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Invariant Spherical Hyperfunctions on The Tangent 

Space of A Symmetric Space 

Jiro Sekiguchi 

Introduction 

This paper deals with the study of invariant spherical hyperfunctions 

on the tangent space of a semisimple symmetric space. 

First recall the results on invariant eigendistributions (=IED) on a 

real semisimple Lie algebra. Hence let g be a real semisimple Lie algebra 

and let grs be the totality of regular semisimple elements of g. Then 

Harish-Chandra showed the following famous theorem (cf. [HCI]): 

Theorem I. Every invariant eigendistribution on g is a locally D-func-

lion. 

At one step of the proof of this theorem, he also showed the following 

theorem ([HC3]): 

Theorem II. Let u be an lED on g. Then the restriction of u to grs 

determines u itself, that is, if u is zero on gw then u is identically zero on 

the whole space g. 

In this paper, we attempt to obtain a generalization of the results 

mentioned above for invariant spherical hyperfunctions on the tangent. 

To explain our main result, we need some notation. Let II be an involu­

tion of g and let g = lj + q be the direct sum decomposition for II, where lj 

and q are the 1 and -1 eigenspaces of II, respectively. Then one can 

naturally define an invariant spherical hyperfunction ( = ISH) on the vector 

space q (§ 5). An ISH is, by definition, a hyperfunction solution of a 

holonomic system vitA of differential equations on q. In the case where 

g=g'EBg' (g' is semisimple) and II(X, Y)=(Y, X) «X, Y) E g), every ISH 

on q (~g') is nothing but an IED on g'. Hence the notion of an ISf! is a 

natural generalization of that of an lED on a semisimple Lie algebra. 

Since every ISH u on q is real analytic on qrs (=the set of q-regular 

semisimple elements of q), it is rather easy to treat the restriction of u to 
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qTS' This and Theorem II above lead us to the following problem: 

Problem. Does there exist a non-zero ISH u on q such that Supp (u) 

is contained in q-qTS? 

An ISH u is called singular if Supp (u) is contained in q-qTS' Then 

there exists a non-zero singular ISH on q for some symmetric pair (g, fj) 

(cf. § 6). But we can show the following theorem which is an analogue 

of Theorem II (cf. § 5, Theorem 5.2). 

Theorem 1. Let (g, fj) be a symmetric pair. Assume that OiZ) >0 

for every q-distinguished element Z of q (for the definition of the number 

o,(Z), see § 1). Then there exists no non-zero singular invariant spherical 

hyperfunction on q. 

Our method of the proof of Theorem 1 is based on Atiyah's lecture 

note [A] which is an intelligent introduction to Theorem I of Harish­

Chandra. We are going to explain the main part of the argument. Let 

o be the pseudo-Laplacian on q. Following Atiyah [A], for an arbitrary 

element Z of q, we calculate the radial component of 0 at Z by use of a 

specified local coordinate system near Z. The choice of this local coordi­

nate system plays a fundamental role in the proof of Theorem 1. In the 

case where Z is nilpotent, the radial component of 0 for the local coordi­

nate is already obtained by van Dijk [vD]. At any rate, if oiZ) >0 for 

an arbitrary q-distinguished element Z of q, the proof of Theorem I goes 

parallel to the arguments in [A]. So we obtain Theorem 1. 

Needless to say, the assumption of Theorem 1 holds for a Riemannian 

symmetric pair or a pair of the form (g'EBg', g') (which is regarded as the 

case of the Lie algebra g'). But for these cases, the conclusion of Theorem 

1 is already known. In fact, in the former case, every ISH on q is real 

analytic. On the other hand, Theorem I is reduced to Theorem II in the 

latter case. 

The next problem is to determine whether for a given symmetric pair 

(g, fj), the assumption of Theorem 1 holds or not. Hence it is important 

to classify all the symmetric pairs satisfying the assumption. Let (goo fjc) 

be the complexification of (g, fj) and let go be a real form of gc such that 

fo=fjc n go is a maximal compact subalgebra of go. We shall show the 
next theorem in Section 6 (cf. Theorem 6.3). 

Theorem 2. Retain the notation above. Let 2 be the restricted root 

system of go. For every root A E 2, let m). be the multiplicity of A. Assume 

that m).+m2).::':;:2 for all A E 2. (For example, this condition holds in the 

case where go is a normal real form of gc.) Then the assumption of Theorem 
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1 holds for the pair (g, fj). 

Our proof of this theorem is based on the classification of all the 

nilpotent orbits of complex simple Lie algebras. 

At an early stage of the preparation of this paper, the author proved 

Theorem 1 only in the case of invariant spherical distribution (=ISD). T. 

Oshima showed him Proposition 2.3 in Section 2 as well as its proof. Once 
the proposition is established, so is Theorem 1 not only for the case of 

distributions but also for the case of hyperfunctions. It is worthwhile to 

state a conjecture concerning the difference between ISD and ISH. Let 

vilA be the holonomic system introduced in Section 5. Note that an ISD 

is, by definition, a distribution solution of vi( A' 

Conjecture. vii A is a regular holonomic system in the sense of 
Kashiwara-Kawai (cf. [HK)). 

If this is true, one would show, as a corollary, that any ISH turns out 

to be an ISD. Hence, there exists no difference between ISH and ISD. 

Acknowledgement. The author wishes his hearty thanks to Mr. T. 

Kawazoe for fruitful discussions with him about this topic and also to 

Prof. T. Oshima for showing him the proof of Proposition 2.3. 

§ 1. Semisimple and nilpotent elements associated with symmetric spaces 

In this section, we discuss the structure of the tangent space of a 

symmetric space. This will be needed in the subsequent discussions. 

(Ll) First introduce some standard notation. In this paper, N 
always means the set {O, 1,2, ... }. If V is a real vector space, we denote 

by Ve its complexification. Also we denote by V* and V; the duals of V 

and Ve, respectively. Moreover SeVe) denotes the symmetric algebra over 

Ve' For a real Lie algebra g, U(ge) denotes the enveloping algebra of ge 
and for an element X of g and a linear subspace V of g, we put Vx = 
{Z E V; [Z, X]=O}. 

(1.2) Let g be a real semisimple Lie algebra and let u be its involu­

tion. As usual, fj and q denote the 1 and -1 eigenspaces of u, respectively. 

Then g=fj+q is a direct sum decomposition. In this paper, the pair 
(g, fj) obtained in this way is called a symmetric pair. If G is the adjoint 

group of g, then u is lifted to G. For the sake of simplicity, the lifting of 
q is denoted by the same letter. Define Ga={g E G; ug=g} and let Hbe 
the identity component of Ga. Then fj is the Lie algebra of H. Since 

[fj, q]cq, H acts on q. The coset space GIH is a semisimple symmetric 
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space and the tangent spa('e of G/H at eH is identified with q. 

Let !7 and .AI be the totality of semisimple elements and that of 

nilpotent elements of g, respectively. Put !7(q)=!7 n q and its elements 

are called semisimple elements of q. Similarly, put .AI(q)=.AI n q and its 

elements are nilpotent elements of q. 

(1.3) First recall the Jordan decomposition of elements of q. 

Lemma 1.1. Take Zo E q. 

(i) There exist unique elements Ao E !7(q) and Xo E .AI(q) such that 

Zo=Ao+Xo and that [Ao, Xo]=O. 

(ii) gzo=gAo n gxo' 

Definition 1.2. (i) The number min {codimqH.Z; Z E q} is called 

the rank of (g, fj) or that of q and is denoted by rank q. 

(ii) As element Z of q is called q-regular if codimq H· Z conicides 

with rank q. 

Lemma 1.3. Let S(qc)H be the totality of H-invariant elements of 

S(q.). Then there exist homogeneous elements Pt, .. " P L (l=rank q) such 

that S(qc)=C[Pl> "', PL]' 

This is due to Chevalley (cf. [KR]). 

0.4) We review semisimple elements of q. A linear subspace a of 

q is called a Cart an subspace of q if a is a maximal abelian subspace of q 

consisting of semisimple elements. By definition, the dimension of a coin­

cides with rank q. It is known (cf. [OM]) that there are only a finite 

number of H-conjugate classes of Cartan subspaces of q. Now take a 

Cartan subspace a of q and fix it once for all. For a linear form A on ac, 

we define 

g~ = {X E gc; [A, X] =A(A)X for all A Ea.} 

and 

2(a)={A E a;; g~*{O}}-{O}. 

Then 2(a) becomes a root system. In fact, 2(a) coincides with the re­

stricted root system of an appropriate real form of gc (cf. [OS]). Define 

a' ={A E a; A(A):;t:O for all A E a}. Then it is clear that every element of 

a' is q-regular. For this reason, this is called a q-regular semisimple ele­

ment of a. 
Let at, "', ak be the totality of representatives of mutually not H­

conjugate Cartan subspaces of q. Put q'=Uf=tU,, 6H h·a'. Then q' 
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consists of q-regular elements and is Zariski dense in q. Note that not 

every q-regular element of q is contained in q'. For example, as will be 

stated later, in some cases, there exist q-regular nilpotent elements in q (cf. 

(1.9)). 

(1.5) Take a semisimple element Ao of q. Then its centralizer 0= 

gAo is reductive and is a-invariant. Let c be its center and let as be its 

semisimple part. Now put c=cnq, o+=anfj, a:=asnfj, a-=anq and 

s; =as n q. Then as =a: +a; is a direct sum and (a" an is a symmetric 

pair. 

Definition 1.4. The pair (a" an thus obtained is called a sub-sym­

metric pair of (g, fj). 

(1.6) Next we review nilpotent elements of q. The following lemmas 

are fundamental in the subsequent discussion (cf. [KR], [vD]). 

Lemma 1.5. (i) H leaves .%(q) invariant and there are only a finite 

number of H-orbits of .%(q). 

(ii) .%(q)={X e q; P(X)=P(O) for all P e S(qc)H}. 

Remark 1.6. It is known (cf. [KR]) that codimq .%(q)<l=rank q. 

But the equality does not hold in general. In fact, if (g, fj) is Riemannian, 

then .%(q) consists of only one element 0 and therefore codimq .%(q) = 

dim q<l. 

Lemma 1.7. Let Xo e .%(q). Then there exist Ao e fj and Yo e q such 

that 

(1.6.1 ) 

Definition 1.8. Retain the notation in Lemma 1.7. Then (Ao, Xo, Yo) 

is called a normal S-triple and the Lie algebra r=RAo+RXo+R Yo is a 

TDS. 

By definition, r is isomorphic to ~r(2, R). Let ()o be a Cartan involu­

tion on r defined by ()o: (Ao, Xo, Yo)-*( - Ao, - Yo, - Xo). It is clear that 

()o commutes with a I r. 

Lemma 1.9 ([vD]). ()o can be extended to a Cartan involution () on g 

which commutes with a. 

(1.7) Let (AD, Xo, yo) be a normal S-triple. The centralizer gxo is 

left invariant by adAo and also by a. This implies that gxo=fjxo+qxo is 

a direct sum and ad Ao leaves fjxo and qxo invariant. Noting this, we can 



88 J. Sekiguchi 

take a basis Wb ... , Wr of qxo which are eigenvectors of ad Ao (r = dim qx.). 

Hence [Ao, wt]=ntw, for a number n, (l<i<r). Then each n, is a non­

negative integer (cf. [vD]). 

Definition 1.10. Define oq{XO)=L:r=1 (n,+2)-dimq. 

It is clear from the definition that Dq(h· Xo) =Oq(Xo) for all h e H. 

(1.8) Let B(,) be the Killing form on g. Then we write co(X) = 
R(X, X) (X e q) and call co the Casimir polynomial on q. It is clear from 

the definition that co is an H-invariant non-degenerate quadratic form on 

q. 

Definition 1.11. Xo is q-distinguished nilpotent if Xo does not commute 

with any non-zero semisimple element of q. 

Lemma 1.12 ([vD]). The following conditions on Xo are mutually 

equivalent. 

(i) Xo is q-distinguished nilpotent. 

(ii) co(X)=Ofor all X e qxo. 

(iii) ai(X) =0 for all X e qyo. 

(iv) n i >0 (1 <i<r). 

(v) qxon qyo=O. 

(1.9) A nilpotent element Xo e q is called q-regular if dim qxo = rank 

q (=/), or equivalently, codimqH.Xo=1 (cf. Definition 1.2). 

If each of g and fj is a normal real form of a complex semisimple Lie 

algebra, then %(q) actually contains q-regular nilpotent elements. But, in 

some cases, this does not oCcur. A typical example is the case of Rieman­

nian symmetric pairs (cf. Remark 1.6). 

Let Xo e q be q-regular nilpotent. Then Xo has the following pro­

perties (cf. [KR], [vD]): 

(i) dim qXo=l. 
(ii) If nb ... , nz are the integers defined as in (1.7), one may take 

the homogeneous generators Pb ••• , P z of S(qc)H in such a way that 

n,+2=2 degP, (i=l, ... , I). 

(iii) Xo is q-distinguished. 

(iv) Oq(Xo) =1+ L:.E2'+,(1/2).~2'(2-m.-m2J. 

(Here ~ is the root system defined as in (1.4) and ~+ is a positive system 

of ~.) 

(LlO) Let Zo e q and let Zo=Ao+Xo be as in Lemma 1.1. Since Ao 

is semisimple, we can define the sub-symmetric pair (a .. an and the vector 

spaces a,;-, C-, as we did in (1.5). By definition, Xo is a nilpotent element 
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of S;. Hence the number o,,(Xo) is defined similarly. Then we put 

Oq(Zo) = o,,(Xo)' 

Definition 1.13. Zo is q-distinguished if Xo is s; -distinguished nilpotent. 

If Zo E q is q-regular, then Zo is q-distinguished. In fact, if Zo=Ao+ 

Xo is the Jordan decomposition of Zo as above, then Xo is s; -regular nil­
potent. 

(1.11) Let A be a q-regular semisimple element of q. Then gA is left 

invariant by a. So gA=9A+qA is a direct sum. Note that a=qA is a 

Cartan subspace of q and that 9A is the centralizer of a in 9. Then it easily 

follows that the number m=dima-dim 9A does not depend on the choice 

of A. 

Lemma 1.14 (cf. [KR]). dim qx-dim 9x=m for all X E q. 

Corollary 1.15. dim qx=t (dim gx+m) for all X E q. 

§ 2. Preliminaries from differential equations 

(2.1) Let M be a connected open subset ofRm containing the origin 

and x = (XI> "', xm) its Cartesian coordinate system. First introduce 

some standard notation. As usual, put DXi=ojoxi (i=I, "', m). For 

any multi-index a=(at> "', am) E Nm, lal=al+'" +am • Moreover, 
xa=xi1 •• ·x~m, D;=D;~ . . . D;:. Let S21(M) and !!I(M) denote the set of 

analytic functions on M and that of hyperfunctions on M, respectively. 

Moreover, !!1M denotes the sheaf of hyperfunctions on M. 

In this paper, differential operators always mean those having ana­

lytic functions as coefficients. Let P(x, Dx) be a differential operator 

defined on M. Then P is expressed as follows: 

If aaCx) is not identically zero for some a (I a I =d), then d is called the order 

of P and is denoted by ord P. Moreover, a(P) (x, ~) = ~Ial ~d aaCx)~a is 

called its principal symbol, where ~=(~1' .. " ~m) is the conormal variable 

and ~a =~il ... ~~m. For any Xo E M, P(xo, D x) is called the local expres­

sion of P at Xo. 

Define, for any P E s(cm), a differential operator o(p) on Rm as follows. 

First, if v=(VI> "', vm) E Rm, then define the vector field o(v) on Rm by 

d 
(o(v)f) (x) =Tt f(x+ tv) It~o, 
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where f(x) is an arbitrary analytic function on Rm. If Vb ••• , VTe e Rm. 

then 0(v1 • •• Vk) =0(V1)· • ·o(VTe). Extending 0 linearly to the symmetric 

algebra S(Cm), we have thus defined o(p) for any p e S(Cm). It is clear 

from the definition that for every p e S(Cm ), the local expression of o(p) at 

every point of Rm coincides with itself. 

(2.2) Let N be a connected open subset of Rn containing the origin 

and Y=(Yl> ... , Yn) as its Cartesian coordinate. We always identify N 

with a subset {O}XN of MXN. The next lemma is fundamental (cf. 

[SKK]). 

Lemma 2.1. Let u(x, y) be a hyperfunction on MX N. If u(x, y) 

satisfies the differential equations 

D:c,u=O (i=1, ... ,m), 

then u(x, y) is constant with respect to the variable x, that is u(x, y)I.,=o=v(y) 

is a well-defined hyperfunction on Nand u(x, y)=v(x) holds on MXN. 

(2.3) In the rest of this section, we give propositions which play 

fundamental roles in the proof of Theorem S.2 in Section S. 

Proposition 2.2. Let P(x, y, D." DI/) be a differential operator of order 

2 defined on MX N and let u(x, y) be a hyperfunction solution of the differ­

ential equation Pu = O. Assume the following conditions: 

( i ) a(P) (0, y, ~, 0) is a non-degenerate quadratic form of ~ for all 

yeN. 

(ii) Supp (u)cN. 

Then u=o. 

This follows from Chap. III, Prop. 2.1.3 in [SKK]. 

Proposition 2.3. Let P be a differential operator defined on MX N of 

order 2 and of the following form: 

m 

p=.z= alx, y)D:c,D.,j + b(x, y)D:c,+R1(x,y, D~, DI/)x1D." 
j=1 

+ Ro(x, y, D~, D v), 

where D~ = (D :c.' .•. , D :c.J Assume that 

a1(x, y)=A1X1, 

aj(x, y)=Ajxj+(terms of order> 2 with respect to x), 

b(x, y)=p+(terms of order > 1 with respect to x). 

aeRo) (0, y, ~2' •••• ~m' 0)=0, 
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where each Aj is a constant such that Re Aj >0 and f1- is also a constant. 

If u(x, y) is a hyperfunction on MX N satisfying that 

Pu=O, Supp (u)eN, 

then u(x, y) is expressed of the form 

(finite sum), 

where each f.(x) is a hyperfunction on N. 

Remark. T. Oshima has shown the author the proof of Proposition 

2.3. So he expresses his hearty thanks to T. Oshima. 

Proof Let Z be an open subset of Cm such that znRm=M. 

Similarly, let WeCn be an open set such that WnRn=N. Identify W 

with the subset {O} X W of Z X W. Let (!) zx w be the sheaf of holomorphic 

functions on Zx Wand put / = I::j~\ (!}ZXWXj. It follows from the defi­
nition that (PX\)/dr;;./d for any integer d>O. 

To prove the proposition, we need a lemma. 

Lemma 2.4. Choose a positive integer h such that 

(j=l,···,m). 

Then for any open neighbourhood U of the origin 0 E Z X W, there exists a 

small open neighbourhood Ve U of 0 satisfying the conditions (i), (ii): 

(i) Px\: /h(V)~/h(V) is injective. 

(ii) For any fE /h(U), there exists a u E /h(V) such that Px\u=f 

holds on V. 

Assuming this lemma for a moment, we continue the proof of Pro­

position 2.3. Note that the adjoint p* of P also satisfies the assumption 

of the proposition. Let T be a sufficiently small complex neighbourhood 

of the origin and let K be a compact subset of Tn N. Replacing each 

point of K with the origin and applying Lemma 2.4, we find that 

(2.3.1) 

is a topological automorphism as a DFS-space. Here h is a sufficiently 

large integer satisfying the conditions (i), (ii) of Lemma 2.4 and 

/h(K) = lim /h(U) (U runs through complex neighbourhoods 
u 

of K). 
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Note that h is independent of the choice of K. Now put 

5I'h={U E !!IMXN;!U=O for allfE fh}. 

Since 5I'h:::::L:'.'<h!!lNO(·)(X), 5I'h is regarded as not only a sheaf on MXN 

but also that on N. Taking the dual of the isomorphism (2.3.1), we obtain 

the isomorphism 

Define the presheaf ~ on MX N as follows. For every open subset D of 

MX N, r(D, ~) = H~nN (D, !!I MXN) mod T(D, 51' h)' Since both !!I MxN 

and 51' h are flabby sheaves, we find that ~ becomes a flabby sheaf. Hence, 

if D is contained in T, it follows that 

is an isomorphism. This implies the proposition. 

Proof of Lemma 2.4. First introduce a partial order on Nm. Let 

a=(aH .. " am), a' =(a~, .. " a;") E Nm. We define that a<a' if and only 

if one of the conditions (a), (b) holds: 

(a) al<a~. 

(b) al =a~ and lal<la'l. 

Consider the differential equation 

(2.3.2) 

Assume thatf(x, y) and u(x, y) are formal power series of the forms 

(2.3.3) 

(2.3.4) (U. fi E C). 

Note that if u(x, y) is of the form (2.3.4), then f=Px1u is expressed of the 

form (2.3.3). In the sequel, we always assume that f and u are the ones 

as in (2.3.3) and (2.3.4). Put 

m 

Po=(L: AjxjDx,Dxj+ pDz,)x1 
j~l 
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Then (2.3.2) is rewritten of the form 

(2.3.5) 

Comparing the coefficients of xayp of both sides in (2.3.5), we find that 

m 

(2.3.6) 
(left hand side)=(al+l)(2:::Ajaj+,u)uap 

j~l 

(right hand side) =Iap + L: c:;~;ua'p', 
a'<a 

10'1+ WI';;lal+lfil +2 

where c:ffi , are constants independent of the choices of I and u. From the 

choice of h, we find that Re(L:j~IAjaj+,u»O for all a E Nm, lal>h. It 

follows from (2.3.5) and (2.3.6) that u(x, y) is uniquely determined by 

I(x, y). 

We are going to prove by the method of majorants that if I is con­

vergent, then the formal power series solution u of (2.3.2) is actually con­

vergent. First we replace the coordinate (x, y) with (x~, xz, ••• , x"" y) 

and rewrite this by (x, y) for the sake of simplicity. Then (RlxiD "'1 + Ro)x1 

is changed into the form 

(2.3.7) xl{RI(x, y, xID~, xlDy)xlD "" + Ro (x, y, xp~, xIDy)} 

=xl{ L: eap(x, y)(xID~)a(xpy)p}. 
aENm-"p ENn, lal + Ifil';;2 

Here (xp~)a = xiaID;: ... D;:, etc, and each eap(x, y) is an analytic function. 

Moreover Al is changed into 3AI. For the sake of simplicity, we rewrite 

this by AI. Put s=xz+··· +x'" and t:;=YI+··· +Yn, and choose positive 
constants e, C, C' >0 satisfying the conditions 

'" (2.3.8.1) elal<IL:Ajaj+,u1 
j~l 

(2.3.8.2) (j=2 . .•• , m) 

(2.3.8.3) 

(2.3.8.4) 

(2.3.8.5) for all (a, 1'). 
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Put !(x,Y)=C'(Xl+s)h/(C-Xl-s-t)(=L.!apx·yP) and let xJ< be the 

differential operator which is obtained from the one in (2.3.7) by changing 

each coefficient eap(x, y) with C'/(C -Xl-S- t), that is, R is defined by 

(2.3.9) R c' L. (xID~Y(XlDy)p. 
C-x1-s-t .,p 

Moreover define 

Po=e(xIDxl + l)(tl XjD xJ ) 

and consider the differential equation 

(2.3.10) 

Then, by means of an argument similar to the above one, one finds that 

for the given lex, y), there exists a unique formal power series u(x, y) = 

L.1.I:?:hU.pX·YP satisfying (2.3.10). In particular, as in (2.3.6), we obtain 

the relations 

(2.3.11) 

Comparing (2.3.6) and (2.3.11), we find that u(x, y) is a majorant of u(x, y). 

On the other hand, one easily shows that u(x, y) is expressed as a power 

series of Xl' s, t. Noting this, we may assume that u(x, y) = vex!> s, t) for 

a power series vex!> s, t) of Xl> s, t. Then, from the definition, we find that 

Pou=~(xlD x, + 1) (xlD Xl +sD s)v, 

su=[ C'(x1+s) {e(Xl+S)SDs+l}(XlDxl+I)+XlR']V, 
C-Xl-S-t 

where R'=(C' /(C-xl-s-t)) L.a,ixIDs)I.I(x1Dt)IPI (cf. (2.3.9)). Then 

(2.3.10) turns out to be 

(2.3.12) (P~-S')v=J, 

where P~ and S' are defined by 

P~=e(xlDxl + 1) (xlDxl +sDs) 

C's 
S'= {(dDs+ 1) (xlDxl + IH 

C-xl-s-t -
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At this stage, we consider the differential equation 

(2.3.13) (Pri-S')V=g. 

As in the previous case, assume that g(x" s, t) and vex"~ s, t) are power 
series of the forms 

(2.3.14) 

(2.3.15) vex"~ s, t)= L: ViJkXisJtk. 
i+j:?;h 

If g= J, then (2.3.13) is reduced to (2.3.12). For this reason, from now 

on, we treat (2.3.13) instead of (2.3.12). Then by an argument similar to 

the above one, it suffices to show that if g(x" s, t) is convergent, so is the 

solution vex"~ s, t) of (2.3.13). To accomplish this, introduce the function 

1)(x" s, t) defined by 

(2.3.16) 

Using 1), we change the coordinates by (x~, S', t') = (x" 1)s, t) and rewrite the 

differential equation (2.3.13) into that of x~, S', t'. For the sake of sim­

plicity, we exchange x~, S', t ' with x,, s, t. Then (2.3.13) turns out to be 

(2.3.17) 

where ¢(x" s, t) is an analytic function defined in a neighbourhood of the 

origin, such that ¢(O) =0. In .virtue of the discussion above, it suffices to 

show that if g(x" s, t) is a convergent power series of the form (2.3.14), 

then the power series solution vex"~ s, t) of (2.3.17) is also convergent. We 

may assume that 

(2.3.18) 

holds for the constants C, C' >0 and consider the differential equation 

(2.3.19) {e(3xp x, + I) (3x,D x, + sD s) - ¢(3xP x, + I) - x,R"}V = g, 

where R" is a differential operator constructed from R" in the same way 

obtaining R from (R,x,D xI + Ro)x,. Then we find that vex"~ s, t) is a 
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majorant of v(~, s, t). On the other hand, the differential equation 

(2.3.19) has regular singularities along the hypersurface {Xl =o} (cf. [0]). 

Then in virtue of [0], we conclude that iJ(xl , s, t) is convergent. 

We have thus proved that iJ(x, y)=v(xt> s, t) is convergent and there­

fore that the solution u(x, y) of (2.3.2) is convergent. This implies (i) and 

(ii). In the above discussions, we assumed that m> 1. But the case m = 1 

is easier to prove than the case m > 1. In fact, in this case, the original 

equation (2.3.2) has regular singularities. q.e.d. 

As a corollary of Proposition 2.3, we obtain the next one. 

Proposition 2.5. Retain the notation and the assumption in Proposition 

2.3. Moreover assume that 

(2.3.20) for all a eN"'. 

Then u=O. 

Proof Let u(x, y) be a non-zero hyperfunction on MXN such that 

Pu=O and that Supp (u)cN. Then, by means of Proposition 2.3, we 

may assume from the first that u(x, y)= L::lal:s:a.t:.(y)o(a)(x), faCyh~.:O for 

some a (Ial=d). 

Letf(y) be an arbitrary hyperfunction on N and take a e Nm. Then 

it follows that 

m 

(2.3.21) P (f(y)o(a) (x» ={ '-- L:: Aj(aj+ 1)+ ,u}f(y)o(a') (x) 
j=l 

where a'=(al +l, a2, "', am) and each gp(y) is a hyperfunction on N. 

Noting (2.3.21), we conclude from the assumption (2.3.20) that u=O. 

This contradicts the assumption. q.e.d. 

§ 3. Radial components of differential operators 

(3.1) Following [He2] and [vD], we introduce some notation. For 

any X e qc, Lx is the linear endomorphism of S(q.) defined by Lx(p)=Xp. 

On the other hand, for any X ego, dx is the unique derivation of S(qc) 

which coincides on qc with adgc(X)' Furthermore, for any Ye q .. define 

Uy(X) =L[x,Y] + dx(X e go). Then Uy is a representation of g. on S(q.). 

We can extend U y to the representation of U(g.) on S(qc) and denote it by 

the same letter. For Ye q, letr y be the linear mapping of U(gc) 0 S(q.) 
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to S(qc) defined by r y(g®p) = (Jy(g)p (g E U(f)c), p E S(qe». 

(3.2) Now take an element Xo of q. Let U be a linear subspace of 

q such that q = U + [Xc, q] is a direct sum. On the other hand, let V be a 

linear subspace of q such that q = V + qxo is a direct sum. For any u E U, 

define the linear mapping cpu of Vx U to q by CPu (v, w)=w+[Xo+u, v]. 

Then cpo is bijective. Noting this, we define (u) =det (CPu 0 CP01)(U E U) 

which is a polynomial on U with respect to an arbitrary linear coordinate. 

For the linear subspace V of q, SeVe) is naturally identified with the sub­

space of S(qe). Let SaCqe) be the totality of homogeneous elements of 

degree din S(qe) for every dEN. Put SaCVe)=S(Ve) n Sd(f)e). Let A be 

the symmetrization of S(qe) onto U(qe). Using A, we define @laCVe)= 

A(Sd(Ve», @l(Ve)=A(S(Ve» and @l+(Ve) = L;d~l @laCVe). 

Lemmas 3.1-3.3 below are shown by arguments similar to Lemmas 8: 

and 9 in [He2]. 

Lemma 3.1. Let u E U. If (u) =1= 0, then r xo+u is a bijective mapping 

of@l(Ve)®S(Ue) onto S(qc). 

Lemma 3.2. Take p E S(qe). Then there exist a non-negative integer 

r and a polynomial mapping r p of U to @l(Ve)®S(Ue) such that r xo+u(r p(u» 

= (uyp for any u E U. 

In the above lemma, a polynomial mapping is used in the following 

sense. Let A and B be vector spaces. Assume that dim A < 00. Then 

p: A~B is called a polynomial mapping if p(a) = L;Ji(a)vi (finite sum), 

where Vi E Band each.ft(a) is a polynomial on A with respect to a linear 

coordinate system. 

Now put U' ={u E U; (u)::;t:O}. 

Lemma 3.3. Fix p E S(qe). Then for any u E U', there exist unique 

elements a,ip) E S(Ue) and ~,ip) E @l+(Ve)®S(Ue) such that p-au(p)= 

=r xo+u~,ip». Moreover dOau(p)<dop. (Here dOq denotes the degree of 

q.) 

Definition 3.4. au(p) is called the radial component of p at u (with 

respect to Xc, U, V). 

(3.3) For any p E S(qc), we define the differential operator a(p) as. 

in Section 2. On the other hand, for any X E q, define a vector field -r(X) 

on q as follows: 

d 
(-r(X)f){Y) = Ttf(Y +t[Y, XDlt=o (Y E q). 
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(Heref(Y) is an arbitrary analytic function on q.) 

Let D be a differential operator on an open subset Q of q. Then we 

define a differential operator jeD) on the open subset U' n (Q-Xo) by the 

same way as in [Hy2, p. 283] (see also [vD]). 

Let ~(Q) denote the ring of differential operators on Q and let !TCQ) 

be the left ideal of ~(Q) generated by the vector fields reX) (X E g). 

Definition 3.5. C i) A hyperfunction u on Q is locally invariant if 

-r(X)u=O for all X E g. 

(ii) A differential operator D on Q is locally invariant if [reX), D] 

=0 for all X E g. 

(3.4) Return to the situation in (3.2). Take a basis ul , "', Um of U 

:and let XI' "', Xm be its coordinates. Similarly, take a basis hi, "', hn 

of V and let Yl> .. " Yn be the coordinate with respect to this V-basis. 

Lemma 3.6. Define the analytic mapping F ofRmXRn to q hy 

m 

(3.4.1) F(x, y)=ey,b, . .. eYnbn(Xo+.L; xjui ). 

i=l 

Then F(O, 0) =Xo and dF is non-singular at (0, 0). 

This lemma follows from the definition. 

Let Uo and Vo be open subsets of Rm and Rn containing the ongms, 

'Such that Uo C U' and that FI UO X Vo is an isomorphism. Put Qo = 

F(UoX Vo). Then Qo is an open neighbourhood of Xo and is in a one to 

one correspondence with Uo X Vo. For simplicity, put f-(x, y) = f(F(x, y» 

for any f E d(Qo). Similarly, for any D E ~(Qo), define a differential 

operator D- on UoX Vo by (D-h)(x, y)=(D(h 0 F- I ) (F(x, y»). Since F is 

bijective, D- is well-defined. Let Y (Uo X Vo) be the left ideal of ~(Uo X Vo) 

generated by the vector fields r(Xr (V X E g). 

Lemma 3.7. D y, (1 <i::;:n) are contained in Y(UoX Vo). 

Proof Define analytic functions /;/y) by Ad (ey,b, . .. eYi-,bi-l)b j = 

:L:~~Jjiy)Xj, where {XI> . ", X Ic } is a basis of 9 (k=dimg). Then it 
follows that 

" Dyi=.L;fiiy)r(Xjr E Y(UoX Vo). q.e.d. 
j~l 

Lemma 3.8. For each i (1 <i<n), the local expression of r(b i )- at 

(x, 0) coincides with -Dy,. 
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Proof Take h E d (Uo X Vo) and calculate (t"(bt)-h)(x, 0). For 
simplicity, putf=h 0 F- I E d(Qo). Then 

(t"(bt)-h) (x, 0) = (t"(bt)f)(F(x, 0» 

= (t"(bt)f) (Xo+ .L;xjUj) 
j 

=~f(e-tb'(Xo+ .L;xjuj»lt=o. 
dt j 

Hence it follows that(t"(btrh) (x, 0)= -(Dy,h) (x, 0). This holds for any 

h E d(Uo X Vo) and the lemma follows. q.e.d. 

Lemma 3.9. Take Xl' .. " X/t E q and Yl> .. " Yz E q and define the 

differential operator P on q by 

for anyfE d(q). On the other hand, define g=XI •• ,XIt E U(q.) andp= 

YI • •• Yz E S(q.). Then the local expression of P at Y E q coincides with 

;)(r y(g(8)p». 

This follows from the definitions of r y(g(8)p) and P. 

(3.5) If p E S(qc), then a(p) is a differential operator on q and also 

;)(pr is a differential operator on UoX Vo. Then it follows that 

(3.5.1) 

where each aap(x, y) is an analytic function .on Uo X Vo. On the other 
hand, let auCp) be the radial component of p at U E U f • For simplicity, 

put ua =ui"' .. U:,.'" E S(U.) (a E Nm). Then, from Lemma 3.3, we can define 

analytic functions faCx) (a E Nm) such that au(p) = .L;aEN",faCx)ua for any 

u= .L;j=l XjU j E U'. Corresponding to this expression, we define the dif­

ferential operator Q(x, D",) on U'(eR"') by 

(3.5.2) Q(x, D",)= .L; faCx)D;. 
aENm 
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Lemma 3.10. Q coincides with .6aENm aaoCx, O)D;. 

Proof It follows from Lemma 3.8 and 3.9 that for any a E Nm and 

f3 E Nn, D;D~ coincides with the local expression of a(r xO+'L.xju/bfi@ua)r 

at (x, 0), where b fi denotes M" .. b~n for all f3 E Nn. Hence the local ex­

pression of a(p r at (x, 0) E Uo X Vo coincides with that of 

(3.5.3) 

On the other hand, from Lemma 3.3, we can choose gj E @)+(Vc), Pj E 

S(UJ, polynomials qj(u) on U (1 ::;;:i<N) and an integer r>O such that 

N 

(3.5.4) p=au(p)+~(u)-r.6 q/u)T xo+u(gj@Pj) 
j~l 

for u E U'. Put C(x)=~(u), q;(x)=qlu) for U=.6i XiUi . Then we find 

that the local expression of a(pr at (x, 0) coincides with that of 

(3.5.5) 

Comparing (3.5.3) and (3.5.5) and noting (3.5.2), we obtain the lemma. 

q.e.d. 

For any p E S(qc), we denote by J(a(pr) the differential operator 

Q(x, Dx) defined in (3.5.2) and call it the radial component of a(pr on 

Uo• By definition, J(a(p)-) coincides with the differential operator a(auCp» 

on Uo by the correspondence (Xl' "', x m)---+.6j XjU j • In this sense, 

J(a(pr) is nothing but J(a(p» defined in (3.3). Hence we confuse these 

ones in the sequel. 

(3.6) Let u be a locally invariant hyperfunction defined on the open 

subset Qo of q and let p be an element of S(qc)H. The next lemma is a 

direct consequence of Lemmas 3.7 and 2.1. 

Lemma 3.11. The hyperfunction u-(x, y) on UoX Vo is constant with 

respect to the variable y. 

This combined with the assumption on p implies that u-(x, y) and 

(a(p)u)-(x, y) can be restricted on the closed subset Uo::::: Uo X {Ole UoX Vo. 

Then the radial component J(a(pr) has the following meaning. 

Theorem 3.12. Let u and p be as above. Put vex) =u-(x, 0), the re­

striction of u to Uo• Then 
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This follows from the definition of J(a(p)-) and Lemmas 3.7-3.10 

(cf. [HC2, Lemma 10]). 

§ 4. The radial component of the pseudo-Laplacian on q 

(4.1) Retain the notation in the previous sections. Let ro be the 

Casimir polynomial on q. 

Definition 4.1. The differential operator aero) is called the pseudo­

Laplacian on q. 

The purpose of this section is to calculate the radial components of 

aero) for certain elements of q. 

(4.2) Let Ao be a semisimple element of q. Similarly as in (1.5), 

define a, 0\ a" a:, c. Take a Cartan subspace a of q containing both 

Ao and c- and let 1:=1:(a) be the root system of (ge, ae) (cf. (1.4)). For 

any root A E 1:, choose a C-basis Xl,!> .. " Xl,ml of g~ (ml =dimcg~) such 

that B(X;.,i' oX;',j)=-Oij(i,j=I, ... ,m;.). Puta-=ana;. Thena= 

a- +c, and a- and c are orthogonal with respect to the Killing form. Let 

AI, .. " Ap be a C-basis of a; such that B(Ai' Aj) =Oij and let C!> .. " Cq 

be a C-basis of c; such that B(Ci , Cj) =Oij' As usual, identify qe with its 

dual by the Killing form. Then it follows from the definition that 

(4.2.1) 

(Here };+ is the positive system of 1: for an order fixed hereafter.) Define 

1:o={A E 1:; A(Ao)=O} 

1:1 ={A E 1:; A(Ao)=;t:O} 

1:; =1:+ n 1:j (j=0, 1). 

V sing these, we also define 

(4.2.2) 

Thenitisclearthat~=a++V+ andq=a-+V- are direct sums. More­

over, we have [Ao, ~]=[Ao, V+]= V- and dim V+ = dim V-. Defining the 

linear mapping 1)u of 0- X V+ to q by 1)uCw, u)=w+[u, u], we find that 1)Ao 

is bijective. Hence ';(u)=det(7Ju 07J.::iD (u E 0-) is well-defined. The next 
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lemma follows from the definition. 

Lemma 4.2. ~(A)= n lEIt [A(A)/A(Ao)]ml for all A E u. 

Put (0-)' ={u E 0-; ~(u)*O}. Then the following statements are con­

sequences of the results in (3.2). 

Lemma 4.3. For any Z E (0-)', r z defines a bijective mapping of 

6(V;)0S(a;) to S(qe). 

Corollary 1. Fixp E S(qe). Then for any Z E (0-)', there exist unique 

elements O:z(p) E S(a;) and f3z(p) E 6+(V;) 0 S(a;) such that p-O:z(p) = 

r z(f3z(p». Moreover dOO:z(p)<dop. 

Corollary 2. For any p E S(qe), we can choose an integer r>O such 

that the mappings Z-+~(zyO:z(p) and Z-+~(ZYf3z(p) (Z E (a;)') can be ex­

tended to polynomial mappings of a; into S(a;) and 6(V;)0S(a;), 

respectively. 

Let w. (resp. we) be the restriction of W to a,;-(resp. c-). Then w. 

(resp. we) is a non-degenerate quadratic form on 0';- (resp. c-). Using WB 

and We, identify 0';- with its dual and c- with its dual. Then it follows that 

(4.2.3) 

p 1 m2 

ws=~A~+- ~ ~(Xl.i-qXl.i)Z 
i=l 22EXiij=1 

q 

we=~q· 
i=l 

Lemma 4.4. Let LI(a(w» be the differential operator on 0- obtained 

from a(w) as we did in (3.5). Then 

LI(a(w» =~(utl/Z(a(we)+a(ws» 0 ~(U)l/Z_ p(u), 

where p(u)=e(u)-1/2(a(we)+a(ws»~(u)1/Z is an analytic function on (0-)'. 

This lemma is shown by an argument similar to Lemma 18 in [He3]. 

In the proof, we use the expression of w in (4.2.1) and those of w., We in 

(4.2.3). Note that in our case, the function p(u) does not vanish in general. 

Let H+ and H: be the analytic subgroups of H corresponding to 0+ 

and a:, respectively. Then it follows from the definition that both ~(u) 

and p(u) are H+-invariant. 

(4.3) Take a nilpotent element Xo of 0';- and let (Bo; Xo• Yo) be a 

normal S-triple for the pair (6 .. a:). In particular, Bo E a: and Yo E a;. 

Then we have the next lemma which is shown in the way similar to the 
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proof of Lemma 1.12. Though w. is not the Casimir polynomial on 0;, 
we only use in the proof that w. is non-degenerate. 

Lemma 4.5. The following conditions are equivalent, 

( i ) Xo is 0; -distinguished. 

(ii) ws(X)=Ofor all X E (o;ho' 

(iii) w.(X) =0 for all X E (o;)Yo' 

(iv) (o;ho n (o;)Yo =0. 

It follows from Lemma 1.9 that there exists a Cartan involution 0 on 

a. commuting with a such that 0: (Bo, Xo, Yo)-+( -Bo, - Yo, -Xo)' Then 

-B(X, O(Y» (X, YEo.) is a positive definite bilinear form on AS. This 

defines a Euclidean structure on a.. The adjoint of ad"X(X E as) with 

respect to this structure is given by -(adgOX)lo.. Put U=(a;)yo and 

choose an orthonormal basis ul , ••• , Um of U such that [Bo, ui ] = - AiU i 

(1 <i~m) (m=dim U). Then each Ai is a non-negative integer. These 

follow from the arguments in [vD, §l] (cf. §1). Since Yo is contained in 

(a;)yo=U, we may assume that ul=cYO (c=I/IIYoID. So AI=2. Let 

Xl, ... , Xm be the coordinates with respect to this basis of U. 

For any U E U, similarly as in (3.2), we define the linear mapping tu 

of Ux [a;, yo] to q by tuCw, u)=w+[Xo+u, u]. Since a; = [a;, Yo]+(a;ho 

is a direct sum, it follows that to is bijective. Noting this, we put tc(u)= 

det(tuotol)(UE U)and U'={UE U; tc(u)*O} as in (3.2). Letbl, ... ,b". 

be an arbitrary basis of [a;, Yo] and let Yt> ••• , Y n be the coordinates with 

respect to this basis on [a;, Yo]. Using the coordinates yon [a;, Yo] and X 

on U, define the mapping W ofRmXRn to a; by the same way as (3.4.1): 

(4.3.1) 
m 

W(x, y)= eY1br . .. eYnbn(Xo+ I: XjU j). 
j~l 

Then it follow from Lemma 3.6 that 'Ijl'(O, O)=Xo and dW is non-singular 

at (0, 0). Hence we define Uo, Vo and Qo as in (3.2), in particular, 0 E U~ 

cRm, 0 E VocRn and WI UoX Vo is a diffeomorphism and Qo=F(UoX Vo). 

Then Qo is an open neighbourhood of Xo in a; and (x, y) is regarded as a 

coordinate system on Qo• 

Since Ws is contained in S(il;), we can define the radial component 

au(w s) of Ws at U E U' with respect to Xo, U, [a;, Yo] (cf. Definition 3.4). 

Let Ll(a(ws» be the differential operator on U' such that Llu(a(ws»= 

a(auCws» for all U E U'. (LluCa(w s» denotes the local expression of a(w,) at u,) 

Lemma 4.6. The homogeneous part of degree 2 of Llo(a(w s» is zero if 
and only if Xo is a; -distinguished. 

This is shown by an argument similar to Lemma 33 in [HC2l (cf. [vD, 

Lemma 13]). 
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Theorem 4.7. Assume that Xo is 0';--distinguished. Then there exist 

analytic/unctions ailx) and ai(x) on Uo satisfying adO) = 0 (1 <i,j<m), 

such that 

(4.3.2) 
a2 • a m a2 

IIXoIILl(a(w.))=2x!-+(dlm 0';-)-+ L.:(Ai+ 2)xi --

ax~ ax! i=2 ax!aXi 

a2 m a + L.: aij(x) + L.: ai (x)-. 
l<i:5:j5:m axiaXj i=2 ax. 

This is shown by an argument similar to Theorem 14 in [vD]. It 

should be noted that though w. is not the Casimir polynomial on 0';-, we 

only used in the proof that Wg is non-degenerate. 

Remark 4.8. A prototype of the formula in Theorem 4.7 seems to 

have first appeared in Atiyah's lecture note [A] as a literature. T. Kawazoe 

and the author obtained the formula (4.3.2) a few years ago being suggested 

by the note [A]. Afterwards, T. Oshima informed the author of van Dijk's 

article [vD] in which the formula was also shown. Our method was based 

on direct calculations by using the expression in (4.2.1). On the other hand, 

van Dijk's method is on the Euler operator and is therefore very simple 

and elegant compared with ours. 

Last we comment on the differential operator a(we). Since We is a 

quadratic form on the vector space c-, with respect to an appropriate 

basis c!, .. " cq of c- (q= dim c-), we have 

(4.3.3) a(W )=D2t + ... +D2t -Dt2 - ... -Dt2 
c 1 ql ql +1 q' 

where flO "', tq are the coordinates with respect to the basis and q! is a 

certain integer such that q! < q. 

§ 5. Invariant spherical hyperfunctions on q 

(5.1) For an arbitrary linear form A on Ue, we define a system of 

differential equations jtA on q defined by 

(5.1.1) {
a(p)u=p(A)U for all P E S(qe)H 

'l'(y)u=O for all Y E fj. 

It is provable that vii A is holonomic in the sense of Sato-Kashiwara. 

Definition 5.1. A hyperfunction solution u to the system vii A is called 

an invariant spherical hyperfunction (= ISH) on q with the infinitesimal 

character A. Moreover, an ISH u is called singular if Supp (u) is contained 
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in the set q-q'. 

First we give a remark on the relation between ISH's and invariant 

eigendistributions (= lED) on a semisimiple Lie algebra. Let go be a real 

semisimple Lie algebra and put g=goEEl go. Define the involution (I on g 

by (I(X, y)=(Y, X) (X, Y E go). Then we obtain the direct sum decompo­

sition g=g+q for (I. In this case, g={(X, X); X E go} and q={(X, -X); 

X E go}. Hence g~q~go. Put Go=Int (go) and G=Int (g). Then G= 

GoX Go and H is equal to the diagonal subgroup {(g, g); g E Go} of G. 
Moreover the action of H on q is identified with the adjoint action of Go 

on go. Under the identification, an ISH on q is nothing but an lED on go. 

As to a singular lED on a semisimple Lie algebra, Harish-Chandra 
obtained the following result which plays a fundamental role in the proof 

of his famous theorem that any lED on a real semisimple Lie algebra is 

V-local (cf. [HCID. 

Theorem HC ([HC3]). There exists no non-zero singular invariant 

eigendistribution on a real semisimple Lie algebra. 

As will be seen in Section 6, there exists a non-zero singular ISH on q 

for some symmetric pair (g, g) and therefore an analogue of Theorem HC 

to the case of the tangent space of a symmetric space does not hold in 
general. But we can prove an analogue for symmetric pairs which satisfy 

some additional condition. 

(5.2) The main result of this paper is the following theorem which 

is an analogue of Theorem HC. 

Theorem 5.2. Let (g, g) be a symmetric pair. If olZ) >0 holds for 

any q-distinguished element Z of q, then there exists no non-z,ero singular 

invariant spherical hyperfunction on q. 

Remark. We shall discuss the condition of the theorem in Section 6. 

Proof. Let u be a singular ISH on q. Then, by definition, Supp (u) 

is contained in q-q'. Assuming that u*O, we lead a contradiction. Hence 

assume that u*O and therefore that Supp (u)*~. Take Zo E Supp (u). 

Let Zo=Ao+Xo be its Jordan decomposition, where Ao E .9'(q) and Xu E 

..;V(q). As in (1.5), define 3±, 3;, c- for the semisimple element Ao. Now 

Sk is the set of those Zo such that rank 3;=k. Then Supp (u)=U~=OSk' 
where 1= rank q. Since Supp (u)cq-q', it follows that Ao is not q-regular. 

This implies that So=~. 

Now assume that SI=··· =Sk-1=~ and Sk*~. Then we may 
assume from the first that Zo is contained in S k. Retain the notation 
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above. Let H: be the analytic subgroup of H corresponding to a:. Then 

H: acts on a;. Since .tV(a;) is decomposed into finitely many H: -orbits 

(cf. Lemma 1.5), we can write .tV(a;) = 0 1 U ... U 0., where the OJ are 

disjoint H:-orbits and for l<j<lJ, .tVj=OjU", UO. is a closed set 

containing OJ as an open subset. Since Zo=Ao+Xo is contained in 
Supp (u) and also in Ao+.tV(a;), it follows that Supp (u) n (Ao+.tV(a;» 

*~. Noting this, we may assume that Supp(u)n(Ao+Ot)=~ for i= 

I, .. " j-I and Supp (u) n (Ao+ OJ) * ~ for some j. It is clear that 
Supp (u) n (Ao + OJ) is contained in S k' Hence we may assume from the 
first that Xo is contained in OJ. 

For the element Ao, we define V + as in (4.2.2). Let iI, .. " fd be a 

basis of V+ and let ZI> •• " Zd be the coordinates with respect to this basis 

of V+. Similarly, we retain the notation in (4.3). So let (Bo, Xo, Yo) be a 

normal S-triple. Then we define U = (a;)yo' Take the basis Ul> •• " u'" of . 
U and its coordinates XI> •• " X", as in (4.3). Moreover let hI> •• " hn be 

the basis of [a;, Yo] and Yl' "', Yn its coordinates. Last let CI> •• " cq be 
the basis of c- and tl> •• " tq its coordinates. Using these coordinates, we 
define the map (b ofRqXR"'XRnXRd to q by 

q m 

= ez'h . .. eZdfd(Ao+ I: ftC; +ey,b, . .. eYnbn(Xo+ I: XaUa» 
;=1 a=1 

where 'iJf(x, y) is the mapping defined in (4.3.1). Then it follows that (b(O) 

= Ao + Xo and (b induces a diffeomorphism between an open neighbourhood 
of the origin in RHm+n+<i and that of Zo in q. Hence take open subsets 

To, Uo, Vo and Wo of Rq, Rm, Rn and Rd containing the origins, respectively, 

such that (b 1 To X Uo X Vo X Wo is bijective. Put B = (b(To X Uo X Vo X Wo) 

and the following identifications are used in the subsequent discussion: 

~~~X~c~X~~~X~X~c~X~X~ 

~ToX UoX VoX{O}cToX UoX VoX WOo 

Replacing Uo and Vo with small ones if necessary, we can show by an argu­

ment similar to Lemma 22 in [V] (cf. [vD, Lemma 17]) that .tVj n {(bet, X, 

y, z) E B; t=z=O}S;0J' 

Since u is locally invariant, it follows from Lemma 3.11 that 

u-(t, X, y, z)=u«(b(t, X, y, z» which is a hyperfunction on ToX UoX VoX Wo 

is constant with respect to the variables ZI' •• " Zd' So put u1(t, X, y)= 

u -(t, X, y, z) Iz=o, This is a well-defined hyperfunction on the open subset 

ToXUoXVo ofRHm+n containing the origin 0= (b-l(ZO)' Moreover 
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u - (t, x, y, z) = u/t, x, y) holds on To X Uo X Vo X WOo On the other hand, 

since u is an ISH, we have 

(a(w) - w(A))u= 0 

for a linear form A on Ct c which is the complexification of a Cartan sub­

space Ct of q. Let ~ be the function on a- defined for Ao as in (4.2). Re­

placing To, Uo, Vo with small ones if necessary, we may assume from the 

first that ~=FO on (j)(ToX UoX Vo). So there exists an analytic function 

p(t, x, y) on To X Uo X Vo such that ~«(j)(t, x, y, 0))= pet, x, y)2 holds on To X 

Uo X Vo. Put u2(t, x, y) = pet, x, y)-l u1(t, x, y). Then it follows from 

Lemma 4.4 that 

(5.2.1) 

where fl- = fl 0 (j) (cf. Lemma 4.4). Since po (j)-l is H:-invariant, it follows 

that 

(5.2.2) for all YEa+, 

where the vector field r-(y)- is defined similarly as we did in (3.4). Since 

a+ commutes with C-, we find from Lemma 3.11 and (5.2.2) that 

~ult,x,y)=O (i=1, .. ·,n). 
aYi 

Hence u2(t, x, y) is constant with respect to y. Noting this, we put us(t, x) 

=u2(t, x, Y)IY~o. Then us(t, x) is a well-defined hyperfunction on the open 

subset To X Uo of Rq+ m containing 0= (j)-\Zo). The assumption combined 

with Lemma 17 (iii) in [vD] implies that Supp (us) is contained in the set To. 

On the other hand, Us satisfies the differential equation 

(5.2.3) 

We can show under the assumption of the theorem that there exists 

no hyperfunction us(y, t) satisfying the differential equation (5.2.3) and 

that Supp (us)c To. In fact, if Zo is not q-distinguished, that is, if Xo is not 

a;-distinguished nilpotent, it follows from (5.2.3), Lemma 4.6 and Proposi­

tion 2.2 that us=O. On the other hand, if X is a;-distinguished nilpotent, 

by means of the formula (4.3.2) for J(8(w.)) and the assumption 0"(Xo) >0, 

we can conclude from Proposition 2.5 that us=O. Note that the condition 

o,,(Xo) >0 implies the condition (2.3.20) of Proposition 2.5. So we find 

that Us = 0 on To X Uo, in other words, U= 0 in the neighbourhood B of Zo 

in q. This contradicts the assumption that Zo E Supp (u). We have thus 
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shown the theorem completely. 

This theorem is restated in a slightly familiar form. 

Theorem 5.3. Retain the assumption in Theorem 5.2 jor a symmetric 

pair (g, fj). Let u(X) be an invariant spherical hyper junction on q. Then 

one has: 

(i) The restriction u I q' to q' is real analytic. 

(ii) lfulq'=O, then u=O on the whole space q. 

Proof (ii) is a direct consequence of Theorem 5.2. On the other 

hand, (i) is proved if one can show the existence of an elliptic operator P 

defined in a neighbourhood of an arbitrary element of q' such that Pu= O. 

We are going to show this along the line of [A]. Hence let Xo be an 

arbitrary element of q'. Then there exists a Cartan subspace a containing 

XO' Clearly a is uniquely determined by Xo and Xo is contained in a' (cf. 

(1.4». Take a basis {hI> "', hL} of a. Then Z= L:~_lh~ is contained 

in S(ae). If W is the Weyl group of L:(a) which is the root sy~tem of 

(ge, ae) (cf. (1.4», the product i= IT WEW wZ is clearly W-invariant. Since 

it follows from Chevalley's theorem that S(qe)H is isomorphic to the sub­

ring of S(ae) consisting of W-invariant elements, we denote the element of 

S(qe)H corresponding to i by the same letter. On the other hand, let 

el> .. " ep be an arbitrary basis of al. n q. Using the basis, we define P= 

o(i) + L:5=1 r:(e,Y. Let u(X) be an ISH. Then, by definition, u satisfies 

the differential equation (P-c)u=O for some complex number c. Since 

q(P - c) = q(P) does not vanish in a neighbourhood U of Xo, we conclude 

that u is real analytic on U. Hence the result follows. q.e.d. 

§ 6. A condition on q-distinguished elements 

(6.1) Theorem 5.2 leads us to the following problem: 

Problem A. Classify the symmetric pair (g, lj) satisfying the condi­

tion (C): 

(C) oq(Z) >0 for any q-distinguished element Z of q. 

If the classification of H-orbits of .;V(q) is accomplished, one would 

easily check the condition (C) for each q-distinguished nilpotent element. 

But the classification seems not to be done at present (cf. [S]). For this 

reason, we restrict our attention to look for examples of symmetric pairs 

which satisfy (C). 

(6.2) Before entering into treating the subject, we show that there 

exists a non-zero singular ISH for some symmetric pair. Hence consider 

the pair (g, lj)=(~o(l, n+ 1), ~o(l, n». In this case, q is identified with the 
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real vector space V =Rn+l with the canonical coordinate x=(xo, Xl' ... , x n ) 

and H:=SOo(1, n). Then the action of H on q is identified with the natural 

action of SOo(1, n) on V. In this case, the pseudo-Laplacian on q coincides 

with 

up to a constant factor. Then the system of differential equations intro­

duced in (5.1) is rewritten in the following form for a certain complex 

number A: 

(i=1, ···,n) 

(l<i,j~n), 

Definef(x) = -x~+xi+· .. +x~. Then the nilpotent subvariety JV(q) of 

q is identified with the set JV(V) = {x E V;f(x)=O}. It is easy to see that 

V -JV(V) consists of q-regular semisimple elements and that JV(V)-{O} 

consists of q-distinguished nilpotent elements. Take X E JV(V) - {O}. 

Then it follows from direct calculation that qx=RX. This implies that 

oiX)=4-dim V=3-n. Hence ifn>3, the condition (C)does not hold. 

Moreover, if n is odd and n > 3, there actually exists a singular ISH on V. 

In fact, consider the distribution v ,(x) = If(x) I'. on V(s E C). By definition, 

vs(x) coincides with If(x) I' if f(x) >0 and coincides with 0 if f(x) <0. 

Then it follows that Pvs =4s(s+(n-1)j2)vS _ I • Since Vs is meromorphically 

dependent on s and has a simple pole at s= -(n-l)j2, one can put u(x) = 

«s+ (n -1)j2)vs(x)) Is~ (1_ n)/2. Then it is clear that u(x) satisfies the differ­

ential equations vIt, for A=O. Moreover Supp (u) coincides with JV(V). 

Hence u(x) is a singular ISH. (Cf. [A]) 

In the sequel, we restrict our attention to look for examples of sym­

metric pairs satisfying the condition (C). 

(6.3) In this paragraph, we give some known examples satisfying 

the condition (C). 

(6.3.1) Let (g, 1)) be a Riemannian symmetric pair. Then the as­

sumption holds in this case. In fact, JV(q)={O} holds in this case and 

moreover, any sub-symmetric pair of (g, 1)) is also Riemannian. 

(6.3.2) Let (g, 1)) be a symmetric pair such that ge is identified with 

1)c EB1)e· In this case, (ge, 1)c) is identified with (1)e EB1)c, 1)e). So one can 

check easily that the condition (C) holds for the pair (g, 1)) (cf. [AJ, [vD]). 

(6.4) Let (g, 1)) be a symmetric pair and let (ge, 1)c) be its complexi-
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ncation. Let Xo be an element of .AI'(q.), the nilpotent subvariety of q •. 

Then one can define a number 3q.(Xo) quite similarly as the number intro­

duced in Definition 1.11. The precise one is given as follows. Let 

(Ao, Xo, Yo) be a normal S-triple (cf. [KR]). Then ad Ao leaves (q.ho 

invariant. So we can choose a basis WI> "', Wr of (q.)xo (r=dime q.) 

"Such that each W£ is an eigenvector of ad Ao (cf. (1.7)). Define the number 

ni by [Ao, XO]=n£wl for each i. 

Definition 6.1. 3q.(Xo)= I:i=l (n£ +2)-dime q •. 

It is clear from the definition that 3q.(Xo)=oq{Xo) if Xo is contained 

in .AI'(q). Note that .AI'(q.) always contains a qc-regular element of qe, 

that is, there exists a nilpotent element Xo e qe such that dime (q.ho= 

<lime qe-rank q. For any Z e q., we also define the number 3qe(Z) by the 

:same way as we did in (1.10). 

Lemma 6.2. Retain the notation above. Assume that g. is simple. If 
Jq.(Xo) >0 holds for any qe-regular nilpotent element Xo of qe, then (ge, ije) is 

isomorphic to one of the following pairs: 

(I) (~(n, C), ~o(n, C)) 

(II) (~( (2n, C), ~( (n, C) + ~r(n, C) + C) 

(III) (~J:l (n, C), ~(n, C) + C) 

(IV) (~o(2n+k, C), ~o(n+k, C)+~o(n, C)) (k==O, 1,2) 

(V) (e6, ~P(4, C)) 

(VI) (e6, ~r(6, C)+~((2, C)) 

(VII) (e7, ~r(8, C)) 

(VIII) (ea, ~o(16, C)) 

(IX) (f4' ~p(3, C)+~r(2, C)) 

(X) (gz, ~r (2, C) + ~r (2, C)) 

(XI) (~o(p+q, C), ~o(p, C)+~o(q, C)) (q+2<p<2q+2). 

This lemma is shown by using the classification of symmetric pairs 

:and the results in (1.9) (cf. [He]). 

Theorem 6.3. Let (ge, ije) be a complex symmetric pair. Assume that 

(ge, ije) is isomorphic to one of the pairs (I)-(X) in Lemma 6.2. Then 3q.(Z) 

>Ofor any qe-distinguished element Z ofqe. 

Remark. If (ge, ije) is the pair in (XI), there exists a qc-distinguished 

element Z e qe such that 3q.(Z)<0. 

To prove this theorem, we need a simple lemma. 

Lemma 6.4. Let (ge, ije) be a complex symmetric pair and let 2 be its 
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root system defined as in (1.4), that is, if(go, fo) is a Riemannian symmetric 

pair such that go and fo are real forms of g. and lje, respectively, then 2 is 

the restricted root system of go. Assume that dime g~ + dime g~a < 2 for all 

a e 2. Then each irreducible factor of (ge, lje) is isomorphic to one of the 

pairs in (I)-(X) or the pair (g~ EB g~, g~) for some complex simple Lie algebra 

g~. 

Proof It is clear that there exists a Riemannian symmetric pair 

(g, f) such that g is a real form of ge and f is that of lje. Then 2 is nothing 

but the restricted root system of g. Then the lemma follows from Table 

in [W, p. 33]. 

Corollary 6.5. Let (ge, lje) be a complex symmetric pair and let (g~, lj~) 

be its sub-symmetric pair. If (ge, lje) satisfies the assumption of Lemma 

6.4, so does (g~, lj~). 

By means of Corollary 6.5, to prove Theorem 6.3, it suffices to show 

the following. 

Lemma 6.6. Retain the notation and the assumption in Theorem 6.3. 

Then 5q.(X) >0 for all qe-distinguished nilpotent element X e qe' 

(6.5) We are going to prove Lemma 6.6 for the cases (I)-(X), sepa­

rately. 

(6.5.1) Prooffor the case (I). 

Let (ge, lje) be a symmetric pair isomorphic to (~t (n, C), ~o (n, C» for 

some integer n. It is easy to see that, in this case, every qe-distingtiished 

nilpotent element is ge-regular. Hence the claim for this case follows from 

Lemma 6.2. 

(6.5.2) Proof for the case (II). 

(a) Let ge=~t(2n, C) and let (J be the involution of ge defined by 

Then 

lje= ([~ ~]; A, Be gt(n, C), tr(A+B)=O} 

qc= {[~ ~]; A, B e gt (n, C)}. 

Moreover, define 
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Hc= ([~ ~]; A, BE GL(n, C), det (AB) = I}. 

(b) For each positive integer d, define the matrices Id , Jd , Kd , Ld in 

the following way: 

(c) Let 1)= (PI' ... , Pk) be a partition of 2n, that is, each p, is an 

integer,PI+··· +Pk=2n and PI> ... >Pk>O. 
Moreover, define subsets II, 12, 13, I, of {I, ... , k} associated with 

the partition 1) as follows: 

(i) {I, ... , k}=11 U 12 U Is U I, (disjoint union) 

(ii) PI is even for all i E II U 12• 

(iii) p, is odd for all i E 13 U I,. 

(iv) 1131=11,1· 
Let f2n be the totality of (1), g, 12, 13, I,}) defined as above. Note 

that there are several possibilities of the choices of g, 12, Ig, 14} for a given 

partition 1). 

(d) For every c:= (1), g, 12, Ig, I,}) E f2n (1)= (PI> ... , Pk)), define the 
matrix X, as follows: 

o 
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Here X" Y j are the matrices defined by 

r 
(i ell) 

r 
(i ell) 

X,= Jqt 
(i e IJ (i e IJ y - q, 

(i e Is) 
i-

(i e Is) K q , L q , 

L q , (i e 14) K q , (i e 14)' 

(Here q,=[pd2].) 

(e) It is clear from the definition that for each 1; e !In, Xc: is nilpotent 

and is contained in qc. Moreover, the following lemma is a direct con­

sequence of [S, § 3]. 

Lemma 6.7. For any nilpotent element X of qc, there exist h e He and 

1; e !In such that hXh-I=Xc:. 

As to qe-distingui~hed nilpotent elements of qco one can easily find 

the following lemma. 

Lemma 6.8. Let 1; = (7), g, 12, Is, 14}) e !In and retain the notation in 

(d). Then Xc is qc-distinguished nilpotent if and only if X,=Xj and Y i = 

Yj for every pair of indices (i, j) such that Pi = P j' 

(f) Take 1; e !In and retain the notation in (d). Let (Ac:, Xc, Y() be 

a normal S-triple. It is always possible to take Ac as a diagonal matrix 

and moreover such an Ac is uniquely determined. So we assume such an 

Ac is taken. 

Let X= [~ ~] e qc' We use the notation: 

Z=(Z,j)I";,,j";k, where Zij is an ri XSj matrix 

W=(Wij)I";i,J";k, where Wij is an Si Xrj matrix. 

(H _{qi ifieIIUI2 UI4 , _{qi ifieII UI2 UIs )" ere r i - Si- . 
qi+1 ifieIs qi+1 ifieI4 

Then define 

Uij={X= [~ ~] e qc; Zafi=O, Wafi=O if (a, ~)*(i,j)} 

Vij={X e Uij; [X, Xcl=O}. 

It follows from the definition that 
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Now take a basis w}j' "', wfJ! of Vij (ntj=dim Vij) in such a way that 

[AI;' wi'j]=!ijWi'J (a=i, •• " nij), where eachfi.t>O is an integer (cf. (1.7). 

Using the notation introduced above, we define 

nil 

Xij = L:: U£j+2)-dim Vij' 
«=1 

Then it is clear from the definition that 

(6.5.2.1) 

Lemma 6.9. 

(i) X _{Pd2 (iEIIUlz) 
it - 0 (i E Is U 14)' 

(ii) Ifi,j Ell (i=/=j) or ifi,j E Iz (i=/=j), then Xij=Xji=min (Pi,Pj)' 

(iii) Ifi E II,j E Iz or ifi E Iz,j E II> then Xij=Xji=O. 

(iv) Ifi,j E Is (i<j) or ifi,j E 14 (i<j), then Xij=Xji =(Pj-Pi)/2. 

(v) If i E Is,j E 14 or ifi E 14, j E Is, then Xij=X ji =(Pi +pj+2)/2. 

(vi) Ifi Ell Ulz,j E Is UI4 or if i E Is U 14, jEll Ulz, then Xij+X ji = 

min (Pi' Pj)' 

Since the proof of this lemma is elementary but rather lengthy, we 

,omit it. 

lt follows from Lemma 6.9 that if (i,j) satisfies one of the conditions 

in (i)-(iii), (v), (vi) of the lemma, then Xij+Xji>O. On the other hand, if 

(i,j) satisfies the condition in Lemma 6.9, (iv), then Xij+Xji<O. 

We now calculate the sum S: 

Put d=iIsi=iI4i and assume that Is={il, "', id } (il<'" <id ) and 14= 

{iI, "', ja} (il < ... <it)· Then it follows from Lemma 6.9 that 

d d 

S= 2:: {(Xiai~+Xi~iJ+(Xjaj~+Xj~jJ}+ L:: L:: (Xiaj~+Xj~iJ 
l~a<~~d a~l~~l 

rZ rZ 

= 2:: {(Pi~-PiJ+(Pj~-PjJ}+ L:: L:: (Pia +pj~+2) 
l~a<~~rZ a~l~~l 

rZ rZ 

= L:: (2a-d-l)(Pi a +Pj~)+d2::(Pia + pj~)+2dZ 
a=1 a=1 
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d 

= I;(2a-l)(P i a +pj)+2d2• 

a=l 

Hence we find that S>o. If d>O, this implies that aq,(X) >0. On the 

.other hand, if d=O, then S=O. In this case, II U Id:~ and Xii >0 for all 

i E II UI2 (cf. Lemma 6.9 (i». This combined with the formula (6.5.2.1) 

implies that aq,(X) >0. 

We have thus shown the next lemma which implies the conclusion of 

Lemma 6.6 for the case (II). 

Lemma 6.10. aq,(X) >0 for all nilpotent element X E q c' 

(6.5.3) Let (go> fjc) be a symmetric pair isomorphic to one of the 

pairs in (III) and (IV). Then one can prove the statement similar to 

Lemma 6.10 by an argument similar to that in (6.5.2). Hence Lemma 6.6 

is true for the cases (III) and (IV). 

(6.5.4) Proof for the cases (V)-(X). 

To prove the conclusion of Lemma 6.6 for the cases (V)-(X), we use 

the classification of the nilpotent orbits of exceptional simple Lie algebras 

by Dynkin [DJ. 

From now on, g denotes a complex simple Lie algebra instead of real 

one for the sake of simplicity. Let X be a nilpotent element of g and let 

(A, X, Y) be an S-triple. Then we can choose a basis WI' ••• , W p of gx 

(p=dim gx) such that each of WI' •• " wp is an eigenvector of ad (A). So 

put [A, wi]=niwi (1 <i<p). Then n l , "', np are non-negative integers. 

We may assume without loss of generality that n l >··· >nk>nk+I='" 

=np=O. Let G be a complex linear involution of g and let fj and q be 

the I-eigenspace and the (-I)-eigenspace of G, respectively. Now assume 

that X is contained in q and (A, X, Y) is a normal S-triple. Then we may 

assume from the first that each of WI' •. " wp E g.:" is contained in fj or q. 

At this moment, there are two possibilities: 

(a) dim fjx>p-k. 

(b) dim fjx-:;'p-k. 

In the case (a), X is clearly not q-distinguished (cf. Lemma 1.12). On the 

other hand, in the case (b), we define 

Ie 

n(X)= I: (n i +2)-dim q 
i=k-q+l 

If X is q-distinguished, it is clear from the definition that aq(X):2:n(X). 

Then we obtain the next lemma from Tables I-V in an Appendix. 

Lemma 6.11. Let (g, fj) be a complex symmetric pair. 
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(i) If (g, fj) is isomorphic to one of the pairs (V), (VII)-(X), then 

n(X) >0 for all q-distinguished nilpotent element X of q. 

(ii) Assume that (g, fj) is the pair (VI), namely, (g, fj)::::(e6, !3f(6, C)+ 

!3r(2, C». If X is q-distinguished nilpotent and n(X)<O, then the weighted 

Dynkin diagram J(X) of X is one of the following ones: 

22022, 20202 

2 0 

We can also prove the next lemma. Since we need elementary but 

complicated arguments for the proof, we leave its proof in another paper. 

Lemma 6.12. Retain the notation in Lemma 6.11 (ii). Let X be a 

nilpotent element of q. Let ul , •• " uq be a basis of qx. Assume that 

[A, ut]=miui, where mi is a non-negative integer (m l :?· .. >mq). 

(i) Assume that J(X) =22022. Then q= 5 and (ml' "', m5)= 

(14, 10, 10, 6, 2). 2 

(ii) Assume that J(X) = 20202. Then q= 7 and (ml' .. " m7) eoin­
o 

cides with (10, 10, 6, 6, 2, 2, 2) or (10, 8, 6, 4, 4, 2, 2). 

The conclusion of Lemma 6.6 for the cases (V)-(X) follows from 

Lemma 6.11 and 6.12. 

Corollary to Theorem 6.3. Let (g, fj) be a symmetric pair such that 

(ge, fje) is one of the pairs in (I)-(X). Then (g, fj) satisfies the assumption 

of Theorem 5.2. 

§ 7. Two conjectures 

In this section, we present two conjectures on the system JtA defined 

in (5.1.1). It is provable that JtA is holonomic for any A E or 
Conjecture 7.1. JtA is regular holonomic in the sense of Kashiwara­

Kawai (cf. [HK]). 

If this is true, one would conclude that any ISH on q turns out to be 

a distribution. This follows from the general theory of regular holonomic 

systems. 

Conjecture 7.1 is true in some cases. For example, if q is of rank 

one, one can easily show that Jt A is regular holonomic. On the other 

hand, if the pair (g, fj) is the one in (6.3.2), then JtA is also regular holo­

nomic. This is a deep result shown in [HK]. To prove this, Hotta and 

Kashiwara [HK] showed that Jt A coincides with the minimal extension of 
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the restriction .4'AI(gc)' to (gc)' which is the totality of regular semisimple 

elements of gc. This leads us to the next conjecture. 

Conjecture 7.2. Let (g, fj) be a symmetric pair. Assume that (gc, fjc) 

satisfies the assumption of Lemma 6.4. Then the system .4' A coincides 

with the minimal extension of the restriction .4' A I (q c)' to (q c)' which is the 

totality of the qc-regular semisimple elements of qc. 

One easily finds that the assumption of Conjecture 7.2 is necessary. 

In fact, consider the symmetric pair (§o(n+I, 1), §o(n, 1»). In the case 

where n is odd and is greater than 2, the system .4'A with A=O has a non­

trivial coherent quotient whose support is contained in the outside of the 

set of regular semisimple elements of qc. This follows from the arguments 

in (6.2). 

Appendix 

We give a proof of Lemma 6.11 in this appendix. 

Retain the notation in Lemma).I!. Let X be a nilpotent element of 

g and let J(X) be its weighted Dynkin diagram. We use the notation: 

p=dimc gx and q=dimc qx. Note thatp is determined in [E]. Also the 

number q is easily determined fromp (cf. Corollary 1.15). Moreover one 

can decide the numbers n j , ••• , np by using the weighted Dynkin diagram 

J(X) and the root system of g. 

Noting these facts, we give the numbers n(X) for all niloptent elements 

X of g in Tables I-V. Explain the contents of the Tables. In each table, 

the weighted Dynkin diagram, the numbers n j , ••• , np , p = dim gx, q = 
dim qx. n=n(X) are arranged in order. In the case where (a): dim fjx> 

p-k (cf. (6.3.4» holds for the nilpotent element X, we write N instead of 

the number q. In each Table, the notation nd means that the number n 

occurs with multiplicity d. 

Only in the case of Table I, we must remark one comment more. In 

this case, we treat the case of the simple Lie algebra of type E6• This 

coorresponds to the pairs in (V) and (VI). The numbers q and n are used 

in the former case. On the other hand, q' and n' are used instead of q 

and n in the latter case. 

Table I: (C6, IIp(4, C)) and (C6' i31(6, C)+1l1(2, C)) 

LI(X) nh .", np p q n q' n' 

22222 22, 16, 14, 10, 8, 2 6 6 42 4 2 
2 

22022 16, 14, 10, 10, 8, 6, 4, 2 8 7 26 5 0 
2 
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20202 14, lOS, 8, 6, 4, 4, 2, 0 10 8 28 6 6 
2 

20202 10, 10, 8, 8, 6, 6, 43, 23 12 9 14 7 -2 
0 

21012 10, 92, 8, 6, 52, 4, 32, 2, 03 14 10 32 8 12 
1 

11011 10, 8, 72, 62, 52, 4, 22, 12, 0 14 10 17 8 2 
2 

11011 8, 72, 6, 52, 43, 32, 22, 12, 0 16 11 14 9 2 
1 

00200 10, 6B, 2, OB 18 12 N 10 40 
2 

20002 8, 65, 43, 25, 04 18 12 28 10 14 
2 

00200 62, 47, 29, 02 20 13 18 11 8 
0 

01010 6, 52, 43, 36, 24, 12, 04 22 14 22 12 12 
1 

10101 52, 44, 34, 25, 16, 03 24 15 16 13 8 
0 

10001 6, 45, 38 , 2, 011 26 16 N 14 34 
2 

01010 43 34, ~9 18, 04 28 17 18 15 12 , L, 

0 

20002 4B , 2B, 014 30 18 N 16 40 
0 

10001 4, 36, 2B, IB, 09 32 19 24 17 21 
1 

00000 4, 219, 016 36 21 N 19 36 
2 

00100 32 , 29, p6, 011 38 22 30 20 24 
0 

10001 28 , p6, 022 46 26 N 24 40 
0 

00000 2, 1'0, 035 56 31 N 29 N 
1 

00000 07B 78 42 N 40 N 
0 
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Table II: (cr, ~I(8, C») 

£1(X) nt, ... , np p q n 

222222 34, 26, 22, 18, 14, 10, 2 7 7 70 
2 

220222 26, 22, 18, 16, 14, 102, 6, 2 9 8 44 
2 

220202 22, 18, 16, 142, 102, 8, 6, 22 11 9 30 
2 

222020 22, 163, 14, 10, 83 , 2, 03 13 10 70 
0 

202022 18, 16, 142, 103, 8, 62, 4, 22 13 10 22 
0 

210122 18, 152, 14, 102, 92, 6, 52, 2, 03 15 11 52 
1 

202020 16, 14, 122, 102, 83, 6, 43, 2, 0 15 11 28 
0 

202002 14, 12, 104, 82, 63, 42, 24 17 12 14 
0 

210102 14, 112, 102, 92, 8, 62, 52, 32, 22, 03 19 13 34 
1 

210110 14, 112, 10, 92, 83, 6, 52, 32, 22, 03 19 13 34 
1 

002020 123, 10, 83, 65, 43, 2, 03 19 13 34 
0 

220020 14, 105, 83, 6, 44, 2, 06 21 14 56 
0 

002002 103, 83, 65, 44, 26 21 14 10 
0 

010102 102, 9, 82, 72, 63, 53, 34 , 23, 03 23 15 25 
1 

020020 102, 84, 64, 46, 25, 02 23 15 18 
0 

101012 10, 92, 83 , 62, 54, 42, 33, 22, 13, 03 25 16 18 
0 

101020 10, 92, 83 , 6, 56, 43, 32, 2, 06 25 16 42 
0 

200200 10, 83, 68, 43, 27, 05 25 16 24 
0 

201010 10, 8, 74, 64, 54, 4, 24, 14, 04 27 17 24 
0 
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002000 83, 65, 410, 26, 03 27 17 22 
0 

101010 8, 72, 63, 54, 45, 34, 24, 14, 02 29 18 15 
0 

200022 10, 87, 6, 47, 2, 014 31 19 N 
0 

210001 10, 74, 66, 54, 22, 14, 010 31 19 53 
1 

200020 8, 67, 49, 27, 09 33 20 44 
0 

000200 65, 410, 215, 03 33 20 20 
0 

001010 63, 54, 44, 38, 28, 14, Q4 35 21 20 
0 

010001 62, 54, 45, 38, 28, 14, 06 37 22 26 
1 

220000 10, 614, 2, 021 37 22 N 
0 

100101 6, 54, 47, 36, 27, 18, 05 39 23 24 
0 

020000 62, 413, 215, 09 39 23 38 
0 

101000 6, 52, 47, 310, 26, 16, 09 41 24 34 
0 

010010 52, 46, 38, 211, 110, 06 43 25 24 
0 

200002 6, 415, 210, 021 47 27 N 
0 

200010 6, 47, 316, 2, 024 49 28 N 
0 

000020 410, 222, 017 49 28 54 
0 

000000 47, 228, 014 49 28 42 
2 

001000 43, 38, 215, 116, 09 51 29 30 
0 

100010 4, 38, 216, 116, 016 57 32 42 
0 

000001 36, 216, 120, 021 63 35 50 
1 
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200000 4, 231, 024 67 37 N 
0 

010000 32, 215, 128 , 024 69 38 54 
0 

000002 227, 052 79 43 N 
0 

000010 210, 132, 039 81 44 N 
0 

100000 2, 132, 066 99 53 N 
0 

000000 0133 133 70 N 
0 

Table III: (C8, ~o(16, C») 

L1(X) n1, "', np p q n 

2222222 58, 46, 38, 34, 26, 22, 14, 2 8 8 128 
2 

2202222 46, 38, 34, 28, 26, 22, 18, 14, 10, 2 10 9 82 
2 

2202022 38, 34, 28, 26, 222, 18, 16, 14, 10, 6, 2 12 10 56 
2 

2020222 34, 28, 262, 22, 182, 16, 14, 102, 8, 22 14 11 40 
0 

2101222 34, 272, 26, 22, 18, 172, 14, 10, 92, 2, 03 16 12 100 
1 

2020202 28, 26, 222, 182, 16, 143, 102, 8, 6, 4, 2 16 12 30 
0 

2020022 26, 222, 20, 18, 162, 142, 12, 103, 62, 4, 22 18 13 20 
0 

2101022 26, 22, 212, 18, 16, 152, 14, 112, 102, 6, 52, 2, 03 20 14 59 
1 

2020020 222, 20, 18, 16, 143, 122, 104, 8, 6, 4, 23 20 14 16 
0 

2101101 22, 212, 18, 152, 14, 123, 112, 10, 92, 6, 32 , 2, 03 22 15 46 
1 

0020022 22, 182, 163, 143, 103, 83, 62, 4, 24 22 15 8 
0 

0101022 22, 18, 172, 16, 152, 142, 102, 92, 8, 72, 6, 32, 22, 03 24 16 38 
1 
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0020020 182, 16, 143, 123, 103, 83, 65, 4, 23 24 16 10 
0 

1010122 22, 172, 163, 152, 14, 10, 92, 83, 72, 22, 14, 03 26 17 24 
0 

2002002 18, 162, 143, 12, 106, 83, 63, 42, 24, 0 26 17 14 
0 

2010102 18, 16, 152, 142, 112, 103, 94, 8, 62, 52, 4, 22, 12, 03 28 18 25 
0 

0020002 16, 143, 122, 106, 83, 65, 44, 24 28 18 6 
0 

1010102 16, 14, 132, 122, 112, 102, 92, 83, 72, 6, 52, 43, 32, 22, 12, 0 30 19 6 
0 

1010110 152, 14, 123, 112, 10, 92, 83, 74, 6, 52, 43, 32, 2, 03 30 19 26 
0 

2000222 22, 167, 14, 10, 87, 2, 014 32 20 N 
0 

2100012 18, 154, 14, 106, 94, 6, 54, 2, 010 32 20 95 
1 

1010101 14, 132, 12, 112, 102, 92, 83, 74, 63, 52, 43, 32, 22, 12, 0 32 20 8 
0 

2000202 16, 14, 126, 102, 87, 6, 47, 2, 08 34 21 62 
0 

0002002 14, 122, 107, 85, 65, 45, 28, 0 34 21 4 
0 

0010102 14, 12, 112, 104, 94, 82, 72, 63, 52, 42, 34, 24, 12, 03 36 22 13 
0 

1010100 123, 112, 10, 92, 83, 74, 65, 54, 43, 32 , 22 , 12, 03 36 22 18 
0 

0100012 14, 114, 102, 94 , 85 , 62, 54, 34, 26, 06 38 23 32 
1 

2000200 123, 10\ 83, 613, 43, 25, 06 38 23 34 
0 

1001012 14, 112, 105, 94, 83, 72, 6, 52, 44, 32, 22, 16, 06 40 24 24 
0 

0002000 104, 86, 610, 410, 210 40 24 4 
0 

0010100 103, 92, 83, 74, 65, 56, 44, 36, 26, 03 42 25 16 
0 

0100010 102, 94, 8, 74, 67, 54, 4\ 38, 23, 06 44 26 30 
1 
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1001010 102, 92, 84, 74, 64, 56, 47, 34, 24, 14, 03 
0 

44 26 12 

1010001 10, 94, 83, 72, 65 , 58, 47, 
0 

34 , 22, 14, 06 46 27 26 

0100101 10, 92, 83, 76, 64 , 56, 46, 
0 

34, 27 , 14 , 03 46 27 10 

2000022 14, 109, 87, 6, 48, 2, 021 48 28 N 
0 

0010010 92, 83, 74, 66, 56, 46, 38, 26, 14, 03 48 28 12 
0 

2000020 102, 88, 68, 415, 23, 014 50 29 68 
0 

0000002 10, 86, 614, 47, 214, 08 50 29 34 
2 

2000101 10, 92, 87, 6, 514, 47, 32 , 2, 017 52 30 84 
0 

0010002 10, 83 , 76, 68, 56, 43, 32, 27, po, 06 52 30 16 
0 

0100100 83 , 74, 65, 56, 410, 38, 27, 16 , 03 52 30 12 
0 

0000200 83, 612, 415, 218, 06 56 32 28 
0 

0010001 8, 74, 65, 58, 49, 38, 29, lB, 04 56 32 14 
0 

1000102 10, 8, 78, 68, 58, 4, 28, lB, 015 58 33 54 
0 

1000101 8, 72, 67, 58, 49, 38, 28, 18, 09 60 34 29 
0 

1001000 74, 66, 54, 410, 316, 26, 14 , 010 60 34 36 
0 

0000012 82, 76, 613, 56, 22, P4, 021 64 36 77 
1 

0000000 68 , 420, 228, 08 64 36 32 
2 

0010000 65, 56 , 410, 314 , 215 , po, 06 66 37 22 
0 

2000002 8, 611, 421, 211 , 024 68 38 90 
0 

1000100 63, 58, 48, 316, 216, lB , 011 70 39 35 
0 
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0000010 62, 56, 413, 312, 216, 114, 09 72 40 28 

1 

0100001 6, 56, 411, 316, 215, 114, 013 76 42 39 
0 

0000022 10, 626, 2, 052 80 44 N 
0 

0001000 54, 410, 316, 220, 120, 010 80 44 32 

0 

0000020 62, 425 , 227, 028 82 45 88 
0 

0000101 6, 52, 415, 318, 210, 114, 024 84 46 68 
0 

1000010 52, 410, 316, 223, 118, 017 86 47 48 
0 

2000000 414, 250, 028 92 50 72 
0 

0100000 47, 314, 228, 128, 017 94 51 48 
0 

1000002 5, 412, 331, 2, 055 100 54 N 
0 

0000100 43, 316, 227, 132, 024 102 55 60 
0 

1000001 4, 312, 232, 132, 035 112 60 80 
0 

0000000 38, 228, 148, 036 120 64 80 
1 

0000002 4, 255, 078 134 71 N 
0 

0000010 32, 227, 152, 055 136 72 108 
0 

1000000 214, 164, 078 156 82 N 
0 

0000001 2, 166, 0133 190 99 N 
0 

00000oo 0248 248 128 N 
0 

Table IV: (f4, i3p(3, C)+i3!(2, C) 

A(X) nl> "', np p q n 
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22~22 22, 14, 10, 2 4 4 28 

22~02 14, 10, 10, 6, 4, 2 6 5 14 

02~02 10, 10, 8, 6, 4, 23 8 6 10 

1O~12 10, 9, 9, 6, 3, 3, 2, 03 10 7 28 

22~00 10, 65, 2, 03 10 7 28 

02~00 62, 44, 26 12 8 8 

10~1O 6, 52, 4, 34, 23, 03 14 9 17 

01~01 52, 43, 32, 22, 14, 03 16 10 14 

20~01 6, 44, 34, 2, 06 16 10 28 

00~10 43, 32, 26, 14, 03 18 11 13 

00~02 41, 2, 014 22 13 N 

20~00 4, 213, 08 22 13 24 

O1~OO 32, 26, 110 , 06 24 14 18 

OO~Ol 21 , 18, 015 30 17 N 

1O~00 2, 114, 021 36 20 N 

OO~OO 052 52 28 N 

Table V: (gz, ~1(2, C)+~1(2, C)) 

LI(X) n1, ... , np p q n 

2~2 10, 2 2 2 8 

2~0 4, 2, 2, 2 4 3 4 

0~1 3, 3, 2, 0, 0, 0 6 4 N 

1~0 2, 1, 1, 1, 1, 0, 0, 0 8 5 8 

O~O 014 14 8 N 
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