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We examine from an invariant theory viewpoint the monoid algebras for
two monoids having large symmetry groups. The first monoid is the free
left-regular band on n letters, defined on the set of all injective words, that is,
the words with at most one occurrence of each letter. This monoid carries the
action of the symmetric group. The second monoid is one of its q-analogues,
considered by K. Brown, carrying an action of the finite general linear group.
In both cases, we show that the invariant subalgebras are semisimple commu-
tative algebras, and characterize them using Stirling and q-Stirling numbers.

We then use results from the theory of random walks and random-to-top
shuffling to decompose the entire monoid algebra into irreducibles, simul-
taneously as a module over the invariant ring and as a group representation.
Our irreducible decompositions are described in terms of derangement sym-
metric functions, introduced by Désarménien and Wachs.

1. Introduction

Motivated by results on mixing times for shuffling algorithms on permutations,
Bidigare [1997] and Bidigare, Hanlon, and Rockmore [Bidigare et al. 1999] devel-
oped a complete spectral analysis for a class of random walks on chambers of a
hyperplane arrangement. Their work relied heavily on the Tits semigroup structure
on the cones of the arrangement. Later, Brown [2000] generalized their analysis to
random walks coming from semigroups F which form a left-regular band (LRB),
meaning that x2

= x for all x and xyx = xy for all x, y in F.
Here we study two examples of left-regular bands M , related to those discussed

by Brown, having actions of large groups of monoid automorphisms G:

• the free LRB on n letters [Brown 2000, §1.3], denoted Fn , with G the symmetric
group Sn , and
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• a q-analogue F
(q)
n related to monoids in [Brown 2000], and G the general

linear group GLn := GLn(Fq).

For both monoids M = Fn,F
(q)
n , we examine the monoid algebra R := kM with

coefficients in a commutative ring k, and answer the two main questions of invariant
theory for G acting on R:

Question 1.1. What is the structure of the invariant subalgebra RG?

Question 1.2. What is the structure of R, simultaneously as an RG-module and a
G-representation?

Section 2 answers Question 1.1 with our first main result, using the combinatorics
of Stirling and q-Stirling numbers. We paraphrase it here; see Theorem 2.9 for a
more precise statement.

Theorem 1.3. Consider either monoid M = Fn,F
(q)
n with symmetry groups G =

Sn, GLn , and assume that k is a field in which |G| is invertible.

(1) The invariant subalgebra RG is a commutative subalgebra of R generated by
a single element; call this element x for M = Fn and x (q) for M = F

(q)
n .

(2) The elements x, x (q) have minimal polynomials

f (X) =

{
X (X − 1)(X − 2) · · · (X − n), if M = Fn,

X (X − [1]q)(X − [2]q) · · · (X − [n]q), if M = F
(q)
n ,

where [m]q := 1 + q + · · · + qm−1 is a standard q-analogue of the integer
m ≥ 0.

(3) In particular, RG ∼= k[X ]/( f (X)), and RG acts semisimply on R, with
• x-eigenvalues 0, 1, 2, . . . , n on R = kFn ,
• x (q)-eigenvalues [0]q , [1]q , . . . , [n]q on R = kF (q)

n .

Since the above hypothesis that |G| is invertible in k also implies that kG acts
semisimply by Maschke’s theorem, this leads to our next goal: a complete answer
to Question 1.2 above, decomposing the monoid algebra R into simple modules for
the simultaneous (commuting) actions of RG and G. The fact that RG is generated
by a single, semisimple element x (respectively, x (q)) reduces this problem to
understanding each eigenspace of x (respectively, x (q)) as a kG-module.

To describe these kG-modules, recall that irreducible representations {χλ
} of Sn

are indexed by partitions λ of n and let C(S) :=
⊕

∞

n=0 C(Sn), where C(Sn) denotes
the Z-module of virtual characters of Sn . Then the classical Frobenius character-
istic map ch is an algebra isomorphism between C(S) and the ring of symmetric
functions 3. It has ch(χλ) = sλ, the Schur function, and the trivial representation 1n

has ch(1n) = hn , the complete homogeneous symmetric function.
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There is a parallel and q-analogous story for a subset of irreducible representations
{χλ

q } of GLn called the unipotent representations, also indexed by partitions λ of n.
These are the irreducible constituents of the GLn-permutation action on the set
GLn /B = F(V ) of complete flags of subspaces in V = (Fq)n . Here, too, there is a
q-Frobenius characteristic map chq that defines an algebra isomorphism between
C(GL) :=

⊕
∞

n=0 C(GLn) and 3, where C(GLn) is the free Z-submodule of the class
functions on GLn spanned by the unipotent characters {χλ

q }. As one might hope,
chq(χλ

q ) = sλ and chq(1GLn ) = hn , where 1GLn is the trivial representation of GLn .
This allows us to phrase parallel answers to Question 1.2, in terms of an important

family of symmetric functions introduced by Désarménien and Wachs [1988],
which we will call the Désarménien–Wachs derangement symmetric functions
{dn}n=0,1,2,... , reviewed in Section 3C. Here dn is both the Frobenius image of an
Sn-representation Dn that we call the Derangement representation, as well as the q-
Frobenius image of a q-analogous GLn-representation D

(q)
n . As the name suggests,

these representations have dimensions counted by the derangement numbers and
q-derangement numbers, respectively1. They have irreducible decomposition

Dn ∼=
⊕
Q

χλ(Q) and D(q)
n

∼=
⊕
Q

χλ(Q)
q ,

where Q runs through all standard Young tableaux of size n whose first ascent is
even [Reiner and Webb 2004]. Derangement symmetric functions have connections
to many well-studied objects in combinatorics such as the complex of injective words
[Reiner and Webb 2004], random-to-top and random-to-random shuffling [Uyemura-
Reyes 2002], higher Lie characters [Uyemura-Reyes 2002], and configuration spaces
[Hersh and Reiner 2017]; see Section 3C. We add to this list by showing they form
crucial building blocks for the invariant theory of kFn and kF (q)

n .
Section 4 derives the following answer to Question 1.2, paraphrased here — see

Theorem 4.11 for a more precise statement:

Theorem 1.4. Let k be a field whose characteristic does not divide |G|. Then
when x, x (q) act on kFn, kF (q)

n , for each j = 0, 1, 2, . . . , n, the j-eigenspace for x
and [ j]q -eigenspace for x (q) carry G-representations with the same Frobenius map
images

ch ker
(
(x − j)|kFn

)
=

n∑
ℓ= j

hn−ℓ · h j · dℓ− j = chq ker
(
(x (q)

− [ j]q)|kF (q)
n

)
.

Our proofs use techniques that go back to a discussion between Michelle Wachs
and Reiner in the analysis of random-to-top shuffling, and have been employed

1There are two natural families of kSn-modules whose dimensions are the derangement numbers,
discussed in [Hersh and Reiner 2017, Theorem 1.2]. The representation Dn here is the one with
character L̂ien in the notation of [Hersh and Reiner 2017, Equation (1)].
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more recently by Dieker and Saliola [2018] and Lafrenière [2020] in the analysis
of random-to-random shuffling and a generalization. The method constructs eigen-
vectors of x, x (q) acting on Fn,F

(q)
n from null vectors associated to the analogous

operators for smaller values of n. Combining these ideas with various filtrations
on kM allows us to describe the eigenspaces as parabolic inductions of derangement
representations in a conceptual way, avoiding character computations.

The remainder of the paper proceeds as follows: Section 2 introduces the monoid
algebras of interest, R = kFn, kF (q)

n , and proves Theorem 1.3, describing in parallel
the invariant subalgebras RG for G = Sn, GLn . Section 3 reviews the relation
between symmetric functions, representations of Sn and unipotent representations
of GLn . It also introduces the derangement symmetric functions dn , and describes
some of their many definitions and guises. Section 4 proves Theorem 1.4, simulta-
neously decomposing the monoid algebra R into simple modules for RG and kG,
with arguments in parallel for R = kFn and R = kF (q)

n .

2. Definitions, background, and the answer to Question 1.1

We introduce the monoids M = Fn,F
(q)
n , the symmetries G = Sn, GLn of the

monoid algebras R = kM , and analyze the invariant rings RG . Useful references
are Brown [2000] and B. Steinberg [2016].

2A. The monoids Fn and F
(q)
n .

Definition 2.1. The free left-regular band (or LRB) on n letters Fn (see [Brown
2000, §1.3] and [Steinberg 2016, §14.3.1]) consists, as a set, of all words a =

(a1, a2, . . . , aℓ) with letters ai from {1, 2, . . . , n} and no repeated letters, that is,
ai ̸= a j for 1 ≤ i < j ≤ n. Here the length ℓ(a) := ℓ lies anywhere in the range
0 ≤ ℓ ≤ n. The set Fn becomes a semigroup under the following operation: if
b = (b1, . . . , bm) is another word in Fn , then their product is

a · b := (a1, . . . , aℓ, b1, . . . , bm)∧,

where we have borrowed the notation from Brown [2000] that for a sequence
c = (c1, . . . , cp), the subsequence c∧

= (c1, . . . , cp)
∧ is obtained by removing any

letter ci that appears already in the prefix (c1, c2, . . . , ci−1). One can check that the
empty word ( ) is an identity element for this operation, and hence Fn is not only a
semigroup, but a monoid.

Definition 2.2. The q-analogue of Fn that we will consider will be denoted F
(q)
n .

As a set, it consists of all partial flags of subspaces A = (A1, A2, . . . , Aℓ), where Ai

is an i-dimensional Fq -linear subspace of (Fq)n , and A1 ⊂ A2 ⊂ · · ·⊂ Aℓ. Again the
length ℓ(A) :=ℓ lies in the range 0≤ℓ≤n. The set F (q)

n becomes a semigroup under
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the following operation: if B = (B1, . . . , Bm) is another such flag in F
(q)
n , then

A · B := (A1, . . . , Aℓ, Aℓ + B1, Aℓ + B2, . . . , Aℓ + Bm)∧

using a similar notation as before: for a sequence C = (C1, . . . , C p) of nested
subspaces C1 ⊆ C2 ⊆ · · · ⊆ C p, the subsequence C∧ is obtained by removing any
subspace Ci that appears already in the prefix (C1, C2, . . . , Ci−1). As above, F (q)

n

is not only a semigroup, but a monoid, since the empty flag ( ) is an identity element.

Remark 2.3. Warning: Brown [2000, §1.4 and §5] introduced two other monoids
Fn,q and Fn,q , closely related to F

(q)
n . All three are different q-analogues of Fn ,

related as follows:
Considered as a set, Brown’s first q-analogue Fn,q consists of all sequences

v = (v1, v2, . . . , vℓ) of linearly independent vectors in (Fq)n . For another sequence
v′

= (v′

1, v
′

2, . . . , v
′
m), one defines their product

v · v′
:= (v1, v2, . . . , vℓ, v

′

1, v
′

2 . . . , v′

m)∧,

where (u1, . . . , u p)
∧ is obtained by removing any ui which is dependent upon the

preceding vectors (u1, . . . , ui−1). One may regard the monoid F
(q)
n as a quotient

monoid of Fn,q via the surjection

Fn,q ↠ F (q)
n , (v1, v2, . . . , vℓ) 7→ (A1, A2, . . . , Aℓ),

where Ai := Fqv1 + Fqv2 + · · · + Fqvi .
Brown’s second q-analogue Fn,q turns out to be a further quotient of either

Fn,q or F (q)
n , whose motivation he explains in [Brown 2000, §5.1 and §5.2]. It

is q-analogous to a certain quotient monoid of Fn that he denotes Fn , which one
could define as follows: the monoid quotient map Fn ↠ Fn identifies the longest
words, those of length n, with their prefix word of length n − 1,

(a1, a2, . . . , an−1, an) = (a1, a2, . . . , an−1).

One can then define Brown’s second q-analogue Fn,q as a quotient of F (q)
n , where

the monoid quotient map F
(q)
n ↠ Fn,q identifies a complete flag of length n with

the flag of length n − 1 that omits the (improper) subspace (Fq)n at the end:

(A1, A2, · · · , An−1, (Fq)n) = (A1, A2, . . . , An−1).

2B. Symmetries of the monoid algebras. Let k be a commutative ring with 1. For
any finite monoid M (such as M = Fn,F

(q)
n ), the monoid algebra R = kM is the

free k-module with basis elements given by the elements a of M , and multiplication
extended k-linearly from the monoid operation on the basis elements(∑

a
pa a

)(∑
b

qb b
)

=
∑
a,b

paqb a · b =
∑

c

( ∑
a·b=c

paqb

)
c.
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Note that any group G of monoid automorphisms of M acts as ring automorphisms
on R = kM . In particular, the symmetric group Sn permuting letters {1, 2, . . . , n}

acts on Fn via
w(a1, . . . , aℓ) = (w(a1), . . . , w(aℓ)).

Similarly, the finite general linear group GLn := GLn(Fq) acts on F
(q)
n by

g(A1, . . . , Aℓ) = (g(A1), . . . , g(Aℓ)).

Our first goal is to analyze the G-invariant subalgebras RG in both cases.

2C. The invariant subalgebras RG and Question 1.1. Since the groups G permute
the monoid elements M , the monoid algebra R = kM becomes a permutation
representation of G. Therefore, the invariant subalgebra RG has as a k-basis the
orbit sums

{∑
a∈O a

}
as one runs through all G-orbits O on M . For both of the

monoids M = Fn,F
(q)
n , one can easily identify the G-orbits, since the groups

G = Sn and GLn act transitively on the subsets

Fn,ℓ := {a ∈ Fn : ℓ(a) = ℓ},

F
(q)

n,ℓ := {A ∈ F (q)
n : ℓ(A) = ℓ}.

Thus the G-invariant subalgebras RG have k-bases {xℓ}ℓ=0,1,...,n , and {x (q)

ℓ }ℓ=0,1,...,n ,
defined by

(1) xℓ :=
∑

a∈Fn,ℓ

a and x (q)

ℓ :=
∑

A∈F
(q)

n,ℓ

A.

Example 2.4. Let q = 2, n = 3, ℓ = 1, and let e1, e2, e3 be standard basis vectors
for V = (F2)

3. Using the notation ⟨v1, v2, . . . , vm⟩ for the Fq-span of the vectors
{v1, v2, . . . , vm} in V , one has

x (2)
1 = (⟨e1⟩)+(⟨e2⟩)+(⟨e3⟩)+(⟨e1+e2⟩)+(⟨e1+e3⟩)+(⟨e2+e3⟩)+(⟨e1+e2+e3⟩).

It will be convenient to adopt the convention that xn+1 := 0 =: x (q)

n+1.
Using the k-bases in (1) for (kFn)

Sn and (kF (q)
n )GLn , there is a simple rule for

multiplication by the elements

x := x1 =

n∑
i=1

(i) = (1) + (2) + · · · + (n),

x (q)
:= x (q)

1 =
∑

lines L⊂(Fq )n
(L).

To state the rule, recall a standard q-analogue of nonnegative integers

[n]q := 1 + q + q2
+ · · · + qn−1.
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Lemma 2.5. Inside RG for the monoid algebras R = kM with M = Fn,F
(q)
n , the

elements x and x (q) act on the (ordered) k-bases (1) as follows: for ℓ = 0, 1, . . . , n,

x · xℓ = ℓxℓ + xℓ+1,

x (q)
· x (q)

ℓ = [ℓ]q x (q)

ℓ + qℓ x (q)

ℓ+1.

In other words, x and x (q) act on RG , in the ordered bases above, via the matrices:

x =



0
1 1

1 2
1

. . .
n−1

1 n

 and x (q)
=



[0]q

q0
[1]q

q1
[2]q

q2 . . .
[n−1]q

qn−1
[n]q

.

Proof. Note that the product x · xℓ is G-invariant, and is a sum of terms a of length
ℓ or ℓ+1, so it must have the form c · xℓ +d · xℓ+1 for some constants c, d in k. The
constant d = 1, since any word a = (a1, a2, . . . , aℓ+1) of length ℓ+1 arises uniquely
as (a1) · (a2, . . . , aℓ+1). The constant c = ℓ, since any word (a1, a2, . . . , aℓ) of
length ℓ arises in ℓ ways, from these products:

(a1) · (a1, a2, a3, a4, . . . , aℓ),

(a1) · (a2, a1, a3, a4, . . . , aℓ),

(a1) · (a2, a3, a1, a4, . . . , aℓ),
...

(a1) · (a2, a3, a4, . . . , aℓ, a1).

For the q-analogous formula, one argues similarly that

x (q)
· x (q)

ℓ = c · x (q)

ℓ + d · x (q)

ℓ+1

for some constants c, d in k. We first show that the constant d = qℓ. Any flag
A = (A1, A2, . . . , Aℓ+1) of length ℓ + 1 arises from products of the form (A1) ·

(B1, B2 . . . , Bℓ), where the flag B1 ⊂ B2 ⊂ · · · ⊂ Bℓ satisfies A1 + Bi = Ai+1 for
i = 1, 2, . . . , ℓ. If one picks B1, B2, . . . , Bℓ sequentially, then having chosen Bi−1,
one must choose Bi so that Bi/Bi−1 is any line inside the 2-dimensional quotient
space Ai+1/Bi−1 other than the line (A1 + Bi−1)/Bi−1. Since there are q + 1 lines
in Ai+1/Bi−1, this gives q choices for Bi , and qℓ sequential choices in total for
B1, B2, . . . , Bℓ.

We next argue that the constant c = [ℓ]q . Any flag A = (A1, A2, . . . , Aℓ) of
length ℓ arises from products of the form (A1) · (B1, B2 . . . , Bℓ) in which the flag
B1 ⊂ B2 ⊂· · ·⊂ Bℓ has A1 ⊆ Bℓ (else, (A1)·(B1, B2 . . . , Bℓ) has length ℓ+1, not ℓ).
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Letting i0 be the smallest index for which A1 ⊆ Bi0 , one finds that 1 ≤ i0 ≤ ℓ.
Having fixed i0, the Bi for i in the range i0 ≤ i ≤ ℓ are completely determined by
Bi = A1+Bi = Ai . Meanwhile, for i in the range 1≤ i ≤ i0−1, as in the argument for
the constant d = qℓ above, one can sequentially choose each of B1, B2, . . . , Bi0−1

in q ways so that they satisfy A1 + Bi = Ai+1. This gives q i0−1 choices, which
when summed over i0 = 1, 2, . . . , ℓ gives 1+q +q2

+· · ·+qℓ−1
= [ℓ]q sequential

choices in total. □

Lemma 2.5 allows us to connect RG to the Stirling and q-Stirling numbers,
briefly reviewed here.

Definition 2.6. The classical Stirling numbers of the second kind (S(n, k))k,n=0,1,...

have two closely related families of q-analogues Sq(n, k), S̃q(n, k), introduced
by Carlitz [1933, §4] and studied by many others, e.g., Cai, Ehrenborg, and
Readdy [Cai et al. 2018], Garsia and Remmel [1986], Gould [1961], de Médicis
and Leroux [1993], Milne [1978; 1982], Sagan and Swanson [2022], Wachs and
White [1991], among others. Using the notation2 in [Milne 1978], all three are
doubly indexed triangles defined for (n, k) with n, k ≥ 0, having initial conditions
that set them all equal to 1 when (n, k) = (0, 0), and vanishing whenever n + k ≥ 1
but either k = 0 or n = 0. When both n, k ≥ 1, they are then defined by the recursions

(2)

S(n, k) = S(n − 1, k − 1) + k · S(n − 1, k),

S̃q(n, k) = S̃q(n − 1, k − 1) + [k]q · S̃q(n − 1, k),

Sq(n, k) = qk−1
· Sq(n − 1, k − 1) + [k]q · Sq(n − 1, k).

An easy induction using the recursion lets one check that, for all n and k, one has
the relation

Sq(n, k) = q(k
2) S̃q(n, k),

and for n ≥ 1, one has

(3) S(n, 1)= Sq(n, 1)= S̃q(n, 1)=1, S(n, n)= S̃q(n, n)=1, Sq(n, n)=q( n
2).

Remark 2.7. Alternatively, one can consider S(n, k), S̃q(n, k), Sq(n, k) as change-
of-basis matrices in the polynomial rings k[t] with k = Z, Z[q], Z[q, q−1

], re-
spectively. Consider the obvious ordered k-basis of k[t] given by the powers
(tn)∞n=0 = (1, t, t2, . . . ), versus these (q-)falling factorial k-bases,

(t)n := t (t − 1)(t − 2) · · · (t − (n − 1)), in Z[t],

(t)n,q := t (t − [1]q)(t − [2]q) · · · (t − [n − 1]q), in Z[q][t] or Z[q, q−1
][t].

2Notational conflicts are unavoidable. E.g., our Sq (n, k), S̃q (n, k) here equal S[n, k], S[n, k],
respectively, in [Sagan and Swanson 2022].
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Then one has these change-of-basis formulas (see3 Gould [1961, §3], Milne [1978,
Equation (1.14)], and [Garsia and Remmel 1986, Equation (I.17)]):

(4)

tn
=

∑
k

S(n, k) · (t)k, in Z[t],

tn
=

∑
k

S̃q(n, k) · (t)k,q , in Z[q][t],

tn
=

∑
k

Sq(n, k)q−(k
2) · (t)k,q , in Z[q, q−1

][t].

We next show that S(n, k), Sq(n, k) also mediate a natural change-of-basis
within RG .

Corollary 2.8. Let k be a commutative ring with 1, and let R = kM with M = Fn

or F
(q)
n . Then the (q-)Stirling numbers S(m, k) and Sq(m, k) are the expansion

coefficients for the powers {xm
}m=0,1,...,n and {(x (q))m

}m=0,1,...,n in the orbit-sum
k-bases {xk}k=0,1,...,n and {x (q)

k }k=0,1,...,n of RG :

xm
=

∑
k

S(m, k) xk and (x (q))m
=

∑
k

Sq(m, k) x (q)

k .

Thus unitriangularity of {S(m, k)} shows {xk
}k=0,1,...,n always gives a k-basis

for RG , while triangularity of {Sq(m, k)} shows {(x (q))k
}k=0,1,...,n is a k-basis

for RG if and only if q lies in k×.

Proof. Both expansions follow by induction on m. Here is the inductive step
calculation in the q-Stirling case, applying induction, Lemma 2.5, and (2) for
equalities (∗), (∗∗), and (∗ ∗ ∗), respectively:

(x (q))m
= x (q)

· (x (q))m−1 (∗)
= x (q)

·
∑
k

Sq(m − 1, k) x (q)

k

=
∑
k

Sq(m − 1, k) x (q)
· x (q)

k

(∗∗)
=

∑
k

Sq(m − 1, k)
(
[k]q x (q)

k + qk x (q)

k+1

)
=

∑
k

(
[k]q Sq(m − 1, k) + qk−1Sq(m − 1, k − 1)

)
x (q)

k

(∗∗∗)
=

∑
k

Sq(m, k)x (q)

k .

The q-expansion is invertible only when q lies in k× due to triangularity and
Sq(m, m) = q(m

2). □

This leads to our answer for Question 1.1.

3The formulas as discussed by Milne [1978, (1.14)] use the notation [x] = (y − 1)/(q − 1), where
y = qx is regarded as an indeterminate. To agree with notation and (4) here, one should substitute
t = [x] = (y − 1)/(q − 1), so that y = 1 + t (q − 1).



260 SARAH BRAUNER, PATRICIA COMMINS AND VICTOR REINER

Theorem 2.9. Let k be any commutative ring with 1, and let R = kM for either
of the monoids M = Fn,F

(q)
n , with symmetry groups G = Sn, GLn . If M = F

(q)
n ,

assume further that q is in k×.

(i) The unique k-algebra map k[X ]
γ
−→R defined by

X 7→

{
x, if M = Fn,

x (q), if M = F
(q)
n ,

induces an algebra isomorphism k[X ]/( f (X)) ∼= RG, where

f (X) :=

{
X (X − 1)(X − 2) · · · (X − n), if M = Fn,

X (X − [1]q)(X − [2]q) · · · (X − [n]q), if M = F
(q)
n .

Hence, RG is commutative and generated by x or x (q).

(ii) If k is a field, where |G| is invertible, then x or x (q) acts semisimply on any
finite-dimensional RG-module, with eigenvalues contained in the lists{

0, 1, 2, . . . , n, if M = Fn,

[0]q , [1]q , [2]q , . . . , [n]q , if M = F
(q)
n .

Proof. For (i), note that Lemma 2.5 shows that x or x (q) acts on RG with character-
istic polynomial f (X). Consequently, the kernel of the algebra map k[X ]

γ
−→RG

contains f (X), and γ descends to a map on the quotient k[X ]/( f (X))
γ
−→RG .

Moreover, since f (X) is monic of degree n + 1, the quotient k[X ]/( f (X)) has
k-basis (1, X, X2, . . . , Xn), and Corollary 2.8 shows that γ maps this onto a k-basis
of powers {xk

}
n
k=0 or {(x (q))k

}
n
k=0 for RG . Hence, γ is an algebra isomorphism.

For (ii), assume that k is a field where the roots of the characteristic polynomial
f (X) of x or x (q) acting on RG are all distinct. This means that f (X) must also be
the minimal polynomial for x , or x (q) acting on RG , and that it acts semisimply in
any finite dimensional RG-module, with eigenvalues contained in that set of roots.
Lastly, note the groups G have cardinalities

|G| =


|Sn| = n!, for M = Fn,

| GLn | = q(n
2)(q − 1)n

[n]!q

= (qn
− 1)(qn

− q)(qn
− q2) · · · (qn

− qn−1), for M = F
(q)
n ,

where the q-factorial [n]!q is defined by

(5) [n]!q := [n]q [n − 1]q · · · [2]q [1]q .

One can then check that the invertibility of n! in k and distinctness of 0, 1, 2, . . . , n
are both equivalent to k having characteristic zero or a prime p > n, while in-
vertibility of | GLn | in k and distinctness of [0]q , [1]q , [2]q , . . . , [n]q are both
equivalent to k having characteristic zero or characteristic coprime to q and to [m]q

for m = 1, 2, . . . , n. □
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We close this section with some remarks on Brown’s other q-analogues of Fn .

Remark 2.10. The analysis in Lemma 2.5 can be lifted to an analogous (and
even simpler) computation in Brown’s first q-analogue Fn,q . Denoting the orbit
sum k-basis in kFn,q by y0, y1, . . . , yn , multiplication by the element y := y1 =∑

v∈(Fq )n\{0}
(v) acts on that basis as follows:

(6) y · yℓ = (qℓ
− 1)yℓ + yℓ+1.

Bearing in mind that the monoid surjection Fn,q
π
↠ F

(q)
n described in Remark 2.3

has exactly

(q − 1)(q2
− q) · · · (qℓ

− qℓ−1) = (q − 1)ℓq(ℓ
2)

preimages (v1, v2, . . . , vℓ) for every flag A = (A1, A2, . . . , Aℓ), one can check
that (6) maps under the linearization kFn,q

π
↠kF (q)

n to a formula consistent with the
second formula in Lemma 2.5.

Remark 2.11. It is also easy to check that Lemma 2.5 gives similar computations
in the other monoids Fn and Fn,q considered by Brown, discussed in Remark 2.3.
Specifically, in kFn , one has

x̄ · x̄ℓ =

{
ℓx̄ℓ + x̄ℓ+1, if 0 ≤ ℓ < n − 1,

nx̄n−1, if ℓ = n − 1,

and in kFn,q , one has

x̄ (q)
· x̄ (q)

ℓ =

{
[ℓ]q x̄ (q)

ℓ + qℓ x̄ (q)

ℓ+1, if 0 ≤ ℓ < n − 1,

[n]q x̄ (q)

n−1, if ℓ = n − 1.

The point is that when one k-linearizes the monoid surjection F → Fn it maps
xℓ 7−→ x̄ℓ for i ≤ n−2, and maps xn−1, xn 7−→ x̄n−1. An analogous statement holds
for F (q)

→ Fn,q . One can then check that applying these linearized surjections to
Lemma 2.5 gives the above formulas.

3. Representation-theoretic preliminaries

Having answered Question 1.1 by describing the structure of RG , the next few
subsections collect and review some facts regarding representations of G = Sn and
G = GLn that will help us answer Question 1.2 in Section 4 on the structure of R,
simultaneously as an RG-module and a G-representation.

3A. Semisimplicity, filtrations, and eigenspaces. In what follows, we will be
examining various modules V over the monoid algebra R = kM for the two
monoids M = Fn,F

(q)
n , carrying kG-module structures for the automorphism
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groups G =Sn, GLn . In all cases, the G-actions on R and V will be compatible in
the sense that

g(r · v) = g(r) · g(v) for all r ∈ R, v ∈ V, g ∈ G.

Note that in this setting, V carries commuting actions of RG and of kG, and we
will wish to describe it simultaneously as a module over both.

Henceforth, assume that k is a field in which |G| is invertible, and take V to be
finite-dimensional over k. This implies that V is semisimple both as an RG-module
due to Theorem 2.9 (ii), and as a kG-module by Maschke’s Theorem.

In order to answer Question 1.2, we will utilize two important features of our
setting:

(1) Semisimplicity implies that given a filtration by RG-submodules and kG-
submodules Vi

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V,

one actually has an RG-module and kG-module isomorphism

V ∼=
⊕

i
Vi/Vi−1.

This will play a crucial role in Section 4B (specifically, in our proof of Theorem 1.4),
where we will define filtrations on kFn and kF (q)

n that significantly simplify the
analysis.

(2) By Theorem 2.9 (ii), we have that RG is generated by the single element x
or x (q), which acts diagonalizably with certain eigenvalues λ all lying in k. It follows
that in order to understand the RG and kG-module structure of any module V , it
suffices to decompose the eigenspaces ker((x − λ)|V ) as kG-modules.

Hence, we will answer Question 1.2 by describing the j-eigenspaces of kFn as
Sn-representations and the [ j]q -eigenspaces of kF (q)

n as GLn- representations for
j = 0, 1, . . . , n.

3B. Symmetric functions,Sn-representations,and unipotent GLn-representations.
We review here the relation between the ring of symmetric functions 3 and rep-
resentations of Sn; see Sagan [1991] and Stanley [1999] as references, and for
undefined terminology. We then review the parallel story for R. Steinberg’s unipotent
representations of GLn; see [Grinberg and Reiner 2014, §4.2, §4.6, and §4.7] as a
reference.

The ring of symmetric functions 3 (of bounded degree, in infinitely many vari-
ables) may be viewed as a polynomial algebra Z[h1, h2, . . . ]= Z[e1, e2, . . . ], where
hn and en are the complete homogeneous and elementary symmetric functions of
degree n. One may view 3 as a graded Z-algebra 3 =

⊕
∞

n=0 3n , which we wish
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to relate to the direct sum

C(S) :=

∞⊕
n=0

C(Sn),

where C(Sn) denotes the Z-module of virtual characters of Sn . That is, C(Sn)

is the free Z-module on the basis of irreducible characters {χλ
} indexed by the

partitions λ of n, or alternatively, the Z-submodule of class functions on Sn of the
form χ − χ ′ for genuine characters χ, χ ′. One makes C(S) into a graded algebra
via the induction product defined by

(7) C(Sn1)×C(Sn2) → C(Sn1+n2), ( f1, f2) 7→ f1 ∗ f2 := ( f1 ⊗ f2) ↑
Sn1+n2
Sn1×Sn2

,

where (−) ↑
G
H is the usual induction of class functions on a subgroup H to class

functions on G.
For later use, we note that since [Sn1+n2 :Sn1 ×Sn2] =

(n1+n2
n1

)
, whenever f1, f2

are genuine characters, one has the formula for the degree of f1 ∗ f2:

(8) deg( f1 ∗ f2) =

(n1+n2
n1

)
deg( f1) deg( f2).

One then has the Frobenius characteristic isomorphism of Z-algebras C(S)
ch
−→3,

mapping
C(S)

ch
−→3, 1Sn 7→ hn, sgnSn

7→ en, χλ
7→ sλ.

Here, sλ is the Schur function. For a composition α = α1, α2, . . . , αℓ, we use the
standard shorthand

hα := hα1hα2 · · · hαℓ
.

For later use, we note that one can express the regular representation kSn =

1S1 ∗ 1S1 ∗ · · · ∗ 1S1 , implying

(9) ch kSn = hn
1 = h1n .

There is a parallel story for a certain subset of GLn-representations. Specifically,
there is a collection of irreducible GLn-representations {χλ

q }, indexed by partitions λ

of n, which are the irreducible constituents occurring within the GLn-permutation
action on the set GLn /B of complete flags of subspaces F(V ) in V = (Fq)n . They
were studied by R. Steinberg [1951], and are now called the unipotent characters
of GLn . Letting C(GLn) represent the free Z-submodule of the class functions
on GLn with unipotent characters {χλ

q } as a basis, one can define the parabolic or
Harish–Chandra induction product on the direct sum C(GL) :=

⊕
∞

n=0C(GLn) as
follows:

C(GLn1) × C(GLn2) → C(GLn1+n2),

( f1, f2) 7→ f1 ∗ f2 :=
(
( f1 ⊗ f2) ⇑

Pn1,n2
GL n1×GLn2

)
↑

GL n1+n2
Pn1,n2

.
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Here, Pn1,n2 is the maximal parabolic subgroup of GLn1+n2 setwise stabilizing the
Fq-span of the first n1 standard basis vectors, and (−)⇑

Pn1,n2
GL n1×GLn2

is the inflation
operation that creates a GL n1 × GLn2-representation from a Pn1,n2-representation,
by precomposing with the surjective homomorphism Pn1,n2 ↠GLn1 × GLn2 sending[ A

0
B
C

]
7→

[ A
0

0
C

]
. For later use, we note that since the inflation operation does not

change the degree of a representation, and since

[GLn1+n2 : Pn1,n2] =

[
n1 + n2

n1

]
q

=
[n1 + n2]!q

[n1]!q [n2]!q
,

(with [n]!q as in (5)) when f1, f2 are genuine characters, one has this degree formula
for f1 ∗ f2:

(10) deg( f1 ∗ f2) =

[
n1 + n2

n1

]
q

deg( f1) deg( f2).

This parabolic induction operation turns out to make C(GL) into an associative,
commutative Z-algebra. One then has a q-analogue of the Frobenius isomorphism
C(GL)

chq
−−→3 sending4

C(GL)
chq
−−→3, 1GLn 7→ hn, χλ

q 7→ sλ.

Note that the permutation representation k[GLn /B] of GLn on the complete flags
can be expressed as 1GL1 ∗ 1GL1 ∗ · · · ∗ 1GL1 , and therefore one has this q-analogue
of (9):

(11) chq k[GLn /B] = hn
1 = h1n .

3C. (q-)derangement numbers and representations. A central role in this story is
played by the classical derangement numbers dn and the q-derangement numbers
dn(q) of Wachs [1989]:

(12)

dn := n!

n∑
k=0

(−1)k

k!
= n!

(
1
1!

−
1
2!

+
1
3!

−
1
4!

+ · · · +
(−1)n

n!

)
,

dn(q) := [n]!q

n∑
k=0

(−1)k

[k]!q
.

There are two well-known combinatorial models for dn counting permutations
in Sn:

• derangements, which are the fixed-point free permutations, or

4One might wonder which GLn-character maps under chq to the elementary symmetric function en ;
it is the Steinberg representation, in which GLn acts on the top homology of the Tits building, which
is the simplicial complex of flags of nonzero proper subspaces in (Fq )n .
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• desarrangements, which are permutations w = (w1, w2, . . . , wn) whose first
ascent position i with wi < wi+1 (using wn+1 = n + 1 by convention) occurs
for an even position i .

Wachs [1989], and later Désarménien and Wachs [1993], gave various interpre-
tations for dn(q). In particular, dn(q) is still closely related to derangements and
desarrangements. Letting Dn and En denote the derangements and desarrangements
in Sn , and defining the major index statistic of a permutation w = (w1, . . . , wn) as
maj(σ ) =

∑
i :wi >wi+1

i , one has

dn(q) =
∑

σ∈Dn

qmaj(σ )
=

∑
σ∈En

qmaj(σ−1).

These dn and dn(q) are the dimensions for a pair of representations of Sn

and GLn , which we call the derangement representation Dn and its (unipotent)
q-analogue D

(q)
n . Both have the same symmetric function image dn under the

Frobenius maps ch and chq , a symmetric function with many equivalent descriptions.
For the reader’s convenience, and for future use, we will compile these descriptions
in Proposition 3.1, after first reviewing terminology.

Define for a permutation w = (w1, w2, . . . , wn) in Sn its descent set

Des(w) :=
{
i ∈ {1, 2, . . . , n − 1} : wi > wi+1

}
.

For example, w = (6, 3, 5, 2, 1, 4) has Des(w)={1, 3, 4}. Note that the definition of
a desarrangement given above may be rephrased as a permutation w in Sn for which
the smallest element of {1, 2, . . . , n} \ Des(w) is even. Thus w = (6, 3, 5, 2, 1, 4)

is a desarrangement, since min({1, 2, 3, 4, 5, 6} \ {1, 3, 4}) = 2 is even.
Given a standard Young tableau Q with n cells written in English notation, its

descent set is

Des(w) := {i ∈ {1, 2, . . . , n −1} : i +1 appears south and weakly west of i in Q}.

For example,

Q =

1 3
2 6
4
5

has Des(Q) = {1, 3, 4}. Define a desarrangement tableau to be a standard Young
tableau Q with n cells for which the smallest element of {1, 2, . . . , n} \ Des(Q) is
even. Thus, the example tableau Q given above is a desarrangement tableau.

Finally, for integers n ≥ 1 and D ⊆ [n], define Gessel’s fundamental quasisym-
metric function

Ln,D :=
∑

1≤i1≤i2≤···≤in
i j <i j+1 if j∈D

xi1 xi2 · · · xin ,
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which is a formal power series in x1, x2, . . . and is homogeneous of degree n. For
w in Sn , let λ(w) denote its cycle type partition of n. For any partition λ of n,
the higher Lie character of Thrall [1942] or the Gessel–Reutenauer symmetric
function Lλ (see [Gessel and Reutenauer 1993], [Grinberg and Reiner 2014, §6.6],
and [Stanley 1999, Exercise 7.89 ]) can be defined as

Lλ :=
∑

w∈Sn :

λ(w)=λ

Ln,Des(w).

Proposition 3.1. With the convention that d0 := 1, the following definitions of a
sequence of symmetric functions {dn}n=0,1,2,... are all equivalent:

(A) dn = h1dn−1 + (−1)nen for n ≥ 1;

(B) dn =
∑n

k=0(−1)kek · h1n−k ;

(C) dn = h1n −
∑n−1

j=0 d j hn− j
(
or equivalently, h1n =

∑n
j=0 d j hn− j

)
for n ≥ 1;

(D) dn =
∑

Q sλ(Q), where Q runs through the desarrangement tableaux of size n;

(E) dn =
∑

w Ln,Des(w), where w runs through all desarrangements in Sn;

(F) dn =
∑

w Ln,Des(w), where w runs through all derangements in Sn;

(G) dn =
∑

w Lλ(w), where w runs through all derangements in Sn .

We will mainly need definition (C) for dn . However, we wish to point out that
part (D) decomposes dn very explicitly into Schur functions, illustrated in Table 1
for n = 0, 1, 2, 3, 4.

n desarrangement tableaux Q dn

0 ∅ 1
1 none 0

2 1
2

s(1,1)

3 1 3
2

s(2,1)

4 1
2
3
4

1 3
2
4

1 3
2 4

1 3 4
2

s(1,1,1,1) + s(2,1,1) + s(2,2) + s(3,1)

Table 1. Decomposition of dn into Schur functions for n = 0,1,2,3,4.
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Sketch proof of Proposition 3.1.. We sketch some of the equivalences here. The
equivalence of (A) and (B) is straightforward. Defining {dn} by (A), note they
satisfy definition (C) by induction on n:

(13)
n∑

j=0
d j hn− j =

( n∑
j=1

d j hn− j

)
+hn =

( n∑
j=1

(h1d j−1+(−1) j e j )·hn− j

)
+hn

= h1

n∑
j=1

d j−1hn− j
(∗)
=

n∑
j=0

(−1) j e j hn− j

(∗∗)
= h1 ·h1n−1 +0 = h1n .

Here, equality (∗) used
∑n

j=0(−1) j e j hn− j = 0 for n ≥ 1, and equality (∗∗) used
induction. Consequently, (A) and (C) define the same sequence of polynomials {dn},
and so (A), (B), and (C) coincide.

Defining {dn} by the explicit sum (D), let us check that they also satisfy the
recursive definition (A) by induction on n. In the base case n = 0, both have d0 = 1,
since the unique (empty) tableau of size 0 is a desarrangement tableau. In the
inductive step, using the Pieri formula shows that h1 · dn−1 is the sum over all
standard tableaux of size n obtained from a desarrangement tableau Q of size n −1
by adding n in any corner cell. This produces all desarrangement tableaux of size n,
except the single column tableau Q0 which:

• is produced for n odd, but is not a desarrangement tableaux, and

• is not produced for n even, but is a desarrangement tableau.

These exceptions are corrected by (−1)nen in the formula dn = h1dn1 + (−1)nen

in (A). Consequently, (A) and (D) define the same sequence of polynomials {dn}.
The equivalence of (D) and (E) uses two facts. First, applying the Robinson–

Schensted bijection to w to obtain a pair of standard Young tableaux (P, Q), one has
Des(w)= Des(Q); see [Stanley 1999, Lemma 7.23.1]. Thus, w is a desarrangement
if and only if Q is a desarrangement tableau5. Second, sλ =

∑
P LDes(P), where P

runs over standard Young tableaux of shape λ, by [Stanley 1999, Theorem 7.19.7].
The equivalence of (E) and (F) was proven by Désarménien and Wachs [1988],

where they showed that both families of symmetric functions defined in (E) and
(F) satisfy the recursive definition (C). Their proof also used the equivalence of (F)
and (G) that follows from the definition of Lλ. □

Note that part (B) of Proposition 3.1 generalizes the formulas in (12), upon
taking dimensions of the various representations and using (8) and (10). Similarly,

5Our earlier examples w = (6, 3, 5, 2, 1, 4) and Q also exemplify this, as w 7→ (P, Q) with
Q = 1 3

2 6
4
5

and P = 1 4
2 5
3
6

.
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part (C) corresponds to the formulas:

(14)
dimk kSn = n! =

n∑
j=0

dn− j

(n
j

)
,

dimk k[GLn /B] = [n]!q =

n∑
j=0

dn− j (q)
[n

j

]
q
,

after taking into account (9) and (11).
We conclude this section with some further historical remarks and context on

the derangement representations Dn and symmetric functions dn .

Remark 3.2. We are claiming no originality in Proposition 3.1. As mentioned in
its proof, the equivalence of (C), (E), (F), and (G) is work of Désarménien and
Wachs [1988]. In [Reiner and Webb 2004, Propositions 2.2, 2.1, and 2.3], it is noted
that one can repackage their results to include part (D). It was also noted there that
the tensor product sgn ⊗Dn of Dn with the one-dimensional sign representation sgn
of Sn , carries the same kSn-module as the homology of the complex of injective
words on n letters. Therefore, after tensoring with the sign character of Sn or
applying the fundamental involution ω on symmetric functions, parts (A), (C),
and (D) above correspond to [Reiner and Webb 2004, Propositions 2.2, 2.1, and
2.3].

Remark 3.3. It was noted in [Hersh and Reiner 2017] that Dn occurs naturally
in the representation stability and FI -module structure (as in Church, Ellenberg,
and Farb [Church et al. 2015]) on the cohomology of the configuration space of n
labeled points in Rd for d odd. Specifically, Dn is the kSn-module on the subspace
of FI -module generators for this cohomology, denoted L̂ien in [Hersh and Reiner
2017, Theorems 1.2 and 1.3].

Remark 3.4. As hinted at in Section 1, Dn also occurs as the kSn-module on
the kernel of two shuffling operators on kSn , both studied by Uyemura-Reyes:
random-to-top shuffles [2002, §1.1.7, §3.2.2, and §4.5.3] (also known as the Tsetlin
library) and random-to-random shuffles [2002, Chapter 5]; see also [Steinberg 2016,
Proposition 14.5] and Section 4A below. More generally, Uyemura-Reyes [2002,
Theorem 4.1] described the kSn-module structure on the eigenspaces for all
Bidigare–Hanlon–Rockmore shuffling operators that carry Sn-symmetry. Among
these are random-to-top shuffles, whose eigenvalue multiplicities had previously
been computed by Phatarfod [1991], ignoring the kSn-module structure. See also
the discussion by Hanlon and Hersh [2004, §3] and by Saliola, Welker, and Reiner
[Reiner et al. 2014, §VI.9].

Remark 3.5. In unpublished notes, Garsia [2012] (see also Tian [2016]), stud-
ied the top-to-random shuffling operator, which is adjoint or transpose to the
random-to-top operator. There he sketched a proof that its minimal polynomial
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is X (X − 1)(X − 2) · · · (X − n). The element x acts as (rescaled) random-to-top
on the chamber space of Fn (see 4A). In light of the fact that an operator and its
transpose have the same minimal polynomial, Garsia’s sketch is closely related to
the part of our proof of Theorem 2.9 dealing with M = kFn .

4. Answering Question 1.2

Our goal here is to answer Question 1.2, by describing the kG-module decomposi-
tions on the eigenspaces of x, x (q) as they act on kM for M = Fn,F

(q)
n .

Recall the (k-vector space) direct sum decompositions by length:

kFn =

n⊕
ℓ=0

kFn,ℓ, where Fn,ℓ := {a ∈ Fn : ℓ(a) = ℓ},

kF (q)
n =

n⊕
ℓ=0

kF (q)

n,ℓ , where F
(q)

n,ℓ := {A ∈ F (q)
n : ℓ(A) = ℓ}.

Following Brown [2000], we call the monoid elements of Fn,n and F
(q)
n,n of maximum

length chambers. Their k-spans kFn,n and kF (q)
n,n , which we call the chamber spaces,

form submodules for the action of both the monoid algebras kM and the group
algebras kG. We first analyze the structure of these chamber spaces in Section 4A,
and then use this to analyze the entire semigroup algebra kM in Section 4B.

4A. The chamber spaces. The chamber space kFn,n consists of all words of
length n. Thus, as a kSn module it is isomorphic to the left regular-representation
kSn . Similarly, kF (q)

n,n has as a k-basis the set F(V ) = {A = (A1, . . . , An)} of
all complete flags A1 ⊂ · · · ⊂ An−1 ⊂ An(= V ), and is isomorphic to the coset
representation of GLn on k[GLn /B].

We start with an old observation: multiplication by x acts on Fn,n as a (rescaled)
version of the random-to-top operator on kSn; see, for instance, B. Steinberg [2016,
Proposition 14.5].

Example 4.1. If n = 4 and w = (3, 1, 4, 2) in F4,4, then

x · w = ((1) + (2) + (3) + (4)) · (3, 1, 4, 2)

= (1, 3, 4, 2) + (2, 3, 1, 4) + (3, 1, 4, 2) + (4, 3, 1, 2),

which
(
after scaling by 1

4

)
is the result of random-to-top shuffling on w as an

element of kS4.

In this sense, the results in this section for the chamber space kFn,n are repack-
aging previously mentioned results on random-to-top shuffling and the Sn-action
on its eigenspaces, due to Uyemura-Reyes [2002, Theorem 4.19], building on the
computation of Phatarfod [1991] of the eigenvalue multiplicities. On the other hand,
as far as we aware, our results for the q-analogue kF (q)

n,n in Theorem 4.2 are new.
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We record here the action of x (q) on a complete flag A in V = (Fq)n , using
Definition 2.2:

x (q)
·A =

∑
lines L∈V

(L)·A =
∑

lines L∈V
(L , L+A1, L+A2, . . . , L+An−1, L+An)

∧.

For j = 0, 1, . . . n, we will write the j- and [ j]q-eigenspaces of the chamber
spaces kFn,n and kF (q)

n,n as

ker
(
(x − j)|kFn,n

)
and ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

In Theorem 4.2 below, we relate these j- and [ j]q -eigenspaces to Dn− j and D
(q)

n− j .
Our proof depends crucially on Proposition 4.5, Proposition 4.7, and Lemma 4.8
(all proved in Section 4A1) wherein we explicitly construct eigenvectors for the
action of x and x (q) on the chamber spaces kFn,n and kF (q)

n,n from the null vectors
of the same operators for smaller n.

Theorem 4.2. When x and x (q) act on kFn,n and kF (q)
n,n , for each j = 0, 1, 2, . . . , n,

their eigenspaces carry representations with the same Frobenius map images

ch ker
(
(x − j)|kFn,n

)
= h j · dn− j = chq ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

In other words, one has kG-module isomorphisms:

ker
(
(x − j)|kFn,n

)
∼= 1S j ∗Dn− j ,

ker
(
(x (q)

− [ j]q)|kF (q)
n,n

)
∼= 1GL j ∗D

(q)

n− j .

Proof. Lemma 4.8 below exhibits G-equivariant injections

(15)
1S j ∗ ker(x |kFn− j,n− j ) ↪→ ker

(
(x − j)|kFn,n

)
,

1GL j ∗ ker
(
x (q)

|kF (q)

n− j,n− j

)
↪→ ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

We now use facts proven by Phatarfod [1991] for q = 1 and by Brown [2000,
§5.2] for the q-analogue6:

dimk ker(x |kFn,n ) = dn and dimk ker
(
x (q)

|kF (q)
n,n

)
= dn(q).

Hence, the spaces on the left sides in (15) have dimensions dn− j
(n

j

)
and dn− j (q)

[ n
j

]
q ,

respectively. However, since eigenspaces for distinct eigenvalues are always linearly
independent, and since

kFn,n ∼= kSn and kF (q)
n,n

∼= k[GLn /B]

6A minor discrepancy here is that Brown analyzes the action of x(q) not on the chamber space of
kF (q)

n itself, but rather on the chamber space of the quotient kF (q)
n discussed in Remark 2.3 above.

However, just as Brown points out for Fn and Fn in [Brown 2000, Remark, p. 888], the bijection
(A1, A2, . . . , An−1, V ) 7→ (A1, A2, . . . , An−1) between chambers of F (q)

n and those of kF (q)
n will

commute with both the action of GLn and with multiplication by x(q).
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have dimensions n! and [n]!q , the equations in (14) imply that the injections in (15)
must all be isomorphisms.

It also follows from the above analysis, or from Theorem 2.9 (ii), that

kFn,n =

n⊕
j=0

ker
(
(x − j)|kFn,n

)
and kF (q)

n,n =

n⊕
j=0

ker
(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

Then using (9) and (11) and comparing with Proposition 3.1 (C), the theorem
follows. □

4A1. Constructing eigenvectors from null vectors: proof of Lemma 4.8. The goal
of this subsection is to prove Lemma 4.8. It relies on parallel constructions7 of
eigenvectors for x and x (q) acting on the spaces kFn,n and kF (q)

n,n from null vectors
for the same operators for smaller n.

Definition 4.3. Let [n] :={1,2, . . . ,n}, and fix a j -element subset U of {1,2, . . . ,n}.
Let S[n]\U denote the permutations a = (a1, a2, . . . , an− j ) of the complementary
subset [n]\U , written in one-line notation. On the k-vector space k[S[n]\U ] having
these permutations as a k-basis, define two maps 9U , 8U : k[S[n]\U ] → k[Sn] by
extending these rules k-linearly:

9U (a) :=
∑

b∈SU

(b1, b2, . . . , b j , a1, a2, . . . , an− j ),

8U (a) :=
∑

b∈SU

(a1, b1, b2, . . . , b j , a2, . . . , an− j ),

where the summation indices b run over all permutations b= (b1, b2, . . . , b j ) in SU .

Example 4.4. Let n = 5 and U = {4, 5}. Then

9U ((1, 2, 3)) = (4, 5, 1, 2, 3) + (5, 4, 1, 2, 3),

8U ((1, 2, 3)) = (1, 4, 5, 2, 3) + (1, 5, 4, 2, 3).

To state the next proposition, introduce for U ⊆ [n] the free left-regular band FU

on U , having an obvious isomorphism FU ∼=F j if j = |U |. Also let xU :=
∑

i∈U (i)
inside kFU .

Proposition 4.5. Fix a j-element subset U of [n] and a permutation a in S[n]\U .
Then

x · 9U (a) = j · 9U (a) + 8U (x[n]\U · a).

Consequently, if v in kF[n]\U,n− j has x[n]\U · v = 0, then 9U (v) is a j-eigenvector
for x on kFn,n:

x · 9U (v) = j · 9U (v).

7Reiner is grateful to Michelle Wachs for explaining to him the kFn version of this construction
(the operator 9U ) in 2002, in the context of random-to-top shuffling.
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Proof. One can calculate that

x · 9U (a) =

n∑
i=1

(i) · 9U (a) =
∑
i∈U

(i) · 9U (a) +
∑

i∈[n]\U
(i) · 9U (a)

= j · 9U (a) + 8U (x[n]\U · a),

where we explain here the two substitutions in the last equality. The fact that the
left sum equals j ·9U (a) follows from the last equation x ·x j = j ·x j in Lemma 2.5
applied to kFU ∼= kF j . The fact that the right sum is 8U (x[n]\U · a) follows via
direct calculation from the definitions. □

We next introduce two q-analogous maps 9
(q)

U and 8
(q)

U .

Definition 4.6. Fix U a j-dimensional Fq-linear subspace of V = (Fq)n . Let
F(V/U ) denote the set of maximal flags in the quotient space V/U

A = (A1, A2 . . . , An− j−1, An− j︸ ︷︷ ︸
=V/U

).

On the space k[F(V/U )] with these flags as a k-basis, we define the maps
9

(q)

U , 8
(q)

U : k[F(V/U )] → k[F(V )] by extending the following rules k-linearly:

9
(q)

U (A) :=
∑

B∈F(U )

(B1, B2, . . . , B j−1, U, A1 + U, A2 + U, . . . , An− j−1 + U, V ),

8
(q)

U (A) :=
∑

lines L:
L⊂U+A1,

L ̸⊂U

∑
B∈F(U )

(L , L + B1, . . . , L + B j−1,

=L+U+A1︷ ︸︸ ︷
L + U ,

L + U + A2, . . . , L + U + An− j−1, V ),

where the summation indices B run over all complete flags B = (B1, . . . , B j−1, U )

in F(U ).

To state the next proposition, introduce for any Fq -vector space U of dimension j
the monoid F

(q)

U
∼= F

(q)

j by identifying U ∼= F
j
q . Also introduce the element of

the monoid algebra kF (q)

U

x (q)

U :=
∑

lines L in U
(L).

Proposition 4.7. For a j-dimensional subspace U of V = (Fq)n and complete
flag A in F(V/U ),

x (q)
· 9

(q)

U (A) = [ j]q · 9
(q)

U (A) + 8
(q)

U

(
x (q)

V/U · A
)
.

Hence if v in kF (q)

V/U,n− j has x (q)

V/U ·v = 0, then 9
(q)

U (v) is a [ j]q -eigenvector for x (q)

on kF (q)
n,n :

x (q)
· 9

(q)

U (v) = [ j]q · 9
(q)

U (v).
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Proof. One can calculate that

x (q)
· 9

(q)

U (A) =
∑

lines L
in V

(L) · 9
(q)

U (A) =
∑

lines L
in U

(L) · 9
(q)

U (A) +
∑

lines L
not in U

(L) · 9
(q)

U (A)

= [ j]q · 9
(q)

U (A) + 8
(q)

U (x (q)

V/U · A),

where we explain here the two substitutions in the last equality. The fact that the
left sum equals [ j]q ·9

(q)

U (A) follows from the last equation x (q)
· x (q)

j = [ j]q · x (q)

j
in Lemma 2.5 applied to kF (q)

U
∼= kF (q)

j . To check the substitution made for the
right sum, one calculates directly that

8
(q)

U (x (q)

V/U · A)

=
∑

lines L
in V/U

8
(q)

U ((L) · A)

=
∑

lines L
in V/U

8
(q)

U

(
(L, L + A1, L + A2, . . . , L + An− j−1, V/U )∧

)
=

∑
lines L
in V/U

∑
lines L in V

L⊂U+L
L ̸⊂U

∑
B∈F(U )

(L , L + B1, . . . , L + B j−1,

=L+U︷ ︸︸ ︷
L + B j ,

L + U + A1, . . . , L + U + An− j−1, V )∧

=
∑

lines L in V
L ̸⊂U

∑
B∈F(U )

(L)·(B1, . . . , B j−1,

= U

}

B j , A1+U, A2+U, . . . , An− j−1+U, V )

=
∑

lines L
not in U

(L) · 9
(q)

U (A). □

We are at last ready to prove Lemma 4.8.

Lemma 4.8. With our usual notation of G = Sn, GLn acting on kM for M =

Fn,F
(q)
n , one has G-equivariant injections for j = 0, 1, 2, . . . , n:

1S j ∗ ker(x |kFn− j,n− j ) ↪→ ker
(
(x − j)|kFn,n

)
,

1GL j ∗ ker(x (q)
|kF (q)

n− j,n− j
) ↪→ ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
.

Proof. We give the proof for F (q)
n ; the proof for Fn is analogous, but easier.

For each j-dimensional subspace U of V = (Fq)n , define a subspace E(U )

of kF (q)
n,n as the image under 9

(q)

U of the nullspace for x (q)
= x (q)

V/U acting on
kF (q)

V/U,n− j
∼= kF (q)

n− j,n− j :

E(U ) := 9
(q)

U

(
ker x (q)

|kF (q)

V/U,n− j

)
.

According to Proposition 4.7, each E(U ) is a subspace of the [ j]q-eigenspace
ker

(
(x (q)

− [ j]q)|kF (q)
n,n

)
. Note that vectors in E(U ) are sums of complete flags

A = (A1, . . . , An) that pass through A j = U , and hence for U ̸= U ′, they are
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supported on basis elements of kF (q)
n,n indexed by disjoint sets of complete flags.

Therefore, the subspace sum of all E(U ) is a direct sum
⊕

U E(U ) inside this [ j]q -
eigenspace for x . It only remains to produce an isomorphism of GLn-representations

(16)
⊕
U

E(U ) ∼= 1GL j ∗ ker
(
x (q)

|kF (q)

n− j,n− j

)
.

Recall that GLn acts transitively on j-subspaces U . Fix the particular subspace U0

spanned by the first j standard basis vectors in V = (Fq)n , whose GLn-stabilizer is
the maximal parabolic subgroup Pj,n− j . It follows (see, e.g., Webb [2016, Propo-
sition 4.3.2]) that

⊕
U E(U ) carries the GLn-representation induced from Pj,n− j

acting on E(U0). However, because elements in E(U0) are supported on flags A
in E(U0) that all pass through A j = U0, this Pj,n− j -action is inflated through the
surjection Pj,n− j ↠ GL j × GLn− j . Furthermore, the definition of 9

(q)

U0
(−) as a

symmetrized sum over complete flags in U0 shows that GL j fixes elements of E(U0)

pointwise, while elements of GLn− j act as they do on ker
(
x (q)

|kF (q)

n− j,n− j

)
. Comparing

with (7) proves the desired isomorphism (16). □

4B. The entire semigroup algebra. Having described the eigenspaces of the cham-
ber spaces kFn,n and kF (q)

n,n as G-representations, we now turn to the entire semi-
group algebras kFn and kF (q)

n .
Our strategy here will be to introduce filtrations on kFn and kF (q)

n , and study the
action of x and x (q) on the associated graded modules with respect to these filtrations.
(Recall from the discussion in Section 3A that by semisimplicity, this is an equivalent
way to understand the RG and kG-module structures on kFn and kF (q)

n .)
Recall that for a ∈ Fn and A ∈ F

(q)
n the length of a is ℓ(a) and the length of A

is ℓ(A).

Definition 4.9. Define

kFn,≥ℓ := spank{a ∈ Fn : ℓ(a) ≥ ℓ},

kF (q)

n,≥ℓ := spank{A ∈ F (q)
n : ℓ(A) ≥ ℓ}.

In other words, kFn,≥ℓ and kF (q)

n,≥ℓ are the k-spans of the monoid elements of length
at least ℓ.

We then introduce filtrations {kFn,≥ℓ}ℓ=0,1,...,n,n+1 and {kF (q)

n,≥ℓ}ℓ=0,1,...,n,n+1:

(17)
{0} = kFn,≥n+1 ⊂ kFn,≥n ⊂ · · · ⊂ kFn,≥1 ⊂ kFn,≥0 = kFn,

{0} = kF (q)

n,≥n+1 ⊂ kF (q)
n,≥n ⊂ · · · ⊂ kF (q)

n,≥1 ⊂ kF (q)

n,≥0 = kF (q)
n .

Since ℓ(a · b) ≥ ℓ(b), it is easily seen that each kFn,≥ℓ is a kFn-submodule,
and a kSn-submodule. Analogously, kF (q)

n,≥ℓ is a kF (q)
n -submodule, and a k GLn-

submodule.
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Recall that for U ⊂ [n] of size j one has FU ∼= F j and xU =
∑

i∈U (i). Analo-
gously, recall that for U a j-dimensional subspace of V , one has F (q)

U
∼= F

(q)

j and

x (q)

U =
∑

lines L∈U
(L).

Both kFU and kF (q)

U have k-vector space direct sum decompositions defined by
length of words, so that one can identify kFU,ℓ

∼= kF j,ℓ and kF (q)

U,ℓ
∼= kF (q)

j,ℓ for
ℓ = 0, 1, . . . , j .

As k-vector spaces, one has a direct sum decomposition for the filtration factors

(18)

kFn,≥ℓ/kFn,≥ℓ+1 =
⊕

U⊆{1,2,...,n}

|U |=ℓ

kFU,ℓ,

kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1 =
⊕

Fq -subspaces U⊆(Fq )n

dim(U )=ℓ

kF (q)

U,ℓ,

where kFU,ℓ and kF (q)

U,ℓ denote the image of the subspaces kFU,ℓ and kF (q)

U,ℓ within
the quotient on the left. The next proposition is a simple but crucial observation
about these summands in (18) that is used in the proof of Theorem 1.4.

Proposition 4.10. Consider the summands on the right sides of (18).

• Each kFU,ℓ is a kFn-submodule of kFn,≥ℓ/kFn,≥ℓ+1, annihilated by ( j) for
j ̸∈ U.

• Each kF (q)

U,ℓ is a kF (q)
n -submodule of kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1, annihilated by (L) for
lines L ̸⊂ U.

Consequently, one has

x · a = xU · a, for a in kFU,ℓ,

x (q)
· A = x (q)

U · A, for A in kF (q)

U,ℓ.

Proof by example. Consider n = 3, with ℓ = 2 and U = {1, 2}. Then working
in the quotient kFU,2, because 3 ̸∈ U , the element (3) of kF3 will annihilate the
element (1, 2) of kF3,≥2/kF3,≥3. One has

(3) · (1, 2) = (3, 1, 2) = 0 in kF3,≥2/kF3,≥3,

because ℓ(3, 1, 2) = 3 > 2 = ℓ. Thus, x = (1) + (2) + (3) acts on (1, 2) as

x · (1, 2) = ((1) + (2) + (3)) · (1, 2)

= (1, 2) + (2, 1) + (3, 1, 2) = (1, 2) + (2, 1) = xU · (1, 2).

The proof for F (q)
n is analogous: one has ℓ((L) · A) > ℓ(A) = ℓ for lines L ̸⊂ U

and A ∈ F
(q)

U,ℓ. □
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We now prove our main result of this section, encompassing Theorem 1.4 from
Section 1.

Theorem 4.11. Let k be a field in which |G| is invertible. Then x and x (q) act
diagonalizably on kFn and kF (q)

n , and for each j = 0, 1, 2, . . . , n, their eigenspaces
carry representations with the same Frobenius map images

ch ker
(
(x − j)|kFn

)
=

n∑
ℓ= j

h(n−ℓ, j) · dℓ− j = chq ker
(
(x (q)

− [ j]q)|kF (q)
n

)
.

In other words, one has kG-module isomorphisms

ker
(
(x − j)|kFn

)
∼=

n⊕
ℓ= j

1Sn−ℓ
∗ 1S j ∗Dℓ− j ,

ker
(
(x (q)

− [ j]q)|kF (q)
n

)
∼=

n⊕
ℓ= j

1GLn−ℓ
∗ 1GL j ∗D

(q)

ℓ− j .

Proof. The filtrations in (17) show that

(19)
ker

(
(x − j)|kFn

)
∼=

n⊕
ℓ=0

ker
(
(x − j)|kFn,≥ℓ/kFn,≥ℓ+1

)
,

ker
(
(x (q)

− [ j]q)|kF (q)
n

)
∼=

n⊕
ℓ=0

ker
(
(x (q)

− [ j]q)|kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1

)
.

It remains to analyze each summand on the right.
We have seen that (18) is also a direct sum decomposition as kM-modules for

M = kFn, kF (q). For G =Sn, GLn , the action of kM and kG on both sides in (18)
commute.

In the case of M = Fn , this leads to the following equalities and isomorphisms
of kSn-modules, explained below. Let U0 := {1, 2, . . . , ℓ}. Then:

ker
(
(x − j)|kFn,≥ℓ/kFn,≥ℓ+1

) (i)
=

⊕
U⊆{1,2,...,n}:

|U |=ℓ

ker((x − j)|kFU,ℓ
)

(ii)
=

⊕
U⊆{1,2,...,n}:

|U |=ℓ

ker((xU − j)|kFU,ℓ
)

(iii)
∼= 1Sn−ℓ

∗ ker
(
(xU0 − j)|kFℓ,ℓ

)
(iv)
∼=

{
0, if ℓ < j
1Sn−ℓ

∗ 1S j ∗Dℓ− j , if ℓ ≥ j.

• Equality (i) is the restriction of the kSn-module isomorphism (18) to j-
eigenspaces for x .

• Equality (ii) arises because x acts the same as xU on FU,ℓ, by Proposition 4.10.
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• Isomorphism (iii) arises because the summands indexed by U , with |U |= ℓ, are
permuted transitively by Sn with the typical summand for U0 = {1, 2, . . . , ℓ}

stabilized by the subgroup SU0
∼= Sℓ. Thus, this is an induced kSn-module,

e.g., by applying [Webb 2016, Proposition 4.3.2].

• Isomorphism (iv) comes from applying Theorem 4.2 to kFℓ.

The argument for M = F
(q)
n is similar. In particular, setting U0 to be the Fq -span

of the first ℓ standard basis vectors e1, e2, . . . , eℓ in (Fq)n , one has equalities and
isomorphisms of k GLn-modules:

ker
(
(x (q)

− [ j]q)|kF (q)

n,≥ℓ/kF (q)

n,≥ℓ+1

) (i)
=

⊕
U⊆(Fq )n

:

dim(U )=ℓ

ker
(
(x (q)

− [ j]q)|
kF (q)

U,ℓ

)
(ii)
=

⊕
U⊆(Fq )n

:

dim(U )=ℓ

ker
(
(x (q)

U − [ j]q)|
kF (q)

U,ℓ

)
(iii)
∼= 1GLn−ℓ

∗ ker
(
(x (q)

U0
− [ j]q)|kF (q)

ℓ,ℓ

)
(iv)
∼=

{
0, if ℓ < j,
1GLn−ℓ

∗ 1GL j ∗D
(q)

ℓ− j , if ℓ ≥ j,

where isomorphisms (i), (ii), and (iv) are justified exactly as in the proof of q = 1
above. For isomorphism (iii), note (as in the proof of Lemma 4.8) that GLn acts
transitively on ℓ-subspaces U , and that U0 has GLn-stabilizer subgroup Pℓ,n−ℓ,, so
that by [Webb 2016, Proposition 4.3.2],⊕

U⊆(Fq )n
:

dim(U )=ℓ

ker
(
(x (q)

U − [ j]q)|
kF (q)

U,ℓ

)

has the GLn-representation induced from the Pℓ,n−ℓ-action on ker
(
(x (q)

U0
−[ j]q)|kF (q)

ℓ,ℓ

)
.

Since every A ∈ kF (q)

U0,ℓ
∼= kF (q)

ℓ,ℓ is a flag (A1, . . . , Aℓ), with Aℓ = U0, it follows
that this Pℓ,n−ℓ-action is inflated through the surjection Pℓ,n−ℓ ↠ GLℓ × GLn−ℓ,
where the action of GLℓ is as ker

(
(x (q)

U0
− [ j]q)|kF (q)

ℓ,ℓ

)
and the action of GLn−ℓ is

trivial. □

Example 4.12. We illustrate Theorem 1.4 by computing the Frobenius map image
for each j-eigenspace of x on kFn , or equivalently the q-Frobenius map image for
each [ j]q-eigenspace of x (q) on kF (q)

n . For n = 2, 3, Tables 2 and 3 show these
symmetric functions in their j-th row, decomposed into columns labeled by ℓ,
indexing each filtration factor from (18) that contributes a term.
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ℓ = 0 ℓ = 1 ℓ = 2

h2 · d0 h1 · d1 h0 · d2
j = 0 = h2 · s( ) = h1 · 0 = h0 · s(1,1)

= s(2) = 0 = s(1,1)

h(1,1) · d0 h1 · d1
j = 1 = h(1,1) · s( ) = h1 · 0

= s(1,1) + s(2) = 0

h2 · d0
j = 2 = h2 · s( )

= s(2)

Table 2. Frobenius map images for eigenspaces of x and x (q)

on kF2 and kF (q)

2 .

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
h3 · d0 h2 · d1 h1 · d2 h0 · d3

j = 0 = h3 · s( ) = h2 · 0 = h1 · s(1,1) = h0 · s(2,1)

= s(3) = 0 = s(2,1) + s(1,1,1) = s(2,1)

h(2,1) · d0 h(1,1) · d1 h1 · d2
j = 1 = h(2,1) · s( ) = h(1,1) · 0 = h1 · s(1,1)

= s(3) + s(2,1) = 0 = s(2,1) + s(1,1,1)

h(2,1) · d0 h2 · d1
j = 2 = h(2,1) · s( ) = h2 · 0

= s(3) + s(2,1) = 0

h3 · d0
j = 3 = h3 · s( )

= s(3)

Table 3. Frobenius map images for eigenspaces of x and x (q) on
kF3 and kF (q)

3 .
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