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ABSTRACT

In this paper, we study the invariance properties of various test criteria which have been
proposed for hypothesis testing in the context of incompletely specified models, such as
models which are formulated in terms of estimating functions (Godambe, 1960,Ann. Math.
Stat.) or moment conditions and are estimated by generalized method of moments (GMM)
procedures (Hansen, 1982,Econometrica), and models estimated by pseudo-likelihood
(Gouriéroux, Monfort and Trognon, 1984,Econometrica) andM -estimation methods. The
invariance properties considered include invariance to (possibly nonlinear) hypothesis re-
formulations and reparameterizations. The test statistics examined include Wald-type, LR-
type, LM-type, score-type, andC(�)�type criteria. Extending the approach used in Da-
genais and Dufour (1991,Econometrica), we show first that all these test statistics except
the Wald-type ones are invariant to equivalent hypothesis reformulations (under usual reg-
ularity conditions), but all five of them arenot generally invariant to model reparameteri-
zations, including measurement unit changes in nonlinear models. In other words, testing
two equivalent hypotheses in the context of equivalent models may lead to completely dif-
ferent inferences. For example, this may occur after an apparently innocuous rescaling of
some model variables. Then, in view of avoiding such undesirable properties, we study
restrictions that can be imposed on the objective functions used for pseudo-likelihood (or
M-estimation) as well as the structure of the test criteria used with estimating functions and
GMM procedures to obtain invariant tests. In particular, we show that using linear exponen-
tial pseudo-likelihood functions allows one to obtain invariant score-type andC(�)�type
test criteria, while in the context of estimating function (or GMM) procedures it is possible
to modify a LR-type statistic proposed by Newey and West (1987,Int. Econ. Rev.) to
obtain a test statistic that is invariant to general reparameterizations. The invariance associ-
ated with linear exponential pseudo-likelihood functions is interpreted as a strong argument
for using such pseudo-likelihood functions in empirical work.

Keywords: Testing; Invariance; Hypothesis reformulation; Reparamerization; Mea-
surement unit; Estimating function; Generalized method of moment (GMM); Pseudo-
likelihood; M -estimator; Linear exponential model; Nonlinear Model; Wald test; Like-
lihood ratio test; Score test; Lagrange multiplier test;C(�) test



1 INTRODUCTION

It is a widely accepted principle in statistics and econometrics that inferences should not

depend on arbitrary incidentals like the labelling of i.i.d. observations or the selection

of measurement unit changes, when those elements have no incidence on the interpreta-

tion of the null and alternative hypotheses; see Hotelling (1936), Pitman (1939), Lehmann

(1983; Chap. 3; 1986, Chap. 6) and Ferguson (1967). Among other things, when the way

a null hypothesis is written has no particular interest or when the parameterization of a

model is largely arbitrary, it is natural to require that the results of test procedures do not

depend on such choices. For example, standardt andF tests in linear regressions are in-

variant to linear hypothesis reformulations and reparameterizations. In nonlinear models,

the situation is however more complex.

It is well known that Wald-type tests are not invariant to equivalent hypothesis reformu-

lations; see Cox and Hinkley (1974, p. 302), Burguete, Gallant and Souza (1982, p. 185),

Gregory and Veall (1985), Lafontaine and White (1986), Breusch and Schmidt (1988),

Phillips and Park (1988), and Dagenais and Dufour (1991). For general possibly nonlinear

likelihood models (which are treated as correctly specified), we showed in previous work

[Dagenais and Dufour (1991, 1992), Dufour and Dagenais (1992)] that very few test pro-

cedures are invariant to general hypothesis reformulations and reparameterizations. The

invariant procedures essentially reduce to likelihood ratio (LR) tests and certain variants of

score [or Lagrange multiplier (LM)] tests where the information matrix is estimated with

either an exact formula for the (expected) information matrix or an outer product form

evaluated at the restricted maximum likelihood (ML) estimator. In particular, score tests

are not invariant to reparameterizations when the information matrix is estimated using the

Hessian matrix of the log-likelihood function, both evaluated at the restricted ML estima-
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tor. Further,C(�) tests are not generally invariant to reparameterizations unless special

equivariance properties are imposed on the restricted estimators used to implement them.

Among other things, this means that measurement unit changes with no incidence on the

null hypothesis tested may induce dramatic changes in the conclusions obtained from the

tests and suggests that invariant test procedures should play a privileged role in statisti-

cal inference. The invariance properties of test procedures applicable in models which are

incompletely specified or misspecified.

In this paper, we study the invariance properties of various test criteria which have been

proposed for hypothesis testing in the context of incompletely specified models, such as

models which are formulated in terms of estimating functions (Godambe, 1960) or mo-

ment conditions and are estimated by generalized method of moments (GMM) procedures

(Hansen, 1982), and models estimated by pseudo-likelihood (Gouri´eroux, Monfort and

Trognon, 1984) andM -estimation methods. For general reviews of inference in such

models, the reader may consult Davidson and MacKinnon (1993), Gallant (1987), Go-

dambe (1991), Gouri´eroux and Monfort (1995) and Newey and McFadden (1994). A strik-

ing feature of inference in such models is the fact that likelihood ratio (LR) tests are difficult

to apply because their asymptotic distributions involve unknown nuisance parameters [e.g.,

see Trognon(1984)]. This is quite unfortunate from the point of view of obtaining invariant

tests because LR test statistics enjoy very strong invariance qualities. The invariance prop-

erties we consider include invariance to (possibly nonlinear) hypothesis reformulations and

reparameterizations. The test statistics examined include Wald-type, LR-type, LM-type,

score-type, andC(�)-type criteria. Extending the approach used in Dagenais and Dufour

(1991, 1992), we show first that all these test statistics except the Wald-type ones are invari-

ant to equivalent hypothesis reformulations (under usual regularity conditions), but all five
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of them arenot generally invariant to model reparameterizations, including measurement

unit changes in nonlinear models. In other words, testing two equivalent hypotheses in the

context of equivalent models may lead to completely different inferences. For example, this

may occur after an apparently innocuous rescaling of some model variables. Then, in view

of avoiding such undesirable properties, we study restrictions that can be imposed on the

objective functions used for pseudo-likelihood (or M-estimation) as well as the structure

of the test criteria used with estimating functions and GMM procedures to obtain invari-

ant tests. In particular, we show that using linear exponential pseudo-likelihood functions

allows one to obtain invariant score-type andC(�)-type test criteria, while in the context

of estimating function (or GMM) procedures it is possible to modify a LR-type statistic

proposed by Newey and West (1987) to obtain a test statistic that is invariant to general

reparameterizations. The invariance associated with linear exponential pseudo-likelihood

functions can be interpreted as a strong argument for using such pseudo-likelihood func-

tions in empirical work.

In Section 2, we describe the general setup considered and define the test statistics

that will be studied. The invariance properties of the available test statistics are studied

in Section 3. In Section 4, we make suggestions for obtaining tests that are invariant to

general hypothesis reformulations and reparameterizations.

2 FRAMEWORK AND TEST STATISTICS

2.1 Assumptions

We consider an inference problem about a parameter of interest� 2 
 � R
p : � appears in

a model which is not fully specified. In order to identify�; we assume there exists am� 1

vector score-type functionDn (�;Zn) whereZn = [z1; z2; : : : ; zn]
0 is an � k stochastic
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matrix such that:

Dn (�;Zn)
a:s:�!
n!1

D1 (�; �o) : (1)

D1 (:; �o) is an application of
 ontoRp such that :D1 (�; �o) = 0() � = �o: Further-

more, we assume that
p
nDn (�o;Zn)

D�!
n!1

N [0; I (�o)] (2)

andHn (�o;Zn) =
@

@�0
Dn (�o;Zn)

P�!
n!1

J (�o) ; whereI (�o) andJ (�o) arem � m and

m� p full-column rank matrices.

Typically, such a model is estimated by minimizing with respect to� an expression of

the form

Mn (�; Sn) = Dn (�;Zn)
0

SnDn (�;Zn) ; (3)

whereSn is a symmetric positive definite matrix. The method of estimating equations

[Durbin (1960), Godambe (1960, 1991)], the generalized method of moments [Hansen (1982)],

maximum likelihood, pseudo-maximum likelihood, M-estimation and instrumental vari-

able methods may all be cast in this setup. Under general regularity conditions, the estima-

tor �̂n so obtained has a normal asymptotic distribution:

p
n(�̂n � �0)

D!
n!1

N [0;� (S0)]

where

� (S0) = (J 0
0
S0J0)

�1
J 0
0
S0I0S0J0 (J

0

0
S0J0)

�1

whereS0 = p lim
n!1

Sn; det (S0) 6= 0; J0 = J (�0) andI0 = I (�0) ; see Gouri´eroux and

Monfort (1995, chapter 9).

If we assume that the number of equations is equal to the number of parameters(m = p) ;

a general method for estimating� also consists in finding an estimator�̂n which satisfies
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the equation

Dn(�̂n;Zn) = 0 : (4)

Typically, in such cases,Dn (�;Zn) is the derivative of an objective functionSn(�;Zn);

which is maximized or minimized to obtain̂�n; so that

Dn (�;Zn) =
@Sn (�;Zn)

@�
; Hn (�o;Zn) =

@Sn (�;Zn)

@�@�0
:

This sequence is asymptotically normal with zero mean and asymptotic variance


 (�o) = J (�o)
�1
I (�o)J (�o)

�1 ; (5)

see Gouri´eroux and Monfort (1995). Obviously, condition (4) is entailed by the minimiza-

tion ofMn (�) whenm = p: It is also interesting to note that problems withm > p can be

reduced to cases withm = p through an appropriate redefinition of the score-type function

Dn (�;Zn) ; so that the characterization (4) also covers most classical asymptotic methods

of estimation. A typical list of methods is the following.

a) Maximum likelihood. In this case, the model is fully specified with log-likelihood

functionLn (�;Zn) and score functionDn (�;Zn) =
@

@�
Ln (�;Zn).

b) Generalized method of moments (GMM) method. � is identified through am�1 vector

of orthogonality conditions:

E [h (�; zi)] = 0 ; i = 1; : : : ; n :

Then one considers the sample analogue of the above mean,

hn (�) =
1

n

nX
i=1

h (�; zi) ;

and the quadratic formMn (�) = hn (�)
0

Snhn (�) whereSn is a symmetric positive definite

matrix. In this case, the score-type function is :

Dn (�;Zn) = 2
@hn (�)

0

@�
Snhn (�) :
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c) M-estimator. �̂n is defined through an objective functionQn of the form:

Qn (�;Zn) =
1

n

nX
i=1

� (�; zi) :

The score function has the following form:

Dn (�;Zn) =
@Qn

@�
(�;Zn) =

1

n

nX
i=1

@

@�
� (�; zi) :

2.2 Test statistics

Consider now the problem of testingHo :  (�) = 0; where (�) is ap1 � 1 continuously

differentiable function of�; 1 � p1 � p and suppose thep1�pmatrixP (�) =
@ 

@�0
has full

row rank (at most in a neighborhood of�o). Let �̂n be the unrestricted estimator obtained

by minimizingMn (�) ; and�̂
o

n
the corresponding constrained estimator underH0:

At this stage of the paper, it is not necessary to specify closely the way the matri-

cesI (�o) andJ (�o) are estimated. We will denotêIo andĴo or Î andĴ the corresponding

estimated matrices depending on whether they are obtained with or without the restriction

 (�) = 0: In particular, if

Dn (�;Zn) =
1

n

nX
i=1

h (�; zi) ; (6)

standard definitions of̂I (�) andĴ (�) would be :

Î (�) =
1

n

nX
i=1

h (�; zi) h (�; zi)
0

; (7)

Ĵ (�) =
@Dn

@�0
(�) = Hn (�;Zn) ; (8)

where� can be replaced by appropriate estimators. But other estimators may be considered,

e.g. in view of taking into account serial dependence [see Newey and West (1987)].
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In this context, analogues of the Wald, LM, score andC (�) test statistics can be shown

to have asymptotic null distributions without nuisance parameters, namely�2 (p1) distri-

butions. These can be defined as follows :

a) Wald-type statistic,

W ( ) =  (�̂n)
0

�
P̂ Ĵ�1Î

�
Ĵ�1

�
0

P̂ 0
�
�1

 (�̂n) (9)

whereP̂ = P (�̂n); Î = Î(�̂n) andĴ = Ĵ(�̂n);

b) score-type statistic,

S ( ) = nDn(�̂
o

n
;Zn)

0Î�1
o
Ĵo

�
Ĵ 0
o
Î�1
o
Ĵo

�
�1

Ĵ 0
o
Î�1
o
Dn(�̂

o

n
;Zn) (10)

whereÎ0 = Î(�̂
o

n
) andĴ0 = Ĵ(�̂

o

n
);

c) Lagrange-multiplier (LM) type statistic,

LM ( ) = n�̂
0

n
P̂o

�
Ĵ 0
o
Î�1
o
Ĵo

�
�1

P̂ 0
o
�̂n (11)

whereP̂o = P (�̂
o

n
);

d) C (�)-type statistic,

PC(~�
o

n
; ) = nDn(~�

o

n
;Zn)

0 ~WoDn(~�
o

n
;Zn) (12)

where~�
o

n
is any root-n consistent estimator of� that satisfies (~�

o

n
) = 0;

~Wo = ~I�1
o

~Jo
�
~J 0
o
~I�1
o

~Jo
�
�1

~P 0
o

�
~Po
�
~J 0
o
~I�1
o

~Jo
�
�1

~P 0
o

�
�1

~Po
�
~J 0
o
~I�1
o

~Jo
�
�1

~J 0
o
~I�1
o

with ~Po = P (~�
o

n
); ~Io = Î(~�

o

n
) andĴ0 = Ĵ(~�

o

n
):

The above Wald-type and score-type statistics were discussed by Newey and West (1987)

in the context of GMM estimation, and for pseudo-maximum likelihood estimation by

Trognon (1984). TheC (�)-type statistic is given by Davidson and MacKinnon (1987, p. 619).
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Of course, LR-type statistics based on the difference of the maxima of the objective func-

tion Sn (�;Zn) have also been considered in such contexts:

LR ( ) = Sn(�̂n;Zn)� Sn(�̂
o

n
;Zn) : (13)

It is well known that in general this difference is distributed as a mixture of indepen-

dent chi-square with coefficients depending upon nuisance parameters [see, for example,

Trognon (1984)]. Nevertheless, there is one “LR-type” test statistic whose distribution is

asymptotically pivotal with a chi-square distribution, namely theD statistic suggested by

Newey and West (1987):

DNW = n[Mn(�̂
o

n
; ~Io)�Mn(�̂n; ~Io)] (14)

where

Mn(�n; ~Io) = Dn (�;Zn)
0 ~I�1

o
Dn (�;Zn) ;

~Io is a consistent estimator ofI (�o) ; �̂n minimizesMn(�; ~Io) without restriction and̂�
o

n

minimizesMn(�; ~I0) under the restriction (�) = 0: Note, however, that this “LR-type”

statistic is more accurately viewed as a score-type statistic: ifDn is the derivative of some

other objective function (e.g., a log-likelihood function), the latter is not used as the objec-

tive function but replaced by a quadratic function of the “score”Dn:

Using the constrained minimization condition,

Hn(�̂
o

n
;Z 0

n
)~I�1Dn(�̂

o

n
;Zn) = P (�̂

o

n
)�̂n ;

we see thatS ( ) = L ( ) ; i.e., the score and LM statistics are identical in the present cir-

cumstances. Further, it is interesting to observe that the score, LM andC (�)-type statistics

given above may all be viewed as special cases of a more generalC (�)-type statistic ob-

tained by considering the generalized “score-type” function:

s
�
~�
o

n
;Wn

�
=
p
n ~Qo [Wn]Dn(~�

o

n
;Zn)
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whereWn is a positive definite (possibly random)p� p matrix such that

p lim
n!1

Wn = Wo; det (Wo) 6= 0;

~�
o

n
is consistent restricted of�o such that (~�

o

n
) = 0 and

p
n(~�

o

n
� �0) is asymptotically

bounded in probability,

~Qo [Wn] = ~Po
�
~J 0
o
Wn

~Jo
�
�1

~J 0
o
Wn ;

where ~Po = P (~�
o

n
) ; and ~Jo = Ĵ(~�

o

n
): Under standard regularity conditions, it is easy to see

that

s(~�
o

n
;Zn) !

n!1

N
�
0; Q (�o) I (�o)Q (�o)

0
�

where

Q (�o) = p lim
n!1

~Qo [Wn] = P (�o)
�
J (�o)

0

WoJ (�o)
�
�1

J (�o)
0

Wo

andrank [Q (�o)] = p: This suggests the following generalizedC (�) criterion:

PC(~�
o

n
; ;Wn) = nDn(~�

o

n
;Zn)

0 ~Qo [Wn]
0

n
~Qo [Wn] ~Io ~Qo [Wn]

0

o
�1

~Qo [Wn]Dn(~�
o

n
;Zn) ;

(15)

where~Io = Î(~�
o

n
) ; whose asymptotic distribution is�2 (p1) underH0:

On takingWn = ~I�1
o
; as suggested by efficiency arguments,PC(~�

o

n
; ;Wn) reduces

to PC(~�
o

n
; ) in (12). When the number of equations equals the number of parameters

(m = p) ; we have~Qo [Wn] = ~Po ~J
�1

o
andPC(~�

o

n
; ;Wn) does not depend on the choice

of Wn :

PC(~�
o

n
; ;Wn) = PC(~�

o

n
; )

= Dn(~�
o

n
;Zn)

0

�
~J�1
o

�
0

~P 0
o

�
~Po ~J

�1

o
~Io
�
~J�1
o

�
0

~P 0
o

�
�1

~Po ~J
�1

o
Dn(~�

o

n
;Zn):

In particular, this will be the case ifDn (�;Zn) is the derivative vector of a (pseudo) log-

likelihood function. Finally, whenm � p; but ~�
o

n
is obtained by minimizingMn (�) =

9



Dn (�;Zn)
0 ~I�1

o
Dn (�;Zn) subject to (�) = 0; we can write~�

o

n
� �̂

o

n
andPC(~�

o

n
; ;Wn)

is identical to the score (or LM) -type statistic suggested by Newey and West (1987). Since

the statisticPC(~�
o

n
; ;Wn) is quite comprehensive, it will be convenient for establishing

general invariance results.

3 INVARIANCE

Following Dagenais and Dufour (1991), we will consider two types of invariance proper-

ties : invariance with respect to the formulation of the null hypothesis and invariance with

respect to reparameterizations.

3.1 Hypothesis reformulation

Let �o = f� 2 
 j  (�) = 0g and	 the set of differentiable function� : 
 ! R
m

such that
�
� 2 
 j � (�) = 0

	
= �0: A test statistic is invariant with respect to	 if it is

the same for all 2 	: It is obvious the LR-type statisticsLR ( ) andDNW (when ap-

plicable) are invariant to such hypothesis reformulations because the optimal values of

the objective function (restricted or unrestricted) do not depend on the way the restric-

tions are written. Now, a reformulation does not affectÎ ; Ĵ ; Îo and Ĵo: The same holds

for ~Io and ~Jo provided the restricted estimator~�
o

n
used withC (�) tests does not depend

on which function 2 	 is used to obtain it. However,̂P; �̂n and 
�
�̂n

�
change: Fol-

lowing Dagenais and Dufour (1991), if� 2 	; we have�P (�) =
@ � 

@�0
= �P1 (�)G (�) and

P (�) =
@ 

@�0
= P1 (�)G (�)where�P1 andP1 are two squared invertible functions andG (�)

is ap1 � p full row-rank matrix. Since�P o0

1
��n = P̂ o0

1
�̂n where �P o

1
= �P1(�̂

o

n
); P̂ o

1
= P1(�̂

o

n
)

and��n is the Lagrange multiplier associated with� ; we deduce that all the statistics, ex-

cept the Wald-type statistics, are invariant with respect to a reformulation. This leads to the

following proposition.
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Proposition 1 Let 	 be a family of p1 � 1 continuously differentiable functions of � such

that
@ 

@�0
has full row rank when  (�) = 0 (1 � p1 � p) ; and  (�) = 0 if and only if

� (�) = 0; 8 ; � 2 	: Then, T ( ) = T
�
� 
�
; where T stands for any one of the test

statistics S ( ) ; LM ( ) ; PC(�̂
o

n
; ); LR ( ) ; DNW ( ) and PC(�̂

o

n
; ;Wn) defined in

(10) to (15).

3.2 Reparameterization

Let �g be a one-to-one differentiable transformation from
 � R
p onto
� � R

p : �� =

�g (�) : �g represents a reparameterization of the parameter vector� to a new one��: The

latter is often determined by a one-to-one transformation of the dataZn� = g (Zn) ; as

occurs for example when variables are rescaled (measurement unit changes). But it may

also represent a reparameterization without any variable transformation. Letk = �g�1 be

the inverse of�g : k (��) = �g�1 (��) = �: SetG (�) =
@�g

@�

0

(�) andK (��) =
@k

@�0
�

(��) :

Sincek [�g (�)] = � and�g [k (��)] = ��; K [�g (�)]G (�) = Ip andG [k (��)]K (��) = Ip;

8�� 2 
� and� 2 
: Let

 � (��) =  
�
�g�1 (��)

�
: (16)

Clearly, � (��) = 0 ,  (�) = 0; andH�

0
:  � (��) = 0 is an equivalent reformulation

of H0 :  (�) = 0 in terms of��: Other (possibly more “natural”) reformulations are

of course possible, but the latter has the convenient property that � (��) =  (�) : By the

invariance property of Proposition 1, it will be sufficient for our purpose to study invariance

to reparameterizations for any given reformulation of the null hypothesis in terms of��:

From the above definition of � (��) ; it follows that

P� (��) �
@ �

@�0
�

=
@ 

@�0
@�

@�0
�

= P [k (��)]K (��) = P (�)K [�g (�)] : (17)

We need to make an assumption on the way the score-type functionDn (�;Zn) changes
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under a given reparameterization. We will consider two cases. The first one consists of

assuming thatDn (�;Zn) =
nP
i=1

h (�; zi) =n as in (6) where the values of the scores are

unaffected by the reparameterization, but are simply reexpressed in term of�� andzi� :

h (��; zi�) = h (�; zi) ; i = 1; : : : ; n ; (18)

whereZn� = g (Zn) and�� = �g (�) : The second one is the one whereDn (�;Zn) can be

interpreted as the derivative of an objective function.

Under condition (18), we see easily that

Hn� (��;Zn�) =
@Dn� (��;Zn�)

@�0
�

= Hn (�;Zn)K (��) = Hn (�;Zn)K [�g (�)] : (19)

Further the functionŝI (�) andĴ (�) in (7) - (8) are then transformed in the following way :

Î� (��) = Î (�) ; Ĵ� (��) = Ĵ (�)K [�g (�)] :

If Î (�) andĴ (�) are defined as (7) - (8), ifWn� = Wn and if~�
o

n
is equivariant with respect

to �g
h
i.e.,~�

o

n�
= �g

�
~�
o

n

�i
; it is easy to check that the generalizedC (�) statistic defined

in (15) is invariant to the reparameterization�� = �g (�) : This suggests the following gen-

eral sufficient condition for the invariance ofC (�) statistics.

Proposition 2 Let  � (��) =  [�g�1 (��)] ; and suppose the following conditions hold :

a) ~�
o

n�
= �g(~�

o

n
);

b) Dn�(~�
o

n�
;Zn�) = Dn(~�

o

n
;Zn) ;

c) ~I0� = ~I0 and ~J0� = ~J0 ~K;

d) Wn� = Wn;

where ~I0; ~J0 and Wn are defined as in (15), and ~K = K(~�
o

n�
) is invertible. Then

PC�(~�
o

n�
; �;Wn�) � n ~D0

n�
~Q0
0�

�
~Q0
0�
~I0� ~Q0�

�
�1

~Q0�Dn� = PC(~�
o

n
; ;Wn)

12



where ~D�

n�
= Dn�(~�

o

n�
;Zn�); ~Q0� = ~P0�

�
~J 0
0�
Wn�

~J0�

�
�1

~J 0
0�
Wn�; ~P0� = P�(~�

o

n�
) and

P� (��) =
@ �

@�0
�

:

It is clear the estimatorŝ�n and�̂
o

n
satisfy the equivariance condition,i.e., �̂n� = �g

�
�̂n

�

and�̂
o

n�
= �g

�
�̂
o

n

�
: Consequently, the above invariance result also applies to score (or LM)

statistics. It is also interesting to observe thatW� ( 
�) = W ( ) : This holds, however,

only for the special reformulation � (��) =  [�g�1 (��)] = 0; not for all equivalent re-

formulations 
�
(��) = 0: On applying Proposition 1, this type of invariance holds for the

other test statistics. These observations are summarized in the following proposition.

Proposition 3 Let  
�
: 
� ! 
 be any continuously differentiable function of �� 2 
�

such that  
�
(�g (�)) = 0,  (�) = 0; let m = p and suppose

a) Dn� (�g (�) ;Zn�) = Dn (�;Zn) ;

b) Î� [�g (�)] = Î (�) and Ĵ� [�g (�)] = Ĵ (�)K [�g (�)] ;

where K (��) =
@�g�1 (��)

@�0
�

: Then, provided the relevant matrices are invertible, we have

T ( ) = T� ( �) where T stands for any one of the test statistics S ( ) ; LM ( ) ; LR ( )

and DNW ( ) : If �̂
o

n�
= �g(�̂

o

n
) ; we also have PC�(~�

o

n�
; 

�
) = PC(~�

o

n
; ): If  

�
(�) =

 [�g�1 (�)] ; the Wald statistic is invariant : W� ( �) =W ( ) :

Cases where (19) holds only have limited interest because they do not cover prob-

lems whereDn is the derivative of an objective function, as occurs for example when M-

estimators or (pseudo) maximum likelihood methods are used :Dn (�;Zn) =
@Sn (�;Zn)

@�
:

In such cases, one would typically have :

Sn� (��;Zn�) = Sn (�;Zn) + � (Zn�)

where� (Zn�) may be a function of the Jacobian of the transformationZn� = g (Zn) : To

13



deal with such cases, we thus assume thatm = p; and

Dn� (��;Zn�) = K (��)
0

Dn (�;Zn) = K [�g (�)]0 Dn (�;Zn) : (20)

From (2) and (20), it then follows that :

p
nDn� (�0�;Zn�)

D�!
n!1

N [0; I� (�0�)] ; (21)

where�0� = �g (�0) and

I� (��) = K (��)
0

I [k (��)]K (��) = K [�g (�)]0 I (�)K [�g (�)] ; (22)

and

Hn� (��;Zn) = K [�g (�)]0Hn (�;Zn)K [�g (�)] +

pX
j=1

Dnj (�;Zn)Mj [�g (�)] ; (23)

whereDnj (�;Zn) ; j = 1; ::: ; p; are the coordinates ofDn (�;Zn) andMj(��) =
@2�j

@��@�
0

�

(��) =

@2kj

@��@�
0

�

(��):

By a set of arguments analogous to those used in Dagenais and Dufour (1991), it ap-

pears that all the statistics [except the LR-type statistic] are based uponHn and so are

sensitive to a reparameterization, unless some specific estimator ofJ is used. At this gen-

erality level, the following result can be presented using the following notations :Î ; Ĵ ; P̂

are the estimated matrices for a parameterization in� and Î�; Ĵ�; P̂� are the estimated ma-

trices for a parameterization in��:

Proposition 4 Let  � (��) =  [�g�1 (��)] ; and suppose the following conditions hold :

a) ~�
o

n�
= �g(~�

o

n
) ;

b) Dn�(~�
o

n�
;Zn�) = K

h
~�
o

n�

i
0

D(~�
o

n
;Zn) ;

c) ~I0� = ~K 0 ~I0 ~K; ~J0� = ~K 0 ~J0 ~K ;

14



d) Wn� = ~K�1Wn

�
~K�1

�
0

;

where ~I0; ~J0 and Wn are defined as in (15), and ~K = K(~�
o

n�
): Then, provided the relevant

matrices are invertible,

PC�(~�
o

n�
; �;Wn�) = PC(~�

o

n
; ;Wn) :

Proposition 5 Let  
�
: 
� ! 
 be any continuously differentiable function of �� 2 
�

such that  
�
[�g (�)] = 0,  (�) = 0; let m = p and suppose :

a) Dn� (�g (�) ;Zn�) = K [�g (�)]0Dn (�;Zn) ;

b) Î� [�g (�)] = K [�g (�)]0 Î (�)K [�g (�)] ;

c) Ĵ� [�g (�)] = K [�g (�)]0 Ĵ (�)K [�g (�)] ;

where K (��) =
@�g�1 (�)

@�0
�

: Then, provided the relevant matrices are invertible, we have

T ( ) = T� ( �) where T stands for any one of the test statistics S ( ) ; LM ( ) ; LR ( )

and DNW ( ) : If ~�
o

n�
= �g(~�

o

n
); we also have PC�(~�

o

n�
; 

�
) = PC(~�

o

n
; ) : If  

�
(�) =

 [�g�1 (�)] ; W� ( �) =W ( ) :

4 INVARIANT TEST CRITERIA

Despite the apparent “positive nature” of the invariance results presented in the previous

section, the main conclusion is that none of the proposed test statistics is invariant to general

reparameterizations, especially when the score-type function considered is derived from an

objective function. In particular, this problem will occur when the score-type function

is derived from a (pseudo) likelihood function or, more generally, the objective function

minimized by an M-estimator.

In this section, we propose two ways of doing this. The first one is based on modifying

the LR-type statistics proposed by Newey and West (1987) for GMM setups, while the

15



second one exploits special properties of the linear exponential family in pseudo-maximum

likelihood models.

4.1 Modified Newey–West LR-type statistic

Consider the LR-type statistic

DNW = n[Mn(�̂
0

n
; ~Io)�Mn(�̂n; ~Io)]

whereMn

�
�; ~Io

�
= Dn (�;Zn)

0 ~I�1
o
Dn (�;Zn) ; proposed by Newey and West (NW, 1987).

In this statistic,~Io is any consistent estimator of the covariance matrixI (�o) which is typ-

ically a function of a “preliminary” estimator��n of � : ~Io = Î
�
��n
�
: The minimized value

of the objective functionMn

�
�; ~Io

�
is not invariant to general reparameterizations unless

special restrictions are imposed on the covariance matrix estimator~Io:

However, there is a simple way of creating the appropriate invariance as soon as the

function Î (�) is a reasonably smooth function of�: Instead of estimating� by minimiz-

ing Mn

�
�; ~Io

�
; estimate� by minimizingMn

�
�; Î (�)

�
: Suppose further the following

conditions hold :

Dn� (�g (�) ; Zn�) = K [�g (�)]0Dn (�;Zn) ; (24)

Î� (�g (�)) = K [�g (�)]0 Î (�)K [�g (�)] : (25)

Then, for�� = �g (�) ;

Mn�

�
��; Î� (��)

�
� Dn� (�g (�) ; Zn�)

0

Î� (�g (�))
�1
Dn� (�g (�) ; Zn�)

= Dn (�;Zn)
0

Î (�)Dn (�;Zn) :

Consequently, the unrestricted minimal valueMn(~�n; Î(~�n)) and the restricted oneMn(~�
o

n
; I(~�

o

n
))

so obtained will remain unchanged under the new parameterization, and the corresponding

16



LR-type statistic

�D = n[Mn(~�
o

n
; Î(~�

o

n
))�Mn(~�n; Î(~�n))]

is invariant to reparameterizations of the type considered in (20)-(22). Under standard

regularity conditions on the convergence ofDn (�;Zn) and Î (�) asn ! 1 (continuity,

uniform convergence), it is easy that�D andDNW are asymptotically equivalent (at least

under the null hypothesis) and so have the same asymptotic�2 (p1) distribution.

4.2 Pseudo-maximum likelihood methods

Gouriéroux, Monfort and Trognon (1984) studied inference on the parameter which ap-

pears in the mean of an endogenous random vector conditional to an exogenous random

vectorxi :

E (yi j xi) = f (xi; �) � fi (�) ; V (yi j xi) = 
o :

A consistent and asymptotically normal estimator of� can be obtained through the PML

method :

Max
�

nX
i=1

�
A (fi (�)) + C (fi (�))

0

yi
	

with
@A

@m
+
@C

@m
m = 0 :

The PML estimator is consistent and asymptotically normal, and we can write:

J (�) = Ex

@fi

@�

@C

@m
(fi (�)) �

@fi

@�0
;

I (�) = Ex

@fi

@�

@C

@m
(fi (�))
o

@C

@m0

@fi

@�0
:

These matrices can be estimated by :

Ĵ =
1

n

nX
i=1

@f 0
i

@�

�
�̂
� @C
@m

�
fi

�
�̂
�� @fi

@�0

�
�̂
�
;

Î =
1

n

nX
i=1

@f 0
i

@�

�
�̂
� @C
@m

�
fi

�
�̂
���

y � fi

�
�̂
���

yi � fi

�
�̂
��

0 @C

@m0

�
fi

�
�̂
��
�
@fi

@�0

�
�̂
�
:
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Since
@C 0

@m

�
fi

�
�̂
��

and yi � fi

�
�̂
�

are invariant to reparameterizations,Î and Ĵ are

modified only through
@fi

@�0
: Further,

f �
i
(��) = f �

i
[�g (�)] = f (�) ;

@f �
i

@�0
= K [�g (�)]0 �

@fi

@�
;

and

Î� = K
h
�g
�
�̂
�i

0

ÎK
h
�g
�
�̂
�i
; Ĵ� = K

h
�g
�
�̂
�i

0

ĴK
h
�g
�
�̂
�i
:

The Wald, Lagrange, score andC (�)-type pseudo-asymptotic tests are then invariant to a

reparameterization, though of course Wald tests will not be generally invariant to hypoth-

esis reformulations. Consequently, this provides a strong argument for using pseudo true

densities in the linear exponential family (instead of other types of densities) as a basis

for estimating paramenters of conditional means when the error distribution has unknown

type.
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