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I n v a r i a n t  S u r f a c e s  o f  t h e  H e i s e n b e r g  G r o u p s  (*). 

CHRISTIAM B. FIGUEROA - FRANCESCO MERCURI - RENATO H. L. PEDROSA 

Summary. - We fix a lefl-invariant metric g in the Heisenberg group, :)Q, and give a complete 
classification of the constant mean curvature surfaces (including minimal) which are in- 
variant with respect to 1-dimensional closed subgroups of the connected component of the 
isometry group of (:~, g). In addition to finding new examples, we organize in a common 
framework results that have appeared in various forms in the literature, by the systematic 
use of Riemannian transformation groups. Using the existence of a family of spherical sur- 
faces for all values of nonzero mean curvature, we show that there are no complete graphs of 
constant mean curvature. We extend some of these results to the higher dimensional Heisen- 
berg groups 2K2~+1. 

Introduction. 

The 3-dimensional Heisenberg group PQ is the two-step nilpotent Lie group stan- 

dardly represented in G/3(R) by 

1 

0 

with r, s, t e R .  

Endowed with a left-invariant metric g, (3Ca, g) has a rich geometric structure, 

reflected by the fact that its group of isometries ~ o  ( :~ ,  g) is of dimension 4 (cf. 

Theorem 1 below). It  is known ([19], Theorem 3.2) that the isometry group of an 

n-dimensional Riemannian manifold cannot have dimension between n ( n - 1 ) / 2  + 1 

and n(n  + 1)/2,  for n ~ 4, and that the upper bound characterizes the spaces of con- 

stant curvature ([19], Theorem 3.1). This means that (3Q, g) has isometry group of the 
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largest possible dimension for a space of non-constant curvature. It also appears in 

many other contexts, such as complex hyperbolic geometry ([13]), Carnot- 

Caratheodory metrics ([15]), thus making it a 3-dimensional manifold worth study- 

ing. 

Now, in order to describe a left-invariant metric on :~z, we note that the Lie algebra 

~ of :W~ is given by the matrices 

A =  0 

0 

with a, b, c real. Using the exponential map exp: ~8-->:~Q, 

exp(A) = I + A  + [: 1 
1 a c+ -lab 

A s 2 

2 1 b ' 

0 1 

as a global parametrization, with the identification of the Lie algebra ~8 with R 3 given 

by 

(a, b, s) --* 0 

0 

the group structure of :)Sa is given by 

where 

X1 *X2 = (xl, Yl, zl) * (x2, Y2, z2) = X1 + X2 + L(X1)'X2, 

L(X1) = 

o o !] 
0 0 

Yl Xl 

2 2 

From now on, we will always use these exponential coordinates. 

The Lie algebra bracket, in terms of the canonical basis {el, e2, e3} of R 8, is given 

by: 

[ e l ,  e 2 ] = e  3 ,  

[ei, es] = 0,  i = 1 , 2 , 3 .  

Using {el, e2, es} as the orthonormal frame at the identity, we have that an orthonor- 
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mal basis of left-invariant vector fields is given in exponential coordinates by 

E l -  , E2= - -  + - - - - ,  E s -  , 
~x 2 0 z  ~y 2 0 z  Oz 

and the left-invariant metric g in exponential coordinates is given by 

(1) d 8  2 = d x  2 + dy 2 + ydx - xdy + dz . 

Fore more information on the properties of these metrics, see [14]. 

Next, we describe briefly the contents and organization of the paper. 

In Section 1 we obtain the basic information about the isometry group ~ o  (:)Ca, g) 

of (:W~, g). This result is a detailed version of a result of Kaplan [18], and there is a 

higher-dimensional version in Section 5 (Theorem 7). Using it, we describe the 1-di- 

mensional closed subgroups of ~ o  (:95~, g), the connected component of ~ o  ( :~ ,  g) 

(Theorem 2). Section 2 contains a review of the Riemannian transformation groups re- 

sults needed to formulate an orbital version of the mean curvature equation for a G-in- 

variant submanifold (Reduction Theorem), for G a closed subgroup of ~oo(:W~, g). 

This result, in the form used here (the group acting may be noncompact), is from the 

unpublished paper [1], and a complete proof is included in Appendix A. In Section 3, we 

study the surfaces invariant under screw motions, i.e., invariant under the subgroup 

generated by a rotation about the z-axis together with a z-translation (Theorem 3). 

Using a standard maximum principle technique, we show that there are no complete 

,,graphs,, of nonzero constant mean curvature in :)Ca (theorem 4). Section 4 contains the 

study of surfaces invariant under left-translations (Theorems 5, 6). These results ex- 

tend and put under a common framework various results on the existence of minimal 

and constant mean curvature surfaces in the Heisenberg group that have appeared re- 

cently in the literature ([3, 4, 27, 7]). Section 5 has as subject extensions of the previous 

results to the higher dimensional Heisenberg groups :)C2n + 1. We close with some com- 
mentaries and problems. 

1. - The isometry group of  ~ and its closed 1-dimensional subroups. 

THEOREM 1 ([18]). - Let g be a lefl-invariant metric on :~ .  Then ~Oo(:)Q, g) is iso- 
morphic to the semidirect product of 2)~ and SO(2), with 2)~ acting by left transla- 
tions. In the exponential coordinates given above, SO(2) acts by rotations about the 
z-axis. 

PROOF. - We note firstly that any left-invariant metric will be given by choosing by 

some orthonormal basis of the Lie algebra ~)s. Then, a (linear) change of variables and 

normalization will put the new metric in the form given by equation (1). Next, it is easy 

to check that the rotaions Q o by an angle 0 about the z-axis are isometries (however, the 

reflections through vertical planes are not included). Now, noting that right and left 

translations commute, we get that the Killing vector fields generating the left transla- 

tions are given by the righ-invariant vector fields. Including the rotations r we have 
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the following basis (with the generating isometries): 

a y a 
L(t, 0, 0) : F1 = 

ax 2 az 

L(0, t, o) : F2 = 
a x 

~y 2 ~z 

L ( o , o , t ) :  F 3 -  
~z 

= - -  - - + X q .  
Q e : F4 Y Sx ay 

Since we know that the dim (~o0(:)C~, g)) is at most 4, these four vector fields form the 

Lie algebra of ~Oo(:~Q, g). 

Next, in order to establish the group structure of the product S 0 ( 2 ) •  :)Sa, let 

(~, A) e S0(2)  x :W~ and X e  :)C3, and let (~, A) act on X by (~, A) .X  = ~(LA(X)). Then, 

the product structure on SO(2)•  :)Sa is given by 

(~, A). (~], B) = (O], (Y -1n)  B) ,  

where the product on the right component is that of : ~ .  Now, if we define the homo- 

morphism ~: S0(2) --* Aut ( :~ )  by r = r ~ (A) = ~ - 1A, then it follows that the 

group structure is that of the semidirect product of SO(2) and :)Sa, where :W~ is the nor- 

mal subgroup (cf. [25], pp. 135-138). �9 

REMARK. - Using that an isometry of :)Ca which fLxes the identity must be an auto- 

morphism of bs, it is possible to show that the full isometry group of ~ has only one 

more component, generated by the transformation 

= [lO i] 
0 1 

0 0 - 

THEOREM 2. - The 1-dimensional closed subgroups of ~ O o ( : ~ ,  g) are: 

1. The 1-parameter subgroups generated by linear combinations 

alF1 + aeF2 + asFs + bF4 

of the Killing vector fields, where b ~ O. I f  ai = 0 for i e { 1, 2, 3 }, we obtain the circle 
group S0(2) (the only compact subgroup), generated by F4. 

2. The 1-parameter subgroups generated by linear combinations of F1, F2 and 
F 3 . �9 

The proof of this theorem is straightforward. 
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DEFINITION. - The surfaces invariant under subgroups of the first type are called of 

helicoidal type. These include the surfaces of revolution (the SO(2)-invariant sur- 

faces). The ones of the second type will be called of translational type. 

2. - R e d u c t i o n  procedure .  

We need some concepts and properties of transformation groups of isometries. The 

results without references may be found either in [5] or in Chapter 5 of [24]. A closed 

subgroup G (not necessarily compact) of the isometry group of the Riemannian mani- 

fold (M, g) is a Lie group, acting on M by isometries. For x �9 M, the isotropy subgroup 

G~ is compact, the quotient space G/G~ is diffeomorphic to the orbit G(x) and G(x) is 

said to be of type (G~). G(y) is said to be of smaller or the same type as G(x) if Gy con- 

tains a conjugate of G~ as a subgroup, written as (Gy) < (G~). 

An orbit G(x) is called principal if there exists an open neighborhood U c M  of x 

such that all orbits G(y), y �9 U, are of the same type as G(x). This implies that G(y) is 

canonically diffeomorphic to G(x). Denote by Mr the subset of M of points belonging to 

principal orbits. These are called regular points. 

Now, let M/G have the quotient topology and assume it is connected. Then, using 

that Riemannian actions are proper, we have the Principal Orbit Theorem ([23]): 

1. There is exactly one type of principal orbit, say (H), and it is maximal with re- 

spect to <, i.e., for every x � 9  H is conjugate to a subgroup of G~. 

2. Mr is open and dense in M. 

3. The quotient space M* = Mr/G is a connected differentiable manifold, and the 

quotient map is a submersion. 

Now let M and N be Riemannian manifolds and G a closed subgroup of the isometry 

groups of both M and N. Let of: N-->M be a G-equivariant isometric immersion and 

suppose that the principal orbit type is the same for both actions. This guarantees that 

passes down to the quotient as an immersion restricted to the regular parts: 

~: Nr/G--~Mr/G, using the existence of slices. We introduce in the orbit spaces Mr/G 
and Nr/G the Riemannian metrics which make the quotient maps into Riemannian sub- 

mersions ([22]). 

Since the analysis is local, we consider that N is contained in M, identifying N and 

~0(N). Now let x �9  and H = G~. Put an AdH-invariant metric on the Lie algebra 

6 of G, and consider the orthogonal decomposition ~ ~ ~ • of g with respect to this met- 

ric. This gives a G-invariant metric on G/H, and it is clear that ~)1 generates c = 

= dim G - dim H linearly independent Killing vector fields V1 . . . .  , Vc which generate the 

tangent spaces to the orbits at y �9 U, a neighborhood of x in M. Let A(y) be the matrix 

such that aij = (V~, Vj), the inner product computed in M, and w(y)= (detA(y)) 1/2, 
which is the volume form of the orbit G(y). The mean curvature vector of cp may be com- 

puted in terms of the mean curvature vector of the quotient immersion and this volume 

function. This result is due to Back, do Carmo and Hsiang ([1]), and is a generalization 

of the special case of G compact, which has been published in various forms ([17, 16]). 

The proof is in Appendix A. 
f 



178 C.B.  FIGUEROA - F. MERCURI - R. H. L. PEDROSA: Invariant surfaces, etc. 

REDUCTION THEOREM [1]. - Let H and H be the mean curvature vectors of Nrc  Mr 
and N J G  r Mr~G, respectively. Then H = H - grad (ln w). 

REMARK. - The mean curvature vector is the trace of the second fundamental 

form. 

If the group G is compact, so that the orbits are compact, then we have the 

following 

COROLLARY [17, 16]. - Let V(y) denote the volume of the orbit G(y), which we think 
as a function on the orbit space Mr/G. Let n be a G-invariant unit normal vector field 
along Nr, which must  be horizontal. Let Yt be the corresponding normal vector to Nr/G 
in Mr/G. 

Then, H(n)  =/4(~)  - ~ ( l n  V). �9 

REMARK. - The full orbit space may contain singularities, due to the non-principai 

orbits. But in the case we are interested, i.e., for principal orbits of codimension 2, the 

orbit space is always a manifold, with or without boundary. In this case, the analysis at 

the boundary (singular orbits) may be carried out, usually conditioned by the differen- 

tial equations involved, as we shall see in the next sections. 

We end this section with a method for the computation of the quotient metric in (the 

regular part of) the orbit space. It is well-known (cf. [21], ch. 2) that Mr/G may be local- 

ly parametrized by invariant functions, obtained from the Killing fields generated by 

the Lie algebra 6. Suppose that {fl, ~ ,  -.., fd}, d = d i m M / G ,  is such a complete set 

of invariant functions on a G-invariant open subset U of Mr. Denote by ~ the quotient 

metric on M / G ,  and define hij = (V)~, V]~), computed in M. V is the gradient operator 

of (M, g). 

Q U O T I E N T  METRIC THEOREM [16]. - The orbital metric is given by gij = h iJ i.e., the 
d 

length element is d~ 2 = ~, h ~j d~ | dfj. �9 
i , j f f i l  

3. - H e l i c o i d a l  s u r f a c e s  ( i n c l u d i n g  r o t a t i o n a l l y  invar iant  surfaces ) .  

We consider here the case where the subgroup of isometries mixes both rotations 

and translations. Such subgroups are called helicoidal. We reduce the possibilities in 

the following lemma, whose proof is straightforward. 

LEMMA 3.1 [11]. - A n y  surface invariant under a subgroup Gr ~oo(:)Ca, g) of the 
form 

{ L (a l  t, a2t, a3 t) o Q bt : t �9 R}  

is isometric to a surface invariant under the subgroup G = {L(o, o, at)o •t: r � 9  R}, for 
some a �9 R.  �9 

The Lie algebra g of G is generated by the Killing field F4 + aFs. 
Since the group S0(2)  acts on :)Ca by rotations about the z-axis, it is convenient to in- 
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troduce the usual cylindrical coordinates (r, 8) into R a, with r I> 0 and ~ e R. Then, the 

left-invariant metric g takes the form 

Now, taking as invariant functions u = r, and v = z - aO, the orbit space ~8 = :)Q/G 

and the orbital metric (cf. Section 2) are given by 

= {(u, v)~R2: u ~ 0 } ,  
4u 2 

d~ 2 = du  2 + 2a)2 dv2" 
4 u  ~ + (u  2 + 

Next, let 7 (s )=  (u(s), v(s)), parametrized by arc-length, be a curve in the orbit 

space that generates a surface Xr :)~ under the action of G. Letting a be the angle that 

7 makes with the 3/~u direction, the geodesic curvature of 7 is given by 

([8], p. 252) 

(2) k g -  

2 ~]/gll g22 
((g22)u ?) -- (g11)v ~) "~- ~, 

where dots denote derivatives with respect to s and subscripts, partial derivatives. We 

obtain 

2[u 4 -  (2a) 2] 

(3) ka = ~ -  [4u2 + (u 2 + 2a)2]a/2 ~). 

The unit tangent and normal vector fields along 7 are given by: 

(4) 
t =  (cos a , (2u)  -13v/4u 2 + (u 2 + 2a)2sina) ,  

n = ( - s i n a , ( 2 u ) - I  3V/4u2 + (u2+ 2a)Zcosa) 

and, since G is generated by F4 + aFs,  the volume form w(~) of a principal orbit ~ is 

given by 

w(~) = (F4 + aFs,  F4 + aF3) 1/2 = u 2 + (u  2 + 2a) 2 �9 

The Reduction Theorem (Section 2) takes then following form: the mean curvature 

H of X along a principal orbit ~ is given by H = kg - ~nlog (w(~)). Now, from this, (3) 

and (4), we obtain the system of ODE's which r must satisfy: 

(5) 
f U =C0Sa, 

/~ = (2u)-~ ~ /4u  2 + (u 2 + 2a)2 s in~,  

b = H -  u - l s i n ~ .  
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REMARK. - Notice that the equation for a has a singularity at the boundary of 53. 

This type of singularity has been dealt extensively in the literature (cf. Proposition 1 of 

[16] or the analysis in [9]). In particular, solutions that go to the boundary must enter 

perpendicularly, which means that the generated surface will be regular at those 

points. 

From now on, the mean curvature H will be taken constant on X. We start the study 

of equations (5) with the following 

PROPOSITION 3.2 [27]. 

1. Any  translate of a solution curve for  (5) in the v direction is also a solution 
curve for (5). 

2. Let r(s) be a solution of(5) defined for  s �9 (so - e, so], with a(So) = +-- z/2. Then 
~(s), may be continued to a solution curve defined on the interval (So - e, So + e) by re- 
flecting across the line v--V(So). �9 

In fact, item 1. of Proposition 3.2 indicates that there exists a f irst  integral for the 

system of eq. (5). The proof of the next result is straingtforward. 

(6) 

PROPOSITION 3.3. - The function 

J(s) = u s i n a -  1 H u 2  
2 

is constant along a solution ~(s) of (5). Thus, the solutions of  eq. (5) are characterized 
by J(s) - k, for some k �9 R. �9 

THEOREM 3. - The G-invariant constant mean curvature surfaces of ~ are, in 
terms of H and k: 

1. H -  0 (minimal surfaces). 
(a) k = O, which are helicoids, including horizontal planes. 
(b) k ~ O, surfaces generated by curves of the catenary type. 

2. H > 0 .  

(a) k = O, including a fami ly  of compact surfaces of spherical type. 
(b) k ~ O .  

(i) Right cylinders of radii H - 1  
(ii) Surfaces of Delaunay type. 

PROOF. - We treat each case separately. 

1. H -  0. From (6) we get u s ina = k. This gives two possibilities, depending 

on k. 
(a) k = 0. We have a = 0, and dv/du = 0, thus v = constant. Then the surface is 

given by z = aO, for a e R. This minimal surface is a helicoid, such as in Euclidean three 

space, and its plot is given in figure 1 a). 



C. B. FIGUEROA - F. MERCURI - R. H. L. PEDROSA: Invariant surfaces, etc. 181 

Fig. 1. - a) The helicoid (case i a). b) The helicoidal catenoid (case 1 b). 

b) 

(b) k > 0. Here, sin a = k/u, cos a = u -1 V ~  __ k 2, thus, 

dv k [ 4u 2 + (u 2+2a)  2 

(7) du - 2u ~ u 2 _ k 2  , u > k .  

Some points deserve attention. The integral for this equation is of elliptic type and (7) 

is valid if and until u assumes the value k, where the curve becomes parallel to the v di- 

rection. Also, dv/du > 0, which means that  v(u) is increasing and, finally, lim dv/du = 
~t---)  + oo 

= k/2. Therefore, according to Proposition (3.2), we may consider the unique solution of 

(5) determined by the initial conditions 

u(0) = k ,  v(0) = 0 ,  a(0) 2 '  

by reflecting across the line v = 0. These curves are of the catenary type. I f  a = 0, we 

obtain an exact analogous to the catenoid. If  a = - 1/2, (7) may be explicitly integrat- 

ed. By doing that  and substituting back the invariant functions, we obtain a minimal 

surface of helicoidal type of equation (in cylindrical coordinates) 

1 0 - l a r c s i n  ( k r -  1) + k r2~_k2 z(r,  O) = - ~ 2 

with r I> k. A plot of this surface, which we call helicoidal catenoid, is given in figure 

1 b). 
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2. H > 0 .  

(a) k = 0. From (6) we have u sin a - H u 2 / 2  = 0. Then sin a = H u / 2 ,  cos a = 

= ~/4  - H u  2/2. Thus, 

dv _ H / 4 u  2 + (u  2 + 2 a )  2 

d u  2 ~] 4 - H 2 u  2 

with u �9 [0, 2H-1) .  We again remark that  this equation is of elliptic type and is valid ff 

and until u assumes the value 2/H,  where the curve becomes parallel to the v direction. 

Also, i f u  -- 0 we have a = 0, i.e. y is parallel to the u direction and dv/du  > 0, i.e., v (u )  is 

increasing. For  some choices of a, this equation may  again be integrated. 

(i) a = 0:  we have, 

dv H u  

du  2 

with u e  [0, 2H-1) .  Integrating, we get 

= v ( u )  = 1__ ~ / ( 4  + r 2 ) ( 4  - H 2 r  2) z(r ,  O) § 
41-1 

_ _ ~  4 + u 2  

4 - H 2 u  2 ' 

I + H 2 . 1 ] 4 -  H 2 r  2 
He a r c s m ~  ~ + ~ - ~  . 

Observe, in this case, that  the curve ~ generates a compact surface with mean curva- 

ture H .  A plot of an example of such a surface is given in figure 2 a). 

(ii) a = - 1/2: the surface is of helicoidal type, with generating curve ~, in this 

case, characterized by the differential equation 

) - , u e  [0, 2 H ' 1 ) .  
du  2 ~ / 4 -  H 2 u  2 

By integrating this, and substituting back the invariant functions, we get  the following 

a) 

b) 

Fig. 2. - Compact surface, H =  1 (case 2a  i). b) Case 2aii ,  with a =  - 1/2, H =  1. 
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equation in cylindrical coordinates: 

2 + H 2 f i r  r~r " H 2 r  2 1 
z(r, o) - e  - = - + arcsin 

2 2 H  2 2 4 H  

with r � 9  [0, 2 H  -1]. A plot of such a surface is given in fig. 2 b). 

(b) k ~ 0. From (6) we have 

:  -( ino 

It follows that k ~< (2H) -1. Then 

(i) If k=  (2H) -1, we obtain that a - z ~ 2 .  It follows that r=-H -1, the right 

cylinder. 

(ii) If  k < (2H) -1, we can repeat the analysis of P. Tompter in [27] to conclude 

that the generating curves are unduloids and nodoids, and the corresponding surfaces 

are of Delaunay type. �9 

DEFINITION. - Let Uc  { ( x, y, z) �9 :)~ : z = 0} and f :  U--* R. The graph F( U , f )  o f f  

(over U) in :)Ca is the graph {(x, y, f (x ,  y)):  (x, y, 0) r  U}, in exponential coordinates 

for :)Q. A graph F(U, f )  is called complete if U is the whole plane z = 0. 

As a corollary to the existence of compact solutions for each value of nonzero mean 

curvature (when a = 0 in subcase 2a, i.e., the SO(2)-invariant spheres, as in fig. 5), we 

will show 

THEOREM 4. - There are no complete graphs of nonzero constant mean curvature in 2~. 

PROOF. - Denote the surface of spherical type given by item 2.(a) of Theorem 3, of 

constant mean curvature H,  by S(H). We will use the fact that the translation in the z- 

axis direction is an isometry, together with a suitable version of the maximum principle. 

For  a graph, let the unit normal vector be chosen such that it points downward with 

respect to the z-axis. We say, for two graphs X1 and X2, given by ~1: U--)R and ~2: 

U - * R ,  U c R  2, respectively, that X1 ~>X2 on U if ~ ( x )  I> q~2(x) for x e  U. Then we 

have 

LEMMA 3.4 (Maximum principle). - Let X~ and Xe be two hypersurfaces of : ~  that 
are graphs over an open connected set V of the plane x, y, with a common point Po 
and suppose that the tangent spaces to X ~ and X2 at P2 coincide. Suppose that the 
mean-curvature functions satisfy H1 = H2 on a neighborhood U of Po. I f  X1 >I X2 on U, 
then X 1 = X 2 on V 

This follows from an application of Hopfs  maximum principle (cf. Chapter 3 of [12]) 

as in Lemma 1 of [26]. 

Now, let F(f )  be a complete graph of constant mean curvature H > 0 in :)Q (the case 

H < 0 is treated similarly). Let Y, = S(H), centered at the origin of the exponential co- 



184 C .B .  FIGUEROA - F. MERCURI - R. H. L. PEDROSA: Invar iant  surfaces, etc. 

ordinates (S(H)  is center-symmetric). Denote by X + the part of X with positive z coor- 

dinate. Now, since the translation along the z-axis is an isometry, we may move X § 

down the z-direction until the intersection with F is empty and then make it touch, in 

such a way that the unit normal vectors coincide. Then, by the maximum principle given 

above, X and F must coincide. �9 

4. - S u r f a c e s  i n v a r i a n t  u n d e r  t r a n s l a t i o n s .  

We consider here the surfaces invariant under subgroups Gc ~ O o ( ~ ,  g) of type 

{L(alt ,  a2t, ast)} , with a ~ 0  for some i e  {1, 2, 3}. 

LEMMA 4.1 [11]. - Let  X be G-invariant. I f  a~ ~ 0 for  some i E { 1, 2 }, then X is iso- 

metric to a surface invariant  under  the subgroup G = {L(~, o, o): t ~ R}. " 

Notice that this lemma does not provide for the case when the group is of the form 

{L(o, 0, at): t E R}. We treat this case first. 

THEOREM 5. - The constant mean surfaces of  ~ invariant  under  G = {L(o,o,t): 

t e R }  are 

1. The vertical planes (H = 0). 

2. The vertical right cylinders wi th  radii  H -~ (measured in the Eucl idean 

metric). 

PROOF. - The subgroup G is given by the z-translations. Thus, we apply the reduc- 

tion procedure with the G-invariant functions u = x, v = y. Straightforward cal- 

culations show that the quotient metric in t~ = R 2 is just the Euclidean metric 

( V u = E 1 ,  V v = E 2 ) .  Then, since the volume element of the orbits is constant ( w =  
= (E3, E3) = 1), the mean curvature H of a G-invariant surface X is given by the geodesic 

curvature kg of a generating curve 7 for X. But in the Euclidean plane the only curves of con- 

stant geodesic curvatures are lines (H = kg -- 0) and circles (H = k~ - constant 

;~0) .  �9 

Next, we apply Lemma 4.1 and consider the one-dimensional subalgebra generated 

by F1, which is the Lie algebra of the subgroup of isometries given by the left transla- 

tions of the form G = {L(t,o,0): t eR} .  Applying the general theory of invariants (cf. 

[21], chapter 2), the characteristic system for 

8~" y 8r 
~ +  - 0  
ax 2 az 

is given by udx/2 = dz, and it follows that xy/2 - z = constant. Thus, the invariant func- 

tions are 

u(x ,  y ,  z) = y ,  v(x,  y ,  z) = xy/2 - z . 
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The quotient space 53 = :)Q/G and the quotient metric are 

1 
---- R 2, d ~  2 _--- d u  2 + d v  2 . 

I + U  2 

THEOREM 6. - The G-invariant constant mean curvature surfaces of ~ are: 

1. H - 0 .  

(a) The surfaces of equation 

xy c[ Y~/ l  +y2 
z -  2 2 

(b ) The vertical planes. 

2. H ~ O .  

The surfaces of equation 

1(1 - V1 x y  + _ ~ 
Z - = y -  

+ l l n ( y + ~ ) ]  
2 

C ~ R .  

\ 

I + H  2 . ] l - H~" y2 ~ 1 1 
aresm V'I ~ +-:-:-" ) , - - -  ~< Y ~< - - .  

H H ~ H H 

PROOF. - In order to apply the formula given by the Reduction Theorem (Section 2), 

we again compute the geodesic curvature of the curve y(s) = (u(s), v(s)) generating the 

surface. Let a be the angle that r makes with the direction 3/~v. Using eq. (2), the 

geodesic curvature of ~, in terms of a is given by 

U COS (7 

l + u  2 �9 

The volume element w(~) of a prinipal orbit xi is given by 

w(~) = (F1, F1) l/e= (El + yE3, E1 + y E 3 )  1/2 = ~/1 + y2  . 

The positively oriented unit normal to y is 

n = - s i n  a + c o s  a ~ .  

~v 5~u 

Then 3n(ln w) = ucosa/(1 + u2), and as H = kg - 3n(ln r we get H = ~. Summing up, 

we get the system 

f 
~(s) = sin a ,  

~(s) = V ~ +  u 2 c o s a ,  

b(s) = H .  
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b) 

Fig. 3. - a) Case i a: minimal surface, r = 1. b) Case 2, H = 1. 

1. H = 0. In this case 5 ( s ) =  0, which implies that  a( s )=  k,  thus ~ ( s ) =  sink and 

/J(s) = ~/1 + u 2 c o s k .  Again we separate the two possibilities for k. 

(a) k ~ 0, ~ z .  We have dv = cotk~v/1 + u2du .  By integrating and substituting 

back the invariant functions, and letting c = cotk,  the result follows. Figure 3 a) shows 

a minimal surface of this type, with r = 1. 

(b) k = 0, z .  We have/ t ( s )  = 0, thus u(s) =- constant. That is, the surfaces are 

vertical planes. 

2. H > 0 .  In this case a ( s ) = H s + a  and / t ( s ) = s i n ( H s + a ) ,  thus u ( s ) =  
= - H - 1 cos (Hs + a). I t  follows that  

f c o s a =  - Hu, 

s i n a =  +_ ~/1 - H 2 u  2 . 

Then dv = ~ H u ~ / ( 1  + u 2 ) ( 1 - H 2 u 2 ) - l d u .  The result follows from integration 

and substitution of the invariant functions. Figure 3b) shows an example of such a 

surface. �9 

5. - H i g h e r  d i m e n s i o n a l  H e i s e n b e r g  g r o u p s .  

The results of Theorem 3 for a = 0, i.e. for the SO(2)-invariant surfaces, may be 

generalized directly to the higher dimensional Heisenberg group H2~ +1, given by the 

upper triangular real matrices of order 2n  + 1 with l ' s  on the diagonal. 

Similarly to the case n = 1, by using exponential coordinates, ai, by, c, i , j  = 
= 1, . . . ,  n ,  we identify H2,+1 with R 2~+1. Then, the group product is given b y  

XI*X2 = (x11, Yn . . . .  , Xln, Yl~, Zl)*(X21, Y21, ...X2~, Y2~, Z2) = X1 + X~ + L(X1)'X2, 
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where 

L(X1) = 

0 ... 0 0 ... 0 O" 

: : : : : 

0 -.-  0 0 . . .  0 0 

_ Yl__A1 ... Y:n x:___L1 ... Xl____~ 0 

2 2 2 2 

We will use this identification in this section. 

Now, it is easy to see that  the left-invariant metric g, which takes the usual basis of 

the Lie algebra 1~2n+1 to be orthonormal, is given by 

i~1 ( y i d x i  - x i d y i )  " ds 2 = .= (dx~ + dye) + dz + ~ ~= 1 

The information we need about ~ o  (H2n § 1, g) is given by 

THEOREM 7 [18, 11]. - The isometry group ~ o  (H2n § :, g) is given by the semidirect 
product of H2n + 1 and the subgroup K of the automorphism group Aut (Hen § 1) which 
leaves the inner product in the Lie algebra ~2n + 1 invariant. Moreover, K is compact 
and acts linearly in H2n+ : (~-R 2n+ :), fixing the z-direction~ which is the center of 
H2n + 1, and the regular part of the orbit space B = H2n + 1 / K  i8 o f  dimension 2 

K is in fact a subgroup of SO(2n) acting transitively on the (2n  - 1)-spheres with 

centers on the z axis, so that  we use cylindrical coordinates again. Thus, we take as K- 

invariant functions 

t (x: ,  . . . ,  Xn, Yl, ..., Yn, z) = z ,  

n 

r ( x i ,  . . . ,  Xn, Y l ,  . . . ,  Yn, Z) = ~ X 2 + y~, 
i = 1  

and the orbit space and orbital metric are given by 

4 
B =  {(t, r )eR2:  r>~O}, d~ 2 -  - 

4 + r  e 
dt 2 + dr 2. 

The K-invariant hypersurfaces will be called rotational hypersurfaces.  

Now, letting a as the angle between the tangent  to a curve ?,  parametr ized by arc- 
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length, and the ~/St direction, we obtain the following system of equations for y: 

= sin o ,  

b = H +  2 n -  1 cosa ,  
r 

where H is the mean curvature of the hypersurface of H2,~ § 1 generated by ), under the 

action of K. The deduction ofthese equations is analogous to the ease in Section 3. Also, 

we again obtain a f irs t  integral: the function 

H 
J ( 8 )  ~- r 2n - 1 c o s  0 -~- r 2n 

2 n  

is constant along solutions. Using this and proceeding along the lines of the proof of 

Theorem 3, we have the following 

THEOREM 8. - The rotational hypersurfaces of  constant mean  curvature H of  
H2n+l are: 

1. H = O .  
(a) Horizontal  hyperplanes z = constant. 

(b) Hypersurfaces of  catenoidal type. 

2. H ~ O .  
( a ) Spherical hypersurfaces generated by 

= ~V/(4 + r 2 ) ( 4 n 2  -- H 2 r 2 )  + - - n 2  + H 2  arcsin 1 / 4n2 _ H 2 r  2 
t(r) 

4 H  H e 2 ~ n e + H z ' 

where r e [ 0, 2n i l  - 1 ]. 
(b) Hypersurfaces of  the 
nodoids. �9 

Delaunay type, generated by unduloids  and 

Using item 2a) of Theorem 8, it is easy to show that Theorem 4 is also true in higher 

dimensions, i.e., there are no complete graphs of nonzero constant mei~n curvature in 

H2~ +1, where by a graph we mean the graph of a function z = f ( x l ,  .. . ,  x~, Yl, . . . ,  Y~). 
The proof is the same as before. 

6.  - F i n a l  c o m m e n t s .  

1. The family of spherical surfaces given by Theorem 3.2 (a), with a = 0, furnishes a 

family of increasing volume balls. These are natural candidates for solutions to the 

isoperimetric problem in Hs.  Analogously in higher dimensions. Even proving the sta- 
bility of these surfaces (as constant mean curvature surfaces [2]) is an interesting 
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problem, and one for which the usual eigenvalue technique is not easily available. Also, 

since the reflections about vertical planes are not isometries, the usual symmetry and 

symmetrization techniques are not available either (cf. [27]). 

2. It is easy to show that any plane in/-/3 (=  R 3) is minimal, not only the vertical and 

horizontal, as we have obtained. Also, there are other graphs in Ha which are minimal, 

as in Theorem 6.1 (a). This shows that a Bernstein type theorem for/-/3 should have a 

different formulation, that of giving a complete classification for the minimal graphs in 

Ha. This is the subject of a forthcoming paper by the first author ([10]), where a mini- 

mal graph is studied in terms of the rank of its Gauss map. The same problem may be 

studied for the higher dimensional Heisenberg groups. 

3. The helicoidal catenoid in Theorem 3.1 (b) looks very much like one of the steps 

of the deformation from the catenoid to the helicoid in R a (cf. [8], p. 223) given by the 

Weierstrass representation. Is there a similar phenomenon occurring here? Is the fam- 

ily given in Theorem 3.1 given by a deformation of locally isometric minimal sur- 

faces? 

4. In [6], the authors study surfaces of constant Gauss curvature in Ha which are in- 

variant under S0(2). The techniques developed here could be used to extend those re- 

sults to the other 1-dimensional subroups of ~ o o ( H a ,  g) and also to higher dimen- 

sions. 

5. It is well-known that the classical Delaunay surfaces (including the catenoid and 

the spheres) in R a may be obtained by rotating about a line (the axis of revolution) the 

curves generated in the plane by the loci of conic sections which move without sliding 

along the line. What are the analogous curves for the Delaunay type surfaces we have 

obtained in Ha ? It is a simple interesting geometrical problem in R e. 

A. Appendix: Proof of the Reduction Theorem. 

The O'Neill tensors of a Riemannian submersion z:  E---)B is a Riemannian submer- 

sion are defined as 

O~(X, Y) = (VxhYh)V + (VxhY~) h, 

"6(X, Y) = (Vx~Yh)V + (Vx~YV) h 

where h and v denote the horizontal and vertical projections, respectively. 

A vector field X is said to projectable if it is horizontal and, if x, y e z - l ( b ) ,  
dz~(X(x))  = dzy(X(y)) .  In the case of the m a p z  is the quotient map given by a Rie- 

mannian action (in the regular part), then projectable means horizontal and invari- 

ant. 

LEMMA A.1 [22]. - Suppose that X is a vertical vector field and Y is projectable. 
Then 

1. [X, Y] is vertical. 

2. I f  X is Killing, then IX, Y] = O. �9 
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LEMMA A.2 [22]. 

1. el and ~ are 2-tensors. 

2. They interchange the vertical and horizontal spaces at each point. 

3. elx = el(X, .) and 73x = ~(X,  .) are anti-symmetric operators on T~E with re- 
spect to the Riemannian inner product. 

4. I f  X, Y are projectable, then el(X, Y) = - el(Y, X). 

5. I f  X ,  Y are vertical, then 7~(X, Y) = 73(Y, X). �9 

Now, suppose that G acts by isometries on M, d imM = m, and let H1, . . . ,  Hd be a 

projectable orthonormal frame for the horizontal part of z:  Mr-"~Mr/G, in some G-in- 

variant neighborhood U of x e Mr. Let also V1, . . . ,  Vc, c = dim G/G,, be a local frame of 

Killing vector fields for the vertical part, around x, as in Section 2. The O'Neill tensors, 

in terms of this frame around x, are given next. 

PROPOSITION A.3 [22, 1]. 

1. el(H~, Hj) = 1/2[H~, Hi] v. 

2. ('g(V~, Vj), Hk> = - (1/2) Hk(V~, Vj> = - (1/2) Hk(aij). 

PROOF.  - The first claim follows from the definitions and part 4 of Lemma A.2. For 

the second, we use Lemma A.1.2 and compute 

Hk(ViVj> = (VHkVi, Vj)+ (Vi, VH~Vj)= (Vv~Hk, Vj>+ (Vi, V,6Hk)= 

= - <Hk, Vv, Vj + V,6Vi> = - 2<Hk, Vv, Vj), 

where we used Lemma A.2.5 for the last line. But this is just the Hk-component of 

z~(v~, yj). �9 

The next result gives the relationships between the connections V of M, V v of the 

orbits and V h of Mr~G, and the O'Neill tensors, in terms of the special frame used 

above. We identify the horizontal vector fields with their projections. 

PROPOSITION A.4 [1]. 

1. Vv~Vj = ~(V~, Vj) + V~Vj. 

2. Vv~Hj = VH~ V~ = ~3(Vi, g j )  + el(Vi, Vj). 

3. VH, Hj = el(Hi, Hj) + V~, Hi. 

PROOF.  - These equations follow directly from the definitions, using the fact that 

[Vi, Hi] = 0 for the second part. �9 

We now proceed to apply these equations to the case of a G-equivariant isometric 

immersion ~v: N-- )M,  d i m N = n .  Let z:  Nr-->Nr/G and z ' :  Mr--->Mr/G be the regu- 

lar submersions. The assumption that the principal orbits of both actions is the same 



C. B. FIGUEROA - F. MERCURI - R. H. L. PEDROSA: Invariant surfaces, etc. 191 

implies that ~ passes down to the quotients as an isometric immersion 

~: Nr/G---'> Mr/G , 

if Nr/G and Mr/G are given the submersion metrics. We now consider the restriction to 

Mr and Nr in all that follows. Denote by H and ]'I the second fundamental forms of 

and ~, respectively. Denote by 

- ~, ~,  the O'Neill tensors for z ,  

- Gt', ~ ' ,  the O'Neill tensors for z ' ,  

- V, the connection of N, 

- V', the connection of M, 

- V, the connection of NJG,  

- V', the connection of Mr/G. 

Also, denote by X v and X • the tangent and orthogonal projections along both im- 

mersions. Again we treat Nr and Nr/G as submanifolds contained in the ambient 

spaces, since the arguments are local. 

We write the second fundamental form tensors, in a way similar to the tensor ~, as: 

H(X, Y) = (V~TYV) • + (V}TY• v, 

I](X, Y) = (V}~ y r  )• + (~}~ y•  ) r ,  

where X, Y are vector fields along Nr for the first, and along Nr/G for the second equa- 

tion. Now we specify the adapted frame field which we will use (see fig. 4). As before, 

we use a vertical frame of Killing vector fields { V1, ..., Vc }, which we take to be the 

same for both actions, since the principal orbits coincide. The horizontal projectable 

frame field, we decompose into two sets: the first e orthonormal fields/-/1, ..., He, for 

c + e = n, the dimension of N, we take to be tangent to the submanifold Nr r Mr. Their 

�88 

I 
/ 

M i / /  
/ 

/ 
/ 

/ 
/ 

/ 
J 

/ 

Fig. 4. - Special frame. 

N 

l<~<c 

l < j < e  

e + l < k < d  
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projections are also tangent to N~/G r M~/G. The remaining Ee + 1, ..., Hd complete the 

horizontal part, being orthogonal to N~ (and to Nr/G). 
The next proposition gives the relationships between the second fundamental ten- 

sors and the O'Neill tensors. 

P R O P O S I T I O N  A . 5  [1] .  

1. For 1 <~i, j<~e, ~(Hi ,  H j )  = r Hj). 

2. ii(v~, y~)= ~' (y~, y~)- ~(vi, y~). 

3. Far  1 <. i, j <~ e, II(Hi,  H i) = II(H~, Hj). 

4. For  1 <. i <. e, H(Hi ,  Vj) = II(Vj,  Hi) = ~ '  (Hi, Vj) - el(Hi, Vj). 

P R O O F .  

1. We have el(Hi, Hj) = (1~2)[Hi, Hj]V; since the vertical part is the same, we must 

also have r Hi) = (1/2)[Hi, Hj] ~. 

2. We compute 

H(Vi, V~) = ( v ~ ,  V,.) �9 = v ~ , v ~  - v ~ , v ~  = 

= ~S'(V~, Vj) + V~Vj - ~6(V~, Vj) - Y~, V~. (using A.4.1) 

= ~ ' ( y .  y~)-  ~(yi, y~), 

since the vertical connections coincide. 

3. This follows from the fact that dzr is an isometry when restricted to the horizon- 

tal distribution, and the second fundamental tensors are horizontal and normal for hor- 

izontal and tangent fields to the submanifolds. 

4. We compute 

I I ( g i ,  Vj) = (Vb, Vj) • = V~/,Vj - VH, V j ----- 

= ~' (Vj ,  Hi) + a ' ( H i ,  Vj) - ~S(Vj, Vi) - a (Hi ,  Vj) (using A.4.3) 

= a '  (Hi ,  Vj) - d (H~,  Vj) .  

For the last line, notice that ~6(Vy, Hi) and ~6' (Vj., Hi)  are vertical, and that 

(~S(Vj, Hi), V~) = - <Hi, ~S(Vj, Vk)), 

(~S'(Vj, Hi), Vk) = - (Hi, ~ ' (Vj ,  Vk)). 

But ~S and ~6' both represent the second fundamental tensors of the orbits, inside N 

and M, respectively. Since Hi is tangent to N, they concide. �9 
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PROOF OF THE REDUCTION THEOREM. - Let  {X~, . . . ,  X~ } be a local orthonormal ver- 

tical frame field. Then 

tr  n = ~ U(Xi, XO + ~ H(Hi, Hi), 
i=1 i=1  

using the previously chosen adapted horizontal frame field. From Prop./L5.3,  the sec- 

ond term on the right hand side of this equation is jus t  t r  II .  Thus, it remains to com- 

pute the first term. Now notice that, since the second fundamental tensors are normal 

to the submanifolds when computed on tangent  fields, it is only necessary to compute 

the projections in the normal directions. We use a normal projectable frame field H~, 

for r >  e. Recall that  we have defined the matrix A = (a~) by aij--(Vi, Vj) and 
c 

w = (detA) 1/2. Now let Vi= ~ a~Xs. Then aij= Y. aisaj8. By Proposition (A.5.2), 
8=1 s = l  

we know how to compute this sum using the frame of Killing fields {V1, . . . ,  Vc }. Le t  

Xi = ~. aiJVj, where (a ~) is the inverse of (aij). Then 
j = l  

i = 1  i , j , ' r =  l 

Projecting with respect to H~, we get 

H(Xi, XO, Hk = ~ aVai~(H(Vj, V~), H~) = 
i i , j , r = l  

c 1 1 E aiJa~rH~(Vj, V~)= - -  aVa i~'= 
2 i , j . r=l  2 j ,  r= '= 

1 ~ aJrHkaj~= _ 1Hk[ lnde t (a i j ) ] "  
2 j , r=l  

The result follows. �9 
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