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Invariant Subspaces for LPV Systems and

Their Applications

Gary Balas, József Bokor, and Zoltán Szabó

Abstract—The aim of this note is to extend the notion of invariant sub-
spaces known in the geometric control theory of the linear time invariant

systems to the linear parameter-varying (LPV) systems by introducing the
concept of parameter-varying invariant subspaces. For LPV systems affine

in their parameters, algorithms are given to compute many parameter
varying subspaces relevant in the solution of state feedback and observer

design problems.

Index Terms—Distributions, input affine systems, invariant subspaces,

linear parameter-varying (LPV) systems.

I. INTRODUCTION

Important engineering processes involve time-varying linear and

nonlinear models. A general theory for the robust control of nonlinear

systems is not computationally tractable and useful progress requires

an intermediate level of complexity. Linear parameter-varying (LPV)

modeling techniques have gained a lot of interest as they provide a

systematic means of computing gain-scheduled controllers, especially

those related to vehicle and aerospace control, [2], [4], [11], [18], [23].

Many of the control system design techniques using LPV models

can be cast or recast as convex feasibility problem with infinite con-

straints that involve linear matrix inequalities (LMIs). This problem

can be addressed by using affine LPV modeling that reduces the in-

finite constraints imposed on the LMI formulation to a finite number,

[1], [30].

The pure LPV model is not quite matched for practical problems,

e.g., to the flight control problem, where the scheduling variables are

in fact system states (e.g. airspeed and angle of attack), rather than

bounded external variables. An approach to this problem is to generate

so-called quasi-LPV models, which are applicable when the scheduling

variables are measured states, the dynamics are linear in the inputs and

other states, and there exist inputs to regulate the scheduling variables

to arbitrary equilibrium values.

The mathematically dual concepts of (A,B)(or controlled)-invari-

ance and (C,A) (or conditioned)-invariance play an important role in

the geometric theory of linear time-invariant (LTI) systems, [6], [32].

These concepts were used to study some fundamental problems of LTI

control theory, such as disturbance decoupling (DDP), unknown input

observer design, fault detection (FPRG), [19], [20], [32]. The nonlinear

version of this geometrical approach is much more complex and deals

with certain locally controlled or conditioned invariant distributions

and codistributions, [14], [15], [24], [25].

The aim of this note is to extend these notions for the param-

eter-varying systems by introducing the notion of parameter-varying

(A;B)-invariant, parameter-varying (C;A)-invariant, controllability

and unobservability subspaces, and to give some algorithms to

compute these subspaces if certain conditions are fulfilled.

Manuscript received November 19, 2002; revised July 22, 2003. Recom-
mended by Associate Editor P. A. Iglesias. This work was supported in part by
NASA Langley under NASA Grant NCC-1-337 (Dr. C. M. Belcastro Technical
Monitor) and in part by the Hungarian National Science Foundation (OTKA)
under Grant T 030182.

G. Balas is with the Department of Aerospace Engineering and Mechanics,
University of Minnesota, Minneapolis, MN 55455 USA.

J. Bokor and Z. Szabó are with the Computer and Automation Research In-
stitute, Hungarian Academy of Sciences, H-1111 Budapest, Hungary (e-mail:
bokor@sztaki.hu; szaboz@decst.scl.sztaki.hu).

Digital Object Identifier 10.1109/TAC.2003.819647

0018-9286/03$17.00 © 2003 IEEE



2066 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 11, NOVEMBER 2003

This note deals with the class of LPV systems of m inputs and p

outputs that can be described as

_x(t) =A (�(t))x(t) +B (�(t))u(t)

y(t) =C (�(t))x(t) (1)

where

A (�(t)) =A0 + �1(t)A1 + � � � + �N (t)AN (2)

B (�(t)) =B0 + �1(t)B1 + � � � + �N (t)BN (3)

C (�(t)) =C0 + �1(t)C1 + � � � + �N (t)CN (4)

and the dimension of the state space is supposed to be n.

It is assumed that each parameter �i ranges between known external

values �i(t) 2 [�
i
; �i] and the parameter set, that contains all the vec-

tors � := [�1(t); . . . ; �N (t)]T where t 2 [0; T ], will be denoted by P .

For the sake of notational simplicity the time dependency of the ma-

trices will be omitted (A(�) := A(�(t))) where it is possible.

In introducing the various parameter-varying invariant subspaces, an

important goal was to set notions that lead to computationally tractable

algorithms. In general, it is a hard task to give an exhaustive character-

ization for the solution of the fundamental problems such as the DDP

or the FPRG problem even in the LPV case. However, since the main

ingredient in the solution of these problems are certain local decompo-

sition theorems—in observable and unobservable subsystems, for ex-

ample—using suitable invariant subspaces instead of the distributions

or codistributions one can get sufficient conditions for the solvability

that can be useful for practical engineering problems.

II. CONTROLLABILITY AND OBSERVABILITY OF LINEAR SYSTEMS

In what follows some standard results, see, e.g. [17] and [26], will be

recalled about the controllability and observability of the LTV systems:

_x(t) =A(t)x(t) +B(t)u(t) (5)

y(t) =C(t)x(t) (6)

where x(t) 2 X � n, x0 = x(t0), u(t) 2
m and y(t) 2 p.

A convenient way to study all solutions of a linear equation on the

interval [t0; T ], for all possible initial values simultaneously, is to in-

troduce the matrix differential equation

_X(t) = A(t)X(t) X(t0) = (7)

withX(t) 2 n�n. Let us denote by�(t; t0) the transition matrix, i.e.,

the solution of (7) at time t; it is known that �(t; t0) is nonsingular for

any t.

Definition 1: A state x0 is said to be controllable at time t0 if there

exist a control function u(t) depending on x0 and t0 and defined over

some finite closed interval [t0; T ] such that for the corresponding so-

lution one has x(T ) = �x (T; t0) = 0. If this is true for every state x

and every t0 then the system will be called (completely) controllable.

System (5) is called (completely) observable on an interval [t0; T ]
if any initial state x0 at t0 can be determined from knowledge of the

system output y(t) and input u(t) over the interval [t0; T ].
For a given system (5) let us denote byR the reachability subspace,

i.e., the set of all states that can be reached from the origin in any finite

time by means of control actions. The system is controllable if and only

if R = X .

Analogously let us denote by Q the unobservability subspace, i.e.,

the set of all initial states that cannot be recognized from the output

function. The system is observable if and only if Q = 0.

One of the fundamental results, see [17], concerning controllability

and observability properties of LTV systems uses the system solution

in the formulation of its conditions. The solution of such a system is

generally not available in closed form. It is also a standard result that

one can derive a rank condition that guarantees controllability which

does not involve integration and can be obtain directly from the data

(A(t), B(t)), see [26]:

Proposition 1: If (5) is analytic on an interval I and t is an arbi-

trary fixed element of I , then (5) is completely controllable on every

nontrivial subinterval of I if and only if

rank [B0(t) B1(t) � � � Bk(t)] = n (8)

for some integer k, where

B0(t) := B(t) Bi+1(t) := A(t)Bi(t)�
d

dt
Bi(t): (9)

If the analyticity condition is dropped, then the rank condition is only

sufficient. An analogous result holds for observability, too.

It is also a standard way to study questions concerning controllability

and observability using the Volterra expansions associated to the given

differential equations. If the time-varying system has an affine struc-

ture then one can exploit this structure in deciding controllability and

observability questions. Using the Peano–Baker formula for the transi-

tion matrix, one can prove the following result.

Lemma 1: For (1), the points attainable from the origin are those

from the subspace spanned by the vectors

R(A;B) := span

K

j=1

A
i

l Bk (10)

where K � 0, lj , k 2 f0; � � � ; Ng, ij 2 f0; � � � ; n� 1g. Moreover, if

one consider the finitely generated Lie-algebra L(A0; . . . ; AN ) which

contains A0; . . . ; AN , and a basis Â1; . . . ; ÂK of this algebra, then

R(A;B) =

N

l=0

n�1

n =0

. . .

n�1

n =0

Im Â
n
1 . . . Â

n

K Bl :

A direct consequence of this fact is that if the inclusion RA;B �
n is

strict, i.e, if RA;B is a proper subspace, then the system (5) cannot be

completely controllable.

The main question is that under which condition is controllability

guaranteed if the relationRA;B = n, i.e., the multivaraiable Kalman

rank condition, holds. In [28] and [29], an answer was given in terms

of the solutions of a Wei–Normann equation, however, that solution is

seldom accessible in practical situations. In [29], it was shown that if

the parameter functions f1; �1; � � � ; �Ng are differential algebraically

independent (relation that also involves the derivatives of �i), then the

multivaraiable Kalman rank condition is also sufficient for controlla-

bility. An analogous result holds for observability, as well.

III. PARAMETER-VARYING INVARIANT SUBSPACES

For LTI systems the concept of certain invariant subspaces and the

corresponding global decompositions of the state equations induced by

these invariant subspaces was one of the main thrusts for the develop-

ment of geometric methods for solutions to problems of disturbance

decoupling or noninteracting control; see [32]. Nonlinear systems can

be studied using tools from differential geometry, when the central role

is played by the concept of invariant distributions. From the geometric

viewpoint results of the classical linear control can be seen as special

cases of more general nonlinear results; for details, see [15] and [21].

Due to the computational complexity involved, these nonlinear

methods have limited applicability in practice.

Linear time varying systems can be viewed as affine nonlinear sys-

tems [14], by augmenting the original state space to � := [t; x]T . Re-

stricting the investigations to linear subspaces, as special instances of

distributions, then a subspace V of n, will be an invariant distribution

for system (5) if and only if A(�(t))V � V for all t 2 I , where I is

an interval on which the solutions are defined.

This fact motivates the introduction of the following notion for LPV

systems.
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Definition 2: A subspace V is called parameter-varying invariant

subspace for the family of the linear mapsA(�) (or shortlyA-invariant

subspace) if

A(�)V � V for all � 2 P; i:e:; for all t 2 I: (11)

Let us observe, that if V is an A-invariant subspace and ImB(t) �
V for all t, then, considering the restrictions of the state matrices to this

subspace, i.e.,

�A(�) := A(�)jV (12)

and using the invariancy property, (5) can be decomposed as

_�x(t) = �A(t)�x(t) + ~A1(t)~x(t) +B(t)u(t) (13)

_~x(t) = ~A2(t)~x(t): (14)

It is obvious that the subspace R(A;B) in (10) is A(�(t)) invariant,

i.e.,

A (�(t))R(A;B) � R(A;B); for all t (15)

moreover, one has that for the induced decomposition

R(A;B) = R( �A;�B): (16)

These facts motivate the introduction of the following notion.

Definition 3: LetB(�) denote ImB(�). Then a subspaceV is called

a parameter-varying (A,B)-invariant subspace (or shortly (A;B)-in-

variant subspace) if for all � 2 P any of the following equivalent

conditions holds:

a:) A(�)V � V + B(�) (17)

and there exists a mapping F � �: [0; T ] ! m�n such that

b:) (A(�) +B(�)F (�))V � V: (18)

Dealing with parametric uncertainties a similar concept was intro-

duced in [7], called robust controlled invariant subspace. If one sets

the gain matrix to be constant then the resulting subspace will be more

restrictive, this approach was used in [9] and [22], and was termed as

generalized controllability (A, B)-invariant subspace.

The dual notion of the previous definition is the following.

Definition 4: Let C(�) denote Ker C(�). Then a subspace W is

called a parameter-varying (C,A)-invariant subspace (or shortly (C,

A)-invariant subspace) if for all � 2 P any of the following equivalent

conditions holds:

a:) A(�) (W \ C(�)) � W (19)

and there exists a mapping G � � : [0; T ] ! n�p such that:

b:) (A(�) +G(�)C(�))W �W: (20)

The mathematically dual concepts of (A,B) (or controlled)-invari-

ance and (C,A) (or conditioned)-invariance play an important role in

the geometric theory of LTI systems. These concepts were used to study

some fundamental problems of LTI control theory, e.g., [6], [19], [20],

and [32].

In the time-varying case, one can deal with these problems using the

much more complex mathematical objects given by the locally con-

trolled or conditioned invariant distribution algorithms or codistribu-

tion algorithms, respectively, [15], [24]. The main problem that arises

in practical situations is that either one cannot perform the computa-

tions or one cannot verify the conditions under the given algorithms

provide the desired results.

If certain conditions are fulfilled, e.g., if the parameter functions

are differential algebraically independent, then the parameter invariant

subspaces defined above coincide with the corresponding invariant

distribution or codistribution, respectively. However, to give sufficient

conditions for the solution of certain state feedback and observer

filter design problems it is enough that some decompositions of the

state equations could be performed. The parameter-varying versions

of these invariant spaces are suitable objects to define the required

decompositions, therefore they can play the same role in the solution

of the fundamental problems, such as disturbance decoupling (DDP),

see [31], unknown input observer design, fault detection (FPRG), see

[3], [5], [27], as their counterparts in the time invariant context.

IV. INVARIANCE ALGORITHMS

In [10], an algorithm was given to determine the robust controlled

invariant subspace, however since the number of conditions is not finite,

the algorithm, in general, is quite complex. From a practical point of

view, it is an important question to characterize these parameter-varying

subspaces by a finite number of conditions. Assuming the special

structure of the matrix A(�) in (1), it is immediate that if the

inclusions hold for all Ai, then they hold also for all � 2 P . It is

not so straightforward under which conditions the reverse implication

is true, too.

In what follows, a sufficient condition will be given that character-

izes property (11) using only a finite number of constrains.

Lemma 2: If the functions 1; �1; . . . ; �N are linearly independent

over then A(�)V � W8� 2 P if and only if

AiV � W; i = 0; . . . ; N:

We are interested in finding supremal A-invariant subspaces in a

given subspace K or containing a given subspace L. As far as the first

purpose is concerned theA-Invariant SubspaceAlgorithm overL can

be defined as:

AISAL : V0 =L

Vk+1 =L+

N

i=0

AiVk; k � 0

V� = lim
k!1

Vk: (21)

Obviously, the algorithm will stop after a finite number of steps, i.e.,

V� = Vn�1.

Theorem 1: The subspace V� given by (21) is such that

L � V� (22)

V� is A� invariant (23)

and assuming that conditions of Lemma 2. hold, it is minimal with these

properties.

Similar to the linear case the subspace V� will be denoted by hAjLi.
By duality, one has the A-Invariant Subspace Algorithm in K, i.e.,

AISAK : W0 =K

Wk+1 =K \

N

i=0

A
�1
i Wk; k � 0

W� = lim
k!1

Wk (24)

where A�1i Wk denotes the inverse image ofWk under A�1i . The sub-

space W� will be denoted by hKjAi.
Theorem 2: The subspace W� given by (24) is such that

W� � K

W�
is A� invariant

and assuming that that conditions of Lemma lem:pc. holds, it is max-

imal with these properties.
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The direct application of nonlinear algorithms to LPV systems

yield time-dependent distributions. In order to get rid of the time-de-

pendency, we will continue with the following argument. The set of

all (A;B)-invariant subspaces contained in a given subspace K, is an

upper semilattice with respect to subspace addition. This semilattice

admits a maximum which can be computed from the (A;B)-Invariant

Subspace Algorithm:

ABISA : V0 =K (25)

Vk+1 =K \

N

i=0

A
�1

i (Vk + B): (26)

The limit of this algorithm will be denoted by V� and its calculation

needs at most n steps.

The set of all (C;A)-invariant subspaces—note that C =
KerC—containing a given subspace L, is a lower semilattice with

respect to subspace intersection. This semilattice admits a min-

imum which can be computed from the (C;A)-Invariant Subspace

Algorithm that can be obtained by duality from the ABISA algo-

rithm, see [27].

These algorithms can be obtained in the same way as those for the

LTI case; see [32]. The minimality (maximality) of these subspaces fol-

lows from the fact that if one assumes that the parameter functions are

linearly independent, then any relation involving subspace inclusions

of the type A(�)V � W will be equivalent with the same type of in-

clusions with the matrices Ai, i.e., AiV � W for all i.

For the LPV case (with constantB matrix) one can get the following

definition for the controllability subspace.

Definition 5: A subspace R is called parameter-varying control-

lability subspace if there exists a constant matrix K and a parameter

varying matrix F : [0; T ] ! m�n such that

R = hA+BFjIm BKi (27)

where the notation A+BF stems for the system A(�) +BF (�).
As in the classical case, it can be seen that the family of control-

lability subspaces contained in a given subspace K is closed under

subspace addition. Hence, this family has a maximal element which

can be computed from the parameter-varying Controllability Subspace

Algorithm:

CSA : R0 =0 (28)

Rk+1 =V� \

N

i=0

AiRk + B (29)

R� = lim
k!1

Rk (30)

where V� is computed by ABISA.

Theorem 3: The subspace R� is the largest parameter—varying

controllability subspace in C.

This subspace plays a central role in solving the DDP problem in the

affine LPV case; for details, see [31].

The CSA algorithm can be obtained by dualizing the observability

codistribution algorithm, see [24], and applying it for subspaces.

In what follows, a few properties of the controllability subspaces,

known in the LTI case, [32], will be recast in the parameter varying

context.

Theorem 4: If B̂ � B and R = hAjBi then R = hAjB \ Ri.
Conversely, ifR = hAjB \Ri then there exists K: U ! U for which

R = hAjImBKi.
Theorem 5: A subspaceR is parameter-varying controllability sub-

spaces if and only if there exists F : [0; T ] ! m�n such that R =
hA + BFjB \ Ri.

Let R � X a fixed subspace and define � = fZ : Z = R \
( N

i=0
AiZ + B)g.

Lemma 3: There exists a unique minimal element of �.

The minimal element Z� can be computed from the following algo-

rithm:

Z0 = 0 Zk+1 = R\

N

i=0

AiSk + B : (31)

Theorem 6: A subspace R � X is parameter-varying controlla-

bility subspace if and only if it is (A;B)-invariant and R = Z�.

The dual notion of parameter-varying controllability subspace is the

following:

Definition 6: A subspace S is called parameter-varying unobserv-

ability subspace if there exists a constant matrix H and a parameter

varying matrix G: [0; T ] ! n�p such that

S = hKerHCjA+ GCi (32)

where A+ GC denotes the system A(�) + G(�)C .

By dualization one can show that the family of parameter-varying

unobservability subspaces containing a given subspace L is closed

under subspace intersection. The minimal element of this family can

be computed as the result of the parameter-varying Unobservability

Subspace Algorithm that can be obtained by duality from CSA, for

details see [27]. These subspaces were used in the solution of fault

detection filter design problems. Stabilization issues were treated

using LMI techniques; for details see [3] and [27]. Moreover, using

these parameter varying unobservability subspaces it is also possible

to solve fault detection filter design problems for qLPV systems; for

details, see [5].

In [13], exactly the same algorithms were obtained in the context of

bilinear systems.

V. CONCLUSION

This note investigated the extension of invariant subspace concepts

used in the geometric theory of LTI systems to LPV and qLPV systems.

The basic concept was the construction of subspaces invariant for

a family of linear mappings. These were called parameter varying

invariant subspaces. For LPV systems affine in their parameters

algorithms were given to compute the relevant invariant subspaces

used in relation with state feedback and observer design problems

like DDP, decoupling, inversion, or detection filter design. These

algorithms use only linear algebraic tools and can offer a computational

alternative to some nonlinear problems reformulated in LPV or qLPV

terminology.
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Robust PI Controller Design Satisfying Sensitivity and

Uncertainty Specifications

Oded Yaniv and Mark Nagurka

Abstract—This note presents a control design method for determining

proportional–integral-type controllers satisfying specifications on gain
margin, phase margin, and an upper bound on the (complementary)

sensitivity for a finite set of plants. The approach can be applied to plants
that are stable or unstable, plants given by a model or measured data,
and plants of any order, including plants with delays. The algorithm is

efficient and fast, and as such can be used in near real-time to determine
controller parameters (for online modification of the plant model including

its uncertainty and/or the specifications). The method gives an optimal
controller for a practical definition of optimality. Furthermore, it enables

the graphical portrayal of design tradeoffs in a single plot, highlighting
the effects of the gain margin, complementary sensitivity bound, low

frequency sensitivity and high frequency sensor noise amplification.

Index Terms—Design, gain and phase margin, linear systems, propor-
tional–integral (PI) control, robustness.

I. INTRODUCTION

Although many methods for tuning proportional–integral (PI) and

proportional–integral-derivative (PID) controllers exist, extensive re-

search in design techniques continues, driven by the strong use of such

controllers in industry. Depending on the types of specifications that

the design must satisfy, the tuning methods reported in the literature

can be summarized as falling into one of two categories.

One class of methods considers gain and phase margin specifica-

tions. Ho et al. [1], [2] developed simple analytical formulae to tune PI

and PID controllers for commonly used first-order and second-order

plus dead-time plant models to meet gain and phase margin specifica-

tions. Ho et al. [3], [4] reported tuning formulae for the design of PID

controllers that satisfy both robustness and performance requirements.

Crowe and Johnson [5] presented an automatic PI control design algo-

rithm to satisfy gain and phase margin based on a converging algorithm.

Suchomoski [6] developed a tuning method for PI and PID controllers

that can shape the nominal stability, transient performance, and control

signal to meet gain and phase margins.

A second class of design methods focuses on sensitivity speci-

fications, and is based on the premise that gain and phase margin

specifications may fail to guarantee a reasonable bound on the sen-

sitivity. Ogawa [7] used the QFT-framework to propose a PI design

technique that satisfies a bound on the sensitivity for an uncertain

plant. Poulin and Pomerleau [8] developed a PI design methodology

for integrating processes that bounds the maximum peak resonance

of the closed loop. The peak resonance constraint is equivalent to

bounding the complementary sensitivity, which can be converted to

bounding the sensitivity. Cavicchi [9] described a design method for
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