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Invariant Spherical Hyperfunctions on The Tangent
Space of A Symmetric Space

Jiro Sekiguchi

Introduction

This paper deals with the study of invariant spherical hyperfunctions
on the tangent space of a semisimple symmetric space.

First recall the results on invariant eigendistributions (=IED) on a
real semisimple Lie algebra. Hence let g be a real semisimple Lie algebra
and let g,, be the totality of regular semisimple elements of g. Then
Harish-Chandra showed the following famous theorem (cf. [HC1]):

Theorem 1. Every invariant eigendistribution on g is a locally L'-func-
tion.

At one step of the proof of this theorem, he also showed the following
theorem ([HC3)):

Theorem II. Let u be an IED on g. Then the restriction of u to g,,
determines u itself, that is, if u is zero on ¢,,, then u is identically zero on
the whole space g.

In this paper, we attempt to obtain a generalization of the results
mentioned above for invariant spherical hyperfunctions on the tangent.
To explain our main result, we need some notation. Let ¢ be an involu-
tion of g and let g=04 q be the direct sum decomposition for ¢, where §
and q are the 1 and —1 eigenspaces of g, respectively. Then one can
naturally define an invariant spherical hyperfunction (=ISH) on the vector
space q (§5). An ISH is, by definition, a hyperfunction solution of a
holonomic system .#, of differential equations on q. In the case where
g=g'®g’ (¢’ is semisimple) and o(X, Y)=(Y, X) (X, Y) € g), every ISH
on q(~~g’) is nothing but an IED on g’. Hence the notion of an ISH is a
natural generalization of that of an IED on a semisimple Lie algebra.

Since every ISH u on g is real analytic on q,, (=the set of g-regular
semisimple elements of (), it is rather easy to treat the restriction of u to
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g, This and Theorem IT above lead us to the following problem:

Problem. Does there exist a non-zero ISH u on q such that Supp (v)
is contained in g—q,,?

An ISH u is called singular if Supp () is contained in q—gq,,. Then
there exists a non-zero singular ISH on g for some symmetric pair (g, §)
(cf. § 6). But we can show the following theorem which is an analogue
of Theorem II (cf. § 5, Theorem 5.2).

Theorem 1. Let (g, ) be a symmetric pair.  Assume that 5 (Z)>0
for every q-distinguished element Z of q (for the definition of the number
0,(Z), see §1). Then there exists no non-zero singular invariant spherical
hyperfunction on .

Our method of the proof of Theorem 1 is based on Atiyah’s lecture
note [A] which is an intelligent introduction to Theorem I of Harish-
Chandra. We are going to explain the main part of the argument. Let
[ be the pseudo-Laplacian on q. Following Atiyah [A], for an arbitrary
element Z of q, we calculate the radial component of [] at Z by use of a
specified local coordinate system near Z. The choice of this local coordi-
nate system plays a fundamental role in the proof of Theorem 1. In the
case where Z is nilpotent, the radial component of [] for the local coordi-
nate is already obtained by van Dijk [vD]. At any rate, if §,(Z)>0 for
an arbitrary g-distinguished element Z of q, the proof of Theorem 1 goes
parallel to the arguments in [A]. So we obtain Theorem 1.

Needless to say, the assumption of Theorem 1 holds for a Riemannian
symmetric pair or a pair of the form (g’@g’, g’) (which is regarded as the
case of the Lie algebra g’). But for these cases, the conclusion of Theorem
1 is already known. In fact, in the former case, every ISH on q is real
analytic. On the other hand, Theorem 1 is reduced to Theorem II in the
latter case.

The next problem is to determine whether for a given symmetric pair
(g, 5), the assumption of Theorem 1 holds or not. Hence it is important
to classify all the symmetric pairs satisfying the assumption. Let (g., §.)
be the complexification of (g, §) and let g, be a real form of g, such that
f,=0,Ng, is a maximal compact subalgebra of g,, We shall show the
next theorem in Section 6 (cf. Theorem 6.3).

Theorem 2. Retain the notation above. Let 3 be the restricted root
system of g,. For every root 2 € 3, let m, be the multiplicity of 1. Assume
that m;+m,,<<2 for all 2 e X. (For example, this condition holds in the
case where q, is a normal real form of g,.) Then the assumption of Theorem
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1 holds for the pair (g, §).

Our proof of this theorem is based on the classification of all the
nilpotent orbits of complex simple Lie algebras.

At an early stage of the preparation of this paper, the author proved
Theorem 1 only in the case of invariant spherical distribution (=ISD). T.
Oshima showed him Proposition 2.3 in Section 2 as well as its proof. Once
the proposition is established, so is Theorem 1 not only for the case of
distributions but also for the case of hyperfunctions. It is worthwhile to
state a conjecture concerning the difference between ISD and ISH. Let
A , be the holonomic system introduced in Section 5. Note that an ISD
is, by definition, a distribution solution of £ ,.

Conjecture. .#, is a regular holonomic system in the sense of
Kashiwara-Kawai (cf. [HK]).

If this is true, one would show, as a corollary, that any ISH turns out
to be an ISD. Hence, there exists no difference between ISH and ISD.

Acknowledgement. The author wishes his hearty thanks to Mr. T.
Kawazoe for fruitful discussions with him about this topic and also to
Prof. T. Oshima for showing him the proof of Proposition 2.3.

§1. Semisimple and nilpotent elements associated with symmetric spaces

In this section, we discuss the structure of the tangent space of a
symmetric space. This will be needed in the subsequent discussions.

(1.1) First introduce some standard notation. In this paper, N
always means the set {0, 1, 2, - - -}. If Vis a real vector space, we denote
by V, its complexification. Also we denote by V* and V¥ the duals of V
and V,, respectively. Moreover S(V.) denotes the symmetric algebra over
V.. For a real Lie algebra g, U(g,) denotes the enveloping algebra of g,
and for an element X of g and a linear subspace V of g, we put V,y=
{ZeV;{Z, X]=0}.

(1.2) Let g be a real semisimple Lie algebra and let ¢ be its involu-
tion. As usual, j and q denote the 1 and — 1 eigenspaces of g, respectively.
Then g=H-+q is a direct sum decomposition. In this paper, the pair
(g, b) obtained in this way is called a symmetric pair. If G is the adjoint
group of g, then ¢ is lifted to G. For the sake of simplicity, the lifting of
g is denoted by the same letter. Define G°={g € G; cg=g} and let H be
the identity component of G°. Then Y is the Lie algebra of H. Since
6, alCq, H acts on q. The coset space G/H is a semisimple symmetric



86 J. Sekiguchi

space and the tangent space of G/H at eH is identified with g.

Let & and A4 be the totality of semisimple elements and that of
nilpotent elements of g, respectively. Put #(q)=%\q and its elements
are called semisimple elements of q. Similarly, put A/ (q)=4/"Nq and its
elements are nilpotent elements of q.

(1.3) First recall the Jordan decomposition of elements of g.

Lemma 1.1. Tuake Z, < q.
(i) There exist unique elements A, e F(q) and X, e A(q) such that

Z,=Ay+ X, and that [A4,, X,]=0.
(i) 82,=84MNGx,

Definition 1.2. (i) The number min {codim, H-Z; Z ¢ q} is called
the rank of (g, §) or that of q and is denoted by rank q.

(ii) As element Z of q is called g-regular if codim, H-Z conicides
with rank q.

Lemma 1.3. Let S(0,)? be the totality of H-invariant elements of
S(q.). Then there exist homogeneous elements P, - - -, P, (I=rank q) such
that S(q.)=CI[Py, - - -, P,].

This is due to Chevalley (cf. [KR]).

(1.4) We review semisimple elements of q. A linear subspace a of
q is called a Cartan subspace of q if a is a maximal abelian subspace of q
consisting of semisimple elements. By definition, the dimension of a coin-
cides with rank q. It is known (cf. [OM]) that there are only a finite
number of H-conjugate classes of Cartan subspaces of q. Now take a
Cartan subspace a of q and fix it once for all. For a linear form 2 on a,
we define

gi={Xeg,[4, X]=21(4)X forall 4ea,}
and
2(@={2eaf; g:#{0}}—{0}

Then 2(a) becomes a root system. In fact, X(a) coincides with the re-
stricted root system of an appropriate real form of g, (cf. [0S]). Define
a’={A4 e a; 2(A)#0 for all 4 ea}. Then it is clear that every element of
o’ is g-regular. For this reason, this is called a g-regular semisimple ele-
ment of a.

Let ay, ---, a, be the totality of representatives of mutually not H-
conjugate Cartan subspaces of q. Put q'=\J¥.,Urexh-¢’. Then ¢
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consists of g-regular elements and is Zariski dense in q. Note that not
every g-regular element of g is contained in ¢’. For example, as will be
stated later, in some cases, there exist q-regular nilpotent elements in g (cf.

(1.9)).

(1.5) Take a semisimple element 4, of g. Then its centralizer 3=
@4, 1 reductive and is o-invariant. Let ¢ be its center and let 3, be its
semisimple part. Now put ¢c-=c¢q, 3*=3NbY, 35 =3,NY, 3-=3Ngand
35 =3,Mq. Then 3, =35 +3; is a direct sum and (3,, 3;) is a symmetric
pair.

Definition 1.4. The pair (3,, 3;) thus obtained is called a sub-sym-
metric pair of (g, b).

(1.6) Next we review nilpotent elements of q. The following lemmas
are fundamental in the subsequent discussion (cf. [KR], [vD]).

Lemma 1.5. (i) H leaves A7(q) invariant and there are only a finite
number of H-orbits of A(q).
(i) A (@={Xeq; P(X)=P(0) for all P e S(q.)"}.

Remark 1.6. It is known (cf. [KR]) that codim, A"(q)<{/=rank q.
But the equality does not hold in general. In fact, if (g, §) is Riemannian,
then A°(q) consists of only one element 0 and therefore codim, A4(q) =
dim <<l

Lemma 1.7. Let X, &€ A(q). Then there exist Ay e Yy and Y, € q such
that

(1-6-1) [Ao, XO]:ZX(), [Am Y0]=—2Yo, [Xo, Yo]:Ao-

Definition 1.8. Retain the notation in Lemma 1.7. Then (4,, X,, Yo)
is called a normal S-triple and the Lie algebra [=RA,+RX,+RY;isa
TDS.

By definition, { is isomorphic to 3[(2, R). Let g, be a Cartan involu-
tion on [ defined by 6,: (4o, X,, Yo)—{(— 4y — Y, —X,). It is clear that
6, commutes with ¢]I.

Lemma 1.9 ([vD]). 6, can be extended to a Cartan involution 6 on g
which commutes with o.

(1.7) Let (4, X;, Y,) be a normal S-triple. The centralizer gy, is
left invariant by ad 4, and also by ¢. This implies that gy, =0,,+qz, is
a direct sum and ad A, leaves §y, and gy, invariant. Noting this, we can
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take a basis w,, - - -, w, of qg, which are eigenvectors of ad 4, (r=dim qg,).
Hence [4,, w,]=n,;w, for a number n, (1<<i<r). Then each n, is a non-
negative integer (cf. [vD]).

Definition 1.10. Define 5,(X,)=>"7_, (n,+2)—dimq.
It is clear from the definition that §,(h- X,) =4,(X,) for all 7 e H.

(1.8) Let B(,) be the Killing form on g. Then we write w(X)=
B(X, X) (X e q) and call o the Casimir polynomial on q. It is clear from
the definition that w is an H-invariant non-degenerate quadratic form on

q.

Definition 1.11. X is q-distinguished nilpotent if X, does not commute
with any non-zero semisimple element of q.

Lemma 1.12 ([vD]). The following conditions on X, are mutually
equivalent.

(1) X, is g-distinguished nilpotent.

(i) oX)=0for all X € q4,.

(ii)  o(X)=0 for all X ¢ qy,.

iv) n, >0 (1<iLr).

(V) ax,N Gy, =0.

(1.9) A nilpotent element X, ¢ q is called g-regular if dim q,, =rank
q (=), or equivalently, codim, H- X,=/ (cf. Definition 1.2).

If each of g and ) is a normal real form of a complex semisimple Lie
algebra, then 4/7(q) actually contains g-regular nilpotent elements. But, in
some cases, this does not occur. A typical example is the case of Rieman-
nian symmetric pairs (cf. Remark 1.6).

Let X, e q be g-regular nilpotent. Then X, has the following pro-
perties (cf. [KR], [vD]):

(i) dimqy,=/

(ii) Ifm, ---,n, are the integers defined as in (1.7), one may take
the homogeneous generators P, ---, P, of S(q.)” in such a way that
n,+2=2degP, (i=1, . --,0).

(iii) X, is g-distinguished.

(1v) 0 (XD =142 ies+,ames Q—mu—my).

(Here 2 is the root system defined as in (1.4) and 2" is a positive system
of X.)

(1.10) Let Z, e q and let Z,=A4,+ X, be as in Lemma 1.1. Since 4,
is semisimple, we can define the sub-symmetric pair (3,, 3;") and the vector
spaces 3;, ¢, as we did in (1.5). By definition, X, is a nilpotent element
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of 37. Hence the number §,-(X;) is defined similarly. Then we put
04(Zy)=0,:(Xy).

Definition 1.13. Z, is q-distinguished if X, is 3; -distinguished nilpotent.

If Z, e q is g-regular, then Z, is q-distinguished. In fact, if Z,=4,+
X, is the Jordan decomposition of Z, as above, then X, is 3;-regular nil-
potent.

(1.11) Let 4 be a g-regular semisimple element of q. Then g, is left
invariant by ¢. So g,=0,+q, is a direct sum. Note that a=q, is a
Cartan subspace of q and that §,, is the centralizer of a in §. Then it easily
follows that the number m=dima—dim §, does not depend on the choice
of A.

Lemma 1.14 (cf. [KR]). dim gqy—dimYy=m forall Xeq.
Corollary 1.15. dim qy=1% (dim gz +m) for all X ¢ q.

§ 2. Preliminaries from differential eguations

(2.1) Let M be a connected open subset of R™ containing the origin

and x=(x,, ---, x,) its Cartesian coordinate system. First introduce
some standard notation. As usual, put D ,=d/ox, (i=1, -- -, m). For
any multi-index e=(a,, ---, @,) € N”, |¢|=a;+ - +«,. Moreover,

xXt=xt- - o xim, DE=Dgt. - -Dim. Let /(M) and (M) denote the set of
analytic functions on M and that of hyperfunctions on M, respectively.
Moreover, #, denotes the sheaf of hyperfunctions on M.

In this paper, differential operators always mean those having ana-
lytic functions as coefficients. Let P(x, D,) be a differential operator
defined on M. Then P is expressed as follows:

P= 3> a(x)D:
aeN™, |a|<d
If a.(x) is not identically zero for some a (ja|=4d), then d is called the order
of P and is denoted by ord P. Moreover, a(P)(x, £)=1 a-q LX) is
called its principal symbol, where £=(&,, - - -, &,) is the conormal variable
and & =£&qn. . .&%  For any x, ¢ M, P(x,, D,) is called the local expres-
sion of P at x,.

Define, for any p € S(C™), a differential operator 3(p) on R™ as follows.

First, if v=(v,, - - -, v,) € R™, then define the vector field d(v) on R™ by

)P (x)=—jt—f(x+tv>|t=o,
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where f(x) is an arbitrary analytic function on R™. Ifuv, ---,v, ¢ R™,
then a(v,- - -v,)=3d(v)- - -0(v,). Extending 9 linearly to the symmetric
algebra S(C™), we have thus defined d(p) for any p e S(C™). Itis clear
from the definition that for every p e S(C™), the local expression of a(p) at
every point of R™ coincides with itself,

(2.2) Let N be a connected open subset of R* containing the origin
and y=(y,, ---, y,) as its Cartesian coordinate. We always identify ¥
with a subset {0} XN of M X N. The next lemma is fundamental (cf.
[SKK)).

Lemma 2.1. Let u(x, y) be a hyperfunction on M XN. If u(x,y)
satisfies the differential equations

Dmu:O (l=17 v 'sm):

then u(x, y) is constant with respect to the variable x, that is u(x, y}|,-,=v(»)
is a well-defined hyperfunction on N and u(x, y)=v(x) holds on M X N.

(2.3) In the rest of this section, we give propositions which play
fundamental roles in the proof of Theorem 5.2 in Section 5.

Proposition 2.2. Let P(x, y, D, D,) be a differential operator of order
2 defined on M X N and let u(x, y) be a hyperfunction solution of the differ-
ential equation Pu=0. Assume the following conditions:

(1) o(P)(, y, & 0) is a non-degenerate quadratic form of & for all
yedN.

(ii) Supp @)CN.
Then u=0.

This follows from Chap. III, Prop. 2.1.3 in [SKK].

Proposition 2.3. Let P be a differential operator defined on M X N of
order 2 and of the following form:
P=;_/jl ay(x, YD, D, 4b(x, Y) Dy, + Ry(x, y, Dz, Dy)x, D,
+Ro(x, y, D;, D),

where D, =(D,,, ---, D, ). Assume that

a(x, y) =A%y,

a;(x, y)=2;%;+ (terms of order> 2 with respect to x),
b(x, y)=p+ (terms of order >1 with respect to x),
G(RO) (07 Y, 523 ctty ‘Sm; 0)—:0,
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where each A, is a constant such that Re 2; >0 and p is also a constant.
If u(x, y) is a hyperfunction on M X N satisfying that

Pu=0, Supp (W) N,
then u(x, y) is expressed of the form

u(x, Y) =2 f{»)3(x) (finite sum),
where each f,(x) is a hyperfunction on N.

Remark. T. Oshima has shown the author the proof of Proposition
2.3. So he expresses his hearty thanks to T. Oshima.

Proof. Let Z be an open subset of C™ such that ZNR™=M.
Similarly, let W C™ be an open set such that WNR*=N. Identify W
with the subset {0} X W of ZX W. Let 0,y be the sheaf of holomorphic
functions on ZX Wand put £ =>",0,.px;. It follows from the defi-
nition that (Px,) ¢ _#° for any integer d>0.

To prove the proposition, we need a lemma.

Lemma 2.4. Choose a positive integer h such that
h ,
Re ;n—lj—l-y >0 (=1---,m).

Then for any open neighbourhood U of the origin 0 € Z X W, there exists a
small open neighbourhood VU of 0 satisfying the conditions (i), (ii):

(i) Px,: gMV)— gV is injective.

(ii) For any fe £™(U), there exists a ue #"(V) such that Pxu=f
holds on V.

Assuming this lemma for a moment, we continue the proof of Pro-
position 2.3. Note that the adjoint P* of P also satisfies the assumption
of the proposition. Let T be a sufficiently small complex neighbourhood
of the origin and let K be a compact subset of TN N. Replacing each
point of K with the origin and applying Lemma 2.4, we find that

3.1 P*x: #4K)— F4K)

is a topological automorphism as a DFS-space. Here & is a sufficiently
large integer satisfying the conditions (i), (ii) of Lemma 2.4 and

FHK)=lim #*U) (U runs through complex neighbourhoods
U
of K).
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Note that /4 is independent of the choice of K. Now put
SFo={ue Byyy; fu=0 for all fe £".

Since &, =3 1< B0 (x), &), is regarded as not only a sheaf on M X N
but also that on N. Taking the dual of the isomorphism (2.3.1), we obtain
the isomorphism

P
HYUM XN, Byy) mod I'(K, &) HYM X N, Bysx) mod I'(K, ).
Define the presheaf #on M X N as follows. For every open subset D of
MXN, I'(D, F)=H%.y (D, Byxy) mod I'(D, &,). Since both &, »

and &, are flabby sheaves, we find that % becomes a flabby sheaf, Hence,
if D is contained in T, it follows that

P
F (D) F (D)
is an isomorphism. This implies the proposition.

Proof of Lemma 2.4. First introduce a partial order on N™. Let

a=(a, -+, ), & =(ai, - - -, al) € N*. We define that <« if and only
if one of the conditions (a), (b) holds:
@ o<a.

(b) a,=af and |a|<|/|.
Consider the differential equation
2.3.2) (Px)u=f.
Assume that f(x, ¥) and u(x, y) are formal power series of the forms

(2.3.3) Joo, »)= 20 Jux¥? (fupe )

agN™, Be N, |al2h

2.3.9) u(x, y)= > U gx°yP (.5 € C).

aeN™, BN, la|2h

Note that if u(x, y) is of the form (2.3.4), then f=Px,u is expressed of the
form (2.3.3). In the sequel, we always assume that f and u are the ones
as in (2.3.3) and (2.3.4). Put

Py=(3,2;x,D,,D, D, )x,
j=1

=(x,D,,+1) (jZJlljx,D,j—i—p).
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Then (2.3.2) is rewritten of the form
(2.3.5) Pjy=(P,— Px)u-+f.

Comparing the coefficients of x*y* of both sides in (2.3.5), we find that

(left hand side) =(e,+ 1) (3 2,2, + itz
i=1
(right hand side) =1, + >, Cobg,

a’<a
la’[+ |8/ 1<[al+]|8]+2

(2.3.6)

where cZf}, are constants independent of the choices of fand u. From the
choice of 4, we find that Re (37, ;; + ) >0 for all @ e N*, |a|>h It
follows from (2.3.5) and (2.3.6) that u(x, y) is uniquely determined by
S, ).

We are going to prove by the method of majorants that if f is con-
vergent, then the formal power series solution u of (2.3.2) is actually con-
vergent. First we replace the coordinate (x, y) with (&3, x,, - - -, X, )
and rewrite this by (x, ) for the sake of simplicity. Then (R,xD,,+ R)x,
is changed into the form

(2.3.7) x1{ﬁ1(x; ¥, x,.Dg, xlDy)xle+ﬁo (x,y, x,Dg, x1Dy)}
=xq 2 eas(X, ¥) (D) (x, D)%}

2@ N™—1,8E N la|l+8<2
Here (x,D})*=x]*'Dg:- - - D;r, etc, and each e,4(x, y) is an analytic function.
Moreover 4, is changed into 31,. For the sake of simplicity, we rewrite
this by 2,. Put s=x,+.--+x, and t=y,-+ +- - +y,, and choose positive
constants &, C, C’ >0 satisfying the conditions

(2.3.8.1) da|<|> A0, +p  (Yae N, |a|>h)
i=1
i ECu A i ...
(2.3.8.2) a,(x,y) 11x1<<C—x1—s—t (=2,---,m)
(2.3.8.3) b(x, ) —pg Lt
C—x—s—t
4 h
(2.3.8.4) fx, ) Lt
C—x,—s—t
Cl

(2.3.8.5) e.4(x, y)<<z,—:———_—t

1

for all (a, B).
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Put f(x, y)= C'(%,+ 8" (C—x,—5— )= fopxy®) and let x,R be the
differential operator which is obtained from the one in (2.3.7) by changing
each coefficient e,,(x, y) with C’/(C—x,—s—1), that is, R is defined by

C’

(2.3.9) R= Z (6 D)%%, Dy )%

Moreover define

Py=e(x,D, .+ 1)(le,. ij>
)

-~

Szw)——{e(xl ¥ s)(]i xjpzl) + 1}(x1Dx1+ D+x.R

C—x,—s5—1
and consider the differential equation
(2.3.10) (P,—S)ii=1.

Then, by means of an argument similar to the above one, one finds that
for the given 7(x, y), there exists a unique formal power series 7(x, y)=
D azn Uapxy? satisfying (2.3.10). In particular, as in (2.3.6), we obtain
the relations

2.3.11) el + Dy =Fos+ > 68l gen

Comparing (2.3.6) and (2.3.11), we find that 4(x, y) is a majorant of u(x, y).
On the other hand, one easily shows that #(x, y) is expressed as a power
series of x,, 5, &. Noting this, we may assume that #(x, y) =v(x, s, t) for
a power series v(x,, 5, t) of x,, 5, . Then, from the definition, we find that

Pii=e(x,D,,+1) (x,D,,+sD,)v,
Si= [_C_(i“is)— (0%, +-5)sD, + 1} (6D, 4 D+ xR ]

C—x,—s—t

where R'=(C’[(C—x,—s5—1)) 3. 5(x, D" (x, D))" (cf. (2.3.9)). Then
(2.3.10) turns out to be

2.3.12) (P}—S"v=F1,
where P} and S’ are defined by
Pa =E(x1Dxl+ 1)(x1Da:1 +SD3)

/4
€S {es'D,+1)(x,D. 413

S'=—"
C—x,—s—t
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CCt2) e o1 c }
e D% D, (%D,
Cx—sei sD (x,D.,+1)+ e (x,D,,+1)

+x, {R’ +
At this stage, we consider the differential equation
(2.3.13) (Pi—Sv=g.

As in the previous case, assume that g(x,, s, #) and v(x,, s, t) are power
series of the forms

(23.14) 8(Xy 5, 8)= 37 gujuxis't"
i+jzh

(2.3.15) U(xy, 8, 1)= > U, Xis?t%,
i+j=h

Ifg= f, then (2.3.13) is reduced to (2.3.12). For this reason, from now
on, we treat (2.3.13) instead of (2.3.12). Then by an argument similar to
the above one, it suffices to show that if g(x,, s, ¢) is convergent, so is the
solution v(x;, s, ¢) of (2.3.13). To accomplish this, introduce the function
(%, 5, t) defined by

C’st oy C’s -
(2.3.16) (1 C_XI_S_I) = 20 D=l.

Using », we change the coordinates by (xi, s’, ¢")=(x,, s, ) and rewrite the
differential equation (2.3.13) into that of x[, s/, #’. For the sake of sim-
plicity, we exchange xi, s/, ¢/ with x,, 5, . Then (2.3.13) turns out to be

@3.17)  [{e(3x,D,,+5D )+ (x5, D}.D,, +1)+x.R o=g.

where ¢(x,, 5, ¢) is an analytic function defined in a neighbourhood of the
origin, such that ¢(0)=0. In virtue of the discussion above, it suffices to
show that if g(x,, 5, ¢) is a convergent power series of the form (2.3.14),
then the power series solution v(x,, s, t) of (2.3.17) is also convergent. We
may assume that

x,+s+t

. . C(x, )"
2.3.18 =1 , =1
( ) AN C—x,—s—t 8<s C—x,—s5—t

holds for the constants C, C’ >0 and consider the differential equation
(2.3.19) {eB3x,D,,+1)(3x,D,,+sD,)—§(3x.D, +1)—x,R"}o=4,

where R” is a differential operator constructed from R” in the same way
obtaining R from (Rx,D, -+ Ry)x,. Then we find that #(x, s, ?) is a
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majorant of v(x%, s, ?). On the other hand, the differential equation
(2.3.19) has regular singularities along the hypersurface {x;=0} (cf. [O]).
Then in virtue of [O], we conclude that O(x,, s, ¢) is convergent.

We have thus proved that O(x, y) =uv(x,, s, #) is convergent and there-
fore that the solution u(x, y) of (2.3.2) is convergent. This implies (i) and
(ii). In the above discussions, we assumed that m2>>1. But the case m=1
is easier to prove than the case m>1. In fact, in this case, the original
equation (2.3.2) has regular singularities. q.e.d.

As a corollary of Proposition 2.3, we obtain the next one.

Proposition 2.5. Retain the notation and the assumption in Proposition
2.3.  Moreover assume that

(2.3.20) ST 3 (a; - 1)b(©0)  for all « e N™.
=1

Then u=0.

Proof. Let u(x, ¥) be a non-zero hyperfunction on M X N such that
Pu=0 and that Supp(#)CN. Then, by means of Proposition 2.3, we
may assume from the first that u(x, )= 3, <o f(1)3(), f()#0 for
some « (|a|=4d).

Let f(») be an arbitrary hyperfunction on N and take & ¢ N™. Then
it follows that

@321 PUOI0)={= 52+ D+ f(0)()

+ 20 g&d»iP(x),
BEN™, gla’
where &’ =(a,+1, @, - -+, «,,) and each g,(») is a hyperfunction on N.
Noting (2.3.21), we conclude from the assumption (2.3.20) that u=0.
This contradicts the assumption. g.e.d.

§ 3. Radial components of differential operators

(3.1) Following [HC2] and [vD], we introduce some notation. For
any X e q,, Ly is the linear endomorphism of S(g,) defined by L(p)=Xp.
On the other hand, for any X e §j,, dy is the unique derivation of S(g,.)
which coincides on q, with ad, (X). Furthermore, for any Y e q., define
or(X)=Lix y1+dz(X e},). Then g, is a representation of §), on S(q,).
We can extend g to the representation of U(§.) on S(q.) and denote it by
the same letter. For Y e g, let ', be the linear mapping of U(§,) ® S(q.)
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to S(q.) defined by I',(g®p)=0,(g)p (g € U(H.), p € S(q.).

(3.2) Now take an element X, of q. Let U be a linear subspace of
g such that q=U++[X,, §] is a direct sum. On the other hand, let ¥ be a
linear subspace of § such that H=V+Yy, is a direct sum. For any u ¢ U,
define the linear mapping ¢, of VXU to q by ¢,(v, wy=w-+[X,+u, v].
Then ¢, is bijective. Noting this, we define {(w)=det (¢, gy )(u e U)
which is a polynomial on U with respect to an arbitrary linear coordinate.
For the linear subspace V of §), S(¥V,) is naturally identified with the sub-
space of S(§,). Let S,(§,) be the totality of homogeneous elements of
degree d in S(b,) for every de N. Put Sy(V.)=S(V,.)NS,(H,). Let2abe
the symmetrization of S(§,) onto U(f,). Using 4, we define S (V,)=
ASAV D), SV )=2S(V)) and S (V) =1 45.S(V).

Lemmas 3.1-3.3 below are shown by arguments similar to Lemmas §
and 9 in [HC2].

Lemma 3.1. Letue U. If{(u)=0, thenl y,,, is a bijective mapping
of &(V)® S(U.) onto S(q.).

Lemma 3.2. Take p e S(q.). Then there exist a non-negative integer
r and a polynomial mapping 7, of U to &(V )QS(U,) such that Iy, (T ,(w))
=L(u)p for any u e U.

In the above lemma, a polynomial mapping is used in the following
sense. Let A and B be vector spaces. Assume that dim 4<{oco. Then
p: A—Bis called a polynomial mapping if p(a)=>, f.(a)v, (finite sum),
where v, € B and each f;(q) is a polynomial on A with respect to a linear
coordinate system.

Now put U’ ={u e U; {(u)==0}.

Lemma 3.3. Fix p e S(q.). Then for any u e U’, there exist unique
elements o, (p) € S(U,) and B, (p) e &, (V)R S(U,) such that p—a,(p)=
=1"3,:4(8.(D)).  Moreover d’a,(p)<d’p. (Here d°q denotes the degree of

q.)

Definition 3.4. «,(p) is called the radial component of p at u (with
respect to X, U, V).

(3.3) For any p € S(q.), we define the differential operator 9(p) as
in Section 2. On the other hand, for any X ¢}, define a vector field z(X)
on q as follows:

X)) (Y)=§’-t—f(r+t[Y, XDl (Teq).
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(Here f(Y) is an arbitrary analytic function on q.)

Let D be a differential operator on an open subset £ of . Then we
define a differential operator 4(D) on the open subset U’ N (22— X;) by the
same way as in [HC2, p. 283] (see also [vD]). ‘

Let 2(£2) denote the ring of differential operators on 2 and let 77(2)
be the left ideal of 2(92) generated by the vector fields z(X) (X e §).

Definition 3.5. (i) A hyperfunction # on £ is locally invariant if
(X )u=0for all X e }.

(i) A differential operator D on £ is locally invariant if [#(X), D]
=0 forall X e}

(3.4) Return to the situation in (3.2). Take a basis u,, - -+, u,, of U
and let x,, -- -, x,, be its coordinates. Similarly, take a basis b,, ---, b,
of Vand let y,, - - -, y, be the coordinate with respect to this ¥V-basis.

Lemma 3.6. Define the analytic mapping F of R™XR" to q by
(34.1) F(x, p)=ents. - - mn(Xo 5 Xouy).
=1

Then F(0, 0)=X, and dF is non-singular at (0, 0).

This lemma follows from the definition.

Let U, and ¥, be open subsets of R™ and R* containing the origins,
such that U,C U’ and that F|U,XV, is an isomorphism. Put ;=
F(U,;x V). Then £, is an open neighbourhood of X; and is in a one to
one correspondence with U, X ¥,. For simplicity, put f~(x, ¥) =f(F(x, )
for any fe «/(8,). Similarly, for any D e 2(02,), define a differential
operator D™ on U, X V, by (D"h)(x, y)=(D(ho F-)(F(x, y))). Since Fis
bijective, D~ is well-defined. Let J (U, X V,) be the left ideal of 2(U, X V,)
generated by the vector fields z(X)~ (VX ¢ §).

Lemma 3.7. D,, (1<i<n) are contained in T (UyX V).
Proof. Define analytic functions f;;(y) by Ad (e¥*:. . .e¥i-10i-1)p, =

>k L (X, where {X), ---, X} is a basis of § (k=dim§). Then it
follows that

Dw———f;ﬁj(y)dxjr e FUX Vo). qed.

Lemma 3.8. For each i (1<i<n), the local expression of =(b,)” at
(x, 0) coincides with —D,,,.
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Proof. Take he &/ (UyX V) and calculate (z(b;)"h)(x,0). For
simplicity, put f=ho F~' ¢ o/(£;). Then

(2(6)"h) (x, 0)=(z(b)f) (F(x, 0))
=((b)/)(X+ 2% 5s5)

d :
zjﬁ—f(e— bi(Xo“*'; X))o
Since e~ *%(X,+ >, x,;u,)=F(x, y) with y, = —8,,t (1<k<n), we find that
4 ,
Wf(ektbi(Xo+zT_.xjuj))lz=0= —~D, M (x,0).

Hence it follows that (z(b,) ) (x, 0)=—(D, ) (x,0). This holds for any
he (U, X V,) and the lemma follows. g.e.d.

Lemma 3.9. Take X, ---, X, ebhand ¥, ---, Y, € q and define the
differential operator P on q by

o & ’
PAY(Y) = X1, |, otk XK(Y ;Y ) esn
( f)( ) atl-- t, aSI---aSlf(e e ( +jZ=:1 J j)lzﬁ 0

Sor any fe (q). On the other hand, define g=X,---X, ¢ UQ,) and p=
Y,---Y, e 8(q,). Then the local expression of P at Y e q coincides with

A" (g®p)).
This follows from the definitions of I",(g®p) and P.

(3.5) Ifp e S(q.), then 3(p) is a differential operator on q and also
a(p)~ is a differential operator on U, X V,. Then it follows that

(3.5.1) a(p)~= 2 2. aux, »)DiDs,
aEN™ BeN7

where each a,,(x, y) is an analytic function on U, X V,. On the other
hand, let «,(p) be the radial component of p at ue U’. For simplicity,
put u* =u{*- . -uim ¢ S(U,) (@« e N®). Then, from Lemma 3.3, we can define
analytic functions f,(x) (@ € N™) such that «,(p)=> ,exnfo(x)u* for any
u=>" x;u; € U. Corresponding to this expression, we define the dif-
ferential operator Q(x, D,) on U'(CR™) by

(3.52) QCx, D)= 2, f.LD;.
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Lemma 3.10. Q coincides with 3 ,cxm au(x, 0)D2.

Proof. Tt follows from Lemma 3.8 and 3.9 that for any « € N™ and
B e N*, D;D} coincides with the local expression of 3(I'g,. ya,. (0P @u))”
at (x, 0), where b® denotes b§*- - -bé» for all g e N*. Hence the local ex-
pression of 3(p)~ at (x, 0) e U, X ¥, coincides with that of
3.5.3) >, Zn a4 5(%, 00 g4 50,0, (BF @ u))".

£EN™ BEN

On the other hand, from Lemma 3.3, we can choose g; ¢ &,(V,), p, €
S(U,), polynomials ¢,(u) on U (1<i< N) and an integer r >0 such that

(3.5.4) p=a(p)+Cw)" jz::q,-(u)l”xm(gj ®p;)

for ue U'. Put T(x)=Lw), 97 (x)=q,(u) for u=>, x,u,. Then we find
that the local expression of 3(p)™ at (x, 0) coincides with that of

(3.5.5) 0+ () JNZ; q; () x4 52,08 QP))

Comparing (3.5.3) and (3.5.5) and noting (3.5.2), we obtain the lemma.
g.e.d.

For any p e S(q,), we denote by 4(@(p)”) the differential operator
QO(x, D,) defined in (3.5.2) and call it the radial component of d(p)~ on
U,. By definition, 4(8(p)") coincides with the differential operator 8(«,(p))
on U, by the correspondence (x;, «--, X,)—>,, x,u;. In this sense,
A(@(p)7) is nothing but 4(3(p)) defined in (3.3). Hence we confuse these
ones in the sequel.

(3.6) Let u be a locally invariant hyperfunction defined on the open
subset 2, of q and let p be an element of S(q.)?. The next lemma is a
direct consequence of Lemmas 3.7 and 2.1.

Lemma 3.11.  The hyperfunction u” (x, y) on U, X V, is constant with
respect to the variable y.

This combined with the assumption on p implies that » (x, y) and
(@(p)u)~(x, y) can be restricted on the closed subset Uy~ U, X {0} S U, X V..
Then the radial component 4(3(p)™) has the following meaning.

Theerem 3.12. Let u and p be as above. Put v(x)=u"(x, 0), the re-
striction of u to U,. Then

@(p)"u) (x, 0)=4(E(p) v ().



Invariant Spherical Hyperfunctions 101

This follows from the definition of 4(@(p)”) and Lemmas 3.7-3.10
(cf. [HC2, Lemma 10]).

§4. The radial component of the pseudo-Laplacian on g

(4.1) Retain the notation in the previous sections. Let w be the
Casimir polynomial on g.

Definition 4.1. The differential operator 9(w) is called the pseudo-
Laplacian on g.

The purpose of this section is to calculate the radial components of
o(w) for certain elements of q.

(4.2) Let A, be a semisimple element of gq. Similarly as in (1.5),
define 3, 3%, 3., 35, ¢~. Take a Cartan subspace a of q containing both
A, and ¢~ and let 3 =23(a) be the root system of (g., a.) (cf. (1.4)). For
any root A e X, choose a C-basis X ,, - - -, X, ,, of g (m,=dimg?) such
that B(X,,,;, 06X, ;)=—68,,(,j=1,---,m). Puta-=aNg . Thena=
a”+c, and a~ and ¢~ are orthogonal with respect to the Killing form. Let
A, -+ -, A, be a C-basis of a; such that B(4,, 4;)=d,;and let C,, - - -, C,
be a C-basis of ¢, such that B(C;, C;,)=4d;;. As usual, identify q, with its
dual by the Killing form. Then it follows from the definition that

“4.2.1) 0=

»
i=

q m
A3 C 2 T 3 (X=X,

iext =1
(Here 2+ is the positive system of X for an order fixed hereafter.) Define

S={1eZ; A(4)=0}
S, ={1eX; (A)+0}
Ir=3n3, (j=0,1).

Using these, we also define

Vi= Z C(Xl,iion,i)
4.2.2) 13 =

Ve =Viny, V-=V:Naq.
Then it is clear that j=3*+V'* and q=3~ -+ V'~ are direct sums. More-
over, we have [4,, jl=[4,, V*]=V" and dim V* =dim V~. Defining the

linear mapping »,, of 3~ X V'* to q by 5,(w, v)=w+[u, v], we find that 3,,
is bijective. Hence &(u)=det (3, o y5,) (v € 37) is well-defined. The next
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lemma follows from the definition.
Lemma 4.2. &(A)=[];cz4 [AA)/A(A)]™ for all A ¢ a.

Put (37) ={ue3; &(u)==0}. Then the following statements are con-
sequences of the results in (3.2).

Lemma 4.3. For any Ze (™), I', defines a bijective mapping of
SrH®SE) to S(a.).

Corollary 1. Fix p e S(q,). Then for any Z ¢ (37), there exist unique
elements a,(p) € S(@;) and B(p) e S (VYD SE;) such that p—ayp)=
I'A(BAp)). Moreover d'a(p)<d°p.

Corollary 2. For any p € S(q,), we can choose an integer r>0 such
that the mappings Z—E&(Z) a,(p) and Z—E(Z) B(p) (Z e (3;)) can be ex-
tended to polynomial mappings of 37 into S@;) and S(VH)RSE)),
respectively.

Let w, (resp. w.) be the restriction of @ to 3;(resp. ¢”). Then o,
(resp. ».) is a non-degenerate quadratic form on 3; (resp. ¢7). Using w,
and w,, identify 3; with its dual and ¢~ with its dual. Then it follows that
1 ™

Z Z (Xl,i —O'Xz,i)2

2i€zFim

o, :_Zp: A+
(4.2.3) Z‘ql
w,=>,Ci
i=1

Lemma 4.4. Let A(0{w)) be the differential operator on 3~ obtained
Jrom 3(w) as we did in (3.5). Then

A@(@)) =)0 (w.) +3(w,)) o E@)* — puw),
where p(u)=&W) (0w )+ w ))& is an analytic function on (7).

This lemma is shown by an argument similar to Lemma 18 in [HC3].
In the proof, we use the expression of w in (4.2.1) and those of w,, w, in
(4.2.3). Note that in our case, the function p(«) does not vanish in general.

Let H* and H; be the analytic subgroups of H corresponding to 3*
and 3], respectively. Then it follows from the definition that both &(u)
and g(u) are H*-invariant.

(4.3) Take a nilpotent element X, of 3; and let (B, X, Y,) be a
normal S-triple for the pair (3,, 3F). In particular, B, e 3} and Y, e 3;.
Then we have the next lemma which is shown in the way similar to the



Invariant Spherical Hyperfunctions 103

proof of Lemma 1.12. Though w, is not the Casimir polynomial on 37,
we only use in the proof that w, is non-degenerate.

Lemma 4.5. The following conditions are equivalent.

(i) X, is 3;-distinguished.

(ii) o, (X)=0 for all X € (3;)x,

(i) o(X)=0for all X e (37)y,-

(V) 3z N3y, =0.

It follows from Lemma 1.9 that there exists a Cartan involution ¢ on
3, commuting with ¢ such that 4: (B,, X, Yo)—>(—B,, — Y, —X;). Then
—B(X, (Y)) (X, Y e3,) is a positive definite bilinear form on 3,. This
defines a Euclidean structure on 3,. The adjoint of ad, X(X e 3,) with
respect to this structure is given by —(ad, 6X)|3,. Put U=(3;)y, and
choose an orthonormal basis u,, - - -, u, of U such that [B,, u;,]=—2,u,
(1<i<m) (n=dim U). Then each 2, is a non-negative integer. These
follow from the arguments in [vD, §1] (cf. §1). Since Y, is contained in
G)r,=U, we may assume that u,;=cY, (c=1/||Y|). So A,=2. Let
X, + - -, X, be the coordinates with respect to this basis of U.

For any u e U, similarly as in (3.2), we define the linear mapping +,
of UX [8;3 YO] toq by 11”'1&(W:u v)=w+[X0+u, U]. Since 6‘;'-:[6:;3 },()]_l_(%:)Xm
is a direct sum, it follows that +, is bijective. Noting this, we put x(u)=
det (Y, odg ™) (we U)and U'={u e U; x(u)+0} as in (3.2). Let b, ---, b,
be an arbitrary basis of [3;, ¥,] and let y,, - - -, ¥, be the coordinates with
respect to this basis on [3;, ¥,]. Using the coordinates y on [3;, ¥,] and x
on U, define the mapping ¥ of R™ X R” to 3; by the same way as (3.4.1):

(43.1) U(x, )= etk 33,0,

Then it follow from Lemma 3.6 that (0, 0)=X, and d¥ is non-singular
at (0, 0). Hence we define U,, ¥, and 2, as in (3.2), in particular, 0 ¢ U,
CR™ 0e V,CR" and ¥|U, X V, is a diffeomorphism and £,=F(U, X V).
Then £, is an open neighbourhood of X; in 3; and (x, y) is regarded as a
coordinate system on £,. ,
Since w, is contained in S(3;), we can define the radial component
a(ow,) of w, at u e U’ with respect to X, U, [3;, Y] (cf. Definition 3.4).
Let 4(3(w,)) be the differential operator on U’ such that 4,0(w,))=
e (o)) forallu e U’. (4,(w,)) denotes the local expression of 9(w,) at u.)

Lemma 4.6. The homogeneous part of degree 2 of 4,(d(w,)) is zero if
and only if X, is 35 -distinguished.

This is shown by an argument similar to Lemma 33 in [HC2] (cf. [vD,
Lemma 13]).
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Theorem 4.7. Assume that X, is 3;-distinguished. Then there exist
analytic functions a; (x) and a(x) on U, satisfying a, (0)=0 (1<, j<m),
such that

2 m 2
(432 X 46)N=2%2 +@ims) L +3 0+, 2
ax3 ox; =2 0%,
3 a0+ 3 a2
1<iSicm ox;0x; i=2 0x;

This is shown by an argument similar to Theorem 14 in [vD]. It
should be noted that though w, is not the Casimir polynomial on 3;, we
only used in the proof that w, is non-degenerate.

Remark 4.8. A prototype of the formula in Theorem 4.7 seems to
have first appeared in Atiyah’s lecture note [A] as a literature. T. Kawazoe
and the author obtained the formula (4.3.2) a few years ago being suggested
by the note [A]. Afterwards, T. Oshima informed the author of van Dijk’s
article [vD] in which the formula was also shown. Qur method was based
on direct calculations by using the expression in (4.2.1). On the other hand,
van Dijk’s method is on the Euler operator and is therefore very simple
and elegant compared with ours.

Last we comment on the differential operator d(w.). Since o, is a
quadratic form on the vector space ¢-, with respect to an appropriate
basis ¢, - - -, ¢, of ¢” (g=dim c¢~), we have

(4.3.3) a(wC):D%I_*— T +ng1—D?¢11+1'— e —D?q’

where #,, - - -, 7, are the coordinates with respect to the basis and ¢, is a
certain integer such that ¢, <q.

§ 5. Invariant spherical hyperfunctions on g
(5.1) For an arbitrary linear form /4 on a,, we define a system of
differential equations .#, on q defined by

(Pu=P(Mu for all P e S(q.)”

(5.1.1) M 4
(YV)u=0 forall Yeb.

It is provable that .#, is holonomic in the sense of Sato-Kashiwara.

Definition 5.1. A hyperfunction solution u to the system .#, is called
an invariant spherical hyperfunction (=ISH) on ¢ with the infinitesimal
character 4. Moreover, an ISH u is called singular if Supp («) is contained
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in the set q—q’.

First we give a remark on the relation between ISH’s and invariant
eigendistributions (=IED) on a semisimiple Lie algebra. Let g, be a real
semisimple Lie algebra and put g=g,®Pg,. Define the involution ¢ on g
by o(X, Y)=(Y, X) (X, Y e g,). Then we obtain the direct sum decompo-
sition g="Y-q for . In this case, H={(X, X); X e g,} and q={(X, —X);
Xeg). Hence h—~q~g,. Put G,=Int(g,) and G=Int(g). Then G=
G,X G, and H is equal to the diagonal subgroup {(g, g); g € G} of G.
Moreover the action of H on ¢ is identified with the adjoint action of G,
on g,. Under the identification, an ISH on q is nothing but an IED on g,.

As to a singular IED on a semisimple Lie algebra, Harish-Chandra
obtained the following result which plays a fundamental role in the proof
of his famous theorem that any IED on a real semisimple Lie algebra is
L-local (cf. [HCI]).

Theorem HC ([HC3]). There exists no non-zero singular invariant
eigendistribution on a real semisimple Lie algebra.

As will be seen in Section 6, there exists a non-zero singular ISH on g
for some symmetric pair (g, ) and therefore an analogue of Theorem HC
to the case of the tangent space of a symmetric space does not hold in
general. But we can prove an analogue for symmetric pairs which satisfy
some additional condition.

(5.2) The main result of this paper is the following theorem which
is an analogue of Theorem HC.

Theorem 5.2. Let (g, §) be a symmetric pair. If §,(Z)>0 holds for
any q-distinguished element Z of q, then there exists no non-zero singular
invariant spherical hyperfunction on q.

Remark. We shall discuss the condition of the theorem in Section 6.

Proof. Let u be a singular ISH on q. Then, by definition, Supp («)
is contained in q—q’. Assuming that #=~0, we lead a contradiction. Hence
assume that u=:0 and therefore that Supp (u)=@. Take Z, e Supp (»).
Let Z,= A4,+ X, be its Jordan decomposition, where 4, e #(q) and X,
A(g). Asin (1.5), define 3*, 37, ¢~ for the semisimple element 4,. Now
S} is the set of those Z, such that rank 3;=k. Then Supp (w)=Ji_,S,,
where /=rank q. Since Supp (1) Cq—¢’, it follows that 4, is not g-regular.
This implies that S,=0.

Now assume that S,=---=S,_ ,=0 and S,#@. Then we may
assume from the first that Z, is contained in S,. Retain the notation
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above. Let H; be the analytic subgroup of H corresponding to 37. Then
H} acts on 3;. Since A7(3;) is decomposed into finitely many H; -orbits
(cf. Lemma 1.5), we can write A4(3;)=0,U ---UO,, where the O, are
disjoint H }-orbits and for 1<j<y, #;=0,U.-- U0, is a closed set
containing O, as an open subset. Since Z,=A4,+ X, is contained in
Supp (1) and also in A,+A7(3;), it follows that Supp () N (4,+ A47(5))
#@. Noting this, we may assume that Supp ()N (4,+0,)=0 for i=
1, ---,j—1 and Supp ()N (4y+ 0,)+ @ for some j. It is clear that
Supp (u) N (4,4 O;) is contained in S,. Hence we may assume from the
first that X is contained in O,.

For the element 4, we define V'+ as in (4.2.2). Letf,, ---,f, be a
basis of V* and let z,, - - -, z, be the coordinates with respect to this basis
of V'+. Similarly, we retain the notation in (4.3). So let (B,, X, Y;) be a
normal S-triple. Then we define U=(3;)y,. Take the basis u,, - - -, u,, of -
U and its coordinates x,, - - -, x,, as in (4.3). Moreover let b, ---, b, be
the basis of [3;, ¥,] and y,, - - -, y, its coordinates. Lastletc, ---,c, be
the basis of ¢~ and ¢#,, - - -, ¢, its coordinates. Using these coordinates, we
define the map @ of RZX R™ X R" X R? to q by

@(tla"'7tq9x15"'9x1n,y13"'7ymzl,"'9zd)
q m
— eth .o . ezdfd(Ao_I_ Z t’lci _i_emh e e%ﬂm(XQ_{_Z xaua))
{=1 a=1
=et. . .ot (4,+ Z tie,+¥(x, »),

where ¥'(x, y) is the mapping defined in (4.3.1). Then it follows that @(0)
= A,+ X, and @ induces a diffeomorphism between an open neighbourhood
of the origin in R?*™*"*% and that of Z, in q. Hence take open subsets
Ty, Uy, V, and W, of R%, R™, R” and R? containing the origins, respectively,
such that @|T, X UyX V, X W, is bijective. Put F=@(T,X UyX Vy X Wy)
and the following identifications are used in the subsequent discussion:

Ti=TyX{0}CT,X Uy= T, X U, X {0} C T, X Uy X ¥,
:TOX UOX VOX{O}CT})X U()X Vox Wo-

Replacing U, and ¥, with small ones if necessary, we can show by an argu-
ment similar to Lemma 22 in [V] (cf. [vD, Lemma 17]) that 4", N{d(s, x,
rz)eH; t=2=0}C0,.

Since u is locally invariant, it follows from Lemma 3.11 that
u (¢, x, y, 2)=u(P(, x, ¥, z)) which is a hyperfunction on T, X U, X Vy X W,
is constant with respect to the variables z;, - - -, z,.  So put (¢, x, y)=
u (2, %, ¥, 2)|,=o. This is a well-defined hyperfunction on the open subset
ToX Uy XV, of R%*™ ™ containing the origin 0= @-'(Z,). Moreover
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u (t, x, ¥, 2)=u(t, x, ) holds on T,X U, X V,X W,. On the other hand,
since u is an ISH, we have

(0(0) —a(4)u=0

for a linear form A on a, which is the complexification of a Cartan sub-
space a of gq. Let & be the function on 3~ defined for 4, as in (4.2). Re-
placing T, U,, V, with small ones if necessary, we may assume from the
first that ££0 on O(T, X Uy, X V). So there exists an analytic function
o(t, x, ¥) on Ty X U, X V, such that &@(¢, x, y, 0))=p(¢, x, ¥)* holds on Ty X
U, XV, Put u(t, x, y)=p(t, x, ) 'u(t, x,y). Then it follows from
Lemma 4.4 that

(52'1) {a(wc)~+a(ws)~—/"~(ta X, y)_a)(/l)}uzzo-

where ¢~ =p o @ (cf. Lemma 4.4). Since po @' is H}-invariant, it follows
that

(5.2.2) (Y)Y u,=0 for all Y e 3*,

where the vector field «(Y)~ is defined similarly as we did in (3.4). Since
3* commutes with ¢~, we find from Lemma 3.11 and (5.2.2) that

0

K1

u(t, x, )=0 (i=1, -, n).

Hence u,(2, x, y) is constant with respect to y. Noting this, we put u,(z, x)
=uyt, X, ¥)|y-o- Then u(t, x) is a well-defined hyperfunction on the open
subset T, X U, of R%*™ containing 0=0~(Z,). The assumption combined
with Lemma 17 (iii) in [vD] implies that Supp (u,) is contained in the set T,
On the other hand, u, satisfies the differential equation

(5.2.3) (d@(@))+a(w)— ¢~ (¢, x, 0) — o(A))u,=0.

We can show under the assumption of the theorem that there exists
no hyperfunction u,(y, t) satisfying the differential equation (5.2.3) and
that Supp (4,) C T,. In fact, if Z, is not g-distinguished, that is, if X, is not
3+ -distinguished nilpotent, it follows from (5.2.3), Lemma 4.6 and Proposi-
tion 2.2 that #,=0. On the other hand, if X is 3;-distinguished nilpotent,
by means of the formula (4.3.2) for 4(3(w,)) and the assumption §,-(X;) >0,
we can conclude from Proposition 2.5 that #,=0. Note that the condition
d,-(Xy) >0 implies the condition (2.3.20) of Proposition 2.5. So we find
that #,==0 on T, X U,, in other words, u=0 in the neighbourhood & of Z,
‘in q. This contradicts the assumption that Z; € Supp (#). We have thus
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shown the theorem completely.
This theorem is restated in a slightly familiar form.

Theorem 5.3. Retain the assumption in Theorem 5.2 for a symmetric
pair (g, ). Let u(X) be an invariant spherical hyperfunction on q. Then
one has:

(i) The restriction u|q’ to q' is real analytic.

(ii)y If u]lq’'=0, then u=0 on the whole space q.

Proof. (ii) is a direct consequence of Theorem 5.2. On the other
hand, (i) is proved if one can show the existence of an elliptic operator P
defined in a neighbourhood of an arbitrary element of ¢’ such that Pu=0.
We are going to show this along the line of [A]. Hence let X, be an
arbitrary element of q’. Then there exists a Cartan subspace a containing
X,. Clearly a is uniquely determined by X, and X is contained in a’ (cf.
(1.4)). Take a basis {h, ---, 4} of a. Then Z=>3 A} is contained
in S(a.). If W is the Weyl group of > (a) which is the root system of
@., a.) (cf. (1.4)), the product Z= ITwew WZ is clearly W-invariant. Since
it follows from Chevalley’s theorem that S(q.)” is isomorphic to the sub-
ring of S(c,) consisting of W-invariant elements, we denote the element of
S(q.)" corresponding to Z by the same letter. On the other hand, let
e, - - -, e, be an arbitrary basis of at N q. Using the basis, we define P=
8(7:)—|—Z§?=lz-(ej)2. Let #(X) be an ISH. Then, by definition, u satisfies
the differential equation (P—c)u=0 for some complex number ¢. Since
o(P—c)=0a(P) does not vanish in a neighbourhood U of X, we conclude
that u is real analytic on U. Hence the result follows. g.e.d.

§ 6. A condition on g-distinguished elements

(6.1) Theorem 5.2 leads us to the following problem:

Problem A. Classify the symmetric pair (g, §) satisfying the condi-
tion (C):
(C) 5,(Z)>0 for any q-distinguished element Z of q.

If the classification of H-orbits of 47(q) is accomplished, one would
easily check the condition (C) for each g-distinguished nilpotent element.
But the classification seems not to be done at present (cf. [S]). For this
reason, we restrict our attention to look for examples of symmetric pairs
which satisfy (C).

(6.2) Before entering into treating the subject, we show that there
exists a non-zero singular ISH for some symmetric pair. Hence consider
the pair (g, §)=(30(L, n+1), 80(1, n)). In this case, q is identified with the
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real vector space V=R"*! with the canonical coordinate x=(x,, x,, - - -, x,)
and H=~SO(1, n). Then the action of H on q is identified with the natural
action of SO((1, #) on V. In this case, the pseudo-Laplacian on g coincides
with

P=—-D: +D: +..-+D%

up to a constant factor. Then the system of differential equations intro-
duced in (5.1) is rewritten in the following form for a certain complex
number 1:

(P—ADu=0
My (D, +x,D, yu=0 @i=1, ---, n)
(Xlij—ijrj)uzo (1<, j<n),

Define f(x)= —xj+xi+ - - - +x2. Then the nilpotent subvariety A4°(q) of
q is identified with the set A (V)={x e V; f(x)=0}. It is easy to see that
V—A'(V) consists of g-regular semisimple elements and that 4"(¥)—{0}
consists of g-distinguished nilpotent elements. Take X e 47 (V) —{0}.
Then it follows from direct calculation that q;=RX. This implies that
30(X)=4—dim V=3—n. Hence if n>>3, the condition (C) does not hold.
Moreover, if n is odd and n>3, there actually exists a singular ISH on V.
In fact, consider the distribution v (x)=|f(x)|. on V(s € C). By definition,
v,(x) coincides with |f(x)|* if f(x)>0 and coincides with 0 if f(x)<<0.
Then it follows that Pv,=4s(s+ (n— 1)/2)v,_,. Since v, is meromorphically
dependent on s and has a simple pole at s= —(rn—1)/2, one can put u(x)=
(G+n—D/2v(x¥)|s=q-m- Then it is clear that u(x) satisfies the differ-
ential equations .#, for 1=0. Moreover Supp () coincides with A(V).
Hence u(x) is a singular ISH. (Cf. [A])

In the sequel, we restrict our attention to look for examples of sym-
metric pairs satisfying the condition (C).

(6.3) In this paragraph, we give some known examples satisfying
the condition (C).

(6.3.1) Let (g, §) be a Riemannian symmetric pair. Then the as-
sumption holds in this case. In fact, A"(q)=={0} holds in this case and
moreover, any sub-symmetric pair of (g, §) is also Riemannian.

(6.3.2) Let (g, §) be a symmetric pair such that g, is identified with
5,®Y.. In this case, (g,, §j,) is identified with (.@DY,, §.). So one can
check easily that the condition (C) holds for the pair (g, ) (cf. [A], [vD]).

(6.4) Let (g, ) be a symmetric pair and let (g, §,) be its complexi-
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fication. Let X, be an element of .47(q,), the nilpotent subvariety of q..
Then one can define a number ch(Xo) quite similarly as the number intro-
duced in Definition 1.11. The precise one is given as follows. Let
{Ay, Xy, Yy) be a normal S-triple (cf. [KR]). Then ad 4, leaves (q.)x,
invariant. So we can choose a basis w;, «+-, w, of (q,)g, (r=dimg q,)
such that each w; is an eigenvector of ad A4, (cf. (1.7)). Define the number
n, by [4,, X,]=n,w, for each i.

Definition 6.1. 4, (X)=>7_, (n,+2)—dimg q..

It is clear from the definition that §, (X;)=28,(X,) if X, is contained
in A°(q). Note that A4°(q,) always contains a g,regular element of q.,
that is, there exists a nilpotent element X, ¢ q, such that dim¢ (q.)x,=
dimg q,—rank q. For any Z € q,, we also define the number §, (Z) by the
same way as we did in (1.10).

Lemma 6.2. Retain the notation above. Assume that g, is simple. If
8, (X)) >0 holds for any q,-regular nilpotent element X, of q., then (a., 9.,) is
isomorphic to one of the following pairs:
@O @@, C), 30, C)
an . @L@2n, O, 3l (n, O)+3l(n, O)+C)
an @p, €, 8l{n, C)4-C)
(IvV) (Bo@2n+k,C), s0(n+k, C)+30(n, C)) (k=0,1,2)
(V) (e 30 (4, C)
(VD (e, 3L(6, C©)+3L(2, C)
(VID) (e, 81(8, C))
(VIII)  (e,, 30(16, C))
IX) (. 203, O)+350(2, O)
(X) (g 8I(2, O)+3[(2, C)
(X1) (Bo(p+4g,C), 30(p, O)+30(g, C)) (¢+2<p<2g9+2).

This lemma is shown by using the classification of symmetric pairs
and the results in (1.9) (cf. [He]).

Theorem 6.3. Let (g,, §.) be a complex symmetric pair. Assume that
(G., B.) is isomorphic to one of the pairs (I)-(X) in Lemma 6.2. Then §,(Z)
>0 for any g -distinguished element Z of q..

Remark. If (g., §.) is the pair in (XI), there exists a q,-distinguished
element Z € q, such that §, (Z)<0.

To prove this theorem, we need a simple lemma.

Lemma 6.4. Let (g,, §,) be a complex symmetric pair and let 3 be its
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root system defined as in (1.4), that is, if (., £,) is a Riemannian symmetric
Dpair such that g, and ¥, are real forms of g, and Y,, respectively, then 3 is
the restricted root system of ,. Assume that dimg g++dimg g>* <2 for all
ae 2. Then each irreducible factor of (g., §.) is isomorphic to one of the
pairs in (D-(X) or the pair (g, D g., g.) for some complex simple Lie algebra
1

Proof. 1t is clear that there exists a Riemannian symmetric pair
(g, ¥) such that g is a real form of g, and { is that of §,. Then X is nothing

but the restricted root system of g. Then the lemma follows from Table
in [W, p. 331

Corollary 6.5. Let (g,, §,) be a complex symmetric pair and let (g, §7)
be its sub-symmetric pair. If (g., Y.) satisfies the assumption of Lemma
6.4, so does (g., b?).

By means of Corollary 6.5, to prove Theorem 6.3, it suffices to show
the following.

Lemma 6.6. Retain the notation and the assumption in Theorem 6.3.
Then §,(X) >0 for all q,-distinguished nilpotent element X ¢ q,.

(6.5) We are going to prove Lemma 6.6 for the cases (I)-(X), sepa-
rately.

(6.5.1) Proof for the case (I).

Let (g., §.) be a symmetric pair isomorphic to (3[(n, C), 30(n, C)) for
some integer n. It is easy to see that, in this case, every q.-distinguished
nilpotent element is g,-regular. Hence the claim for this case follows from
Lemma 6.2.

(6.5.2) Proof for the case (II).
(a) Letg,=35((2n, C) and let ¢ be the involution of g, defined by

I 0] [In 0]
x=|% X Xeg,).
’ [o 11l —1, (Xeg)

Then

B, = {[81 g]; A, Begl(n, ©), tr (A—i—B):O}

omil, 4 5son )

Moreover, define
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4 0],
H={[2 ,A,BeGL(n,C),det(AB):l}.

(b) For each positive integer d, define the matrices I,, J,, K,, L, in
the following way:

(1 0
I,=|" - | dxdmatrix,
0 1
01
J,= 0.:,1 dx d matrix,
i 0
1 0
K=, '-1 (d+1) X d matrix,
0---0
01
L,=\: - | dXx(d+1) matrix.
09 1

() Lety=(p, ---,p,) be a partition of 2n, that is, each p, is an
integer, p,+ - - - +p,=2nand p,>--->p, >0.

Moreover, define subsets 1, I,, I, I, of {1, ---, k} associated with
the partition 5 as follows:

(1) {1, ---, kI=LULULUI, (disjoint union)

(ii) p,isevenforallie UL,

(i) p;isodd forallie L,UI,.

iv) [Ll=|L|

Let 2, be the totality of (y, {f;, I, I, 1,}) defined as above. Note
that there are several possibilities of the choices of {I,, I, I, I,} for a given
partition 7.

(d) For every C:(v, {Ila 127 135 ]4}) € =Qn (v:(ply s pk))’ define the
matrix X, as follows:

( A
X,

e
I
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Here X,, Y, are the matrices defined by

I,, (@el) J,, (@el)
e, ieh) ¥ — I, (iel)
K, Gel) L, Gel)
L, (iel) K, (el).

(Here q,=[p,/2].)

(e) It is clear from the definition that for each § ¢ 2, X; is nilpotent
and is contained in q,. Moreover, the following lemma is a direct con-
sequence of [S, § 3].

Lemma 6.7. For any nilpotent element X of q., there exist h e H, and
C e 9, such that hXh'=X,.

As to q-distinguished nilpotent elements of q,, one can easily find
the following lemma.

Lemma 6.8. Let {=(y, {1, I, I, 1}) € 2, and retain the notation in
(d). Then X, is g -distinguished nilpotent if and only if X;,=X,; and ¥, =
Y; for every pair of indices (i, j)} such that p,=p;,.

(f) Take £ ¢ 2, and retain the notation in (d). Let (4., X, ¥;) be
a normal S-triple. It is always possible to take 4, as a diagonal matrix
and moreover such an A, is uniquely determined. So we assume such an
A, is taken.

Let X= [0 Z] € q.. We use the notation:
W o

Z=(Z,)1<1,5<1> Where Z,; is an r; X s; matrix
W=(W;)1<i,;<x> Where W, is an s, X r, matrix.

(Here riz_—{‘-h ifieLULUIL, s_={qi ifieIIUIZUI3).
g;+1 ifiel, g,+1 ifiel

T

Then define

U= {x=[% %] cai: Zos=0, W,=01t (@ i)}
W o
Vi, ={Xe U,;; [X, X]=0}
It follows from the definition that

k
@)z, = ~§_21V”
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dim U, j=r.s;-+r;8,.

Now take a basis wj;, - -+, wijf of V,; (n,;=dim V) in such a way that
4., wil=fwy (a=1i, « - -, nyy), where each f5;>>0 is an integer (cf. (1.7)).
Using the notation introduced above, we define

nij
Xi,-=§=_; (f5+2)—dim V.
Then it is clear from the definition that

6.5.2.1) 8, (X)= i‘ Lig

L=

Lemma 6.9.
(i) YAy = {Pi/2 (l e LUL)
0 (ie LUIL).

(i) Ifijel, (i#)) or if i, j e I, (i), then X;;=1;;=min (p,, p;).

(i) Ifiel,jelorifiel,jel, then ¥, ;=2,;;=0.

(v) Ifi,jel, (<j)orifi,jel, (<)), then Xoy=2;;=(p;—P;)/2.

V) Iiel,jelorificl,jel, then¥,;=%;;=(p,+p;+2)/2.

) IfiellUL,jel,ULorifieLUIL, jelLUL, then L,;+X;,=
min (p,, p,)-

Since the proof of this lemma is elementary but rather lengthy, we
omit it,

It follows from Lemma 6.9 that if (7, j) satisfies one of the conditions
in ()-(iii), (v), (vi) of the lemma, then ¥,,42;,>>0. On the other hand, if
{i, J) satisfies the condition in Lemma 6.9, (iv), then X,,+%,, <0.

We now calculate the sum S

S:(, Z ‘+_ Z ')(Xij'}'_xji)
1,7 €I3,8<] T, JEI4,0<§
+_ Z (Xij+xji)'
1€1g,j€1s
Put d=|1,|=|I,| and assume that L={i, ---, i} (4<].--<i,) and [,=
L -+ Jap (<<---<jg). Then it follows from Lemma 6.9 that

[ 4
S= Z {(Xiafﬁ_]_xiﬁia)+(Xjajﬁ+xjﬂja)}+a;ﬂ;(xiajﬁ_l_xjﬂia)

1<a<p<d

S HE CREVREICIIN ES 30 NI IS

1<a<p a=1p=1

d a
=3, Qa—d—1)(p..+P;)+d 2 (pit py) +24°
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]
=3 Qa—D(pi,+p;)+24"

Hence we find that $>0. If d>0, this implies that §,(X)>0. On the
other hand, if d=0, then S=0. In this case, I, UL,=0 and X,, >0 for all
ie LU (cf. Lemma 6.9 (i)). This combined with the formula (6.5.2.1)
implies that §, (X)>>0.

We have thus shown the next lemma which implies the conclusion of
Lemma 6.6 for the case (II).

Lemma 6.10. §, (X)>0 for all nilpotent element X ¢ q,.

(6.5.3) Let (g, b.) be a symmetric pair isomorphic to one of the
pairs in (II) and (IV). Then one can prove the statement similar to
Lemma 6.10 by an argument similar to that in (6.5.2). Hence Lemma 6.6
is true for the cases (III) and (IV).

(6.5.4) Proof for the cases (V)~(X).

To prove the conclusion of Lemma 6.6 for the cases (V)-(X), we use
the classification of the nilpotent orbits of exceptional simple Lie algebras
by Dynkin [D].

From now on, g denotes a complex simple Lie algebra instead of real
one for the sake of simplicity. Let X be a nilpotent element of g and let
(4, X, Y)be an S-triple. Then we can choose a basis w,, - - -, w, of gx
(p=dim g) such that each of w,, - - -, w, is an eigenvector of ad (4). So
put [4, w,]=n,w, 1Li<Lp). Then n, ---,n, are non-negative integers.
We may assume without loss of generality that n,>--->n,>n,.,=---
=n,=0. Let ¢ be a complex linear involution of g and let § and q be
the 1-eigenspace and the (— 1)-eigenspace of ¢, respectively. Now assume
that X is contained in q and (4, X, Y) is a normal S-triple. Then we may
assume from the first that each of w,, - -+, w, € g~ is contained in }j or q.
At this moment, there are two possibilities:

(a) dimbz>p—k.

(b) dimh<p—~k.

In the case (a), X is clearly not g-distinguished (cf. Lemma 1.12). On the
other hand, in the case (b), we define

k
nX)=_ 3 (+)—ding  (g=dimay).

If X is g-distinguished, it is clear from the definition that §(X)>n(X).
Then we obtain the next lemma from Tables I-V in an Appendix.

Lemma 6.11. Let (g, §) be a complex symmetric pair.
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(i) If (g, %) is isomorphic to one of the pairs (V), (VID-(X), then
n(X) >0 for all g-distinguished nilpotent element X of q.

(i) Assume that (g, §) is the pair (VI), namely, (g, §) = (e,, 81(6, C)+
3(2, C)). If X is q-distinguished nilpotent and n(X)<0, then the weighted
Dynkin diagram A(X) of X is one of the following ones:

22022, 20202
2 0

We can also prove the next lemma. Since we need elementary but
complicated arguments for the proof, we leave its proof in another paper.

Lemma 6,12, Retain the notation in Lemma 6.11 (if). Let X be a
nilpotent element of q. Let uy, ---,u, be a basis of qy. Assume that
{4, ul=m,u,, where m, is a non-negative integer (m,> - - - >m,).

(i) Assume that A(X)=22022. Then g¢q=5 and (my, ---, m)=
(14, 10, 10, 6, 2). 2

(i) Assume that A(X)=20202. Then q=17 and (m,, - - -, m,) coin-

0

cides with (10, 10, 6, 6, 2, 2, 2) or (10, 8, 6, 4, 4, 2, 2).

The conclusion of Lemma 6.6 for the cases (V)~(X) follows from
Lemma 6.11 and 6.12.

Corollary to Theorem 6.3. Let (g, )) be a symmetric pair such that
(g.» §.) is one of the pairs in (D-(X). Then (g, §) satisfies the assumption
of Theorem 5.2.

§ 7. Two conjectures

In this section, we present two conjectures on the system .#, defined
in (5.1.1). It is provable that .#, is holonomic for any 4 ¢ a¥.

Conjecture 7.1. .#, is regular holonomic in the sense of Kashiwara-
Kawai (cf. [HK]).

If this is true, one would conclude that any ISH on q turns out to be
a distribution. This follows from the general theory of regular holonomic
systems.

Conjecture 7.1 is true in some cases. For example, if q is of rank
one, one can easily show that ., is regular holonomic. On the other
hand, if the pair (g, §) is the one in (6.3.2), then .#, is also regular holo-
nomic. This is a deep result shown in [HK]. To prove this, Hotta and
Kashiwara [HK] showed that .#, coincides with the minimal extension of
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the restriction .#,|(g,.)’ to (g.) which is the totality of regular semisimple
elements of g,. This leads us to the next conjecture.

Conjecture 7.2. Let (g, h) be a symmetric pair. Assume that (g, §,)
satisfies the assumption of Lemma 6.4. Then the system .#, coincides
with the minimal extension of the restriction .#,|(q.) to (q,) which is the
totality of the g,-regular semisimple elements of q,.

One easily finds that the assumption of Conjecture 7.2 is necessary.
In fact, consider the symmetric pair (3o(n+1, 1), 30(, 1)). In the case
where 7 is odd and is greater than 2, the system .#, with 4=0 has a non-
trivial coherent quotient whose support is contained in the outside of the
set of regular semisimple elements of q.. This follows from the arguments
in (6.2).

Appendix

We give a proof of Lemma 6.11 in this appendix.

Retain the notation in Lemma’6.11. Let X be a nilpotent element of
g and let 4(X) be its weighted Dynkin diagram. We use the notation:
p=dim; gy and g=dim; qz. Note that p is determined in [E]. Also the
number g is easily determined from p (cf. Corollary 1.15). Moreover one
can decide the numbers #,, - - -, 1, by using the weighted Dynkin diagram
A(X) and the root system of g.

Noting these facts, we give the numbers #(X) for all niloptent elements
X of g in Tables I-V. Explain the contents of the Tables. In each table,
the weighted Dynkin diagram, the numbers n,, - - -, n,, p=dim gy, g=
dim qy, n=n(X) are arranged in order. In the case where (a): dim § >
p—k (cf. (6.3.4)) holds for the nilpotent element X, we write N instead of
the number g. In each Table, the notation #? means that the number n
occurs with multiplicity d.

Only in the case of Table I, we must remark one comment more. In
this case, we treat the case of the simple Lie algebra of type E,. This
coorresponds to the pairs in (V) and (VI). The numbers g and » are used
in the former case. On the other hand, ¢’ and »’ are used instead of ¢
and 7 in the latter case.

Table I: (eq, 8p(4, C)) and (e, 8L(6, C)+31(2, C))

A(X) ny, +-, 0y D q n ql n

22222 22, 16, 14, 10, 8, 2 6 6 42 4 2
2

22022 16, 14, 10, 10, 8, 6, 4, 2 8 7 26 5 0
2




118 J. Sekiguchi
20%02 14, 10%, 8, 6, 4, 4, 2, O 10 8 28 6 6
20(2)02 10, 10, 8, 8, 6, 6, 43, 23 12 9 14 7 -2
21(1)12 10, 92, 8, 6, 52, 4, 32, 2, (® 14 10 32 8 12
11311 10, 8, 72, 62, 52, 4, 22, 12, O 14 10 17 8 2
11(1)11 8, 7%, 6, 52, 4%, 32, 2%, 12, 0 16 11 14 9 2
00%00 10, 68, 2, 08 18 12 N 10 40
20202 8, 6°, 43, 25, (¢ 18 12 28 10 14
00(2)00 62, 47, 28, (2 20 13 18 11 8
01(1)10 6, 52, 43, 35, 24, 12, (¢ 22 14 22 12 12
10(1)01 52, 44, 34, 25, 16, (8 24 15 16 13 8
10%01 6, 45, 38, 2, Ou 26 16 N 14 34
01810 43, 34, 29, 18, O* 28 17 18 15 12
20802 48, 28, Q4 30 18 N 16 40
10(1)01 4, 38, 28, 18, Q° 32 19 24 17 21
00g00 4, 219, (6 36 21 N 19 36
00(1)00 32, 29, 116, Qu 38 22 30 20 24
10801 28, 116, Q22 46 26 N 24 40
00(1)00 2, 1%, (% 56 31 N 29 N
o8 78 42 N 40 N

00000
0
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Table IL: (e, 318, C))

AX) Ry, <eey Ny r q n
22%222 34, 26, 22, 18, 14, 10, 2 7 7 70
2229222 26, 22, 18, 16, 14, 102, 6, 2 9 8 44
223202 22, 18, 16, 142, 107, 8, 6, 22 11 9 30
22(2)020 22, 16%, 14, 10, 8, 2, 03 13 10 70
203022 18, 16, 147, 105, 8, 62, 4, 22 13 10 2
21(1)122 18, 152, 14, 107, 92, 6, 5%, 2, OB 15 11 52
20(2)020 16, 14, 122, 10, 8, 6, 45, 2, O 15 11 28
203002 14, 12, 104, 8, 67, 42, 2¢ 17 12 14
21(1)102 14, 112, 102, 9, 8, 62, 57, 37, 22, (3 19 13 34
21(1)110 14, 112 10, 9, 8, 6, 5%, 32, 22, (¢ 19 13 34
oogozo 128 10, 83, 65, 43, 2, 03 19 13 34
228020 14, 105 83, 6, 44, 2, 0° 21 14 56
oo%ooz 108, 83, 6°, 4t 26 21 14 10
01(1)102 102, 9, 82, 7%, 63, 5%, 3¢, 28, (¢ 23 15 25
028020 102, 8¢, 64, 48, 25, (2 23 15 18
10(1)012 10, 9%, 8, 6% 54 4%, 33, 23, 13, (8 25 16 18
10(1)020 10, 9%, 8, 6, 55, 45, 32, 2, 08 25 16 42
208200 10, 83, 65, 43, 27, O° 25 16 24
10, 8, 74, 6%, 54 4, 24 14 Ot 27 17 24

201010
0
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00(2)000 8, 65, 41, 26, (03 27 17 22
106010 8, 72, 6%, 54, 45, 34 24 14 02 29 ,18 15
208022 10, 8, 6, 4%, 2, ou 31 19 N
21?001 10, 74 66, 54 22, 14, QW 31 19 53
208020 8, 67, 49, 27, 0° 33 20 44
008200 6, 41, 215, (3 33 20 20
006010 63, 54, 44, 38, 28 14, 0Ot 35 21 20
01?001 63, 54, 45, 38, 28 14 (° 37 22 26
228000 10, 614, 2, O 37 22 N
108101 6, 54 47, 38, 27, 18, (¢ 39 23 24
028000 62, 413, 215, (9 39 23 38
10(1)000 6, 52, 47, 310, 26 16 (9 41 24 34
018010 52, 48, 38, 2u, 110, (8 43 25 24
208002 6, 41, 210, (2 47 27 N
2‘08010 6, 47, 31, 2, (O 49 28 N
008020 410, 222, QU 49 28 54
00(2)000 47, 2%, QU 49 28 42
00(1)000 48, 38, 215 116, ()® 51 29 30
108010 4, 38, 218, 118 (6 57 32 42
38, 216, 120, Qz 63 35 50

()0(1)001
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208000 4, 231, O 67 37 N
018000 32, 215, 128, (1 69 38 54
008002 227, (P2 79 43 N
008010 210, 182, (89 81 44 N
108000 2, 183, (96 99 53 N
008000 0138 133 70 N
Table III: (es, 30(16, C))
A4X) ny, =++5 Ny p q n
22%2222 58, 46, 38, 34, 26, 22, 14, 2 8 8 128
22%2222 46, 38, 34, 28, 26, 22, 18, 14, 10, 2 10 9 8
2232022 38, 34, 28, 26, 222, 18, 16, 14, 10, 6, 2 12 10 356
20%0222 34, 28, 262, 22, 18, 16, 14, 102, 8, 22 14 11 40
21?1222 34, 272, 26, 22, 18, 172, 14, 10, 92, 2, ©® 16 12 100
20%0202 28, 26, 222, 182, 16, 143, 102, 8, 6, 4, 2 16 12 30
20%0022 26, 222, 20, 18, 162, 142, 12, 103, 62, 4, 22 18 13 20
21?1022 26, 22, 212, 18, 16, 152, 14, 112, 102, 6, 52, 2, (B 20 14 59
20%0020 222, 20, 18, 16, 143, 122, 104, 8, 6, 4, 23 20 14 16
21?1101 22, 212, 18, 152, 14, 123, 113, 10, 92, 6, 32, 2, (3 22 15 46
00%0022 22, 182, 168, 143, 103, 83, 62, 4, 2¢ 2 15 8
22, 18, 172, 16, 152, 142, 102, 92, 8, 72, 6, 32, 22, 08 24 16 38

01(1)1022
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00(2)0020 182, 16, 143, 123, 103, 8%, 65, 4, 28 24 16 10
1060122 22, 172, 168, 152, 14, 10, 92, 8%, 72, 22, 14, (8 26 17 24
2082002 18, 162, 143, 12, 105, 83, 63, 42, 24, 0 26 17 14
2030102 18, 16, 152, 142, 112, 108, 94 8, 62, 5% 4, 22, 12, 08 28 18 25
00(2)0002 16, 143, 122, 105, 83, 65, 44, 2¢ 28 18 6
1060102 16, 14, 132, 122, 112, 102, 92, 83, 72, 6, 52, 48, 32, 22,12, 0 30 19 6
1080110 152, 14, 123, 112, 10, 92, 83, 74, 6, 52, 43, 32, 2, (° 30 19 26
2080222 22, 167, 14, 10, 87, 2, 01 32 20 N
21?0012 18, 154, 14, 105, 94 6, 54 2, (O 32 20 95
10&0101 14, 132, 12, 112, 102, 92, 83, 74, 63, 52, 43, 32, 22, 12, O 32 20 8
2080202 16, 14, 125, 102, 87, 6, 47, 2, 08 34 21 62
0082002 14, 122, 107, 85, 65, 45, 28, 0 34 21 4
0060102 14, 12, 112, 104 94, 82, 72, 6%, 52, 42, 34, 24 12, (B 36 22 13
10(1)0100 128, 112, 10, 92, 8, 74 65, 54, 43, 32, 22, 12, (@ 36 22 18
01?0012 14, 114 10%, 94, 85, 62, 54, 3¢, 26, O 38 23 32
2080200 125, 105, 83, 613, 43, 25 (8 38 23 34
1081012 14, 112, 105, 94, 8, 72, 6, 52, 4%, 32, 22, 15 (F 40 24 24
0082000 104, 85, 610, 410, 210 40 24 4
0060100 108, 92, 83, 74, 65, 56, 44, 38 26 (8 42 25 16
102, 94 8, 74 67, 54 45, 38, 28, (© 4 26 30

0100010
1
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1081010 10% 9%, 84, 74, 64, 55, 47, 34, 24 14 (8 4 26 12
10(1)0001 10, 94, 88, 72, 65, 5%, 47, 34, 2%, 14 08 46 27 26
0180101 10, 92, 8, 78, 64, 58, 45 3¢ 27, 14 (3 46 27 10
2080022 14, 10°, 87, 6, 48, 2, On 48 28 N
0050010 9%, 8%, 74, 65, 55, 49, 38, 26, 14 (P 48 28 12
2080020 102, 88, 68, 41, 23, Qs 50 29 68
oogoooz 10, 88, 614, 47, 214, 08 50 29 34
2000101 10, 9% 8, 6, 5i4 47, 3 2, O 52 30 84
00(1)0002 10, 85, 76, 68, 50, 43, 32, 27, 10 (6 52 30 16
0180100 83, 74, 65, 55, 410, 38 27 15 (¢ 52 30 12
0080200 85, 6l 415, 218, (¢ 56 32 28
0050001 8, 74, 65, 58, 49, 38, 29, 18 O 56 32 14
1080102 10, 8, 75, 6, 5% 4, 28, 15, Qu 58 33 54
1080101’ 8, 7% 67, 55, 45, 3%, 28, 15, 0 60 34 29
1081000 T4, 65, 54, 410, 318 26 14 (10 60 34 36
00(1)0012 82, 76, 615, 56, 22 114, Q2 64 36 77
0030000 68, 420, 2%, (8 64 36 32
0030000 65, 59, 410, 34 21 (10, 05 6 37 2
2000002 8, 64, 4, 2%, O 68 38 90

6°, 55 48, 318, 218 I8 Qu 70 39 35

1000100
0
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0000010 62, 58 413, 312, 216 114 (9 72 40 28
1
0100001 6, 58 41, 316, 215 ]14 (13 76 42 39
0
0080022 10, 62, 2, Q%2 80 4 N
0001000 54, 410, 316, 220, 120, 10 80 44 32
0
0080020 62, 4, 2%, (0B 82 45 88
0080101 6, 52, 41, 318 D10 Ju4 . (M 84 46 68
1080010 52, 410, 318, 23 118, QU 8 47 48
2080000 414, 250, (%8 92 50 72
0180000 47, 314, 2%, 18, QU 94 51 48
1080002 5, 412, 3%, 2, 0% 100 54' N
0080100 43, 316, 227 182, (% 102 55 60
1080001 4, 312, 282, 133, (% 112 60 80
00(1)0000 38, 2%, 14, (36 120 64 80
0080002 4, 2%, 0% 134 71 N
0080010 32, 227, 1%, (% 136 72 108
1080000 214, 164, Q78 156 8 N
0080001 2, 1%, (8 19 99 N
0080000 (248 248 128 N

Table IV: (i, 353, O)+8(2, C))

4(X) ny, -ec, Hp p q n
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02522 22, 14, 10, 2 4 4 28
22502 14, 10, 10, 6, 4, 2 6 5 14
02502 10, 10, 8, 6, 4, 23 8 6 10
10212 10, 9, 9, 6, 3, 3, 2, 0° 10 7 28
2200 10, 65, 2, 0° 10 7. 28
02500 6%, 44, 28 2 8 8
1010 6, 52, 4, 34 23, 08 14 9 17
0101 52, 4%, 3%, 22, 14, (8 16 10 14
20501 6, 44, 34 2, 08 16 10 28
00510 48, 32, 28 14 (8 18 11 13
00502 47, 2, o4 2 13 N
202500 4, 213, 08 22 13

0100 3%, 25, 11, (¢ 24 14 18
00501 27, 18, O 30 17

1000 2, 114, 0% 36 20

00500 0% 52 28

Table V: (g5, 8(2, C)+8((2, C))

4(X) Ry, +oe5 Ap p q n
22 10, 2 2 2 8
22350 4, 2,2, 2 4 3 4
01 3,3 20,0 0 6 4 N
120 2,14, 1,1,1 0,0, 0 8 5 8
0=0 0 14 8 N
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