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INVARIANT SUBSPACES IN BANACH SPACES
OF ANALYTIC FUNCTIONS

STEFAN RICHTER

Abstract. We study the invariant subspace structure of the operator of multiplica-
tion by z, M., on a class of Banach spaces of analytic functions. For operators on
Hilbert spaces our class coincides with the adjoints of the operators in the Cowen-
Douglas class 3SX(Ü). We say that an invariant subspace Jt satisfies cod^"= 1 if
zJt has codimension one in Jt'. We give various conditions on invariant subspaces
which imply that cod Jt = 1. In particular, we give a necessary and sufficient
condition on two invariant subspaces Jt, jV with cod Jt = cod jV= 1 so that their
span again satisfies cod(^" v jV) = 1. This result will be used to show that any
invariant subspace of the Bergman space L¡¡, p > 1, which is generated by functions
in L1/, must satisfy cod Jf = I. For an invariant subspace Jt we then consider the
operator S = M7 \JtL. Under some extra assumption on the domain of holo-
morphy we show that the spectrum of S coincides with the approximate point
spectrum iff cod Jt = 1. Finally, in the last section we obtain a structure theorem for
invariant subspaces with cod^= 1. This theorem applies to Dirichlet-type spaces.

1. Introduction.
1.1. Overview. Let B be an open and connected subset of the complex plane. The

Banach spaces 3$ under consideration satisfy the following axioms:

(1.1) 38 is a vector subspace of the space of all analytic functions on ñ.

(1.2) The functional of evaluation at X is continuous for all X e ti.

(1.3) /// is a function in 38, then so is zf.

,     , If f e 38 and f{X) = 0, then there is a function g e 38 such
{lA) that {z - X)g = f.

It follows immediately from the first three axioms and the closed graph theorem
that the linear transformation / >-* zf is continuous. We will denote it by (Mz, 38) or
M, if the underlying Banach space has been fixed.

In §2 we shall discuss some examples of spaces satisfying these axioms. In
particular, Theorem 2.10 states that if 38 is a Hilbert space, then the Hilbert space
adjoints M* of M, exactly form the Cowen-Douglas class 38x(Yl) (see §2.4 for a
definition).
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586 STEFAN RICHTER

A subspace J7 of 38 will always be a closed subspace, and it is called invariant if
M, maps J7 into itself. In [14] the authors suggested to study the operators Mz1Jt
in the hope of obtaining some information about the invariant subspace Jt'. In [22]
the author showed that for a large class of Hilbert spaces of analytic functions the
operators Mz | JÍ and Mz \ Jf are unitarily equivalent if and only if the invariant
subspaces Jt and JT coincide.

Our approach in the present article is to consider one of the unitary invariants of
the operators MZ\J(: the Fredholm index. Under our assumptions (1.1)—(1.4) we
shall show that for every nonzero invariant subspace Jt', -index((Mz — X)\J7) =
the codimension of (z - X)J7 in J7 does not depend on X in the domain of
holomorphy. We shall say that the invariant subspace J7 has the codimension n
property if - index((Mz - X) | Jt) = n (see Definition 2.12).

Let L2a be the space of all analytic functions in the unit disc which are square
integrable with respect to Lebesgue area measure. It follows from results of Apóstol,
Bercovici, Foia§, and Pearcy that if « is a positive integer or oo, then there exists an
invariant subspace of L2a which has the codimension n property.

Cyclic invariant subspaces have the codimension one property (Corollary 3.3),
thus every invariant subspace is the span of invariant subspaces with the codimen-
sion one property. In §3 we shall give several sufficient conditions for invariant
subspaces to have the codimension one property. In particular, Theorem 3.10 gives
necessary and sufficient conditions for the span of two invariant subspaces with the
codimension one property to again have the codimension one property.

In §4 we investigate a(Mz* \ Jf x) and aap(M* \ J7 x). From this we shall be able
to give a sufficient condition on an invariant subspace Jt to have the property that
all larger invariant subspaces Arz> Jt have the codimension one property (Corollary
4.8). Finally, in §5 we shall restrict our attention to Hilbert spaces 377 of analytic
functions on the unit disc. In Theorem 5.3 we shall show that if o(Mz) = D and
IIAL/II > 11/11 f°r all / e -^> then every invariant subspace Jt with the codimension
one property satisfies Jt c H2f0 n 377 for /0 g Jt e zJt.

Throughout this paper we have tried to illustrate our abstract operator theoretic
theorems with concrete examples from function theory. This should not obscure the
fact that the function theoretic aspect of a characterization of the invariant sub-
spaces of most spaces remains widely open. As an example consider again L2. Deep
results of Korenblum, Roberts, and H. Shapiro (see [24]) characterize the invariant
subspaces that are generated by bounded analytic functions. We shall see that in this
context all invariant subspaces must have the codimension one property. A similar
statement can be made about invariant subspaces arising from sequences which are
universal interpolating for L2 (see [1] or §4 for a definition).

1.2. Some notations. Most of the notations are either standard or they are defined
in the text as we need them. However, there are a few things which we would like to
point out here. We use the letter 97 to denote an abstract complex Banach space,
while 38 or S refer to Banach spaces which satisfy our axioms (1.1)-(1.4) listed
above. 37C and Jf will always refer to Hilbert spaces. 77(37) denotes the algebra of
bounded linear transformations on 97.
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INVARIANT SUBSPACES IN BANACH SPACES 587

By N we mean the set of positive integers, N = (1,2,...}. For a set ß çz C, we
write ß for the set of complex conjugates, fl = (ue C: ¡¡eß}. ß" denotes the
closure of ß.

In our proofs the symbol D signals the end of a part of the proof, while ■ indicates
the end of the whole proof.

2. Banach spaces of analytic functions.
2.1. Preliminaries. Now suppose ß is an open and connected subset of the

complex plane and 38 satisfies the axioms (1.1)—(1.4).
If X e ß and 36 =7 {0}, then (1.4) implies that there is a function fe 7% with

f(X) =7 0; thus the operator (Mz - X) cannot be surjective. This implies that
ß çz a(M,), and we see that there is no loss in generality if we assume ß to be
bounded.

Note that ß is not assumed to be maximal in any sense, i.e. if ß' ç ß, ß' ¥= 0,
and 38 is a Banach space of analytic functions on ß, then 38 can also be considered
to be a Banach space of analytic functions on ß', just by restricting the functions in
36 to ß'.

Lemma 2.1. Suppose 36 satisfies (1.1)—(1.3) and 36 ̂  {0}. Then (1.4) is equivalent
to each of the following three sets of conditions.

For every X e ß there is a g e 38 with g{X) =7 0,
for every X e ß (Mz — X) is bounded below,

there is a X0e ß such that whenever f e 38
andf{X0) = 0, there exists age 36 such that

{z-X0)g=f.

For every X G ß there is age 38 with g{X) i= 0,
for every X G ß {Mz — X) is bounded below,

dimker(M, — A0)* = 1 for some X0 e ß.

For every X e ß there is a g e 38 with g{X) =7- 0,
for every XeYl{Mz — X) is bounded below,

dimker(Mz - X)* = 1 for every X e ß.

Proof. Note that {Mz - X) is an injective operator for all X eü; thus it is
bounded below if and only if it has a closed range. In this case M, - À is a
semi-Fredholm operator and the Fredholm index equals the dimension of the kernel
of the adjoint {Mz - X)*. Thus the implication (2.2) => (2.3) follows immediately
from the general theory of semi-Fredholm operators (see [17]).

To show that (2.1) => (2.2) we only have to establish that (2.2)(iii) follows from
(2.1). We note that (2.1)(iii) says that

(2.4) ran(M2-A0) = {fe38:f{X0) = 0}.

(2.1)

(i)
(Ü)
(üi)

(2.2)

(2.3)

(i)
(Ü)
(iii)

(0
(Ü)
(iii)
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588 STEFAN RICHTER

But clearly the right side of (2.4) has codimension one in 36, hence

dimker(M, - A0)* = codimension of ran( Mz - A0) in 38 = 1.   D
Next we shall show that (1.4) implies (2.1). Of course (2.1)(iii) follows trivially

from (1.4). We saw earlier that (2.1)(i) is valid, if 36 =7 (0}. To show that (2.1)(ii) is
satisfied we note that (1.4) implies that (2.4) is valid for all X e ß. That the right
side of (2.4) is closed follows from axiom (1.2), thus Mz — X has closed range. By
what was said above Mz — X is bounded below.   D

Finally we shall show that (2.3) implies (1.4). To this end let X e ß be fixed. We
know that ran{Mz - X) çz {f e 36: f{X) = 0}, and we have to show that equality
holds, i.e. (2.4) with X. But it follows from (2.3)(ii) that ran(AL - X) is closed,
(2.3)(iii) implies that the codimension of ran(M. - X) in 36 equals one. This together
with the fact that the codimension of {f e 36: /(A) = 0} in 38 is one (this follows
from (2.3)(i)) proves that (2.4) holds.   ■

Remark 2.2. Since point evaluations are continuous linear functional on 38 there
are elements kx e 36* such that f{X) = (/, kx) for all f e 38.lt is easy to see that
kx e ker(M, - X)*. It follows from (1.4) that kx =7 0 for all X e ß, thus Lemma 2.1
implies that kx spans ker(M, - X)*.

2.2. Multipliers. The commutant of the operator {Mz,38) has a convenient
description. We shall need the following definition which applies to a more general
situation.

Definition 2.3. Suppose 38 x and 382 are two Banach spaces of analytic functions
satisfying (1.1)—(1.4). A complex valued function qp in ß is called a multiplier from
36x into 382, if q>38x çz 382. The set of all multipliers from 38x into 382 will be
denoted by M{38x, 362) or M{38x) if 38x = 382.

Using the closed graph theorem, it is easily seen that every <p e M{38x, á?2)
defines a bounded linear transformation Mv: f *-* <pf from 38x into 382. Further-
more, since for all f' e 36x both / and cpf are analytic functions it follows that every
multiplier <p has to be an analytic function as well.

The argument in the proof of the following proposition is taken from [26], where a
similar theorem for Hilbert spaces is proved.

Proposition 2.4. Suppose 38\ and 382 are two Banach spaces of analytic functions
satisfying (1.1)-(1.4). Write M'z for {Mz, 38,), i = 1,2. An operator T e ¿e(36x, 382)
satisfies TM] = M2T, if and only if there is a function <p g M(38x, 382) such that
T=M<p.

Proof. It is clear that a multiplication operator Mv satisfies M^M) = MZMV.
Assume now that T e 7£(38x, 382) and TM} = M2T. For i = 1,2 and A e ß

denote by k'x the elements in ker(M.' - A)* representing the evaluation of functions
in 36, at X. It follows from the hypothesis that M]*T* = T*M2*. We see that for
every A g ß F* maps ker(Aíz2 - A)* into ker(M¡ - A)*. Thus, since k'x spans
ker(M.' - A)*, there must exist a function tp on ß such that T*kx = <p(X)kx. We
claim that F = M^. Indeed, for / e 38x and A G ß we have

(F/)(A) = (Tf, kl) = (/, T*k2) = {fMX)k\)
= <p(X)(f,kx) = y(X)f(X).   M
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INVARIANT SUBSPACES IN BANACH SPACES 589

Corollary 2.5. The commutant of the operator (Mz,38) is equal to {M^:
<p g M(38)).

Note that M(38) can be made into a Banach space by defining ||<p|| = ||Ai 11^^.
The commutant of (Mz,38) is certainly norm closed in St?(38), thus M(38) is
complete in its norm.

Proposition 2.6. If 31 satisfies the axioms (1.1)—(1.4) then
(2.5) M{38)çzH°°{Q),

(2-6) k(A)|<||MX(á?) = ||<p|U(án    forallXeÜ.
Furthermore, M{36) satisfies (1.1)—(1.4).

Proof. We shall only prove that M{38) satisfies (1.4). (2.5) and (2.6) are covered
by Proposition 3 of [9]. This implies that M{38) satisfies (1.1) and (1.2). That M{38)
satisfies (1.3) is trivial.

If <p g M{38), <p{X) = 0, then there is a holomorphic function t/> such that
(z - A)i// = (¡p.

Claim. 4>eM{38).
If / g 38, then

But cpf e 38, <p{X)f{X) = 0. Thus yf/{z -X)e36.
Therefore we have \pf e 38 for every / g £6, hence \p e M{38).   ■
At this point note that M{36) always contains the polynomials. On the other

hand, if also le 38, then M{38)çz38n iF°(ß).
2.3. Examples. In the following examples ß will denote a bounded region in the

complex plane.
Example 2.7. The Banach algebra Hœ{Çl) of all bounded analytic functions on ß

clearly satisfies all the axioms (1.1)—(1.4).
Example 2.8. The weighted Bergman spaces Lf(ß, wdA).
The two dimensional Lebesgue area measure is denoted by dA. Let w: ß -» C be a

continuous function with w(X) > 0 for all A G ß and faw(X)dA(X) < oo. For
1 «i p < oo the space L^(ß, wdA) consists of all analytic functions /: ß -» C with

f \f{X)\Pw{X)dA{X) < oo.

For / g Lp(ß, wdA) we let

\\f\\p.w=^\f{X)\Pw{X)dA{X)

|| || defines a norm on L?{Q,wdA) such that the spaces Lffü,wdA) (1 «s p <
oo ) are Banach spaces satisfying the axioms (1.1)—(1.4).

In fact, that L^(ß, wdA) is complete and satisfies the axioms (1.1)—(1.3) is easy to
see and well known. Some information is provided in [3]. A simple estimate shows
that axiom (1.4) is satisfied as well.   ■

¡/p
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590 STEFAN RICHTER

If ß = D and w{X) = 1 we have the classical Bergman spaces and will write
(Lf\\    ||„)for(L>(D,¿4),||    ||,4).

Example 2.9. The spaces Da (-co < a < oo) are Hilbert spaces of analytic
functions satisfying the axioms (1.1)—(1.4).

Let ß = D, then an analytic function / can be expressed as a Taylor series,
f(z) = Y,™=0f(n)z". For a e R we define

feDa~ f (« + l)1/(«)|2<oo.
«=o

An inner product on Da can be defined by
00 _

(/,*).= E(« + i)7(«)K«).
n = 0

The corresponding norm will be denoted by || ||a.
A short survey of the known results about Da is given in [9].
For a < 0 \\f\\a is equivalent to ||/||2,w with w{z) = {1 - |z|2)^1_a (see Example

2.8 and [27]), thus in this case Da = L2(D,(1 - |2|2)~1_aí¿4) with equivalence of
norms.

For a = 1 we get the Dirichlet space D = Dx and will write ||/||D = \\f\\x.
For a = 0 we have the usual Hardy space H2 = H2{D) and will write || \\H2 for

llllo-
For 0 < a < 1 spaces closely related to Da were considered by Carleson in his

dissertation [11].
2.4. The Cowen-Douglas classes 38n{G). A special class of operators on Hilbert

spaces was considered by M. J. Cowen and R. G. Douglas. Let 377 be a separable
Hilbert space, G be a connected open subset of C and n a positive integer. Recall
from [13] that an operator T e £7(347) belongs to the class 38n(G) if the following
four conditions are satisfied.

(2.7) Gçza(T),
(2.8) ran(F-A)=Jf    for A g G,
(2.9) span{ker(T-X):Xe G} =JÍ7,
(2.10) dimker(F - X) = n    for A g G.

In [13] Cowen and Douglas gave a complete set of unitary invariants for an
operator in @X(G). The following theorem shows how the class 38X(G) is related to
the operators Mz considered here.

Theorem 2.10. Let il be a connected and open set in the complex plane. An
operator T e 7£(3tf) is in the class 38x(Yl) if and only if there exists a Hilbert space
Jf# (0} of analytic functions on ß satisfying (1.1)—(1.4) such that the Hilbert space
adjoint T*ofT is unitarily equivalent to Mz e 777(377).

Proof. Suppose F g 3îx(Q). We have to construct a Hilbert space 377 satisfying
(1.1)-(1.4) and a unitary operator U: 377-* 377 such that UT* = MZU.
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We shall follow the construction of Cowen and Douglas [13, 1.15] and verify that
it has the required properties. (Note that the set ß of [13, 1.15] corresponds to ß in
our notation.) Using Grauert's theorem [15] Cowen and Douglas obtain a holomor-
phic map y: ß -» 37? (i.e. the map w -» (y(w), x) is analytic on ß for all x e 377)
which has the further property that y(w) spans ker(F - to) for all w g ß.

For every re/we can now define a function /on ß by letting /(A) = (x, y(X)).
The set 377= (/: ß -» C: f(X) = (x,y(X)) for some x e 377} can be made into a
linear space by defining addition and scalar multiplication the obvious way. Thus U:
37?-^> X, Ux = f, where /(A) = (x,y(X)), is a linear map. We shall show that U is
1-1. Suppose Ux = 0 for some x e 377, then (x, y(u)) = 0 for all u e ß. But y(w)
spans ker(F - w), so x must be orthogonal to span(ker(F - co): u e Q) = 377, thus
x = 0.

We can now define an inner product on 377 by setting

(/,g)^=(t/-1/,i/-1^)^

This makes U into an isometry. Since U is onto by definition, JT is a Hilbert space
and U is a unitary operator.

It follows from the properties of y that JT is contained in the space of all analytic
functions on ß, hence 377 satisfies (1.1). That (1.2) is also satisfied follows from the
inequality

|/(A) | = \{U~lf,y(X)) | < ||[T1/U\y{X) ||^= ||/H|y(A) \\^.
To show that (1.3) is valid, we take f e 377 and note that

0 = (U~lf,(T- co)y(w)) = {T*U-lf,y{o)) - ä{lTlf,y{a))    for a e ß.

Thus for A g ß we have A/(A) = X(U~lf,y(X)) = (T*U-lf,y(X)), which means
that z/= UT*U-lfejf.

This last computation also establishes that M, = UT*U~l or M,U = UT*.
Finally, by Lemma 2.1, (1.4) will follow if we verify (2.3)(i), (ii), and (iii). Fix

A G ß. Then the function kx = Uy(X) satisfies fcx(A) = (y(A),y(A)) = ||y(A)||2 #
0, i.e. (2.3)(i). By (2.8) (T - X) is onto, thus (M, - X) = U(T* - X)U~l is bounded
below, i.e. (2.3)(ii). Similarly, we see that (2.3)(iii), dimker(M, - A)* = 1, is true,
because dim ker(F - X) = 1 (see (2.10)).   D

We shall now establish the converse. To this end suppose that 377 is a Hilbert
space of analytic functions, which satisfies (1.1)—(1.4). The class 38x(Yl) is invariant
under unitary equivalence. Thus it is enough to show that M* e &X(Q).

We have already seen that ß çz a(Mz), hence ß ç a(M,*), which is (2.7). If
A g ß, then we know from Lemma 2.1 that {M, - X) is bounded below, thus
{M, - A)* is onto (2.8). To show (2.9) we take/ e 377 and assume/ ± ker{Mz - A)*
for all A g ß. By Remark 2.2 it follows that f ± kx for all A G ß, i.e. /(A) =
if,kx) = 0 and therefore /= 0. Finally, (2.10) follows immediately from Lemma
2.1.    ■

2.5. Invariant subspaces. If T is an operator on a Banach space 777, then a (closed)
subspace Jt of 97 is called invariant for F if TJt ç Jt. An invariant subspace is
called hyperinvariant for F, if it is invariant for all operators which commute with F.
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The collection of all invariant subspaces of an operator F is denoted by Lat T. It
forms a complete lattice with respect to intersections and closed spans. The subcol-
lection of hyperinvariant subspaces of T, H-LatF, forms a complete sublattice of
LatF.

From now on suppose that ß is a bounded, nonempty region in the complex
plane and that 38 is a Banach space of analytic functions on ß satisfying (1.1)—(1.4).
By an invariant (hyperinvariant) subspace we will always mean an invariant (hyper-
invariant) subspace for (Mz, 38).

Remark 2.11. It follows from the description of the commutant of AL (Corollary
2.5) that a subspace Jt is hyperinvariant if and only if M(38)Jt Q Jt.

For a subset S of J1 we will write [S] for the smallest invariant subspace which
contains all of S. For single functions f e 38 we will simply write [/] for [{/}].
Such invariant subspaces are called cyclic. Note that the linear manifold {pf: p is a
polynomial} is dense in [/]. Similarly we shall write M[S] (resp. M[f]) for the
smallest hyperinvariant subspace (invariant under M(38)) which contains the set
S ç 38 (resp. the function f e 38). Here we note that M(38)f is densely contained
in M[f\.

If / g 38, then let Z(f) = {X e ß: /(A) = 0}, and for a subset S Q 38 denote by
Z(S ) the zero set of S, i.e. the intersection of all the sets Z(f) with f e S.

We note that every invariant subspace Jt satisfies (1.1)-(1.3). Furthermore,
(M, - X)\Jt is bounded below for all X e ß, since Mz — X is bounded below
(Lemma 2.1). As in the proof of Lemma 2.1 it follows now from the Fredholm
theory that dimker((M, - X)\Jt)* = dim(Jt/(z - X)Jt) does not depend on
X e ß.

On the other hand, if we consider À G ß, A G Z(Jt), then there is an fejt
such that /(A) =7 0 and therefore /£ (z - X)Jt, i.e. dim(Jt/(z - X)Jt) > 0 for
any Jt e Lat( A/., 38), Jt =7 {0}. We can now make the following important definiti-
ion.

Definition 2.12. The map cod: Lat(A/z, 36) -> N U {oo} is defined as follows: If
Jt =7 {0}, then fix A g ß and set cod^= dim{ Jt/{z - X)Jt). It Jt = {0}, then
set cod Jt = I. We say that Jt has the codimension n property if cod Jt = n.

The connection of the previous definition to the classes 38n(2) (§2.4) is as follows.
If 377 is a Hilbert space satisfying (1.1)-(1.4), Jt e Yat(Mz,377), Jt =7 {0}, and
cod Jt = n < oo, then(Mz|^)* e 38„(Ü).

The following proposition points to the importance of the codimension one
property.

Proposition 2.13. If Jt e Yat(M,,38) and cod Jt = I, then there is a Banach
space S on ß satisfying (1.1)—(1.4), and there exists <p g M(77,Jt) such that Mv
maps S isometrically onto Jt and

(2.11) (M:\Jt)Mq> = Mv(Mz,ef).

Note that, if Jt is a subspace of a Hilbert space, then the norm on S is actually a
Hilbert space norm.
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Proof. We may assume that Jt =7 {0}. Then Z(Jt) is a discrete subset of ß with
accumulation points only on 3ß, say Z(Jt) = {Xn }. Furthermore, for every n there
is a positive integer mn such that every / g Jt has a zero of order at least mn at Xn,
but there is an fneJt such that /„ does not have a zero of order mn + 1 at A„.

By a theorem of Weierstrass (see e.g. [18, Theorem 12.2]) there is an analytic
function (j> on ß, which has its zeros exactly at the points {A„}, and the order of the
zero at A„ is mn. It follows that //<p is analytic on ß for all / g Jt.

Define

£={f/<p:feJt),    ||//<HU = ||/|U.
By definition A/*,: S -» Jt is an isometric isomorphism onto Jt.
Claim. S satisfies (1.1)-(1.3).
Proof. (1.1) is satisfied by the choice of y.
(1.2) Suppose first that X<£Z(Jt). Then we have |<p(A)| =7 0 and

7(M
tp(X) I/IU =7-7777II/A» II<p(a)| k(MI

If A g Z(Jt), then there is an e > 0 such that
C= {X + ee": te [0,2w)} ç ß

and C n Z{Jt) = 0. C is compact, thus inf{|<p(f)|: Ç e C) = cx> 0. Also, the
unit ball of J1 is a normal family (see Proposition 1 of [9]), hence there is a c2 > 0
such that |/(f)| < c2\\f\\a for all £ g C.

We have

/(A)
cp(A) hi2trt Jr

/(OMO
S -A

dl <  (c2Al)ll/IU=c||//<p|U-      □

(1.3) is satisfied since ^# g Lat(Mz, J1) and M^M, = (Mz \ Jt)Mv, here we wrote
Mz for(Mz,cf).    D

The last equality establishes (2.11).
Finally, to show that S satisfies (1.4), we shall use Lemma 2.1 and verify (2.2)

with A0 G Z{Jt). Thus (i) is satisfied by the choice of <p. (ii) and (iii) are satisfied
since M is an isometric isomorphism intertwining (M, \Jt) and M, e £7\S) and
{M, | Jt) satisfies (ii) and (iii).    ■

We are interested in the lattice structure of Lat(Mz, 38). To simplify the problem,
we shall consider the "sublattice" of invariant subspaces with the codimension one
property. Before we start, however, we shall state some results about invariant
subspaces with the codimension n property for arbitrary n.

Remark 2.14. Beurling's theorem [6] states that every invariant subspace of
{Mz, H2) is of the form tpH2 = [<p], where <p is an inner function. We shall see
below (Corollary 3.3) that cyclic invariant subspaces always have the codimension
one property, thus every invariant subspace of {Mz, H2) has the codimension one
property.

Remark 2.15. Consider the spaces Da, a < 0, from Example 2.9. If Jt e
Yat{Mz, Da), Jt'7= (0}, and n e N U (oo}, then there is an invariant subspace
Jt„ eJt such that cod Jtn = n. This follows from results of Apóstol, Bercovici,
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Foias, and Pearcy (see Corollary 6.9 and Proposition 5.4 of [5]). Similarly it follows
from results of Bercovici [4] that for every n e N U (oo} there is a hyperinvariant
subspace for (Mz, L2(ß, dA)) (see Example 2.8) which has the codimension n
property. We note here that the proofs in [5 and 4] are of an abstract nature
involving the axiom of choice. No explicit examples of functions in Da (a < 0)
which span an invariant subspace with the codimension n property, n > 2, have
been found.

The next proposition gives a preliminary result about the relation between the
codimension n property and the span of invariant subspaces. For the codimension
one property we shall go into more detail later.

Proposition 2.16. Suppose Jt, Jfe Lat(Mz, 38).
(a) We have

cod(Jty Jf) < cod^+ cod Jf'.
(b) Furthermore, if Lat(Mz, 38) contains an invariant subspace with the codimen-

sion m property, m > 2, and nx, n2 e N U {oo}, nx + n2 = m, then there are
invariant subspaces J7X and A72 such that

cod Jf, = n„       i = 1,2,    and

cod( Jfx v Jf2) = cod Jfx + cod^2.

Proof, (a) Fix A g ß. If either cod Jt or cod Jf is infinite, then there is nothing
to prove. So we may assume that cod Jt < oo and cod Ar< oo.

Thus there are finite dimensional subspaces Jtx and J?x of Jt and Jf respec-
tively such that Jt = (z — X)Jt + Jtx, J7= (z - X)Jf+ Jfx, dim^ = cod Jt,
and dim Jfx = cod Jf. We see that

(2.12) Jt + J7= {z-X)Jt + Jtx+{z- \)J7+J7X
= (z -X)(Jt + Jf)+Jtx+Jfx
Q {z - X){JtV JT) +{Jtx +J7X)
eJtv JT.

The second to last expression is the sum of a closed and a finite dimensional
subspace, hence it is closed. Since Jt + Jf is dense in Jt V Jf we obtain that the
last inclusion in (2.12) is actually an equality. From this it follows that

cod{ Jt V Jf) < dim(^#j + Jfx) < cod Jt+ cod Jf.   D
(b) To see that equality in (a) can actually occur let us assume that m e N u {oo},

m :> 2, is given and that Lat(Mz, 38) contains an invariant subspace Jt with
codimension m property. First assume m = nx + n2, nx,n2eN. We shall construct
Jfx, Jf2 e Lat(AL, 38) with cod^ = nx, cod^ = n2, and cod(^ V Jf2) = m
= nx + n2.

Fix A g ß. As above there is an m-dimensional subspace Jtx of Jt such that
Jt = (z — X)Jt + Jtx. Let {/j, ...,/„,} be a basis for Jtx and define Jfx to be the
smallest invariant subspace of M. which contains {fx,--.,f„ }, define Jf2 to be the
smallest invariant subspace which contains {/„ +x,.-.,fm). It is easy to see that
Jfx V Jf2 is the smallest invariant subspace of M, which contains {fx,... ,fm }.
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Claim, cod Jfx = nx.
Let £7 be the linear span of {fx,.. .,/„}. Then £7çzJtx. We have Jtx n

(z - X)Jt= {0}, thus (z - X)Jfx Q(z- X)Jt implies ¿?n (z - X)^ = {0}.
(z — X)Jfx is closed, 7£ is finite dimensional, hence £7+ (z - X)Jfx c Jfx is
closed. We note that £7+ (z - X)Jfx is invariant for Mz, hence by definition of Jfx
we have £7+ (z - X)Arx = Jfx. This implies that cod Jfx = dim £7= nx.   D

Similarly we see that cod Jf2 = n2 and cod( Jfx V Jf2) = m.   D
Finally, if m = ce and nx + n2 = m, then either «j or n2 equals oo. Suppose

nx = oo. Set ^Fj = Jt.
If «2 = oo, then set Jf2 = Jt. In this case we are done, because Jt = Jt V Jt. So

suppose « 2 g N. Fix A G ß. Since cod Jt = oo there is an n 2-dimensional subspace
Jt2 of Jt such that (z - X)Jt nJt2 = {0}. We define Jf2 to be the smallest
invariant subspace which contains all of Jt2. As in the argument given above it
follows that Jf2 has the codimension n 2 property.

Clearly Jf2 çz Jt, thus Jt = Jfx V Jf2.   ■

3. The codimension one property.
3.1. Preliminaries. We shall now investigate when an invariant subspace has the

codimension one property. We are aware of two results that are known. Both were
proved only for Hilbert spaces.

In [14] M. Cowen and R. Douglas proved a theorem about operators in 38x(Yl). By
Theorem 2.10 it is equivalent to the following: If 377 is a Hilbert space of analytic
functions on ß satisfying axioms (1.1)-(1.4) and Jt is an invariant subspace of
(M,,377) which has finite codimension in 377, then Jt has the codimension one
property.

To state the other result we have to recall a definition of Olin and Thomson [20].
Suppose 97 is an abstract Banach space. An operator T e £7{97) is called cellular-
indecomposable if Jt' n Jf=7 {0} for any two nonzero invariant subspaces Jt, Jf of
F. A Hilbert space result of Bourdon [7] states that if (Mz, 377) is cellular-indecom-
posable, then every invariant subspace has the codimension one property. This result
also follows from Lemma 4 of [20] or the proofs of Theorem 9.2 and Corollary 9.3 of
[5]. In Corollary 3.15 we shall give a condition on {M,,38) for 38 a Banach space of
analytic functions, which will be necessary and sufficient for every invariant sub-
space to have the codimension one property.

The following useful lemma appeared in a less general context in [16 and 7].

Lemma 3.1. Suppose Jt e Yat(Mz,38) and X e ü\Z(Jt). The following are
equivalent:
(3.1) codJt=l,
(3.2) iff eJt', /(A) = 0, then there is a function h e Jt

such that (z — X)h =/,
(3.3) // (z - X)h eJt for some h e 38, then h eJt.

Proof. Recall that Jt satisfies (1.1)—(1.3) and (Mz - X)\Jt is bounded below
for all A g ß. Thus the equivalence of (3.1) and (3.2) follows immediately from
Lemma 2.1 applied to the Banach space of analytic functions Jt on the region
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ß' = Q\Z(Jt). Furthermore, (3.2) implies (3.3) trivially. We shall establish the
converse of this. To this end assume that (3.3) is satisfied and f eJt, /(A) = 0.
Then, since 38 satisfies (1.4), there is a function h e 38 such that (z - X)h = f. (3.3)
implies that h e Jt, as was to be shown.   ■

Note that in the previous lemma, condition (3.1) does not depend on X, so neither
do conditions (3.2) and (3.3). Furthermore, if Jt = {0}, then (3.2) and (3.3) are
trivially satisfied for all X e ß. If Jt =7 {0}, then Z(Jt) is a countable subset of ß
with accumulation points only on 3ß, thus Yl\Z(Jt) is always a nonempty open
set, and one may apply the lemma.

The previous lemma and the following improvement of it will have many
straightforward and important consequences. The following theorem also will be a
central tool in the proof of the main result of this section.

Theorem 3.2. Suppose Jt e Yat(M.,38) and X e Q\Z(Jt). The following are
equivalent:

(3.4) cod^=l,
there is a linear manifold £7<zJt with £7~= Jt such

(3.5) that A G Z(£7) and whenever (z — X)h e £7 for some
h e 38, then heJt.

Proof. (3.4) => (3.5). Take T= Jt and apply Lemma 3.1.
(3.5) => (3.4). We shall again use Lemma 3.1; in fact we will verify condition (3.3).

Suppose that h e 36 and (z - X)h eJt. We have to show that h eJt.
Since £7 is dense in Jt we can find a sequence of functions {/„} ç £7 such that

/, -» (z - X)h as n -> oo. Note that /„(A) -» 0. By assumption there is a g e £7
such that g(X) =7 0. Define

2„=/„-(/„(A)/g„(A))g.
We then have g„(X) =0, gne77? for all n and gn -» (z — X)h as n —> oo. Since 38
satisfies axiom (1.4) there is a sequence {hn} e 38 such that (z - X)hn = gn. We see
that (z - X)hn -> (z - X)h. M, - X is bounded below, thus h„ -> h. By (3.5) we
get that {hn} czJt.lt follows that h eJt.   ■

The next corollary is well known.

Corollary 3.3. Suppose f e 38. Then we have

(3.6) cod[/] = 1    and
(3.7) codM[/] = l.

Proof. We shall use Theorem 3.2. If / = 0, then the result is true by definition.
Hence we may assume that we can find a X e ß such that /(A) ¥= 0. Fix such a A.

As noted above the linear manifold 7£= { pf: p is a polynomial} is dense in [/].
If (z - X)h e£7, then there is a polynomial q such that (z - X)h = (z - X)qf.
Thus h = qf e [/], hence cod[/] = 1 by Theorem 3.2.

To see that codM[/]= 1 we recall that £7= M(38)f is dense in M[f]. If
(z - X)h e £7 for some h e 38, then there is a multiplier <p such that cpf = (z - X)h.
It follows that cp(X) = 0. By Proposition 2.6 M(38) satisfies axiom (1.4), thus there
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is a  \p g M(38) such that (z - X)\p = cp. Putting it all together we find that
(z - X)h = <p/=(z - X)xPf, hence A = ^/g Ai[/], socod M[/] = 1.   ■

If {AA}AreN is a sequence of (not necessarily distinct) points in ß, then by
/({A*}) = 0 we mean that if X occurs in {Xk)ke,N n times, then / has a zero at A
of order at least n. In this case the set Jt = {f e 38: f({Xk}) = 0} defines a
hyperinvariant subspace for (M., â?). We clearly have {A k }ke N c Z(Jt).

Corollary 3.4. // {Xk }k eN is a sequence of points in ß, then Jt = {fe 36:
f({Xk}) = 0} has the codimension one property.

Proof. If Jt = {0}, then the result is true by definition. So assume that we can fix
X e ü\Z(Jt). We shall verify condition (3.3) of Lemma 3.1.

Suppose (z — X)h eJt for some he 38. We have to show that h eJt, i.e.
h({Xk}) = 0. But it is clear that ((z - X)h)({Xk}) = 0 if and only if h({Xk}) = 0
since A G {AA.}.    ■

3.2. Multipliers and the codimension one property. Corollary 3.3 states that in-
variant subspaces which contain M(36)f for some f e 38 as a dense set have the
codimension one property. The next proposition will show that a hyperinvariant
subspace Jt çz M[f) has the codimension one property if it contains only one
element of the form cpf, <p g M(38). Before we state and prove the proposition we
need a lemma.

Lemma 3.5. Suppose fe 38, y e M(38), and h e M[f]. Then cph e M[cpf].

Proof. M(38)f is dense in M[f], thus there is a sequence {m„} c M(38) such
that qp„/ -» h. Multiplication by cp is continuous, hence <p(p„f -* (ph. But <p<p„f e
M[tpf] for all n and therefore cph e M[tpf].    ■

Proposition 3.6. Suppose f e 36, Jt e H-Lat(Mz, 38), Jt c M[f].
If there is a nonzero multiplier tp e M(36) such that tpf e Jt, then

cod Jt = 1.

In particular, if the multipliers are densely contained in 38 and if a hyperinvariant
subspace Jt contains a nonzero multiplier, then Jt has the codimension one
property. This follows from the proposition, because we can choose f(X)= 1 g
M(38)e 38.

Proof. We may assume that f =7 0. Suppose that cpfeJt, tp e M(36), and
A g ß such that cp(X)f(X) # 0. To show that cod Jt = 1 we shall again use Lemma
3.1. So assume (z — X)h e Jt for some h e 38. We have to how that h e Jt. First
note that h e M[f] by Corollary 3.3 and Lemma 3.1. By assumption tp is a
multiplier, thus cp — <p(A) is a multiplier. The multipliers satisfy (1.4), i.e.
(<p - (p(X))/(z - X) G M(38). Jt is a hyperinvariant subspace therefore

(<p - <p{X))h = y J*j^(z - X)heJt.

From Lemma 3.5 we know that cph e M[tpf] ç Jt, this implies that <p{X)h e Jt.
But <p(A) -7 0, thus heJt.   ■
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In general, Proposition 3.6 does not give a necessary condition for a hyperin-
variant subspace to have the codimension one property. We shall later prove a much
stronger theorem (Theorem 3.10), which will also imply Proposition 3.6. However,
we decided to include the above proof anyway, because it is a simple proof of a
result with many important applications, some of which are presented below.

Example 3.7. For the Bergman spaces 36 = Lj¡(YL, wdA), p > 1, we have M(38)
= //°°(ß) and //°°(ß) çz Lpa(Yl, wdA). For many regions ß and functions w one
knows that Hx(Çl) is dense in L^(ß, wdA). For example, if ß is bounded and
simply connected and w(X) = 1, then it is a theorem of Hedberg (see [25, p. 112])
that //°°(ß) is dense in L2(ß, dA). Thus, in these cases, if a hyperinvariant subspace
Jt contains a bounded analytic function, then cod Jt = 1.

If ß = D, we can strengthen the above statement about invariant subspaces of
(A/., L¡¡(Y), wdA)) having the codimension one property. First note that in this case
all invariant subspaces must be hyperinvariant. This follows, because the polynomi-
als are weak* dense in //°°(D), and the weak* convergence in //°°(D) implies WOT
convergence in L^(D, wdA). Then recall that every function / in the Nevanlinna
class N can be written as the quotient of two bounded analytic functions <px, cp2,
f = cpx/cp2.

So, if //°°(D) is dense in Lf(D, wdA) and if an invariant subspace Jt of
(Mz, Lf(D, wdA)) contains the Nevanlinna class function f + 0, then <p2f = Vi e
Jt, i.e. Jt contains a bounded function and thus has the codimension one property.

This last statement is true as well for the spaces Da, a < 0.
If 36 is an algebra with 1, then M(38) = 38 and the hyperinvariant subspaces

correspond to the closed ideals. Thus we immediately get the following corollary.

Corollary 3.8. // 36 is an algebra, then every closed ideal has the codimension one
property.

Example 3.9. (a) Every closed ideal of Hx(iï) has the codimension one property.
We shall see later (Example 3.11) that there are invariant subspaces of (Mz, HX(Y)))
which do not have the codimension one property.

(b) The spaces Da, a > 1, are well known to be algebras (see [25, Example 1, p.
99]). Furthermore the polynomials are dense in Da, thus every invariant subspace is
an ideal, and we see that every invariant subspace of (Mz, Da), a > 1, has the
codimension one property. This was observed by P. Bourdon [7]. In [23] it is shown
that this result is also true for the Dirichlet space D = Dx.

3.3. Spans and the codimension one property. We now come to the central result of
this section. In Corollary 3.3 we saw that cyclic invariant subspaces have the
codimension one property. We know that all invariant subspaces are the span of
cyclic invariant subspaces; in fact, it Jt e Lat(M., 38), then

Jt=  \/[f].
f<=jr

Thus in order to be able to say something about cod Jt for arbitrary Jt we at least
have to be able to determine cod([/] V [g]) for arbitrary/, g e 36. Proposition 2.16
implies that cod([/] V [g]) is either one or two. The following theorem gives
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necessary and sufficient conditions on [/] and [g] for [/] V [g] to have the
codimension one property. In fact, the theorem applies to arbitrary invariant
subspaces with the codimension one property.

Theorem 3.10. Suppose Jtx,Jt2 e Yat(Mz,38), cod Jtx = cod Jt2 = 1, and X
g ß, AG Z(Jtx)UZ(Jt2).

The following are equivalent.

(3.8) cod(JtxVJt2) = l,

there are sequences { g1 } ç Jtx, { g2 } Q Jt 2 such that

gi(A) = g„2(A) = land\\gl„- g2\\^0 asn -* oo,

there are sequences { g\} çz Jtx, ( g2} ç Jt2 such that

gi(A) = g„2(A) = 1 andgl - g2 -+ 0 (weakly) as n -> oo.

// 38 is a reflexive Banach space, then any one of the conditions above is equivalent
to

there are sequences {g\} çz Jtx, { g2} Q Jt2 such that

(3.11) g"vA) = S«(X) = 1' hn - £«!< Mforallnand
some M > 0, andgl„(z) — g2(z) -» 0 as n -» oo
for all z e ß.

Proof. (3.8) =» (3.9). Since A G Z(Jtx) U Z(Jt2) there are functions fx eJtx
and /2 g^2 with fx(X) =/2(A) = 1. The function fx — f2 eJtx V Jt'2 vanishes
at A, thus there is an h e Jtx V Jt2 such that (z - X)h = fx — f2. Jtx + Jt2 is
dense in Jtx V Jt2, consequently we can find sequences {h\} QJtx, {h2} eJt2
such that h\ - h2„ -> h in norm. It follows that (z - X)h\ - (z - X)h2n -* (z - X)h
= /i - fi- If we set gl=fx-(z- X)h\ and g2 = f2 - (z - X)h2„, then we have
gí(A) = g2(A) = 1, {g\)ejtx, {g2} c^2 and

«i - sl = (A -(z -r\)h\) -(f2-(z - X)h2n)

= ifx-f2)-{iz-X)h\-{z-X)h2n)^0.

Thus condition (3.9) is satisfied with the sequences {g1} and {g2}.    D
(3.9) ^> (3.10) is trivially true.
(3.10) => (3.8). We shall verify condition (3.5) of Theorem 3.2. As the dense linear

manifold we choose Jtx +Jt2 eJtx V Jt'2. Suppose (z - X)h eJtx +Jt2 for
some h e 36. We have to show that h e Jtx v Jt2.

We know that there are functions fx e Jt\ and /2 g Jt2 such that (z - X)h =
f\ + fi- Then

(3.12) (z-A)A=/i+/2

= /i-/i(A)g,1,+/2-/2(A)g2+/1(A)g1+/2(A)g2.
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Here {g'n} çz Jt., i = 1,2, are the sequences given by condition (3.10). Hence we see
that / - f,(X)g'n eJt,, i = 1,2, vanishes for all n at A. Jt', has the codimension
one property; therefore we can find {h'n} Q Jt, such that (z - X)h'„ = / - f,(X)g'n.
We also note that /2(A) = -/,(A). Substituting into (3.12) we obtain

(z - X)h = (z - X)h\,+(z - X)h2,+fx(X){gl - g2).

By assumption the term on the right converges weakly to zero, so we get

(z - X){h\, + hj,) ->(z- X)h (weakly).

The operator (Mz — A) is bounded below, this implies that h\ + h2n -* h (weakly).
But Jtx v Jt 2 is a subspace and therefore weakly closed. It follows that h e Jt\ V
Jt2, as we had to show.    D

Finally, that (3.11) is equivalent to (3.10) if 38 is reflexive follows from Proposi-
tion 2, p. 272 of [9]. Actually, there the authors assumed that 36 is separable, an
assumption that follows automatically for reflexive Banach spaces of analytic
functions satisfying axioms (1.1) and (1.2).    ■

We can now give the promised example of an invariant subspace of (M_, H°°(D))
with the codimension two property.

Example 3.11. The disc algebra A = /1(D) is the norm closure of the polynomials
in HX(D), i.e. it is an invariant subspace of (Mz, H°°(D)), in fact A = [1]. Suppose
{zA} ¿ e N ç D is a sequence of points that clusters at every boundary point of D.

Claim. ||g|U« = sup{|g(z,)|: k e N} for g g A.
Proof. Clearly we have \\g\\„~ > sup{|g(zA)|: k e N}.
To see that the inequality is true in the other direction as well, note that g is

continuous on D . Thus using the maximum principle we see that sup{|g(z)|:
z g D~} is attained at some w e 3D, i.e. |g(w)| = ||g||w=c. By assumption there is a
subsequence {zk } of {zk} such that zk -* w as j -> oo. The continuity of g implies
that \g(zk)\ -> |g(H-)|and therefore ||gj|„. = sup{\g(zk)\: keN).   o

If {zk )k e n 's a Blaschke sequence which has every boundary point of D as a limit
point, and if b is a Blaschke product with zeros {zk), then Ab and Hx(D)b are
closed in HX(D). In fact, [b] = Ab and M[b] = Hx(D)b.

Claim. If Jt.Jfe Yat(Mz, HX(D)), cod Jt = cod^r= 1, and {0} ¥= Jt çz A, {0}
* Jfçz M[b], then cod(^ V Jf) = 2.

Proof. Let g e Jt çz A, f e Jfçz Hx(D)b, then

||g — /II«- = sup |g(z) -f(z)\> sup \g(zk) -f(zk)\
2SD ieN

=  sup |g(z*)| = ||g||ff».

Thus if A g D such that g(A) = 1, then

Wg-fh« >llg||//* >|g(A)|= 1.
By   condition   (3.9)   of  Theorem   3.10   and   Proposition  2.16   this  implies   that
cod( Jt V Jf )= 2.   m
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Corollary 3.12. Suppose Jtx, Jt2 e Lat(Mz, 36), cod Jtx = cod Jt2 = 1.
If Jtx nJt2+ {0}, then cod(Jtx V Jt 2) = 1.

Proof. If Jtx n Jt2 ¥= {0}, then there is a function g g Jtx n Jt2 and a A g ß
such that g(A) = 1. We can now apply Theorem 3.10 with the sequences given by
g), = gl = g for all n e N.    ■

Before giving some more examples to illustrate Theorem 3.10 and Corollary 3.12
we shall prove a theorem which will enable us to apply those theorems to a more
general class of invariant subspaces. Theorem 3.10 says that Jtx V Jt2 has the
codimension one property, if Jtx and Jt2 are "close" to one another in some sense.
Part (a) of the next theorem is a consequence of that observation.

Theorem 3.13. (a) Suppose Jt, Jf, £fe Lat(Mz, @), cod Jt = cod Jf= cod £C=
1, and {0)*Jtçz Jf.

If cod( Jt V £7) = 1, then cod(^Tv £7) = 1.
(b) Suppose {Jty}yeT 's a family of invariant subspaces with the codimension one

property and Jtyo e {Jty)y^T, Jtyo # {0}.
// cod( Jty V Jt' ) = 1 for all y e Y, then Jt = WyeX-Jty has the codimension

one property.

Proof, (a) If £7= {0}, then the result is trivial. So assume there is a A g ß,
A G Z(Jt) U Z(£77). The assertion now follows immediately from (3.9) of Theorem
3.10, because we assumed Jt çz Jf.

(b) Choose A g ß \ Z(Jt' ). We shall use Theorem 3.2 and verify (3.5) with the
linear manifold £7 which consists of all finite linear combinations of functions in
Jty, y g T. To this end suppose that (z - X)h e £7 for some h e 38. We have to
show that h e Jt.

By definition of £7 (z — X)h is contained in the span Jf of a finite subfamily of
{Jty}y6r- A repeated application of (a) shows that Jt' V Jf has the codimension
one property. Furthermore A í Z(Jt' V Jf), hence h e Jt' V Jfçz Jt by Lemma
3.1.    ■

In the next theorem we denote for r > 1 by M[S]r (resp. [S]r) the smallest
hyperinvariant (resp. invariant) subspace of Lra(Q, wdA) which contains the set
S c Lr(Yl, wdA). Note that for r < q M[S]r n Lqa(ti, wdA) is a (closed) hyperin-
variant subspace of {M,, Lqa(ü, wdA)) since Lqa(Yl, wdA) ç Lra(Yl, wdA) under our
assumptions on ß and w (see Example 2.8).

Theorem 3.14. Suppose l/p + 1/q = 1/r, p > q > r > 1, and that i/°°(ß) is
dense in Lsa(Yl,wdA) for all s > q.

If Se Ll(Ü, wdA) andSn L^(ß, wdA) # {0}, then

(a) cod(M[5]r) = l,
(b) cod{M[S]rnLl(Yl,wdA)) = l.

In particular, if p > 2, Jt e H-Lat(Mz, L^ß, wdA)), then [Jt]p/2 and
[Jt]p/2 n L^(ß, wdA) have the codimension one property.
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Proof. Suppose fe S n L£{Q, wdA), f =7 0.
(a) By Theorem (3.13)(b) we have to show that M[f]r V M[g]r has the codimen-

sion one property for all g g S. We shall show that M[f]r n M[g]r ¥= {0},
whenever g =7 0. This will prove part (a) by Corollary 3.12 and (3.7) of Corollary 3.3.

Claim. If g g S, then /g g M[f]r n M[g]r.
Suppose {(?„}, {\p„} ç //°°(ß) such that qp„ -»/ in L^(ß, wí¿4), ^„ -> g in

L£(ß, wí¿4), then fg e Ua(ü, wdA) and

ll<PBg-/g||,<l|glül«PB-/ll/,.       Unf ~ fg\\r^\\f\\p\\4>n- g\\q
by the generalized Holder inequality. Thus tpng -* fg and \p„f"-» fg in L„(ß, wíL4).
M(L^(ß, wdA))= H°°{Q) implies that <p„g G M[g]r and ^„/GM[/]r for all
neNA.e. fge M[f]rnM[g]r.   D

(b) This will follow from (a) and Lemma 3.1. Fix A G ß such that /(A) =7 0 (i.e.
A <£ ZÎA/ÏS],. n L«(ß, w<¿4))) and assume that (z - X)h e M[S]r n L«(ß, w<¿4)
for some /j g L*(ß, w¿¿4). We have to show that /i g M[5]r n L«(ß, w¿¿4). But by
(a) and Lemma 3.1 h e M[S]r, by assumption h e Lq(ü, wdA), thus we are done.
■

The proof of Theorem 3.14 does not use the full strength of Theorem 3.10, it only
uses Corollary 3.12. Thus, it seems likely that a better theorem than 3.14 is true.

One can prove a similar theorem for the spaces Da, a < 0 (see [21]).
As a special, case, Theorem 3.10 gives necessary and sufficient conditions for the

span of two cyclic invariant subspaces to have the codimension one property. We
can use that together with Theorem 3.13(b) to give a necessary and sufficient
condition so that every invariant subspace has the codimension one property.

Corollary 3.15. Every invariant subspace of {Mz,38) has the codimension one
property if and only if the span of any two cyclic invariant subspaces has the
codimension one property. {For a condition see Theorem 3.10.)

Proof. It is clear that the span of any two cyclic invariant subspaces has to have
the codimension one property. The reverse implication follows from Theorem
3.13(b), because as mentioned above we have Jt = Vye^[/].    ■

It follows from Corollary 3.12 that if (M,,38) is cellular-indecomposable then
every invariant subspace has the codimension one property.

3.4. The lattice of invariant subspaces with the codimension one property. Theorem
3.13 tells us when spans have the codimension one property. In the next theorem we
shall see that intersections of invariant subspaces with the codimension one property
always have the codimension one property. Afterwards we shall use this for an
interesting construction.

Theorem 3.16. Suppose {Jty}y(Er is a family of invariant subspaces with the
codimension one property.

Then Jt = Dy(ErJty has the codimension one property.

Proof. If Jt = {0}, then the result is true by definition. So suppose we can
choose A g ß \ Z(Jt). We shall use Lemma 3.1. Suppose (z — X)h e Jt for some
h e 38. We have to show that h eJt.
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For a fixed y g T we have A g Q\Z(Jty), (z - X)h e Jt, cod^#7 = 1, thus
h ejty. Hence h ejt= f)yerJty.    ■

Definition 3.17. Suppose Jt e Lat(Mz, 38).
(a) I(Jt) := C\y Ny, the intersection is taken over all invariant subspaces Jfy with

Jt £ Jfy and cod Jfy = 1.
(b) If {Jt y }y e r is any family of invariant subspaces,

sp({^Ker):='( V a)-
Ser       I

Note that we have I(Jt) e Yat(Mz,38) and cod(/(^)) = 1, thus I(Ji) is the
smallest invariant subspace of (M,,38) which contains Jt and has the codimension
one property.

Proposition 3.18. The invariant subspaces with codimension one property form a
complete lattice with respect to f) and sp.

Proof. We have to check several things. Suppose Jt, Jf, £7e Lat(Mz, 38) with
cod^#= cod^T= cod^= 1. Theorem 3.16 and the remark preceding Proposition
3.18 imply that Jt n Jf and sp(Jt, Jf) again have the codimension one property.
The lattice axioms which involve only intersections are satisfied, because Lat(Mz, 38)
forms a lattice with respect to n and V. We shall verify the axioms involving sp.

(a) Claim. Jt n sp(Jt, Jf) = Jt.
Jt n sp(Jt, Jf) ç Jt is clear.
Jt e Jt \l Jf =* Jt e sp( Jt, Jf)=>JteJtn sp(Jt, Jf).   D
(b) Claim. sp( Jt, Jf) = sp(Jf, Jt).
This is trivial.
(c) Claim. sp(sp(^, Jf), £7) = sp(Jt, sp(Jf, £7)).
We shall show sp(sp(^, Jf), £?) = I(Jt V Jfy £7). This will imply the claim,

because we then have

sp(Jt,sp(jf ,£?)) = sp{sp(J^,£f),J7) = l(JfV £fv Jt)
= I(Jt V Jfy 7£) = sp(sp(^, Jf), £7).

Clearly Jt y Jfy £fçz sp( Jt, Jf) V £7, thus

l(Jty Jfy 7£) çz l(sp(Jt,Jf) Vif) = sp(sp(Jt,Jf),£7).

On the other hand Jt V Jfe Jt V Jfy £7, £7e Jt V Jfy £7e I(Jt y Jfy £7).
Therefore sp(^, Jf) c I(Jt V Jfy £7) and sp(^, Jf) V £7çz I(Jt V Jfy £f),
thus

sp(sp{Jt,Jf),£7) = l{sp{Jt,Jf) V £7) Q l{Jty Jfy £7).   D

(d) Claim. sp{Jt, JtnJf)=Jt.
sp{Jt,JtnJf) = i{Jty{JtnJf)) = i{Jt) = Jt.   a
Finally, the lattice is complete, because we can apply the lattice operations to

infinite families and stay in the class of invariant subspaces with the codimension
one property (see Theorem 3.16 and Definition 3.17(b)).   ■
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Definition 3.17 and Proposition 3.18 give rise to several questions.
Question 3.19. If Jt e Yat(M,,£%), what are the connections between Jt and

I(Jt)l
To be more specific, fix p > 2 and consider the spaces Lp = Lp (D, dA). For an

invariant subspace Jt of (Mz, Lp) and 1 < q < p we write ^#<7 for [Jt] n Lp. It
follows from Theorem 3.14 that

Jt = JtpçzI(Jt)eJtp/2    torp>2.

On the other hand we also have the inclusions

Jt = JtPçzJtqeJtPf-    Vp>q>p/2.

If cod Jt =7 1, then it follows that Jtp =7 Jtq for some (and maybe all) q, p > q ^
p/2. This raises the question, whether in this case Jtq =7 Jtr for some q =7 r,
q, r < p or Jtq = ^r for all q,r < p. If the last statement is true, then that would
be some evidence that the answer to the following question is yes.

Question 3.20. With the notations of the preceding paragraph is I(Jt) = Jtq for
all q < pi

One result in this direction can be found in [8]. It follows from the theorem there
that, if fe Lp and [f]s = Lsa for some 0 < s < p, then [f]q = Lq for all q < p.
Thus, in this very special case we see the following: If Jt = [f]p, then Jtq = Lp for
all q < p, thus Jtq = Jtr for all q, r < p.

Of course here we have cod Jtp = cod Jtq = 1 for all q < p. We also remark that
the proof of this result heavily uses the fact that / has no zeros in D, i.e.
Z(Jt) = 0.

4. Spectra associated with invariant subspaces.
4.1. Introduction. In §§2 and 3 we did not make any maximality assumptions on

ß. However, it is clear that any serious study of a space of analytic functions will
have to take into account the behavior of the functions near the boundary of the
domain of holomorphy. In this article we are studying the operator M, and its lattice
of invariant subspaces; thus it would be nice if we had a good maximality condition
on ß which does not depend on the particular representation of 38.

For example, suppose ß' çz ß, ß' =7 0, <p e Hol(ß'), <f> £ Hol(ß), and 38 is a
Banach space of analytic functions on ß satisfying (1.1)—(1.4). We can define a
Banach space of analytic functions on ß' by setting

36' = {g: ß' -» C: g = <p/ for some fe38],

\\g\\sr = \\g/<p\\m- Then J" satisfies (1.1)-(1.4) on ß'\z(<P) and M¿ 38-^ 38' is
an isometric isomorphism with MZM^ = M^M, (see the proof of Proposition 2.13).
We see that the domains of holomorphy of Si and Si' differ, but the operator
theoretic properties of (Mz, 38) and (Mz, 38') are the same.

One possibility for avoiding this problem is to try to find a "canonical represen-
tation" for 38 and then assume that for every boundary point of ß there is a
function in 38 which has a singularity at this point (compare [9]). We do not know
whether it is always possible to find a suitable "canonical representation." However,
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in §5 we shall give a positive answer under some extra assumption. See Theorem 5.3
and the remark after its proof.

Another possibility for putting a maximality condition on ß is to consider the
spectrum of the operator (M,,38). It does not depend on the particular represen-
tation of 38, and we have seen above that we always have ß~c a(Mz). Thus a
natural assumption on ß is a(Mz) = ß7 Under this (and some other) assumption
on ß we shall establish another type of result about invariant subspaces with the
codimension one property in this section.

In [19] it was shown that for an invariant subspace Jt of(Mz, H2),

°ap{M*\Jt±) = o{Mz*\Jt±)= {A: <p(A) = 0}~U supp{,x} ,
where cp is the inner function such that cpH2 = Jt and fi is the singular measure
associated with cp. In [12] this idea was generalized and used to study the invariant
subspaces of H2(D") (Dn = {(A1;...,A„): |A,| < 1}). Cowen and Rubel's idea led
J. Janas [16] to investigate aap(M,* | Jt x) for invariant subspaces Jt of the Bergman
shift ( AL, L2). On the other hand S. Walsh [28] determined a(M* | Jtx) for various
invariant subspaces of (Mz, L2).

We shall consider o(Mz* \Jt^) and aip(Mz* \Jt±) for Banach spaces of analytic
functions satisfying axioms (1.1)—(1.4), prove some basic results about these sets
(analogous to results in [16 and 28]), and then study the relationship between
a(Mz* \Jtx) and aap(Mz* | Jtx). It will turn out (Corollary 4.6) that, if a(Mz) = ß
and C\ß_ has only one component, then a(Mz* \Jt±) = aap(Mz* |^x) if and
only if cod Jt = 1. From this we shall derive another necessary condition for an
invariant subspace to have the codimension one property (see Corollary 4.8). We
then apply this corollary to the Bergman spaces Lp and obtain a result which does
not follow from Theorem 3.14.

4.2. Definitions and basic results. From now on assume again that ß is a bounded
region in the complex plane and 38 is a Banach space of analytic functions on ß
satisfying (1.1)—(1.4).

By Jtx we denote the annihilator of Jt in S3*,
Jgx = [x e 38*: (f,x) = OVfeJt).

If Jt e Lat(M„ 36), then Jtx g Lat(M,*, 38*). Thus we can make the following
definition.

Definition 4.1. If Jt e Lat(Mz, 38), then
o(Jt) = ojMz*\Jt±)

= [X e C: (M. - A)*|^#x is not bounded below}.
In this definition and in the rest of this section we shall follow the convention that

an operator on a zero dimensional space has an empty spectrum and an empty
approximate point spectrum. Thus a(Mz* \38 x) = a(36) = 0. This will be conveni-
ent for the statement of our theorems and not lead to any contradictions.

Note that we used the Banach space adjoint of M, to define a(Jt), thus our
results will differ from the above-mentioned Hilbert space results by a complex
conjugate. Furthermore, it will be apparent from Theorem 4.5, why we defined
a(Jt) to be o  (M:*\Jfx) rather than a(M,*\Jt±).
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In our study of M* \Jtxwe shall need the following lemma. Before we state the
lemma we recall that Jtx is weak* closed and can be regarded as the dual of 38/Jt.
The relative weak* topology on Jtx regarded as a subspace of 36* coincides with
the weak* topology that Jtx obtains as the dual of 38/Jt (see e.g. Corollary 2.4 of
[10]).

Lemma 4.2. Suppose 97 is a Banach space, Te £7(97) has closed range, and
Jt e LatF. // dimkerF* < oo and kerT* nJtx = {0}, then T*Jt± is weak*
closed in Jtx .

Proof. It follows from the closed range theorem and the assumption that F has
closed range that F * has a closed range as well. This, together with the assumption
that ker F* is finite dimensional allows us to use Lemma IV.5.29 of [17, p. 239], and
conclude that T*Jtx is norm closed in Jtx . Furthermore, T* is weak* continu-
ous, hence F* | Jtx is weak* continuous as well. We assumed that ker(F* \Jt±) =
{0}, thus T* \Jtxe ££(Jtx) is a weak* continuous linear map with trivial kernel
and norm closed range, by Theorem 2.7 of [10] F* | Jtx is weak* closed in Jtx .
■

The next two propositions contain some straightforward results concerning a(Jt)
(for (Mz, L2) some of these were presented in [16]).

Proposition 4.3. Suppose Jt.Jfe Yat(M,,36) and {Jty}y(iT is a family of
invariant subspaces of (Mz, 38).

Set£7x = My^TJty and£72 = f)yJty.
(a) Jt ç Jf=> a(Jf) çz a(Jt),
(b)o(£7x)çzÇ)ya(Jty),
(c)Uyo(Jty)çzo(£?2).

Proof, (a) Jt çz Jf=> jr± e Jtx =» a(Jf) = aap(AF* \Jfx) ç aap(Mz* \Jtx)
= a(Jt).    D

(b) For a fixed y e Y we have Jt y çz £fx, thus by (a) we see that a(£77x) çz a(Jty)
for all y G T.    D

(c) For a fixed y g T we have £72 çz Jty, thus by (a) we see that a(Jty) çz a(£72)
for all y g T.    ■

Proposition 4.4. Let Jt e Lat(Mz, 38). Then a(Jt) n ß = Z(Jt).

Proof. We shall first show that Z(Jt) çz a(Jt) nYl. To this end assume that
X e Z(Jt). By definition we know that A g ß, thus we only have to show that
A g a(Jt). Recall from Remark 2.2 that kx denotes the element in Si* which
satisfies /(A) = </, kx) for all fe 38. It follows that 0 =/(A) = </, kx) for all
f eJt, i.e. kxeJtx. Hence kx e ker((AL -X)*\Jtx), kx * 0, therefore A g
aäp(Mz*\Jtx) = a(Jt).    D

Secondly we have to show that a(Jt) n ß çz Z(Jt). Assume A e ß \ Z(Jt), we
shall show that X<£o(Jt). X^Z(Jt) implies that kx£Jtx. But kx spans
ker(AL_ - A)*, thus Jtx nker(Mz - A)* = {0}. It follows now from Lem-
ma 4.2 that the range of (M, - X)* \Jtx  is norm closed in Jtx . Together with
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ker((AL - A)* |^x) = {0} this implies that (AL - A)* |,#x is bounded below,
hence A G a(Jt).   ■

4.3. a(Jt) versus a(Mz*\Jtx).
We are now ready to present some results which are new even for (Mz, L2). The

codimension one property plays an important role in the comparison between a(Jt)
and o(Mz*\Jtx).

Theorem 4.5. Suppose Jt e Lat( AL, 38).
(a) If cod Jt= 1, then o(Mz*\Jtx)nQ = a(Jt)nû = Z(Jt).
(b) If rod Jt * 1, then ß'c a(Mz*\Jtx).

Proof, (a) Assume codJt=l. We have to show that a(M,* \Jt x)nü e
o¡íp(Mz*\Jtx) n ß. To this end, assume that X e ß \ aap(AL* | Jtx), i.e.
(M, — X)* \Jtx is bounded below. We have to show that (Mz — X)*\Jtx maps
Jt x onto Jtx .

(M, - X)*\Jtx is bounded below; in particular we have ker(AL - A)* nJtx
= {0}. It follows from Lemma 4.2 that the range of (M, - X)*\Jtx is weak*
closed in Jtx . Hence it suffices to show that ran((AL - X)*\Jtx) is weak* dense
in^rx.

Suppose (p is a weak* continuous linear functional on Jtx which satisfies
<p(( M, - X)*x) = 0 for all x eJtx . The conclusion in (a) will follow, if we show
that (p = 0. We can find an / g 38 such that <p(x) = (f, x) for all x e Jtx . From
the discussion preceding Lemma 4.2, we know that (p = 0 if and only if / G Jt. f
satisfies

0 = <p((Mz- X)*x) =(f,(Mz-X)*x) = ((Mz-X)f,x)    M x e Jtx .

Thus (z - A)/g x (Jtx) = Jt since Jt is norm closed. We assumed that A g
ü\a(Jt), hence A g Q\Z(Jt) by Proposition 4.4. Jt has the codimension one
property, thus Lemma 3.1 implies that / e Jt, as we had to show.   D

(b) Assume now that cod Jt i= 1. It is enough to show that ß c a(Mz* \Jtx),
because a(M,* \Jtx) is closed. Furthermore, if A g Z(Jt), then A e a(Jt) çz
a(Mz* \Jtx) by Proposition 4.4. So suppose that A g Yl\Z(Jt-). It follows from
Lemma 3.1 that there is a function f e 38 such that (z - A)/ g Jt, but / G Jt.

We shall show that the weak* continuous linear functional cp on Jtx induced by
/ annihilates the range of (Mz - A)*|^x. / G Jt implies tp ¥= 0, thus it will follow
that (M, - X )* I Jtx does not map Jtx onto Jtx , hence A g a(M* \ Jtx).

For x e Jtx we have

<p((Mz - X)*x) = (f,(Mz - X)*x) = {(Mz - X)f,x) = 0,

because (z - A)/ g Jt.   ■
We do not know whether cod Jt = 1 always implies that a(Jt) = a(M,* \Jtx).

We can show that under some extra assumptions on ß this assertion is true.

Corollary 4.6. Suppose C \ (ß~) has only one component and a(M,) = ß".
(a) If Jt e Lat( AL, 38) such that cod Jt = 1, then

(4.1) a(Mz*\Jtx) = a(Jt).
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(b) If Jt e Lat( AL, 38) such that cod Jt -7 1, then

(4.2) o(Mz*\Jtx) = ß-    am/

(4.3) Z(J)u3(r)ço(i')cZ(i')u3iî.

For the proof we shall need a lemma.

Lemma 4.7. Suppose T e 7^(97), Jfe Lat F. // C denotes the unbounded compo-
nent of C\a(T), then a(T\Jf) n C = 0.

Proof. For an operator on a Banach space we always have 3a(F) çz a (T). Thus
3a(F | Jf) c aap(F | ̂ T) çz a(T). Note that C is an open and connected subset of C,
hence it is pathwise connected. So if A g C, then there is a path in C connecting A
and oo. If A were also contained in a(T\Jf), then there had to be a point on the
path which is also in 3a(F|^T) ç a(T), a contradiction.

Thus o(T\Jf)n C = 0.   m
Proof (of Corollary 4.6). We have o(Mz) = o(Mz*) = ß~. Thus it follows

from the assumptions that C \ a( AL*) has only one component, the unbounded one.
From Lemma 4.7 it follows that o{M* \ M x) n C \ a(AL*) = 0, thus

(4.4) o(Jt) e o(M:*\Jtx) e o(M*) = ß   .

(a) If codJt=l, then it follows from Theorem 4.5(a) that o(Jt)nQ =
o(Mz* | Jt x) n ß. Thus we need to show that a( AL* | Jtx) n 3ß ç o(Jt).

To this end, suppose that X e o(M,* \Jt x)n 3ß. We distinguish two cases:
(1) A g do(M:*\Jtx)ndtt ^> A G aap(AL* |.#x) = o(Jt).   D
(2) A g 3ß and A is in the interior of o(M* \Jtx). In this case there is a

sequence {A„}„eN çz ß n a(AL* \Jtx) such that A„ -> A as n -» oo. It follows
from Theorem 4.5 that {A„}„eN e o(Jt). o(Jt) is closed, hence A e o(Jt).    D

(b) If cod Jt=7 1, then Theorem 4.5(b) implies that ß"£ o(M,* \ Jtx). Thus (4.4)
implies o(M,* \ Jtx) = ß", which is (4.2).

To establish (4.3) we note that (4.2) implies that 9(ß") = da(M* \Jtx) ç
aap(Mz*|^x)=a(^T).

Hence Z(Jt) U 3(ß") ç a(Jt) follows from Proposition 4.4.
On the other hand we have a(Jt) çQ", thus

a(Jt) = {o(Jt)nü) u(o(Jt)ndü)e z(Jt) u 3ß.   ■

In §3 we saw that two invariant subspaces have to be "far away" from each other
in order to span an invariant subspace with the codimension two property. The next
corollary says that under some extra assumptions an invariant subspace which is
large enough is never contained in an invariant subspace with the codimension two
property. "Large enough" will mean that cs(Jt) does not contain 3ß.

Corollary 4.8. Suppose C\(ß~) has only one component, 3(ß~)= 3ß, and
o(Mz) = ß7

If Jt,Jfe Lat(AL, S3), cod Jf* 1, cod Jt = 1, and Jt e Jf then

a(M*\Jtx) = a(Jt) = Z(Jt) U3ß.
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Proof. Jt has the codimension one property, thus the first equality follows from
Corollary 4.6(a). On the other hand, it follows from Proposition 4.3(a), Corollary
4.6(b), and the assumptions that

Z(Jf) U 3ß = a{Jf) Q a{Jt) çz ß U 3ß.
Of course, we know that Z(Jt) çz a(Jt), hence

Z(Jt) U 3ß çz a(Jt) Q (a(Jt) D ß) u(a(Jt) n 3ß) C Z{Jt) U 3ß.    ■
We remark here that the assumption that C\(ß") has only one component may

be relaxed, if one only considers hyperinvariant subspaces.
We shall now illustrate Corollary 4.8 with an example. Suppose {A^}teNçDis

a sequence of distinct points. For 1 < p < oo we define a linear transformation from
Lp into the space of all sequences of complex numbers by

Tpf={f(Xk)(l-\Xk\2f/P}keN   V/eZ.;.

Recall from [1] that the sequence {A^J^n is called a universal interpolating
sequence for Lp, if T maps Lp into and onto lp, the space of all complex valued
absolutely ^-summable sequences.

Proposition 4.9. Suppose that {Xk}keN is a universal interpolating sequence for
Lp, 1 < p < co.

IfJt={feLp:f({Xk}) = 0),then
o{M*\Jtx) = o{Jt)={Xkyken.

Proof. The first equality follows from Corollary 4.6(a) and Corollary 3.4. Prop-
osition 4.4 implies that {Xk)keXS e a(Jt). Thus we only have to show that
a(Jt)e {At}reN.

To this end suppose that A G {Xk)kŒls, i.e. there is a 8 > 0 such that |A - Xk\ > 8
for all k e N. We have to show that (Mz - X)*\Jtx is bounded below.

As before we denote by /ca the functional of evaluation at ¡u:

/W=(/-0    V/GL¿\
Since {A(1}„eN is a universal interpolating sequence, the operator Tp: Lp -> lp is
onto. Hence its adjoint T*: lq -* (Lp)* is bounded below. Here q is the conjugate
exponent to p satisfying 1/p + 1/q = 1, if 1 < p < oo, and q = oo, if p = 1. We
have

Jtx= (kerFp)i= ranTp*.

Thus T* maps lq onto Jtx in a 1-1 manner. Let {e„}„eN be the canonical basis
for lq. We compute for f e Lp and n e N

(/,^„> = (v,0 = /(aJ(iHAjT/p = (/,(iHaJ2)2/V)-
This shows that if {an }n e N e lq, then

00 -,

Tp*{{an})= Ia„(l-|A„|2)   'kK.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



610 STEFAN RICHTER

In the following one will have to substitute the /°° norm, whenever p = 1 and
q = oo. We shall not do this here.

Since T* is bounded below there are Kx, K2 such that for all {a„ }„ e N e lq
I   oo A/1

I  L |a„l

Z«„^„(l-|A„|) lA/p

n = l

here || ||* is the norm on (Lp)*.
Now, if x e Jtx = ran 7^,*, then there is a sequence {a„ }„ e N G lq such that

,2\2/Px=EaAil-|A„|2p.
n = l

For such an x we have

||(AL-A)*x|L = (M..-M,E^Aji-|Ajf
/I=l

OC 2/

Z«„(AF-A)X,(l-|A„r)   '
n = l

E^^-a^i-ia,,!2)27''
n = l

/   oo \ !/<7 /   oo A/1

n=i n=l

*i
¿Z ankK(l-\Xn\2)

2A/P le''
i.e. ( A/z — A)* \ Jtx is bounded below as was to be shown.    ■

Note that the idea for the above proof came from computations which can be
found in [1, Lemma 1.1.1] or [2, Theorem 3.12]. However, there it was used that Lq,
1 < p, q < oo, l/p + 1/q = 1, can be identified with (Lp)*. For our purposes this
would have complicated matters since that duality is not isometric. This is the reason
why we decided to repeat part of the arguments from [1 and 2].

Now recall that a sequence {A„}„eN ç D is called separated if

inf {|(A„ - AJ/(1 - X„Am) | : n =7 m} > 0.
Yet {A„ }„ e N c D be a sequence with the following properties:

(a) {A„}„eN is separated,
(b) {A„},, e N is not a Blaschke sequence,
(c) the closure of {A„}„eN does not contain the unit circle.
It is easy to see that such sequences exist. Fix 1 < p < oo. E. Amar [1] has shown

that every separated sequence is a finite union of sequences which are universal
interpolating for Lp (note here that p > I). Thus, there is a subsequence {ptk}k^n
°f {A„ }„ e n which is universal interpolating for Lp but not a Blaschke sequence.
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We set
^={/GLa":/({u,}) = 0}.

Jt is invariant for (AL, Lp), and it follows from Proposition 4.9 and (c) that a(Jt)
does not contain the whole unit circle. Thus Corollary 4.8 implies that every
Jfe Lat( AL, Lp) with Jt e Jf has the codimension one property.

On the other hand we see from the construction of Jt that Jt does not contain
any nonzero H°° function. This shows that we would not have been able to deduce
this result from Proposition 3.6 or Theorem 3.14.

We shall conclude this section with a remark about the connection between an
invariant subspace Jt, I(Jt), and a(Jt). Recall from Definition 3.17 that I(Jt)
denotes the smallest invariant subspace, which has the codimension one property
and contains Jt.

Proposition 4.10. Suppose Jt e Lat(Mz, Si).
(a)a(I(Jt))çz a(Jt),
(b) a(I(Jt)) n ß = Z(Jt) = a(Jt) n ß.

Proof, (a) By definition we have Jt çz I(Jt), thus (a) follows from Proposition
4.3(a).

(b) The second equality follows from Proposition 4.4. The first equality will
follow, if we show that Z(I(Jt))= Z(Jt). The inclusion JtçzI(Jt) implies
Z(I(Jt)) çz Z(Jt). So suppose A e Z(Jt). Then all functions in Jt have a zero at
A, thus Jt çz (z - X)S3 by axiom (1.4). But (z - X)S3 has the codimension one
property, hence I(Jt) Q (z - X)33. It follows that A g Z((z - X)33) ç Z(I(Jt)).
■

We do not know whether one always has equality in part (a) of the last
proposition.

5. Hubert spaces of analytic functions on the unit disc.
5.1. Introduction. Corollary 3.3 stated that cyclic invariant subspaces have the

codimension one property. Hilbert spaces of analytic functions are spanned by the
kernel functions kx, X e ß. It follows that such a Hilbert space is separable, so one
might ask whether every invariant subspace of (Mz, Da), a e R (see Example 2.9),
which has the codimension one property, is cyclic. We do not know. A related
question which we can answer in certain situations arises as follows.

If / g 3/7, where 377 isa Hilbert space satisfying (1.1)-(1.4) with ß = D, then g/f
is analytic on D for all g e [f]. Thus one might wonder, whether an invariant
subspace Jt of (AL, 377) with cod^ = 1 contains a function with no extra zeros,
i.e. a function f e Jt such that g/f is analytic on D for all g e Jt. We shall
indicate a method which may help to solve this problem. We shall then use this
method to show that for (Mz, Da), a > 0, the answer to the above problem is indeed
yes. Using that result we shall show that for every invariant subspace Jt of ( AL, D)
(Dis the Dirichlet space) there is a function f0eJt such that [/0] çz Jt ç H2f0 n D.

5.2. Left inverses of Mz. In this section we shall assume that 377 is a Hilbert space
satisfying (1.1)-(1.4) with ß = D and a(Mz) = D . If Jt is an invariant subspace
of (M,,377) with the codimension one property, then ((Mz\Jt),Jt) is unitarily
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equivalent to (M,, 377), where X satisfies (1.1)—(1.4) (see Proposition 2.13). Thus the
following results about (M,,377) will help us in finding corresponding results about
((Mz\Jt),Jt).

The next two propositions were motivated by the proof of Proposition 1.11 of [13].
M, is bounded below, thus M,*M, is invertible. We set S0:= (M*Mz)~lM*. Also,

for /, g g 377 we let / ® g denote the rank one operator on 377 that is defined by

(f®g)(h) = (h,g)f.
Furthermore, for A e D we shall write kx for the element in ker(AL - A)* =

377Q (z - X)377 which satisfies /(A) = (/, kx) for all f e 377.

Proposition 5.1. Suppose ß = D, a(Mz) = D7
(a) If g e 377, g(0) = 1, then S = S0{1 - g ® k0) is a left inverse of M, with

g e kerS.
(b) If S is a left inverse of AL, then there is exactly one g e kerS with g(0) = 1.

Proof, (a) We compute

SAL = S0(l - g ® k0)Mz = S0M: - S0{g ® M*k0)

= (m:*mz)~1mz*mz -0 = 1
and

Sg = S0(l - g ® k0)g = S0g - S0(g, k0)g

= S0g - g(0)Sog = 0.   a
(b) If S is a left inverse of AL, then clearly dimkerS = 1. If g g kerS, g =7 0,

then g G ran AL, i.e. g(0) ¥= 0. Hence there is exactly one g g kerS with g(0) = 1.
■

Hence there is a 1-1 correspondence between left inverses S of AL and functions g
in 377 with g(0) = 1. Furthermore, if h e kerS, h -7 0, then g = h/h(0) e kerS,
g(0) = 1 and h and g have the same zeros including multiplicities. The next
proposition tells us about the connection between a(S) and the zeros of g.

Proposition 5.2. Suppose ß = D and a(M,) = D7
If g e kerS, g + 0, then

o(S) = D-U{1/X: A g Z(g)}.

Proof, (a) D_u{l/A: X e Z(g)} çz a(S).
First we shall show that D ç a(S). We know that g G kerS, thus 0 g a(S). If
A g D, then (1 - AM.) is invertible, hence S -X = S - XSMZ = S(l - XM,) is
not invertible. Thus D" ç a(S).   D

Now suppose A g D and g(A) = 0. Since g(A) = 0, there is a function f e 377
such that (z — X)f = g. We have

0 = Sg = S(z-A)/=(l -AS)/,
hence 1/A is an eigenvalue of S.

We have shown that D~U {1/A: X e Z(g)) ç a(S).   D
(b) a(S) çD-U{l/A: ÀGZ(g)}.
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Suppose fi e a(S). If |¡u| < 1, then there is nothing to prove, so we may assume that
u = 1/A for |A| < 1. We have to show that g(A) = 0. We distinguish two cases:

Case 1.1/Xe aap(S*).
In this case S* - 1/A is bounded below, hence it has a closed range. 1/A e a(S*)

implies thus that ran(S* - 1/X)x = ker(S - 1/A) =7 {0}. It follows that there is an
f ejf, f-7 0 such that

0 = (1/A-S)/=(1/A)(SMZ-AS)/
= (\/X)S(Mz-X)f.

We see that (z - X)f e kerS, thus there is an a e C such that g = a(z - X)f.
Henceg(A) = 0.    D

Case 2. 1/X e aap(S*).
In this case there is a sequence {/„}neN of unit vectors in Jf such that

(1/X)(1 - XS*)/„ = (1/X - S*)f„ -» 0. We can find complex numbers {c„}„eN
and vectors {g„}„eNçJf such that S*f„ = c„kx + g„, where g„ 1 kx for all
n e N. With this decomposition we have

(AL* -X)g„ = (Mz*-X)(cnkx + g„) = {M*-X)S% = (1 -XS*)/, - 0.
M7 — A is bounded below on the orthocomplement of its kernel, thus g„ —> 0. It
follows that S*/„ - c„kx -» 0. S* is bounded below, hence kxe (ranS*)~ =
(kerS)x . This means that g(A) = (g, kx) = 0, because g g kerS.   ■

At this point we remark that there is yet another relationship between a left
inverse S and g g kerS, namely that g is a cyclic vector for (Mz, 377) if and only if
S g S3X(D). We shall not prove this here, because we do not see how to use it for our
purposes.

5.3. A structure theorem for invariant subspaces with the codimension one property.
Proposition 5.2 tells us that finding a function g g 377 which has no zeros in D is
equivalent to finding a left inverse S of M, with a(S) çz D~. We can now prove the
following theorem.

Theorem 5.3. Suppose ß = D, a(Mz) = D~, and \\MJ\\ > ||/|| for all f e 377.

If Jt e Lat( AL, 377), cod Jt = 1, and /„ g Jt e zJt, f0 -7 0, then
(5.1) [f0]çzJtçzH2f0nJÎ7,

(5.2) ll<p||//2ll/olljr^ ll<P/olLr    Vcp G//2 such that cp/0 g ^#.
Proof, (a) First suppose Jt = 377. Recall that S0 = (M,*M,)~1MZ* is a left inverse

of M, and kQ e kerAL* = kerS0.
If / g 377 then there is an fx e 377 such that f=cxkQ + zfx for some a e C. We

have
II     f  w- l I"-Il   i II- II        /•    ii- it     ,-    II-11/11   = l«| ||*0||   +\\zfx\\   >||/,||

by assumption. Hence

IIVII = |So(«*o + zfi) II = II V/ill = H AII < ll/ll-
Therefore S0 is a contraction and a(S0) çz D . It follows from Proposition 5.2 that
k0 does not have any zeros in D.
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If /„ g 37fQ z377, then there is an a g C such that k0 = af0. Hence it is enough to
show (5.1) and (5.2) for kQ.

Now fix / g 37C and set cp = f/k0. To establish (5.1) we have to show that
<p g H2. By the above cp is an analytic function on D. Thus

OO 00

(5.3) f(z)=£a/    and    cp g H2 ~ £ \a„\   < oo.

In this case ||<p||^ = E?-oKI2-
For N g N U {0} set

00

gN(&-=    E a„z-Nk0(z).
n = M

Taking the first summand out of the sum we see that

(5-4) gN(z) = aNk0(z) + zgN+x(z).

Claim. For all N e N U {0} we have gN e 377 and

(5-5) ll/IU>   E  |a„l ll^olljr+II^IU-
n = 0

Proof. We shall prove the claim by induction on N.
If N = 0, then g0 = / and there is nothing to prove.
Suppose now that /ïeNu {0}, gN e 377 and (5.5) is true. Since zgN+x = gN -

aNkQe377 (see (5.4)) it follows from axiom (1.4) that gN+i^37f. Using the
induction hypothesis (5.5) and the fact that k0 ± z377 we get

fV-l2 _ 2 2 211/II jé" >   E  k,l ll^olU+ll^lljr
n-0
/V-l
V I     l2lli-   II2      II      ¿- II2~~    ¿Ti   \an\  \\kQ\\ji'Jr\\ONk0 + ZgN+x\\j^

11 = 0

tV-1
V I     l2lli^  II2      I      l2llt   II2      II II2—   2-1 \an\ \\ko\\jr+ \Un\ \\k()\\jr+ ll^g^ + illjr

n = 0

N
l„

N+l Wjf-* E Wn\2\\k0\Ù+"
n = 0

This establishes the claim.   D
It follows from the claim and (5.3) that <p e H2 and

ll#ollJr=ll/IU>ll<PlU2ll^oll    forall /= q>k0ejif.
This establishes (5.1) and (5.2) in the case Jt = 377.   D

(b) Now suppose that Jt =7 {0} is arbitrary with the codimension one property.
The following uses the construction given in the proof of Proposition 1.13.

There is an analytic function xonD such that f/\p is analytic for all / eJt, and
for every A e D, there is a function gx e Jt such that (gx/i>)(X) =7 0. We set

377={f/^:feJt),    ||//*|Lr=|
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(AL, 377) is unitarily equivalent to ((Mz\Jt),Jt), and the unitary equivalence is
given by Mf 377^> Jt (see Proposition 1.13). Thus f0eJt G zJt implies g0 = f0/\p
g 377e z377. (AL, Jf") satisfies the hypothesis of part (a) of this proof, hence g0 does
not have any zeros in D and

f/fo'IfvV)'~^o~eH
for all / g Jt. If we let cp = f/f0, then it also follows from part (a) of the proof that

ll«p||r72ll/ollJr=|(^)_1(<P/o)Ao||H2ll?oL

XrWo)|L=llv/olLr-Ibr

This concludes the proof of Theorem 5.3.   ■
If k0 G 377 does not have any zeros in D, then

377={f/kQ:fe377\,    ||/A0|Lr= ll/IU*
is a Hilbert space satisfying (1.1)—(1.4) with ß = D. (AL, 377) is unitarily equivalent
to (AL, 377). Furthermore 377 is normalized: 1 e 377 and 1 ± ran Mz. Under the
assumptions of Theorem 5.3 we even have 377çz H2.

Theorem 5.3 applies to (Afz, Da), a > 0. In particular, if a > 1, then it applies to
every invariant subspace (see [23]).

We do not see how one could use Proposition 5.2 to show that every invariant
subspace Jt of (Mz, Da), a < 0, which has the codimension one property, contains a
function with no extra zeros. However, for a < -1 one can use results of C.
Horowitz to show that such functions indeed exist, see [21] for the details.
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