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INVARIANT TORI FOR
PERIODICALLY PERTURBED OSCILLATORS

Carmen Chicone

Abstract
The response of an oscillator to a small amplitude periodic exci-
tation is discussed. In particular, sufficient conditions are formu-
lated for the perturbed oscillator to have an invariant torus in the
phase cylinder. When such an invariant torus exists, some per-
turbed solutions are in the basin of attraction of this torus and are
thus entrained to the dynamical behavior of the perturbed system
on the torus. In particular, the perturbed solutions in the basin of
attraction of the invariant torus are entrained to a subharmonic
or to a quasi periodic motion.

1. Introduction

Periodically perturbed nonlinear oscillators are widely studied for their
rich dynamical behavior and because they are employed as mathematical
models of many important physical phenomena. A fundamental problem
of theoretical as well as practical interest is to determine the dynamics
of a periodically perturbed oscillator near a resonance between a natural
period of the oscillator and the period of the perturbation.

Here, we will consider the persistence of resonant invariant tori for pe-
riodically perturbed oscillators that have a one parameter family of peri-
odic orbits such that the derivative of the corresponding period function
with respect to the parameter has no critical points. The corresponding
one parameter family of periodic orbits in the phase plane of such an
oscillator is called a regular period annulus.

For a periodically perturbed oscillator with a regular period annulus,
first order regular perturbation theory together with a reduction to the
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Implicit Function Theorem can be used to show that there is a function
defined on each resonant periodic orbit, the (subharmonic) “Melnikov”
function, whose simple zeros correspond to families of initial points for
perturbed periodic solutions, cf. [1], [2], [3], [6], [10]. However, it is pos-
sible —when the periodic perturbation contains only a few harmonics—
that only a few of the resonant orbits have associated Melnikov functions
with simple zeros. In this case, the Melnikov functions associated with
most of the remaining resonant orbits are of fixed sign, or they vanish
identically. Thus, only a finite number of the resonances are excited at
first order to produce perturbed periodic solutions. In fact, this is the
case most often encountered in applied mathematics where, usually, only
the “dominant” harmonics of a periodic perturbation are modeled.

An analysis using perturbation theory, carried to first order in the
perturbation parameter, suggests that perturbed orbits, starting near
a resonant unperturbed orbit with an associated Melnikov function of
fixed sign, drift away from the vicinity of the resonant orbit in a direc-
tion determined by the sign, while perturbed orbits, starting near an
unperturbed resonant orbit with an associated Melnikov function that
vanishes, remain near the resonant orbit. If, in addition, the perturbation
is dissipative, then this scenario indicates the presence of an invariant set
for the perturbed flow near the resonant unperturbed orbits with vanish-
ing Melnikov functions. This scenario is often valid. In fact, when this
invariant set is an attractor, it often represents the dominant feature of
the dynamics —most orbits will be in its basin of attraction. However,
the proof of the existence of an invariant manifold , near a resonant un-
perturbed orbit with a vanishing Melnikov function, requires additional
hypotheses that incorporate a rather delicate relationship among sev-
eral quantities; especially, the rate of change of frequency with respect
to the change in energy at the resonance, the strength of the damping,
and the amplitude of the periodic perturbation. We will formulate the
precise relationship among these quantities that ensures the existence of
a Lipschitz continuous invariant torus. The conditions required for the
existence of invariant tori with additional smoothness remains a problem
for future research.

In Section 2 the main result on the existence of invariant tori will be
formulated and proved. This result will be applied to a simple oscillator
model in Section 3. A new construction of action angle variables will be
given in Appendix A.

The author is very grateful to the referee and to Jorge Sotomayor for
carefully reading a preliminary version of this paper. In particular, So-
tomayor suggested an important improvement in the original formulation
of the main result in Section 2.
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2. An Existence Theorem for Invariant Tori

2.1. Resonance, Poincaré maps and Melnikov Functions.
Consider a periodically perturbed planar oscillator given by

(1) u̇ = f(u) + εg(u, t)

where the function t �→ g(u, t) is 2π/Ω periodic, and where ε is a small
parameter. Also, for each point ζ in the domain of definition of the
system (1), let t �→ u(t, ζ, ε) denote the solution of (1) with the initial
condition u(0, ζ, ε) = ζ.

We will assume that the unperturbed oscillator

(2) u̇ = f(u)

has a regular period annulus A. A periodic orbit Γ in A with period T
is called resonant if there are relatively prime positive integers m and n
such that

(3) m
2π
Ω

= nT.

If Γ is a resonant orbit and p ∈ Γ, we define the associated (subhar-
monic) Melnikov function by

Mm:n(φ) :=
∫ 2πm/Ω

0

E(t)f(u(t+ φ, p, 0)) ∧ g(u(t+ φ, p, 0), t) dt,

where
E(t) := e−

∫ t

0
div f(u(s+φ,p,0)) ds

.

Clearly, the Melnikov function is T -periodic in φ. Thus, it can be viewed
as a function on Γ. Moreover, a different choice of base point p ∈ Γ
serves only to translate its graph.

If the unperturbed system is Hamiltonian, the usual case for applica-
tions, then the divergence of the unperturbed vector field vanishes, and,
by a change of variables, the Melnikov function can be represented in
the following convenient form

(4) Mm:n(φ) :=
∫ 2πm/Ω

0

f(u(t, p, 0)) ∧ g(u(t, p, 0), t− φ) dt.

As is well known, the dynamics of (1) correspond to the dynamics of
the (stroboscopic) Poincaré map ζ �→ P (ζ, ε) given by

P (ζ, ε) := u(2π/Ω, ζ, ε).
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For example, a periodic point of the Poincaré map lies on a periodic
solution of (1), and an invariant simple closed curve for the Poincaré map
corresponds to an invariant torus of (1) in the phase cylinder obtained by
considering the time variable t modulo 2π/Ω. This provides a convenient
geometric language that we will use to describe the dynamics of the
oscillator. For example, a basic result of the subject is the following
theorem [1].

Theorem 2.1. If the differential equation (1) has a regular period
annulus A and if the Melnikov function Mm:n, defined on an (m : n)
resonant periodic orbit in A, has a simple zero φ0, then there is a
curve ε �→ β(ε), defined in some open neighborhood of ε = 0, with
β(0) = u(φ0, p, 0) and Pm(β(ε), ε) ≡ β(ε). That is, β(ε) is the initial
condition for a periodic orbit of the corresponding perturbed system.

2.2. Action Angle Variables and Partial Averaging at a Res-
onance.

To study the dynamics of (1) near a periodic orbit Γ contained in a
period annulus A, we will transform the system to angular standard form
using a special “periodic” coordinate system defined in a neighborhood of
Γ. This special coordinate system reduces to the action angle coordinate
system in case the unperturbed oscillator (2) is Hamiltonian.

The precise result that we need is formulated in the following theorem.
A proof of the theorem based on the integration of the planar variational
equations is given in Appendix A.

Theorem 2.2. Suppose that Γ is a periodic orbit of the differential
equation (2). If Γ is contained in a period annulus A of (2), then there
is a smooth change of coordinates defined in an open subset of A that
contains Γ such that the differential equation (1), in the new coordinates
(I, ϑ), has the form

(5) İ = εF (I, ϑ, t), ϑ̇ = ω(I) + εG(I, ϑ, t),

where both F and G are 2π periodic in ϑ and 2π/Ω periodic in t.

For system (1) transformed into the new coordinates defined in Theo-
rem 2.2, we let I0 denote the “action” such that the unperturbed (m : n)
resonant periodic orbit Γ is given by the graph of I = I0. Also, we note
that the resonance relation (3), with respect to system (5), is given by

(6) m
2π
Ω

= n
2π
ω(I0)

.
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We will use the method of averaging to obtain a “normal form” for the
system (5) at Γ; cf. [6], [8], [9] and, especially, [10, p. 143]. However, to
apply the averaging procedure, we require a preliminary transformation
of system (5) into the “time periodic standard form”. The appropriate
transformation is a well studied time dependent change of coordinates
that localizes system (5) at the resonant orbit Γ. In fact, the transfor-
mation is defined, for ε ≥ 0, by

I = I0 +
√
ε �, ϑ = ω(I0)t+ σ.

If, after changing to these new coordinates in system (5), we Taylor
expand to third order in powers of

√
ε, and, if we use subscripts to

denote partial derivatives, then the transformed system is given by

(7)

�̇ =
√
ε F (I0, ω(I0)t+ σ, t) + εFI(I0, ω(I0)t+ σ, t)�

+ ε3/2FII(I0, ω(I0)t+ σ, t)�2 +O(ε2),

σ̇ =
√
ε ω′(I0)�+ ε

(
G(I0, ω(I0)t+ σ, t) +

1
2
ω′′(I0)�2

)
+ ε3/2

(
GI(I0, ω(I0)t+ σ, t) +

1
6
ω′′′(I0)�3

)
+O(ε2),

where the order symbol is used for notational convenience. This new
system is in the correct form for averaging. In particular, the associated
vector field is 2πm/Ω periodic in time.

We will require the averages and the properties of the functions ap-
pearing in (7). For example, we define

(8) 〈F 〉(σ) :=
Ω

2πm

∫ 2πm/Ω

0

F (I0, ω(I0)t+ σ, t) dt,

and note that 〈F 〉 is a 2π periodic function. In fact, it should be clear
that 〈F 〉 is the subharmonic Melnikov function represented in the action-
angle coordinates. The functions 〈G〉(σ), 〈GI〉(σ), 〈FI〉(σ), and 〈FII〉(σ)
are defined similarly. Also, we will require several auxiliary functions:

(9)

u1(σ, t) :=
∫ t

0

F (I0, ω(I0)s+ σ, s) − 2πm
Ω

〈F 〉(σ) ds,

v2(σ, t) :=
∫ t

0

G(I0, ω(I0)s+ σ, s) − 2πm
Ω

〈G〉(σ) − ω′(I0)u1(σ, s) ds,

h(σ) :=
Ω

2πm

∫ 2πm/Ω

0

Fϑ(I0, ω(I0)t+ σ, t)v2(σ, t)

+ FI(I0, ω(I0)t+ σ, t)u1(σ, t) dt.
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The next theorem specifies the form of the third order averaged system
corresponding to (7) as well as the form of the third order averaging
transformation at a resonance where both 〈F 〉 and 〈G〉 vanish. Our
main result, to follow, states conditions for the existence of an invariant
torus in terms of the quantities that appear in the third order averaged
system. The next theorem is somewhat technical. However, it states
that an averaging transformation exists that changes system (7) into
the form that we will use to prove the persistence of the resonant torus
corresponding to Γ.

Theorem 2.3. Consider the differential equation (7) and the func-
tions defined as in (8). If 〈F 〉(σ) ≡ 0 and 〈G〉(σ) ≡ 0, then there is an
averaging transformation of the form

(10)
� = �̄+

√
εu1(σ̄, t) + ε�̄u2(σ̄, t) + ε3/2u3(�̄, σ̄, t),

σ = σ̄ + εv2(σ̄, t) + ε3/2v3(�̄, σ̄, t),

such that the transformation is 2πm/Ω periodic in t and 2π periodic
in σ̄, the functions u1 and v2 are as defined in (9), and such that the
system (7) in the new coordinates has the form

(11)

˙̄� = ε〈FI〉(σ̄)�̄+ ε3/2(〈FII〉(σ̄)�̄ 2 + h(σ̄)) + ε2K(�̄, σ̄, t, ε),

˙̄σ =
√
ε ω′(I0)�̄+ ε

1
2
ω′′(I0)�̄ 2

+ ε3/2

(
〈GI〉(σ̄) +

1
6
ω′′′(I0)�̄ 3

)
+ ε2L(�̄, σ̄, t, ε),

where the function h is defined as in (9), and both of the functions K
and L are 2πm/Ω periodic in t and 2π periodic in σ̄.

Proof: To prove the theorem, we apply the usual algorithm for obtain-
ing the third order averaged system while checking that the averaging
transformation can be taken to be as in (10). The steps are straightfor-
ward: Differentiate the transformation (10) with respect to t and substi-
tute the target system (11) into the result retaining terms to order ε3/2.
Next, substitute the transformation (10) into (7) and Taylor expand the
result, as a function of ε, to order ε3/2. Equating the coefficients of equal
powers of ε in the two systems just defined, we obtain equations for the
time derivatives of the coefficients of the order parameter in the aver-
aging transformation. Taken in turn with respect to the powers of the
order parameter, all of these equations have the form wt = ρ(t) where ρ
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is a function with zero average and w is one of the unknown coefficients.
Thus, if each of these equations for the coefficients is solved in the form

w =
∫ t

0

ρ(s) ds,

then the coefficients have the required periodicity properties.

2.3. The Main Result.
For notational convenience, we will consider an abstract differential

equation that is a generalization of (11); namely,

(12)
�̇ = µ2p(σ)�+ µ3

(
q(σ)�2 + r(σ)

)
+ µ4R(�, σ, t, µ),

σ̇ = µλ�+ µ2ν�2 + µ3S(�, σ, t, µ),

where p, q, and r are 2π periodic functions, λ, µ, and ν are real numbers,
and both of the functions R and S are 2πm/Ω periodic in t and 2π
periodic in σ. We will study the existence of invariant tori for (12) when
µ is considered to be a small parameter.

As an instructive example, consider the special case of (12) given by

(13) �̇ = −µ2M �+ µ3A sinσ, σ̇ = µλ�+ µ2ν�2,

where M > 0, λ > 0, µ > 0, and A are constants, and (�, σ) are con-
sidered as coordinates on a cylinder; that is, σ is an angular coordinate
modulo 2π.

The points with coordinates (0, 0) and (0, π) are rest points of the
differential equation (13). The rest point at (0, 0) is a hyperbolic sad-
dle, while the rest point at (0, π) is a hyperbolic sink. Moreover, the
eigenvalues at the sink are

µ2

2

(
−M ±

√
M2 − 4λA

)
.

If M2 − 4λA < 0, then the sink is of spiral type, while if M2 − 4λA > 0,
the sink is nodal.

Clearly, the invariant set formed by the union of the sink and
the unstable manifold of the saddle is a manifold only in the case
M2 − 4λA ≥ 0. If, on the other hand, M2 − 4λA < 0, the normal
contraction is not strong enough to prevent the “roll up” of the invari-
ant set at the sink, thus destroying the differentiability of the invariant
set at that point, cf. [7]. Hence, we can not expect to have an invariant
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manifold for the system (12) unless there is an appropriate relationship
among the quantities in (12) corresponding to the variables in the ex-
ample given by the normal contraction rate, M ; the twist rate on the
unperturbed invariant set, λ; and the amplitude of the periodic pertur-
bation, A.

A sufficient condition for the existence of a Lipschitz continuous in-
variant torus for system (12) will be formulated in Theorem 2.4 below.
In order to state the theorem, let C denote the set of continuous func-
tions mapping R × R → R that are 2π periodic in their first argument
and 2πm/Ω periodic in their second argument. We define two Banach
spaces: C0 and C0,1. The Banach space C0 consists of all elements of C
bounded with respect to the usual uniform norm given by

‖H‖ = sup
(s,τ)

|H(s, τ)|,

while the Banach space C0,1 consists of all elements of C bounded with
respect to the norm given by

‖H‖0,1 = ‖H‖ + sup
(s,τ) �=(s̄,τ̄)

|H(s, τ) −H(s̄, τ̄)|
|s− s̄| + |τ − τ̄ | .

Also, we note that a 2π periodic function or a 2πm/Ω periodic function
of a single variable may be regarded as an element of C. Thus, the
uniform norm and the (0, 1) norm are defined for such functions as well.
Moreover, the second summand in the definition of the (0, 1) norm is
also called the Lipschitz constant of H and is denoted Lip(H). The
Lipschitz constant can be defined in the same manner for functions of
several variables.

Theorem 2.4. Consider the differential equation (12) and define

M := min
0≤σ≤2π

|p(σ)| > 0.

If λ �= 0,

5M > Lip(p),(14)

M2 ≥ 6|λ|‖r‖0,1,(15)

and if |µ| is sufficiently small, then there is a function H ∈ C0,1 such
that the set {(�, σ, t) : � = H(σ, t)} is an invariant torus for (12).

Proof: We will prove the theorem under the assumption that p is a
positive function. The case when p is negative follows by simply reversing
the direction of time.



Invariant tori 65

For each H ∈ C0,1 with ‖H‖0,1 ≤ 1 and for each number µ with
|µ| ≤ 1, define a new differential equation by

(16)
�̇ = µ2p(σ)�+ µ3

(
q(σ)H2(σ, t) + r(σ)

)
+ µ4R(H(σ, t), σ, t, µ),

σ̇ = µλH(σ, t) + µ2νH2(σ, t) + µ3S(H(σ, t), σ, t, µ).

The differential equation (12) is defined on an annular domain contain-
ing the closed curve on the cylinder given by � = 0. In order to ensure
that solutions and Lipschitz constants remain bounded, we choose some
�0 > 0 so that (�, σ) is in the domain of definition of the differential
equation as long as |�| < �0, and we fix a smooth “bump function”
ψ : R → [0, 1] such that ψ(�) ≡ 1 for |�| < �0/2 while ψ(�) ≡ 0 for
|�| ≥ �0. Using the function ψ, we define new functions

R(σ, t,H, µ) := ψ(H(σ, t))R(H(σ, t), σ, t, µ),
S(σ, t,H, µ) := ψ(H(σ, t))S(H(σ, t), σ, t, µ),

Q(σ, t,H, µ) := q(σ)H2(σ, t) + r(σ) + µR(σ, t,H, µ),

and the following differential equation

(17)
�̇ = µ2p(σ)�+ µ3Q(σ, t,H, µ),

σ̇ = µλH(σ, t) + µ2νH2(σ, t) + µ3S(σ, t,H, µ),

that is equivalent to system (16) as long as |�| < �0/2.
Note that the second equation of the system (17) is decoupled from

the system. We let t �→ σ(t, s, τ,H, µ) denote its solution with the initial
condition σ(τ, s, τ,H, µ) = s. In view of the periodicity of the differential
equation and the nature of the “cut off” function ψ, all such solutions
are complete.

ChooseH ∈ C0,1 and consider the associated differential equation (17).
For G ∈ C0,1, the set {(�, σ, t) : � = G(σ, t)} is an invariant torus for this
differential equation if and only if

(18)
d

dt
G(σ(t, s, τ,H, µ), t) = µ2p(σ(t, s, τ,H, µ))G(σ(t, s, τ,H, µ), t)

+ µ3Q(σ(t, s, τ,H, µ), t,H, µ).

Define
Φ(t, τ,H) := e−µ2

∫ t

τ
p(σ(u,s,τ,H,µ)) du

,

and note that, if t ≥ τ , then

(19) |Φ(t, τ,H)| ≤ e−µ2M(t−τ).
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Using variation of parameters relative to the fundamental solution Φ
of the differential equation obtained from the equation (18) by setting
Q = 0, and the obvious change of variables, we find that

(20) Φ(t, τ,H)G(σ(t, s, τ,H, µ), t) −G(s, τ)

=
∫ t−τ

0

µ3Φ(v + τ, τ,H)Q(σ(v + τ, s, τ,H, µ), v + τ,H, µ) dv.

Under the assumption that |µ| > 0 and in view of the inequality (19),
if we pass to the limit t → ∞ in equation (20), then we obtain the
equation

G(s, τ) = −
∫ ∞

0

µ3Φ(t+ τ, τ,H)Q(σ(t+ τ, s, τ,H, µ), t+ τ,H, µ) dt.

In other words, we have G = Λ(H), where Λ is the operator defined on
the unit ball of C0,1 by

(21) Λ(H)(s, τ)

= −
∫ ∞

0

µ3Φ(t+ τ, τ,H)Q(σ(t+ τ, s, τ,H, µ), t+ τ,H, µ) dt.

A fixed point of Λ corresponds to the desired invariant torus. We have
just shown that an invariant manifold given as the graph of an element of
C0,1 is a fixed point of Λ. It is easy to show that, conversely, the graph of
a fixed point of the operator Λ is a Lipschitz continuous invariant torus.

We will use the Contraction Principle to show that Λ has a fixed point.
For this, we will construct a ball

Bδ := {H ∈ C0,1 : ‖H‖0,1 ≤ δ}

such that Λ : Bδ → Bδ and such that Λ is a contraction on the setBδ with
respect to the uniform norm. The Contraction Principle is applicable
because Bδ is a closed subset of C0, and, therefore, a complete metric
space in the uniform norm.

To prove that the operator Λ is a contraction on Bδ requires a series
of estimates.

We note that both of the functions R and S, appearing in the differ-
ential equation (17), are Lipschitz continuous with respect to all of their
arguments. Under our assumptions that ‖H‖0,1 ≤ δ ≤ 1 and 0 < |µ| ≤ 1,
we have

‖R‖ <∞, ‖S‖ <∞,
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as well as the fact that there are positive constants Lip(R) and Lip(S)
such that

|R(σ, t,H, µ) −R(σ̄, t̄, H, µ)| ≤ Lip(R)(|σ − σ̄| + |t− t̄|),
|S(σ, t,H, µ) − S(σ̄, t̄, H, µ)| ≤ Lip(S)(|σ − σ̄| + |t− t̄|).

In addition, using the obvious estimates, there are uniform and Lipschitz
estimates for Q. In fact, the estimates that we will use are given by

(22) ‖Q‖ ≤ ‖q‖δ2 + ‖r‖ + |µ|‖R‖,

(23) |Q(σ, t,H, µ) −Q(σ̄, t̄, H, µ)|
≤ ‖r′‖|σ − σ̄| +

(
2‖q‖0,1δ

2 + |µ|Lip(R)
)
(|σ − σ̄| + |t− t̄|),

(24) |Q(σ, t,H, µ) −Q(σ̄, t, H̄, µ)| ≤ (‖r′‖ + |µ|Lip(R)

+ δ2‖q‖0,1)|σ − σ̄| +
(
2δ‖q‖ + |µ|Lip(R)

)
‖H − H̄‖.

We need estimates for the sizes of µ and δ that will ensure that the
operator Λ has image in Bδ. For this, we must estimate the size of the
(0, 1) norm of each element in the range of Λ. This will be done in two
steps: we will estimate the uniform norm of an element in the range of
Λ, and then we will obtain a Lipschitz estimate.

Using the definition of Λ given in (21), the inequalities (19) and (22),
and an integration, we obtain the following estimate for the uniform
norm:

(25) ‖Λ(H)‖ ≤ |µ|
M

(
‖q‖δ2 + ‖r‖ + |µ|‖R‖

)
.

To determine a Lipschitz estimate, we begin by using the inequal-
ity (23) to obtain the inequality

(26) |Λ(H)(s, τ) − Λ(H)(s̄, τ̄)| ≤ |µ|3
∫ ∞

0

e−µ2Mt
{
‖r′‖|σ1(t) − σ2(t)|

+ (2‖q‖0,1δ
2 + |µ|Lip(R))(|σ1(t) − σ2(t)| + |τ − τ̄ |)

}
dt

where

(27) σ1(t) := σ(t+ τ, s, τ,H, µ), σ2(t) := σ(t+ τ̄ , s̄, τ̄ , H, µ).
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Note that both t �→ σ1(t) and t �→ σ2(t) are solutions of the differential
equation

σ̇ = G(σ, t,H, µ) := µλH(σ, t) + µ2νH2(σ, t) + µ3S(σ, t,H, µ),

and, as a result, we have

(28) |σ1(t) − σ2(t)| ≤ |s− s̄|

+
∫ t

0

|G(σ1(v), v + τ,H, µ) − G(σ2(v), v + τ̄ , H, µ)| dv.

We will use the following easily obtained Lipschitz estimate for G:

(29) |G(σ, t,H, µ) − G(σ̄, t̄, H, µ)| ≤ µ2γ(δ, µ)(|σ − σ̄| + |t− t̄|),

where
γ(δ, µ) := |λ| δ|µ| + 2|µ||ν|δ2 + |µ|Lip(S).

When the estimate (29) is inserted into the inequality (28), we find that

(30) |σ1(t) − σ2(t)| ≤ |µ|2γ(δ, µ)|τ − τ̄ | t

+ |µ|2γ(δ, µ)
∫ t

0

|σ1(v) − σ2(v)| dv + |s− s̄|.

To obtain an estimate for the quantity |σ1(t) − σ2(t)| that appears in
the inequality (30), we will use the “Specific” Gronwall Lemma [9]:

Lemma 2.5 (Gronwall’s Lemma). Suppose that δ1 > 0, δ2 ≥ 0
and, δ3 ≥ 0 are constants and that φ is a continuous nonnegative func-
tion. If, for t0 ≤ t ≤ t0 + T , we have

φ(t) ≤ δ2(t− t0) + δ1
∫ t

t0

φ(s) ds+ δ3,

then

φ(t) ≤
(
δ2
δ1

+ δ3

)
eδ1(t−t0) − δ2

δ1

for t0 ≤ t ≤ t0 + T .

Indeed, an application of Gronwall’s Lemma to the inequality (30)
yields

(31) |σ1(t) − σ2(t)| ≤ (|s− s̄| + |τ − τ̄ |)eµ2γ(δ,µ)t − |τ − τ̄ |.
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We will also use the estimate

(32) |σ1(t) − σ2(t)| ≤ (|s− s̄| + |τ − τ̄ |)eµ2γ(δ,µ)t.

To obtain convergence of the improper integral in inequality (26), we
must restrict the size of γ. For this, let k = 2 −

√
2 < 1 denote the

critical point of the function

x �→ 1
x

(
1 +

1
1 − x

)
, 0 < x < 1,

and note that the corresponding critical value is given by

(33) κ :=
1
k

(
1 +

1
1 − k

)
= 3 + 2

√
2 < 6.

Also, define

(34) δ = k
M

|λ| |µ|,

and note that, with this definition, we have

(35) γ(δ, µ) = kM +O(|µ|).

In particular, for |µ| sufficiently small, we have γ(δ, µ) < M .
Returning to the estimate (26), we insert the inequality (32) for the

first occurrence of the quantity |σ1(t) − σ2(t)|, we insert the inequal-
ity (31) for its second occurrence, and then we integrate the resulting
expression. After using the definition (34), we obtain the following esti-
mate

(36) |Λ(H)(s, τ) − Λ(H)(s̄, τ̄)|

≤ |µ|
( ‖r′‖
M − γ(δ, µ) +O(|µ|)

)
(|s− s̄| + |τ − τ̄ |).

Using the inequalities (25) and (36), and the definition (34), it follows
easily that

(37) ‖Λ(H)‖0,1 ≤ |µ| ‖r‖0,1

(
1
M

+
1

M − γ(δ, µ)

)
+O(|µ|2).
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In addition, using the inequality (35), the definition of κ from (33), and
the formula for δ given in equation (34), we have

(38)

‖Λ(H)‖0,1 ≤ |µ| ‖r‖0,1

M

(
1 +

1
1 − k

)
+O(|µ|2)

≤ |µ| ‖r‖0,1

M
kκ+O(|µ|2)

≤ |λ|‖r‖0,1

M2
κδ +O(|µ|2).

By rearranging the inequality (15), we have

(39)
‖r‖0,1|λ|
M2

≤ 1
6
.

Hence, in view of the fact that κ < 6, if we take |µ| sufficiently small in
the inequality (38), we have

(40) ‖Λ(H)‖0,1 ≤ δ.

It remains to show that Λ is a contraction. To do this, we must
estimate

(41) |Λ(H)(s, τ) − Λ(H̄)(s, τ)|.

For notational convenience, we define

σ3(t) := σ(t+ τ, s, τ,H, µ), σ4(t) := σ(t+ τ, s, τ, H̄, µ).

By adding and subtracting the term Φ(t + τ, τ,H)Q(σ4(t), t + τ,H, µ)
under the integral obtained in the expression for (41), by applying the
Triangle Law, and by using the estimate (19), we have that

(42) |Λ(H)(s, τ) − Λ(H̄)(s, τ)|

≤
∫ ∞

0

|µ|3e−µ2Mt|Q(σ3(t), t+ τ,H, µ) −Q(σ4(t), t+ τ, H̄, µ)| dt

+
∫ ∞

0

|µ|3|Q(σ4(t), t+ τ,H, µ)| |Φ(t+ τ, τ,H) − Φ(t+ τ, τ, H̄)| dt.

To estimate the first summand of the right hand side of the inequal-
ity (42), we apply the Lipschitz inequality (24) to obtain the following
upper bound:

(43)
∫ ∞

0

|µ|3e−µ2Mt

{
(‖r′‖ + |µ|Lip(R) + δ2‖q‖0,1)|σ3(t) − σ4(t)|

+ (2δ‖q‖ + |µ|Lip(R))‖H − H̄‖
}
dt.
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Using the definition of δ given by (34), and using the order symbol for
notational convenience, the integral (43) is given by

(44)
∫ ∞

0

|µ|3e−µ2Mt

{
(‖r′‖ +O(|µ|))|σ3(t) − σ4(t)|

+|µ|
(

2‖q‖kM
|λ| + Lip(R)

)
‖H − H̄‖

}
dt.

To estimate |σ3(t) − σ4(t)|, we proceed as in the estimate for (26).
Here, the required Lipschitz estimate for G is given by

|G(σ, t,H, µ) − G(σ̄, t, H̄, µ)|
≤

(
|µ||λ| + 2|µ|2|ν|δ + |µ|3 Lip(S)

)
‖H − H̄‖ + |µ|3 Lip(S)|σ − σ̄|.

There are two cases. If Lip(S) = 0, then we obtain

(45) |σ3(t) − σ4(t)| ≤ |µ|(|λ| +O(|µ|))‖H − H̄‖ t,

while, for Lip(S) �= 0, an application of Gronwall’s Lemma yields

(46) |σ3(t) − σ4(t)| ≤
1

|µ|2
( |λ| +O(|µ|)

Lip(S)

) (
e|µ|

3 Lip(S)t − 1
)
‖H − H̄‖.

When the Lipschitz inequality (45) or (46) is inserted into the inte-
gral (44) and the integration is performed, straightforward but lengthy
simplifications of the resulting expression yield the following upper bound

(47)
∫ ∞

0

|µ|3e−µ2Mt|Q(σ3(t), t+ τ,H, µ) −Q(σ4(t), t+ τ, H̄, µ)| dt

≤
(‖r‖0,1|λ|

M2
+O(|µ|)

)
‖H − H̄‖.

To estimate the second summand of the right hand side of inequal-
ity (42), we note that, using the inequality (22) to obtain an upper bound
for |Q(σ4(t), t+ τ, H̄, µ)|, the problem reduces to finding an estimate for
the integral

(48)
∫ ∞

0

µ3|Φ(t+ τ, τ,H) − Φ(t+ τ, τ, H̄)| dt

=
∫ ∞

0

µ3|e−µ2
∫ t

0
p(σ3(u)) du − e−µ2

∫ t

0
p(σ4(u)) du| dt.
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We apply the Mean Value Theorem to the function x �→ ex to obtain
the following simple fact: If x and y are real numbers, there is a number
c between x and y, such that

|ex − ey| ≤ ec|x− y|.
Note that both exponents appearing in the integrand on the right hand
side of the equation (48) lie to the left of the number −µ2Mt. Thus, we
have

(49)

|Φ(t+ τ, τ,H) − Φ(t+ τ, τ, H̄)| ≤ e−µ2Mt

∫ t

0

|p(σ3(u)) − p(σ4(u))| du

≤ e−µ2Mt Lip(p)
∫ t

0

|σ3(u) − σ4(u)| du.

The Lipschitz inequalities (45) and (46) must be separately inserted
into the integral in (49) and the resulting elementary integral must be
evaluated. Once this is accomplished, the result must be inserted into
the right hand side of (48) where again an elementary improper integral
must be evaluated. After straightforward but lengthy simplifications of
the resulting expression, and after taking into account the estimate for
|Q(σ4(t), t+ τ, H̄, µ)|, we obtain the following upper bound

(50)
∫ ∞

0

|µ|3|Q(σ4(t), t+ τ,H, µ)| |Φ(t+ τ, τ,H) − Φ(t+ τ, τ, H̄)| dt

≤
(

Lip(p)‖r‖0,1|λ|
M3

+O(|µ|)
)
‖H − H̄‖.

In view of the inequality (15) in the form (39) and the hypothesis given
in equation (14), the sum of the leading terms (in powers of µ) of the
estimates (47) and (50) does not exceed unity. Thus, if µ is sufficiently
small, the operator Λ is a contraction.

In order to apply Theorem 2.4, it is convenient to have a version of the
result for the system (11) that is obtained when an oscillator is partially
averaged at a resonance where the Melnikov function vanishes. The
precise result is stated in the following corollary.

Corollary 2.6. Consider the differential equation (11) obtained by
partially averaging the system (5) at a resonance I = I0 where the per-
turbation terms have zero average; that is, where 〈F 〉 and 〈G〉, as defined
in equation (8), both vanish, and define

M := min
0≤σ≤2π

|〈FI〉(σ)| > 0.
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If ω′(I0) �= 0,

5M > Lip(〈FI〉(σ)),(51)

M2 ≥ 6|ω′(I0)|‖h‖0,1,(52)

where h is defined as in (9), and if ε > 0 is sufficiently small, then there
is a Lipschitz continuous invariant torus for (11) near the unperturbed
resonant torus corresponding to I = I0. In particular, for ε > 0 suf-
ficiently small, the differential equation (1) has a Lipschitz continuous
invariant torus near its corresponding unperturbed resonant torus.

A very important remark about Corollary 2.6 concerns the hypoth-
esis (52). Note that the function h and the averaging transformation
required to obtain the differential equation (11) both depend on the
functions and on the parameters appearing in the original differential
equation (1) in a complicated manner. In particular, it is very likely
that, in practice, the quantity M and the function h both depend on
some of the same parameters of the original system. Thus, in general,
hypothesis (52) can not be satisfied by simply requiring M to be suf-
ficiently large. This delicate point will be addressed again in the next
section.

Inequality (52) is not sharp. In fact, in view of the inequality (33), it
can be replaced by

M2 ≥
(
3 + 2

√
2
)
|ω′(I0)|‖h‖0,1.

Also, we know from the example given by the system (13), that the
number 3 + 2

√
2 can not be replaced by a number less than four. A

sharp bound is not known.
The condition in Theorem 2.4 and Corollary 2.6 that 〈F 〉 vanishes

on the unperturbed resonant invariant torus is just the condition that
the subharmonic Melnikov function vanishes on this invariant torus, a
necessary condition for the torus to persist. The apparently nongeneric
additional condition that 〈G〉 vanishes was imposed for convenience and
also because it is known to hold for several examples. This condition does
not seem to have a simple geometric interpretation. Also, it is not known
if this condition is necessary for the existence of a perturbed invariant
torus. Likewise, the precise form of the inequalities in the hypotheses
of Theorem 2.4 are obtained from the method used in the proof. Sharp
estimates are not known.

Finally, we note that we can formulate and prove a theorem similar to
Theorem 2.4, that gives conditions for the existence of a Lipschitz con-
tinuous invariant torus for system (5), whose hypotheses are stated in
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terms of the corresponding system when the averaging procedure is car-
ried only to second order. However, the hypotheses will then be stated
as inequalities involving M and the (0, 1) norm of the unknown pertur-
bation terms of order ε3/2. In an application, when the system depends
on parameters, such a result would not be useful because the dependence
of the higher order terms on the parameters would be unknown. The
advantage of averaging to third order is clear: The required norm esti-
mates involve only the function h; a function that is defined in terms of
averages of terms appearing in the original system.

3. Examples

To apply our result on the existence of invariant manifolds to a “real”
oscillator, we will have to transform the given oscillator to action angle
variables. Perhaps the most important models of physical interest where
the action angle variables can be constructed explicitly, albeit, with the
use of elliptic functions, are the pendulum and Duffing’s equation. Ap-
plications of the results of this paper to physical models obtained as
perturbations of these systems will be the subject of future research,
cf. [3, Section 4.1] and the remarks at the end of this section. However,
to give a transparent illustration of an application of our theory here, it
seems appropriate to consider an example where the coordinate trans-
formations do not require the introduction of special functions. We will
analyze a slight modification of an example with this property introduced
in [5] and [6]; namely, the system

(53)
ẋ = y(1 − x2 − y2) + ε[δx− x(x2 + y2) + γx cos(Ωt)],

ẏ = −x(1 − x2 − y2) + ε[δy − y(x2 + y2)].

The unperturbed system (53) is a scaled harmonic oscillator with a
regular period annulus. Moreover, it can be transformed to action angle
variables by a trigonometric change of coordinates. In fact, the transfor-
mation

x =
√

2I sinϑ, y =
√

2I cosϑ

converts system (53) to the form

(54)
İ = ε[2δI − 4I2 + 2γI sin2 ϑ cos(Ωt)],

ϑ̇ = 1 − 2I + ε[γ sinϑ cosϑ cos(Ωt)].

Define
T (I) :=

2π
1 − 2I

, ω(I) := 1 − 2I,
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and note that the resonance relation is given here by

(55) ω(I0) =
n

m
Ω.

Also, note that

(56) ω′(I0) = −2;

that is, the period annulus —here the entire punctured plane— is regular.
The Melnikov function, at the (m : n) resonance for the system (53),

is easily computed directly from definition (4). In fact, it is given by

(57)

Mm:n(φ) =

{
ω(I0)[2δI0 − 4I20 − (2πγI0/Ω) cos(2φ)], if n = 1, m = 2,

ω(I0)(2δI0 − 4I20 ), otherwise.

From equation (57), we see that only the (2, 1) resonance is excited.
For a discussion of the local dynamics of the system near this resonance,
see reference [5] or [6]. The Melnikov function at the other resonant tori
either has a fixed sign, or it vanishes identically.

This indicates, as mentioned in the introduction, that the orbits of the
perturbed system drift away from the unperturbed resonant tori, whose
Melnikov function has a fixed sign, in a direction determined by the sign.
Moreover, for sufficiently small ε, none of the perturbed orbits near these
resonant tori are subharmonics.

The Melnikov function at an (m : n) resonance with (m : n) �= (2 : 1)
vanishes when

(58) I0 =
δ

2
.

If we view the system (53) with its parameters δ, γ, and Ω fixed, and if
there are relatively prime positive integers m and n so that δ = 1−n/m,
then the Melnikov function will vanish when the action is adjusted so
that equation (55) holds. Note that, in a physical application, where the
same scenario occurs, it is perhaps not unreasonable to assume that δ is
rational. It certainly will be rational if its value is obtained by physical
measurement.

Under the assumption that equations (55) and (58) hold, we will apply
Corollary 2.6. For this, we have

F (I, ϑ, t) = 2δI − 4I2 + 2γI sin2 ϑ cos(Ωt),
G(I, ϑ, t) = γ sinϑ cosϑ cos(Ωt).
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At an (m : n) resonance with (m : n) �= (2 : 1), both 〈F 〉 and 〈G〉
vanish. Also, after an easy computation, we find that

〈FI〉(σ) ≡ −2δ.

In particular, we have

(59) M = 2δ > 0,

and

(60) Lip(〈FI〉(σ)) = 0.

To obtain the (0, 1) norm of the function h defined in equation (9)
requires a long, but straightforward, computation using the definition of
h and the resonance relation. We find that h is given by

(61)

h(σ) =
2γ(1 − δ)δ2

(Ω2 − 4(1 − δ)2)2
(
(Ω2−4(1− δ)2)2−2γ(1− δ) cos(2σ)

)
sin(2σ),

and that an upper bound for the (0, 1) norm of h is given by

(62) ‖h‖0,1 ≤ 6γ|1 − δ|δ2
(Ω2 − 4(1 − δ)2)2

(
|(Ω2 − 4(1 − δ)2)2| + 2γ|1 − δ|

)
.

In view of (56), (59), and (60), the hypotheses of Corollary 2.6 will be
satisfied provided the inequality (52), or, equivalently, the inequality

3
δ2

‖h‖0,1 ≤ 1

is satisfied. Thus, for fixed Ω and δ, if γ, the amplitude of the periodic
“force”, is sufficiently small, then there is a Lipschitz continuous invariant
torus.

For the case Ω = 1 and δ = 1/4, our theory proves that there is
an invariant Lipschitz continuous torus, near the resonant unperturbed
torus given by I0 = δ/2 = 1/8, provided that

γ ≤ 5
12

(
1
3

√
13 − 1

)
≈ 0.084.

This estimate is, of course, not sharp.
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Numerical computation of the Poincaré map —the 2π/Ω strobe— for
the system (53) with the above parameter values quickly reveals that
the dominant feature of the dynamics in the (x, y) plane is an attracting
invariant “circle” centered at the origin with radius approximately 1/2.
This confirms our theoretical prediction. In fact, the resonant torus with
zero Melnikov function intersects the (x, y) plane in a circle with radius√

2I0 = 1/2.
As an addendum to this section, we mention that for the oscillator

(63) θ̈ + εm2θ̇ + sin θ = −εm1 + εB cos(Ω(t− t0)) sin θ,

that models a rotor with constant external torque attached to an elastic
support, if ε is taken to be a perturbation parameter, then, using elliptic
functions, the unperturbed system can be transformed to action-angle
variables. For this example, it turns out that, for appropriate choices of
the parameters, there is a resonant invariant torus on which the Melnikov
function 〈F 〉 vanishes identically, the function 〈G〉 vanishes identically,
the function 〈FI〉 is a constant function with value −m2, and the deriva-
tive of the frequency ω′ does not vanish. Thus, several of the hypotheses
required to apply Corollary 2.6 are satisfied for this important model
from applied mathematics. Unfortunately, it seems to be very difficult
to determine if the inequalities (51) and (52) are also satisfied. While
there is strong evidence from numerical experiments for the existence of
perturbed attracting invariant tori, it remains an interesting open prob-
lem to prove that these invariant tori actually exist.

A. Action Angle Coordinates

In this section we will construct the “action angle” coordinates near
a periodic orbit contained in the period annulus A of differential equa-
tion (2). The differential equation (2), expressed in these new coordi-
nates, that we denote by I and ϑ, has the form

İ = 0, ϑ̇ = ω(I).

Interpreted geometrically, these new coordinates are related to polar co-
ordinates in that I is a radial variable and ϑ is an angular variable. In
fact, I is constant on each periodic solution while ϑ changes linearly on
each periodic solution. In case the system (2) is Hamiltonian, the new
coordinates reduce to the usual action angle coordinates on A.

With reference to (2), define the orthogonal system

(64) u̇ = f⊥(u), u ∈ X
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where, in oriented local coordinates, f⊥(u) := Jf(u) with

J =
(

0 −1
1 0

)
.

We mention that J rotates vectors in the plane through a positive angle
of π/2 radians. The same symbol J is often used in this context with
the opposite sign.

Let ϕt denote the flow of the differential equation (2), and let ψt denote
the flow of the differential equation (64). Also, for vectors ξ1, ξ2 in R

2,
define ξ1 ∧ ξ2 := 〈ξ1, Jξ2〉, where the brackets denote the usual inner
product in R

2.
A periodic orbit Γ of (2) has an orientation determined by its time

parameterization. To specify an orientation, we define ε := ε(f) = 1 in
case, for each ζ ∈ Γ, the vector f⊥(ζ) is the outer normal at ζ. If f⊥(ζ)
is the inner normal, then ε := −1. Also, the orientation of the period
annulus A is defined to be the orientation it inherits from its constituent
periodic solutions.

Choose a point ζ ∈ A and note that there is an open interval U ⊂ R

containing the origin such that the image of the map ρ �→ ψρ(ζ), for
ρ ∈ U , is a section Σζ transverse to the orbits of system (2) in A. Define
Υ : U × R → A by

(65) Υ(ρ, φ) = ϕφ(ψρ(ζ)).

Clearly, Υ is smooth. In fact, Υ is a covering map, or, in other words,
a periodic coordinate system on A. We will see below that these are
“flow box” coordinates; they straighten out the flow in a neighborhood
of the periodic orbit contains the point ζ as is seen in the unperturbed
system (69).

To construct the action angle coordinates, we begin with the map Υ
defined by (65). Diliberto’s Theorem [1], used here with slightly different
normalizations, states that if

(66)

b(t, ζ) :=
||f(ζ)||2

||f(ϕt(ζ))||2
e

∫ t

0
div f(ϕs(v)) ds

,

a(t, ζ) :=
∫ t

0

(
2κ(s, ζ)||f(ϕs(ζ))|| − curl f(ϕs(ζ))

)
b(s, ζ) ds,

where κ denotes the signed scalar curvature along the curve t �→ ϕt(ζ),
ζ ∈ A, then

DΥ(ρ, φ)
∂

∂φ
= f(Υ(ρ, φ)),

DΥ(ρ, φ)
∂

∂ρ
= b(φ, ψρ(v))f⊥(Υ(ρ, φ)) + a(φ, ψρ(v))f(Υ(ρ, φ)).
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In other words, the matrix representation of the derivative DΥ(ρ, φ)
relative to the ordered bases {∂/∂ρ, ∂/∂φ} and {f⊥(Υ(ρ, φ)), f(Υ(ρ, φ))}
is given by

DΥ(ρ, φ) =
(
b(φ, ψρ(v)) 0
a(φ, ψρ(v)) 1

)
.

Since b does not vanish for ζ ∈ A, it follows that Υ is a local diffeomor-
phism and, in fact, Υ is a covering map onto its image.

To express (2) in (ρ, φ) coordinates, note first that there are smooth
functions (u, t) �→ p(u, t) and (u, t) �→ q(u, t) such that

(67) g(u, t) = p(u, t)f⊥(u) + q(u, t)f(u)

for all (u, t) ∈ A×R. Thus, to change system (2) to the new coordinates,
we simply solve for

j(u, t)
∂

∂ρ
+ k(u, t)

∂

∂φ

in the matrix equation(
b 0
a 1

) (
j
k

)
=

(
εp

1 + εq

)
to obtain (

j
k

)
=

 ε
1
b
p

1 + ε
(
q − a

b
p
)

 .
It follows that (2), in the new coordinates, is given by

(68)

ρ̇ = ε
1

b(φ, ψρ(v))
p(Υ(ρ, φ), t),

φ̇ = 1 + ε
(
q(Υ(ρ, φ), t) − a(φ, ψρ(v))

b(φ, ψρ(v))
p(Υ(ρ, φ), t)

)
.

To compress notation, we write (68) in the form

(69) ρ̇ = εQ(ρ, φ, t), φ̇ = 1 + εR(ρ, φ, t).

Define a second change of coordinates by

(70) ρ = β(I), φ = α(I)ϑ

where I �→ α(I) and I �→ β(I) are smooth functions to be specified
below. Here, since the coordinate transformation must be invertible, we
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need only assume that α(I)β′(I) �= 0. In the (I, ϑ) coordinates, (68) has
the form

(71)

İ = ε
1
β′(I)

Q(β(I), α(I)ϑ, t),

ϑ̇ =
φ̇− ϑα′(I)İ
α(I)

=
1
α(I)

+ ε
(

1
α(I)

R(β(I), α(I)ϑ, t) − ϑ α′(I)
α(I)β′(I)

Q(β(I), α(I)ϑ, t)
)
.

To specify the functions α and β we require two auxiliary functions
—the period function and the area function. To define the period func-
tion, recall that the image of the map ρ �→ ψρ(ζ), for ρ ∈ U , is a section
for the unperturbed flow on the period annulus A. The period function
on A, relative to this section, is the map T̃ : U → R that assigns to
each ρ ∈ U the minimum period of the solution of (2) passing through
the point φρ(ζ) ∈ A. In the “standard” case, A is an annulus whose
inner boundary is a rest point. In this case, we define the area function
ζ �→ A(ζ); it assigns to each ζ ∈ A the area enclosed by the unperturbed
solution through ζ.

The function β is defined to be the solution of the initial value problem

(72)
dρ

dI
= ε

2π

T̃ (ρ)

1
||f(ψρ(ζ))||2

, ρ(I0) = 0

where, in the standard case, I0 = A(ζ)/(2π), while, in the case when A
has a nontrivial inner boundary, we take I0 = 0. The choice of initial
condition for the standard case agrees with tradition. However, a dif-
ferent choice of initial condition simply results in a constant translation
of the “action” variable; the translated coordinates remain symplectic.
The function α is defined by

(73) α(I) := −ε T̃ (β(I))
2π

where ε = ±1 according to the orientation of the period annulus A.
Using the definition T (I) := T̃ (β(I)), the system (71) has the form

(74)

İ = εε
T (I)
2π

||f(ψρ(ζ))||2Q(β(I), α(I)ϑ, t),

ϑ̇ = −ε 2π
T (I)

− εε
(

2π
T (I)

R(β(I), α(I)ϑ, t)

+ϑ
T ′(I)
2π

||f(ψρ(ζ))||2Q(β(I), α(I)ϑ, t)
)
.
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From (67), we have

p =
1

||f ||2 〈g, f
⊥〉 =

1
||f ||2 f ∧ g, q =

1
||f ||2 〈f, g〉.

Thus, in view of (68), the system (74) can be rewritten in the form

(75)

İ = εε
T (I)
2π

E(I, ϑ)f(Υ(β(I), α(I)ϑ)) ∧ g(Υ(β(I), α(I)ϑ), t),

ϑ̇ = −ε 2π
T (I)

− εε
[

2π
T (I)

||f(Υ(β(I), α(I)ϑ))||−2〈f, g〉

+
(
ϑ
T ′(I)
2π

||f(ψβ(I)(ζ))||2 − 2π
T (I)

a(α(I)ϑ, ψβ(I)(ζ))
)

||f(φβ(I)(ζ))||−2E(I, ϑ)f ∧ g
]
,

where

E(I, ϑ) := e
−

∫ α(I)ϑ

0

div f(Υ(β(I), α(I)s)) ds
.

Again, to compress notation, we also write (75) in the compact form

(76) İ = εF (I, ϑ, t), ϑ̇ = ω(I) + εG(I, ϑ, t).

Note that both F and G are 2π periodic in ϑ and 2π/Ω periodic in t.
To prove that the action angle coordinate transformation

u = Υ(β(I), α(I)ϑ)

is canonical in case the unperturbed system is Hamiltonian, it suffices to
show the transformation is area preserving, that is, the Jacobian of the
transformation is unity. In fact, the Jacobian is

det
[(

−f2(u) f1(u)
f1(u) f2(u)

) (
b(φ, ψρ(ζ)) 0
a(φ, ψρ(ζ)) 1

) (
β′(I) 0
α′(I)ϑ α(I)

)]

=
||f(u)||2

||f(ψρ(ζ))||2
b(φ, ψρ(ζ)).
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But, if f is a Hamiltonian vector field, then div f = 0, and

b(φ, ψρ(ζ)) =
||f(ψρ(ζ))||2
||f(u)||2 ,

as required. Moreover, in case f is the Hamiltonian vector field defined
by the Hamiltonian H, we have f(u) = −J gradH(u). Recall, ρ = β(I)
and define h := H(ψρ(ζ)). Then,

dI

dh
= ε
T̃ (ρ(h))

2π
.

Thus, the derivative of the action with respect to energy is the normalized
energy-period function, as it should be.
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Primera versió rebuda el 30 de Novembre de 1996,
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