫
⎬

⎭ .

It can be checked directly that the anomaly cancellation equation (2) can always be
solved by choosing α′ < 0 properly. However the Hermitian–Yang–Mills equation (9)
is hard to solve. For example, let ρa : XH → GL3C be the representation given by
“conjugation by a”, i.e., ρa(g) = aga−1 for some a ∈ GL3C, g ∈ XH . We would like
to find a such that Eq. (9) has a solution. If we think of entries of a as unknowns, then
Eq. (9) can be rewritten as a system of degree 6 real polynomial equations, which is not
easy to solve. In a very simple case that B = a = id, we can never find e1, e2, e3 such
that the Hermitian–Yang–Mills equation holds.

Remark. Let� be a discrete subgroup of X , then E ′ = C
n×� X can be naturally viewed

as a vector bundle over X ′ = �\X . Moreover, one can see from our construction that
the metric H descends to an Hermitian metric on the vector bundle E ′. Unfortunately, it
seems that there is no natural holomorphic structure on the total space of E ′ and we can
not naïvely obtain solutions of the Strominger system on X ′ in this way. If we modify
the right action of X on C

n by v · g = ρ(g)T v, then the holomorphic structure does
descend on E ′ and we get a holomorphic vector bundle E ′ over X ′. However, the price
to pay is that the similarly constructed metric on E turns out to be flat and it reduces to
the situation of Sect. 3.
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