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INVARIANT TRANSPORTS OF STATIONARY RANDOM
MEASURES AND MASS-STATIONARITY
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We introduce and study invariant (weighted) transport-kernels balancing
stationary random measures on a locally compact Abelian group. The first
main result is an associated fundamental invariance property of Palm mea-
sures, derived from a generalization of Neveu’s exchange formula. The sec-
ond main result is a simple sufficient and necessary criterion for the existence
of balancing invariant transport-kernels. We then introduce (in a nonstation-
ary setting) the concept of mass-stationarity with respect to a random mea-
sure, formalizing the intuitive idea that the origin is a typical location in the
mass. The third main result of the paper is that a measure is a Palm measure
if and only if it is mass-stationary.

1. Introduction. We consider (jointly) stationary random measures on a lo-
cally compact Abelian group G, for instance, G = Rd . A transport-kernel is a
Markovian kernel T that distributes mass over G and depends on both ω in the
underlying sample space � and a location s ∈ G. The number T (ω, s,B) is the
proportion of mass transported from location s to the set B . More generally,
a weighted transport-kernel is a kernel T which need not be Markovian. If T is
finite, then the mass at s is weighted by T (ω, s,G) before being transported by the
normalized T . In general, we assume that T (ω, s,B) is finite for compact B but al-
low that T (ω, s,G) = ∞. A kernel T is invariant if it is invariant under joint shifts
of all three arguments. If ξ and η are random measures on G such that ξT = η, then
T is (ξ, η)-balancing and, in particular, if ξ = η, then T is ξ -preserving. Some-
times an invariant T can be reduced to an allocation rule τ (depending on ω ∈ �)
that maps each location s to a new location τ(s) in an invariant way. In fact, we
might think of an invariant transport-kernel T as the conditional distribution of a
randomized allocation rule.

The aim of this paper is to treat three interwoven aspects of invariant weighted
transport-kernels: basic invariance properties of Palm measures are presented in
Sections 3 and 4, a general existence result in Section 5, and an intrinsic character-
ization of Palm measures—which we call mass-stationarity—in Sections 6 and 7.
Below we sketch these results against their background.
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INVARIANCE PROPERTIES (SECTIONS 3 AND 4). It is a fundamental and
classical theorem that the Palm distribution of a stationary point process on the
line is invariant under shifts to the next point on the right. In fact, there is a unique
correspondence between such stationary point processes and stationary sequences
of interpoint distances; see Theorem 11.4 in [12] and the references given there.

In higher dimensions, the situation is more complicated. Mecke [21] found an
intrinsic characterization of Palm measures using an integral equation; see (2.7)
below. Geman and Horowitz [5] showed that a stationary random measure is dis-
tributionally invariant under shifts associated with allocation rules preserving Haar
measure. Independently, Mecke [22] derived more general invariance properties of
Palm measures; see Remark 4.6. In the point process case one of his results was
rediscovered in [27]; see also [7]. Port and Stone [24] studied what they called
(translation-invariant) marked motion process. In particular, they derived a cer-
tain transport property of Palm distributions (called tagged particle distributions)
associated with such processes; see Example 4.3 below. Holroyd and Peres [11]
considered (in case G = Rd ) invariant transport-kernels T balancing Lebesgue
measure and an ergodic point process η of intensity 1. [They call the random mea-
sure T (s, dt) ds on Rd × Rd a transport rule.] Theorem 16 in that paper states
that if the origin 0 is shifted to a randomized location with conditional distribution
T (ω,0, ·), then the stationary distribution of η is transformed into the Palm dis-
tribution of η; this is an example of shift-coupling. An analogous result holds for
discrete groups.

Neveu’s [23] well-known exchange formula (see Remark 3.7) is an apparently
quite different property of Palm measures. We will generalize Neveu’s result in
our Theorem 3.6. This is then actually the key to obtaining the general invariance
property of Theorem 4.1, containing all the invariance results mentioned above.
Another crucial idea for Theorem 4.1 is that any balancing invariant weighted
transport-kernel has an inverse invariant transport-kernel.

EXISTENCE (SECTION 5). Liggett [19] constructed an allocation rule, trans-
porting counting measures on the integers to the Bernoulli (1/2) random measure
with intensity 1. (He also treated a general Bernoulli parameter p and the Pois-
son process on the line.) Triggered by Liggett’s paper, invariant transports of the
Lebesgue measure on Rd (or of the counting measure on Zd ) to an ergodic point
process of intensity 1 have received considerable attention in recent years (see [3,
9, 11, 14]). In particular, Holroyd and Peres [11] constructed an explicit algorithm
based on a so-called stable marriage allocation.

Actually, an abstract group-coupling result from [26] implies that shift-
couplings exist in the above cases; see [27]. In Section 5 we shall apply that result
to stationary random measures with finite intensities to prove that there exists an
invariant balancing transport-kernel if and only if the two random measures have
the same intensity conditional on the invariant σ -field.
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MASS-STATIONARITY (SECTIONS 6 AND 7). Thorisson [27] calls a simple
point process on Rd point-stationary if (loosely speaking) it looks distributionally
the same from all its points, just like stationarity means that the process looks dis-
tributionally the same from all locations in Rd . The formal definition in that paper
required a joint distributional invariance under shifts associated with certain pre-
serving randomized allocation rules. The main result was that point-stationarity is
a characterizing property of Palm versions of stationary point processes. The ques-
tion of whether the external randomization could be removed from the definition
inspired considerable research activity; see [4, 10, 14, 29]. Finally, Heveling and
Last [7, 8] showed that this can be done.

In Section 6 we extend the concept of point-stationarity to a random measure ξ .
We will call ξ mass-stationary if (again loosely speaking) it looks distributionally
the same from all locations in its mass. The formal definition of this property is
quite subtle and requires some joint distributional invariance; see Definition 6.1
and Remark 6.2. Our Theorem 6.3 states that mass-stationarity is a characterizing
property of Palm versions of stationary random measures. In Section 7 we discuss
mass-stationarity briefly. In particular, we show that mass-stationarity is equiva-
lent to distributional invariance under bounded invariant ξ -preserving weighted
transport-kernels. On the other hand, Example 7.1 shows that invariance under pre-
serving (nonrandomized) allocation rules is not enough to imply mass-stationarity.
We conclude with five open problems.

2. Preliminaries on stationary random measures. We choose to work in the
abstract setting of a flow acting on the underlying sample space (see [5, 22, 23]),
and with σ -finite measures rather than with probability measures; see Remark 2.6.

We consider a topologial Abelian group G that is assumed to be a locally com-
pact, second countable Hausdorff space with Borel σ -field G. On G there exists
an invariant measure λ, that is unique up to normalization. A measure μ on G is
locally finite if it is finite on compact sets. We denote by M the set of all locally
finite measures on G, and by M the cylindrical σ -field on M which is generated
by the evaluation functionals μ �→ μ(B), B ∈ G. The support suppμ of a measure
μ ∈ M is the smallest closed set F ⊂ G such that μ(G \ F) = 0. By N ⊂ M, we
denote the measurable set of all (simple) counting measures on G, that is, the set
of all those μ ∈ M with discrete support and μ{s} := μ({s}) ∈ {0,1} for all s ∈ G.
We can and will identify N with the class of all locally finite subsets of G, where a
set is called locally finite if its intersection with any compact set is finite.

In this paper we mostly work on a σ -finite measure space (�,F ,P) (but see
also Remark 2.6). However, we will consider several measures on (�,F ). A ran-
dom measure on G is a measurable mapping ξ :� → M and a (simple) point
process on G is a measurable mapping ξ :� → N. A random measure ξ can also
be regarded as a kernel from � to G. Accordingly, we write ξ(ω,B) instead of
ξ(ω)(B). If ξ is a random measure, then the mapping (ω, s) �→ 1{s ∈ supp ξ(ω)}
is measurable.
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We assume that (�,F ) is equipped with a measurable flow θs : � → �, s ∈ G.
This is a family of measurable mappings such that (ω, s) �→ θsω is measurable, θ0
is the identity on � and

θs ◦ θt = θs+t , s, t ∈ G,(2.1)

where 0 denotes the neutral element in G and ◦ denotes composition. A random
measure ξ on G is called invariant (or flow-adapted) if

ξ(θsω,B − s) = ξ(ω,B), ω ∈ �, s ∈ G, B ∈ G.(2.2)

A measure P on (�,F ) is called stationary if it is invariant under the flow, that
is,

P ◦ θs = P, s ∈ G,

where θs is interpreted as a mapping from F to F in the usual way:

θsA := {θsω :ω ∈ A}, A ∈ F , s ∈ G.

Because of the next examples we may think of θsω as of ω shifted by −s.

EXAMPLE 2.1. Consider the measurable space (M,M) and define for μ ∈ M
and s ∈ G the measure θsμ by θsμ(B) := μ(B + s), B ∈ G. Then {θs : s ∈ G}
is a measurable flow and the identity ξ on M is an invariant random measure.
A stationary probability measure on (M,M) can be interpreted as the distribution
of a stationary random measure. Let (E,E) be some measurable space and denote
by ME the set of all measures μ on G × E such that μ(· × E) ∈ M. Let ME

be the σ -field on ME generated by the mappings μ �→ μ(B), B ∈ G ⊗ E . For
μ ∈ ME and s ∈ G, let θsμ be the measure μ ∈ ME satisfying θsμ(B × C) :=
μ((B + s) × C), for all B ∈ G and C ∈ E . Then {θs : s ∈ G} is a measurable flow
on ME . A stationary probability measure on (ME,ME) can be interpreted as the
distribution of a stationary marked random measure.

REMARK 2.2. Since a random measure ξ is a random element in M, we can
rewrite the invariance condition (2.2) as

ξ(θsω) = θsξ(ω), ω ∈ �,

where we use θs , s ∈ G, to denote both the abstract flow and the specific flow
defined in Example 2.1. Therefore, (2.2) is also referred to as flow-covariance. We
follow here the terminology of [13]. A similar remark applies to invariant weighted
transport-kernels, to be defined below.

EXAMPLE 2.3. Let (E,E) be a Polish space and assume that � is the space
of all measures ω on G × E × G × E such that ω(B × E × G × E) and ω(G ×
E × B × E) are finite for compact B ⊂ G. The σ -field F is defined analogously
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as in Example 2.1. It is stated in [24] (and can be proved as in [20]) that (�,F ) is
a Polish space. For s ∈ G and ω ∈ �, we let θsω denote the measure satisfying

θsω(B × C × B ′ × C′) = ω
(
(B + s) × C × (B ′ + s) × C′)

for all B,B ′ ∈ G and C,C′ ∈ E . The random measures ξ and η defined by
ξ(ω, ·) := ω(· × E × G × E) and η(ω, ·) := ω(G × E × · × E) are invariant.
Port and Stone [24] (see also [6]) call a stationary probability measure on (�,F )

concentrated on the set of integer-valued ω ∈ � a (translation invariant) marked
motion process. The idea is that the (marked) points of ξ move to the points of η

in one unit of time.

EXAMPLE 2.4. Assume that (�,F ) = (G,G) and θsω := ω + s. Then the
Haar measure P := λ is stationary. If P′ is a probability measure on G, then
ξ(ω,B) := P′(B + ω) defines an invariant random measure.

Let P be a stationary σ -finite measure on (�,F ) and ξ an invariant random
measure on G. Then ξ is stationary in the usual sense, that is, P(ξ ∈ ·) = P(θsξ ∈ ·)
for all s ∈ G, where we have used the notation of Example 2.1. Let B ∈ G be a set
with positive and finite Haar measure λ(B). The measure

Pξ (A) := λ(B)−1
∫∫

1A(θsω)1B(s)ξ(ω, ds)P(dω), A ∈ F ,(2.3)

is called the Palm measure of ξ (with respect to P); see [21]. This measure is σ -
finite. As the definition (2.3) is independent of B , we can use a monotone class
argument to conclude the refined Campbell theorem∫∫

f (θsω, s)ξ(ω, ds)P(dω) =
∫∫

f (ω, s) ds Pξ (dω)

for all measurable f :�×G → [0,∞), where ds refers to integration with respect
to the Haar measure λ. Using a standard convention in probability theory, we write
this as

EP

[∫
f (θs, s)ξ(ds)

]
= EPξ

[∫
f (θ0, s) ds

]
,(2.4)

where EP and EPξ
denote integration with respect to P and Pξ , respectively.

EXAMPLE 2.5. Consider the setting of Example 2.3. Let ξ̃ be the random
element in ME (cf. Example 2.1) defined by ξ̃ (ω, ·) := ω(· × G × E). Assume
that P(ξ̃ ∈ ·) is σ -finite. Then there is a Markov kernel K from ME to � satisfying

P =
∫

K(μ, ·)P(ξ̃ ∈ dμ).

By Theorem 3.5 in [13], we can assume that K is invariant in the sense that

K(θsμ, θsA) = K(μ,A), s ∈ G, μ ∈ ME, A ∈ F ,
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where {θs} denotes the flow on both ME and �. Of course, if P is a probability
measure, then K(ξ̃ ,A) is a version of the conditional probability of A ∈ F given
ξ̃ . Using invariance of K , it is straightforward to check that

Pξ =
∫

K(μ, ·)Pξ (ξ̃ ∈ dμ).(2.5)

If the intensity Pξ (�) of ξ is positive and finite, then the normalized Palm mea-
sure

P0
ξ := Pξ (�)−1Pξ

is called the Palm probability measure of ξ (w.r.t. P). Note that Pξ and P0
ξ are

both defined on the underlying space (�,F ). The stationary measure P can be
recovered from the Palm measure Pξ using a measurable function h̃ : M × G →
[0,∞) satisfying

∫
h̃(μ, s)μ(ds) = 1, whenever μ ∈ M is not the null measure.

For one example of such a function we refer to [21]. We then have the inversion
formula

EP[1{ξ(G) > 0}f ] = EPξ

[∫
h̃(ξ ◦ θ−s, s)f (θ−s) ds

]
,(2.6)

for all measurable f :� → [0,∞); see Satz 2.4 in Mecke [21]. This is a direct
consequence of the refined Campbell theorem (2.4).

Let ξ be an invariant random measure and Q be a σ -finite measure on (�,F )

satisfying Q(ξ(G) = 0) = 0. Satz 2.5 in Mecke [21] says that there is σ -finite
stationary measure P on (�,F ) such that Q is a Palm measure Pξ of ξ with
respect to P if and only if for all measurable g :� × G → [0,∞)

EQ

[∫
g(θs,−s)ξ(ds)

]
= EQ

[∫
g(θ0, s)ξ(ds)

]
.(2.7)

Mecke proved his result in the canonical framework of Example 2.1. But his proof
applies in our more general framework as well. The necessity of (2.7) is a special
case of Neveu’s exchange formula; see Remark 3.7. To prove that (2.7) is also
sufficient for Q to be a Palm measure, one can use the function h̃ in (2.6) to define
a σ -finite measure P by

P(A) := EQ

[∫
h̃(ξ ◦ θ−s, s)1A(θ−s) ds

]
, A ∈ F .

It can be shown, as in [21], that (2.7) implies stationarity of P and Q = Pξ .

REMARK 2.6. We would like to mention two reasons (other than just general-
ity) why we are not assuming the stationary measure P to be a probability measure.
First, some of the fundamental results can be more easily stated this way. An ex-
ample is the one-to-one correspondence between P and the Palm measure Pξ (see
[21]). Otherwise, extra technical integrability assumptions are required (see, e.g.,
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Theorem 11.4 in [12]). A second reason is that in some applications it is the Palm
probability measure that has a probabilistic interpretation (see, e.g., [30]). This
measure can be defined whenever the (stationary) intensity is positive and finite;
see Example 3.5 for a simple illustration of this fact.

3. Transport-kernels and an exchange formula. A transport-kernel (on G)
is a Markovian kernel T from � × G to G. It is helpful to think of T (ω, s,B) as
the proportion of mass transported from location s to the set B , when ω is given.
A weighted transport-kernel is a kernel T from � × G to G such that T (ω, s, ·)
is locally finite for all (ω, s) ∈ � × G. A weighted transport-kernel T is called
invariant if

T (θtω, s − t,B − t) = T (ω, s,B), s, t ∈ G, ω ∈ �, B ∈ G.(3.1)

This is equivalent to T (θtω,0,B − t) = T (ω, t,B) for all t , ω and B . Quite often
we use the short-hand notation T (s, ·) := T (θ0, s, ·). If T̃ is kernel from � to G

such that T̃ (ω, ·) is locally finite for all ω ∈ �, then T (ω, s,B) := T̃ (θsω,B − s)

defines an invariant weighted transport-kernel T on G.

REMARK 3.1. Let T be a weighted transport-kernel on G and ξ an invariant
random measure on G. Assume that η := ∫

T (ω, s, ·)ξ(ω, ds) is locally finite for
each ω ∈ �. If ξ and T are invariant, then η is invariant too. More generally, the
random measure ψ on G×G, defined by ψ(d(s, t)) := T (s, dt)ξ(ds), is invariant
in the obvious way. Assume that P is a stationary probability measure on (�,F ).
Then ψ is generalizing the marked motion processes of [24]; see Example 2.3.
Another special case of ψ are the transport rules of [11] arising in case ξ is the
Lebesgue measure on G = Rd . While our terminology was motivated by [24] and
[11] (and Example 3.2 below), we found it more convenient to put the focus on the
kernel T . Our interpretation is that T transports ξ to η in an invariant way.

EXAMPLE 3.2. Consider a measurable function κ :�×G×G → [0,∞) and
assume that κ is invariant, that is,

κ(θrω, s − r, t − r) = κ(ω, s, t), ω ∈ �, r, s, t ∈ G.(3.2)

Let η be an invariant random measure on G and define

T (s,B) :=
∫
B

κ(s, t)η(dt).

Then (3.1) holds. Such functions κ occur in the mass-transport principle; see [2]
and Remark 3.8 below. If η is a simple point process and t ∈ suppη(ω), then the
number κ(ω, s, t) is interpreted as the mass sent from s to t when the configuration
ω is given.
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Let ξ and η be two invariant random measures on G. A weighted transport-
kernel T on G is called (ξ, η)-balancing, if T transports ξ to η, that is, if for all
ω ∈ � ∫

T (ω, s, ·)ξ(ω, ds) = η(ω, ·).(3.3)

In case ξ = η we also say that T is ξ -preserving. If Q is a measure on (�,F ) such
that (3.3) holds for Q-a.e. ω ∈ �, then we say that T is Q-a.e. (ξ, η)-balancing.

EXAMPLE 3.3. Consider the setting of Example 2.3 and let P be a σ -finite
stationary measure on (�,F ). Then there is a P-a.e. (ξ, η)-balancing invariant
transport-kernel T . To see this, we define a measure M on � × G × G by

M :=
∫∫∫

1{(ω, s, t) ∈ ·}ω(ds × E × dt × E)P(dω).

Stationarity of P implies that∫
1{(θrω, s − r, t − r) ∈ ·}M(d(ω, s, t)) = M, r ∈ G.(3.4)

The measure

M ′ := M(· × G) =
∫∫

1{(ω, s) ∈ ·}ξ(ω, ds)P(dω)

is σ -finite. Hence, we can apply Theorem 3.5 in Kallenberg [13] to obtain an in-
variant transport-kernel T satisfying M(d(ω, s, t)) = T (ω, s, dt)M ′(d(ω, s)). [In
fact, the theorem yields an invariant kernel T ′, satisfying this equation. But in our
specific situation we have T ′(ω, s,G) = 1 for M ′-a.e. (ω, t), so that T ′ can be
modified in an obvious way to yield the desired T .] It is easy to see that T is
indeed P-a.e. (ξ, η)-balancing.

If P is concentrated on the set �′ of all integer-valued ω ∈ �, then one possible
choice of a P-a.e. (ξ, η)-balancing invariant transport-kernel T (consistent with
the above proof) is

T (ω, s, ·) = 1

ξ(ω, {s})
∑

t :ω(s,t)>0

ω(s, t)δt , ω ∈ �′,(3.5)

if ξ(ω, {s}) > 0 and T (ω, s, ·) := δs otherwise, where ω(s, t) := ω({s}×E ×{t}×
E). A general criterion for the existence of balancing transport-kernels is given in
Section 5.

EXAMPLE 3.4. Consider a measurable mapping τ :� × G → G. Then the
transport-kernel T (s, ·) := δτ(s) is invariant if and only if τ is covariant in the
sense that

τ(θtω, s − t) = τ(ω, s) − t, s, t ∈ G, ω ∈ �.
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In this case, following [11], we call τ an allocation rule. Covariance of τ is equiv-
alent to τ(θtω,0) = τ(ω, t) − t for all ω, t . Writing π := τ(0) := τ(θ0,0), we can
express this as τ(s) = π ◦ θs + s. Any measurable mapping π :� → G can be
used to generate an allocation rule this way. We interpret an allocation rule as al-
locating (or transporting), given ω ∈ �, an actual unit of mass close to s to a new
location τ(ω, s). Let ξ and η be two random measures on G. The transport-kernel
T (s, ·) := δτ(s) is (ξ, η)-balancing iff

∫
1{τ(s) ∈ ·}ξ(ds) = η.(3.6)

We then say that τ is (ξ, η)-balancing. In case ξ = η we also say that τ is ξ -
preserving.

EXAMPLE 3.5. Consider the setting of Example 2.4. Letting P′ and ξ be as in
that example, we obtain from an easy calculation that Pξ = P′.

Now let K be a Markovian kernel from G to G and define P′′ := ∫
K(s, ·)P′(ds).

The probability measure
∫∫

1{(s, t) ∈ ·}K(s, dt)P′(ds) is a coupling of P′ and P′′.
In the Monge–Kantorovich mass transportation theory (see, e.g., [25]) K is inter-
preted as transporting the mass distribution P′ to P′′. Let η be the invariant random
measure η(ω,B) := P′′(B + ω), and define an invariant transport-kernel T by
T (ω, s,B) := K(ω + s,B + ω). Then∫

T (ω, s,B)ξ(ω, ds) =
∫

K(s,B + ω)P′(ds) = P′′(B + ω) = η(ω,B),

that is, T is (ξ, η)-balancing. Conversely, if P′ and P′′ are given, and T is a (ξ, η)-
balancing transport-kernel (with ξ and η defined as before), then T (0, s,B) is a
Markovian kernel transporting P′ to P′′.

We now prove an important transport property of Palm measures.

THEOREM 3.6. Let P be a σ -finite stationary measure on (�,F ). Consider
two invariant random measures ξ and η on G and let T and T ∗ be invariant
weighted transport-kernels satisfying for P-a.e. ω ∈ �∫∫

1{(s, t) ∈ ·}T (ω, s, dt)ξ(ω, ds)

(3.7)
=

∫∫
1{(s, t) ∈ ·}T ∗(ω, t, ds)η(ω, dt).

Then we have for any measurable function h :� × G → [0,∞) that

EPξ

[∫
h(θt ,−t)T (0, dt)

]
= EPη

[∫
h(θ0, t)T

∗(0, dt)

]
.(3.8)
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PROOF. Let B ∈ G satisfy λ(B) = 1 and take a measurable h :� × Rd →
[0,∞). From the definition (2.3) of Pξ and (2.1) we obtain

I := EPξ

[∫
h(θt ,−t)T (θ0,0, dt)

]

= EP

[∫∫
1B(s)h(θs+t ,−t)T (θs,0, dt)ξ(ds)

]

= EP

[∫∫
1B(s)h(θt ,−t + s)T (θ0, s, dt)ξ(ds)

]
,

where we have used the invariance (3.1) to get the second equation. Now we can
apply assumption (3.7) to get

I = EP

[∫∫
1B(s)h(θt , s − t)T ∗(θ0, t, ds)η(dt)

]

= EP

[∫∫
1B(t + s)h(θt , s)T

∗(θt ,0, ds)η(dt)

]
,

where we have again used (3.1), this time for the transport T ∗. By the refined
Campbell theorem (2.4),

I = EPη

[∫∫
1B(t + s)h(θ0, s)T

∗(θ0,0, ds) dt

]
= EPη

[∫
h(θ0, s)T

∗(θ0,0, ds)

]
,

where we have used Fubini’s theorem and λ(B) = 1 for the final equation. �

REMARK 3.7. One possible choice of T and T ∗ in (3.7) is T (s, ·) := η and
T ∗(s, ·) := ξ . Then (3.8) is Neveu’s [23] exchange formula

EPξ

[∫
h(θt ,−t)η(dt)

]
= EPη

[∫
h(θ0, t)ξ(dt)

]
.(3.9)

In case ξ = η this is the Mecke equation (2.7).

REMARK 3.8. Let B,B ′ ∈ G have finite and equal Haar measure. Using the
definition (2.3) of Palm measures and the invariance of ξ and η, we can rewrite the
exchange formula (3.9) as

EP

[∫∫
1B(s)h(θt , s − t)η(dt)ξ(ds)

]

(3.10)

= EP

[∫∫
1B ′(s)h(θs, t − s)ξ(dt)η(ds)

]
.

The function κ(ω, s, t) := h(θsω, t − s) is invariant in the sense of (3.2). Equa-
tion (3.10) implies for all invariant κ that

EP

[∫∫
1B(t)κ(s, t)η(ds)ξ(dt)

]

(3.11)

= EP

[∫∫
1B ′(s)κ(s, t)η(ds)ξ(dt)

]
.
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In case ξ = η this gives a version of the mass-transport principle (see [2]) for
random measures on Abelian groups. It will be shown in [16] that Neveu’s ex-
change formula (3.9) can be generalized to jointly stationary random measures on
a homogeneous space. In fact, the papers [2] and [1] show that the mass-transport
principle can be extended beyond this setting.

We finish this section with another useful consequence of Theorem 3.6.

COROLLARY 3.9. Under the assumption of Theorem 3.6, we have

EPξ

[
g

∫
f (θt )T (0, dt)

]
= EPη

[
f

∫
g(θs)T

∗(0, ds)

]
(3.12)

for all measurable functions f,g :� → [0,∞).

PROOF. Apply (3.8) with h(ω, s) := f (ω)g(θsω). �

4. Invariance properties of Palm measures. In this section we fix a sta-
tionary σ -finite measure P on (�,F ). We shall establish fundamental relation-
ships between invariant balancing weighted transport-kernels and Palm measures.
Special cases have been known for a long time; see the references below. We
were partly motivated by Theorem 16 in the recent paper [11], which deals with
(λ, η)-balancing transport-kernels in case G = Rd and where η is an ergodic point
process; see Example 4.8.

THEOREM 4.1. Consider two invariant random measures ξ and η on G and
an invariant weighted transport-kernel T . Then T is P-a.e. (ξ, η)-balancing iff

EPξ

[∫
f (θt )T (0, dt)

]
= EPη

[f ](4.1)

holds for all measurable f :� → [0,∞).

For simplicity, we will refer to (4.1) in case ξ = η as invariance of Pξ under T .
For the proof of Theorem 4.1, we need the following lemma.

LEMMA 4.2. Assume that T is a P-a.e. (ξ, η)-balancing invariant weighted
transport-kernel. Then there is an invariant transport-kernel T ∗ on G such that
(3.7) holds for P-a.e. ω ∈ �.

PROOF. Similarly as in Example 3.3, we consider the following measure M

on � × G × G:

M :=
∫∫∫

1{(ω, s, t) ∈ ·}T (ω, s, dt)ξ(ω, ds)P(dω).
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Stationarity of P, (2.2) and (3.1) easily imply that (3.4) holds. Moreover, as (3.3)
is assumed to hold for P-a.e. ω, we have

M ′ :=
∫

1{(ω, t) ∈ ·}M(d(ω, s, t)) =
∫∫

1{(ω, t) ∈ ·}η(ω,dt)P(dω).(4.2)

This is a σ -finite measure on � × G. Similarly as in Example 3.3, we can apply
Theorem 3.5 in Kallenberg [13] to obtain an invariant transport-kernel T ∗ satisfy-
ing

M =
∫∫

1{(ω, s, t) ∈ ·}T ∗(ω, t, ds)M ′(d(ω, t)).

Recalling the definition of M and the second equation in (4.2), we get for all A ∈ F
that

EP

[
1A

∫∫
1{(s, t) ∈ ·}T (θ0, s, dt)ξ(ds)

]

= EP

[
1A

∫∫
1{(s, t) ∈ ·}T ∗(θ0, t, ds)η(dt)

]
.

Since G ⊗ G is countably generated, we obtain the assertion of the lemma. �

PROOF OF THEOREM 4.1. If T is P-a.e. (ξ, η)-balancing, then (4.1) fol-
lows from Lemma 4.2 and Theorem 3.6. Conversely, assume that (4.1) holds. Let
f :�×G → [0,∞) be measurable. Using the refined Campbell theorem for η and
(4.1), we get

EP

[∫
f (θs, s)η(ds)

]
= EPξ

[∫∫
f (θt , s) ds T (θ0,0, dt)

]

= EPξ

[∫∫
f (θt , s + t)T (θ0,0, dt) ds

]
,

where we have used invariance of λ and Fubini’s theorem for the latter equation.
By the refined Campbell theorem for ξ and invariance of T , we get that the last
term equals

EP

[∫∫
f (θs+t , s + t)T (θs,0, dt)ξ(ds)

]
= EP

[∫∫
f (θt , t)T (θ0, s, dt)ξ(ds)

]
.

Now we combine the latter equations and apply them with f (ω, s) := g(θ−sω, s),
where g :� × G → [0,∞) is measurable. This yields

EP

[∫
g(θ0, s)η(ds)

]
= EP

[∫∫
g(θ0, t)T (θ0, s, dt)ξ(ds)

]
.

Using this with g := 1A×B , for A ∈ F and B ∈ G, gives

EP[1Aη(B)] = EP

[
1A

∫
T (θ0, s,B)ξ(ds)

]
.

Since G is countably generated, this concludes the proof of the theorem. �
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EXAMPLE 4.3. Consider the setting of Examples 2.3 and 2.5 and let P be a
σ -finite stationary measure on (�,F ) concentrated on the set �′ of all integer-
valued ω ∈ �. Assume that P(ξ̃ ∈ ·) is σ -finite. Applying Theorem 4.1 with T

given by (3.5) and using (2.5) gives∫∫ 1

ξ(ω, {0})
∑

t :ω(0,t)>0

f (θtω)ω(0, t)K(μ,dω)Pξ (ξ̃ ∈ dμ) = EPη
[f ](4.3)

for any measurable f :� → [0,∞). Specializing to the case of a function f de-
pending only on η(ω) yields Theorem 6.5 in Port and Stone [24]. In the special
case G = R (and under further restrictions on the support of P), (4.3) is Theo-
rem 6.5 in [6].

EXAMPLE 4.4. Let ξ be an invariant (simple) point process on G. A point-
allocation for ξ is an allocation rule τ :�×G → G such that τ(s) ∈ supp ξ when-
ever s ∈ supp ξ . Such a point-allocation is called bijective if s �→ τ(s) is a bijection
on supp ξ whenever ξ(G) > 0. Clearly, this is equivalent to the fact that τ is ξ -
preserving; see [28] and [7] for more details. Consider a bijective point-allocation
τ for ξ . There is an inverse point-allocation τ ∗, that is, a bijective point-allocation
for ξ satisfying τ(ω, τ ∗(ω, s)) = τ ∗(ω, τ (ω, s)) = s for all (ω, s) ∈ � × G such
that s ∈ supp ξ(ω). [Defining τ ∗(s) := s for s /∈ supp ξ , it can easily be checked
that τ ∗ is covariant.] The invariant transport-kernels

T (s, ·) := δτ(s), T ∗(s, ·) := δτ∗(s), s ∈ G,

satisfy (3.7) with η := ξ . Therefore, we obtain from (3.12) that

EPξ
[gf (θτ )] = EPξ

[fg(θτ∗)],
where θτ :� → � is defined by

θτ (ω) := θτ(ω,0)(ω), ω ∈ �.(4.4)

Taking g ≡ 1 yields EPξ
[f (θτ )] = EPξ

[f ], that is, the invariance of Pξ under θτ .
This is Theorem 3.1 in [7] (cf. also Theorem 9.4.1 in [28]). In fact, this result can
also be derived from a more general result in [22].

The results in the previous example can be generalized to invariant random mea-
sures ξ and η. To do so, we consider an allocation rule τ which is P-a.e. (ξ, η)-
balancing (see Example 3.4) and define the transport-kernel T by T (s, ·) := δτ(s).
Let T ∗ be an invariant transport-kernel satisfying (3.7) for P-a.e. ω ∈ �. Then
(3.12) says that

EPξ
[gf (θτ )] = EPη

[
f

∫
g(θs)T

∗(0, ds)

]
.

In particular, we obtain that Pξ (θτ ∈ ·) = Pη, where θτ is defined by (4.4). In case
ξ = η (and in accordance with the terminology introduced after Theorem 4.1) we
will refer to this as invariance of Pξ under τ . Theorem 4.1 implies the following
proposition.
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PROPOSITION 4.5. Consider two invariant random measures ξ and η and let
τ be an allocation rule. Then τ is P-a.e. (ξ, η)-balancing iff

Pξ (θτ ∈ A) = Pη(A), A ∈ F .(4.5)

REMARK 4.6. The invariance of Pξ under ξ -preserving allocation rules is
(essentially) a consequence of Satz 4.3 in [22]. The special case ξ = λ was treated
in [5].

The invariant σ -field I ⊂ F is the class of all sets A ∈ F satisfying θsA = A

for all s ∈ G. Let ξ be an invariant random measure with finite intensity and define

ξ̂ := EP[ξ(B)|I],(4.6)

where B ∈ G has λ(B) = 1 and the conditional expectation is defined as for prob-
ability measures. (Stationarity implies that this definition is P-a.e. independent of
the choice of B .) If P is a probability measure and G = Rd , then ξ̂ is called the
sample intensity of ξ ; the see [20] and [12]. Assuming that P(ξ̂ = 0) = 0, we define
the modified Palm measure P∗

ξ of ξ (see [14, 20, 28]) by

P∗
ξ (A) := EPξ

[ξ̂−11A], A ∈ F .(4.7)

By this definition and ξ̂ ◦ θs = ξ̂ , s ∈ G, we have

P∗
ξ (A) = EP

[
ξ̂−1

∫
1A(θs)1B(s)ξ(ds)

]
= Pξ ′(A), A ∈ F ,(4.8)

where the invariant random measure ξ ′ is defined by ξ ′ := ξ̂−1ξ if 0 < ξ̂ < ∞
and is the null measure, otherwise. Using (4.8), we obtain the following version of
Theorem 4.1.

COROLLARY 4.7. Consider two invariant random measures ξ and η with
finite intensities such that P(ξ̂ = 0) = P(η̂ = 0) = 0 and let T be an invariant
weighted transport-kernel. Define ξ ′ := ξ̂−1ξ and η′ := η̂−1η. Then T is P-a.e.
(ξ ′, η′)-balancing, iff

EP∗
ξ

[∫
f (θt )T (0, dt)

]
= EP∗

η
[f ](4.9)

holds for all measurable f :� → [0,∞).

EXAMPLE 4.8. Let η be an invariant random measure with finite intensity and
such that P(η̂ = 0) = 0. Consider the invariant random measure ξ := η̂λ and let T

be an invariant weighted transport-kernel. Then T is P-a.e. (ξ, η)-balancing iff T

is P-a.e. (λ, η′)-balancing, where η′ := η̂−1η. By Corollary 4.7, this is equivalent
to

EP

[∫
1A(θt )T (0, dt)

]
= P∗

η(A), A ∈ F .(4.10)
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In case G = Rd , η is a point process, T is Markovian, and P is an ergodic proba-
bility measure; this boils down to Theorem 16 in [11].

EXAMPLE 4.9. Consider Example 4.8 in case η is a point process and
the weighted transport-kernel is generated by an allocation rule τ satisfying
λ({s ∈ G : τ(s) /∈ suppη}) = 0. Clearly, τ is P-a.e. (λ, η′)-balancing iff

λ
({s ∈ G : τ(s) = t}) = η̂−1, t ∈ suppη,(4.11)

holds P-a.e. By Corollary 4.7, this is then equivalent to

P(θτ ∈ A) = P∗
η(A), A ∈ F .(4.12)

The special case G = Rd is Theorem 9.1 in [14], a slight generalization of Theo-
rem 13 in [11]. It is quite remarkable that allocation rules satisfying (4.11) do exist
in case G = Rd (and in case P is a probability measure); see Theorem 1 in [11]
(and Theorem 10.1 in [14] for the nonergodic case). We also refer to the discussion
in the introduction and Remark 5.2. Theorem 20 in [11] shows that the situation is
different for discrete groups.

REMARK 4.10. Relations (4.5) and (4.12) are examples of group-coupling
(see [26]); the term “group-coupling” is from [12]. Actually, the relation (4.1) can
also be seen as group-coupling by extending the underlying space (�,F ,Pξ ) to
support a random element γ in G such that the conditional distribution of γ given
F is T (0, ·). Then (4.1) can be rewritten as (4.5) with θτ replaced by θγ . A similar
remark applies to (4.10).

5. Existence of balancing invariant transport-kernels. Again we fix a sta-
tionary σ -finite measure P on (�,F ). Our aim is to establish a necessary and
sufficient condition for the existence of balancing invariant transport-kernels.

THEOREM 5.1. Let ξ and η be invariant random measures with positive and
finite intensities. Then there exists a P-a.e. (ξ, η)-balancing invariant transport-
kernel iff

EP[ξ(B)|I] = EP[η(B)|I] P-a.e.(5.1)

for some B ∈ G satisfying 0 < λ(B) < ∞.

PROOF. Let B ∈ G satisfy 0 < λ(B) < ∞. For any A ∈ I , we have from (2.4)
that

λ(B)Pξ (A) = EP[1Aξ(B)], λ(B)Pη(A) = EP[1Aη(B)].(5.2)

If T is a P-a.e. (ξ, η)-balancing invariant transport-kernel, then Theorem 4.1 im-
plies the equality Pη(A) = Pξ (A) and, thus, EP[1Aη(B)] = EP[1Aξ(B)]. This en-
tails (5.1).
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Let us now assume that (5.1) holds for some B ∈ G satisfying 0 < λ(B) < ∞.
Since E[ξ(·)] and E[η(·)] are multiples of λ, ξ and η have the same intensities.
We assume without loss of generality that these intensities are equal to 1. From
(5.2) and conditioning we obtain that Pξ = Pη on I . The group-coupling result in
Thorisson [26] (see also Theorem 10.28 in Kallenberg [12]) implies the existence
of random elements δ and δ′ in � and ρ in G, all defined on some probabil-
ity space (�̃, F̃ , P̃), such that δ has distribution Pξ , δ′ has distribution Pη, and
δ′(ω̃) = θρ(ω̃)δ(ω̃) for P̃-a.e. ω̃ ∈ �̃. Let T̃ (ω, ·), ω ∈ �, be a regular version of the
conditional distribution P̃(ρ ∈ ·|δ = ω). Then we have for any A ∈ F that

Pη(A) = P̃(δ′ ∈ A) = P̃(θρδ ∈ A) = E
P̃

[∫
1A(θsδ)T̃ (δ, ds)

]

(5.3)

= EPξ

[∫
1A(θs)T̃ (θ0, ds)

]
.

We now define an invariant transport-kernel T by T (ω, s,B) := T̃ (θsω,B − s).

Then (5.3) implies (4.1), and Theorem 4.1 yields that T is P-a.e. (ξ, η)-balancing.
�

REMARK 5.2. The above proof does not provide a method for actually con-
structing balancing invariant transport-kernels. As mentioned in the Introduction,
explicit constructions of allocation rules, in case ξ = λ and η is an ergodic point
process of intensity 1, have been presented by Liggett [19] and Holroyd and Peres
[11]. Note that (4.5) means in this case that P(θτ ∈ ·) = Pη. The construction of
balancing invariant transport-kernels and allocation rules in other cases is an inter-
esting topic for further research.

REMARK 5.3. Let ξ and η be invariant random measures with finite intensities
such that P(ξ̂ = 0) = P(η̂ = 0) = 0. Then the invariant random measures ξ ′ :=
ξ̂−1ξ and η′ := η̂−1η satisfy (5.2); see also Corollary 4.7.

6. Mass-stationarity. We consider an invariant random measure ξ on G to-
gether with a σ -finite measure Q on (�,F ). Our aim is to establish a condition
that is necessary and sufficient for Q to be the Palm measure of ξ with respect to
some stationary σ -finite measure on (�,F ).

Let C ∈ G be relatively compact and define an invariant transport-kernel TC by

TC(t,B) := ξ(C + t)−1ξ
(
B ∩ (C + t)

)
, t ∈ G, B ∈ G,(6.1)

if ξ(C + t) > 0, and by letting TC(t, ·) equal some fixed probability measure other-
wise. In the former case TC(t, ·) is just governing a G-valued stochastic experiment
that picks a point uniformly in the mass of ξ in C + t . If 0 < λ(C) < ∞, we also
define the uniform distribution λC on G by λC(B) := λ(B ∩C)/λ(C). The interior
(resp. boundary) of a set C ⊂ G is denoted by intG (resp. ∂C).
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DEFINITION 6.1. The σ -finite measure Q on (�,F ) is called mass-station-
ary for ξ if Q(ξ(G) = 0) = 0 and

EQ

[∫∫
1A(θs, s + r)TC(−r, ds)λC(dr)

]
= Q ⊗ λC(A), A ∈ F ⊗ G,(6.2)

holds for all relatively compact sets C ∈ G with λ(C) > 0 and λ(∂C) = 0.

REMARK 6.2. Assume that Q is a probability measure. Let C be as assumed
in (6.2). Extend the space (�,F ,Q), so as to carry random elements U,V in G

such that θ0 and U are independent, U has distribution λC , and the conditional dis-
tribution of V given (θ0,U) is uniform in the mass of ξ on C − U . (The mappings
θs , s ∈ G, are extended, so that they still take values in the original space �.) Then
(6.2) can be written as

(θV ,U + V )
d= (θ0,U).(6.3)

In the case of simple point processes on Rd , this is (essentially) the property
that was proved in Thorisson ([28], Theorem 9.5.1) to be equivalent to point-
stationarity.

THEOREM 6.3. There exists a σ -finite stationary measure P on (�,F ) such
that Q = Pξ iff Q is mass-stationary for ξ .

PROOF. Let C ∈ G be relatively compact with λ(C) > 0 and λ(C \ intC) = 0.
Then λ(intC) > 0 and we have for λ-a.e. r ∈ C that r ∈ intC. For r ∈ intC and
t ∈ G, we have t ∈ int(C − r + t). If, in addition, t ∈ supp ξ , then

ξ(C + t − r) ≥ ξ
(
int(C − r + t)

)
> 0.

By definition (6.1) of T (and using the above fact), we have for all B,D ∈ G
and t ∈ supp ξ that∫∫

1B(s)1D(s − t + r)TC(t − r, ds)λC(dr)

=
∫∫

1B(s)1D(s − t + r)1C+t−r (s)ξ(C + t − r)−1λC(dr)ξ(ds)

= λ(C)−1
∫∫

1B(s)1D(r + s)1C(r + s)1C(r + t)ξ(C − r)−1 dr ξ(ds),

where the second equation comes from a change of variables. It follows that∫∫∫
1B(s)1D(s − t + r)TC(t − r, ds)λC(dr)ξ(dt)

= λ(C)−1
∫∫

1B(s)1D(r + s)1C(r + s) dr ξ(ds)(6.4)

= ξ(B)λC(D).
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Equation (6.4) implies that the invariant weighted transport-kernel

TC,D(t, ·) :=
∫∫

1{s ∈ ·}1D(s − t + r)TC(t − r, ds)λC(dr)(6.5)

is (ξ, η)-balancing, where η := λC(D)ξ . (Invariance of TC,D is a quick conse-
quence of the same property of TC .) Assume now that Q = Pξ is the Palm measure
of ξ with respect to some σ -finite measure P on (�,F ). Since Pη = λC(D)Pξ , we
get from Theorem 4.1 (applied with T = TC,D) that

EPξ

[∫∫
1A′(θs)1D(s + r)TC(−r, ds)λC(dr)

]
= λC(D)Pξ (A

′), A′ ∈ F .

This is (6.2) for measurable product sets, implying (6.2) for general A ∈ F ⊗ G.
Let us now assume, conversely, that Q is mass-stationary for ξ . For simplicity,

we can then also assume that supp ξ �= ∅ everywhere on �. We will show the
Mecke equation (2.7). Let C ∈ G be a relatively compact set with λ(C) > 0 and
λ(∂C) = 0. Mass-stationarity of Q implies for any measurable f :� → [0,∞) and
any D ∈ G that

EQ

[∫∫
f (θs)1D(s + r)TC(−r, ds)λC(dr)

]
= λC(D)EQ[f ].

By definition (6.1) of TC , this means that

EQ

[∫∫
f (θs)1D(s + r)1C(s + r)1C(r)ξ(C − r)−1 dr ξ(ds)

]

= λ(D ∩ C)EQ[f ],
where we recall the first paragraph of the proof. A change of variables and Fubini’s
theorem give∫

D
1C(r)EQ

[∫
f (θs)1C(r − s)ξ(C − r + s)−1ξ(ds)

]
dr = EQ[f ]

∫
D

1C(r) dr.

As D ∈ G is arbitrary, this shows that

EQ

[∫
f (θs)1C(r − s)ξ(C − r + s)−1ξ(ds)

]
= EQ[f ]

holds for λ-a.e. r ∈ C. Applying this with f replaced by f (f̃ ◦ ξ), where f̃ : M →
[0,∞) is measurable, we obtain for λ-a.e. r ∈ C that

EQ

[∫
f (θs)f̃ (ξ ◦ θs)1C(r − s)ξ(C − r + s)−1ξ(ds)

]
= EQ[f f̃ (ξ)].(6.6)

By separability of M (see, e.g., Theorem A2.3 in [12]) and a monotone class ar-
gument, we can choose the corresponding null set C ′ ∈ G independently of f̃ .
Applying (6.6) with r ∈ C \ C ′ and f̃ (μ) := μ(C − r), μ ∈ M, gives

EQ

[∫
f (θs)1C(r − s)ξ(ds)

]
= EQ[f ξ(C − r)] λ-a.e. r ∈ C.(6.7)
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Let Bn ⊂ G, n ∈ N, be an increasing sequence of compact sets satisfying
λ(∂Bn) = 0 and

⋃
n Bn = G. (Such a sequence can be constructed with the help

of a metric generating the topology on G. For any s ∈ G, there is a compact and
nonempty ball centred at s whose boundary has λ-measure 0. Let B∗

n , n ∈ N, be
an increasing sequence of compact sets with union G. Then B∗

n is contained in the
union B̃n of finitely many of the above balls. The sequence B̃1 ∪ · · · ∪ B̃n, n ∈ N,
has the desired properties.) Fix n ∈ N and assume temporarily that

EQ[f ξ(Bn − Bn)] < ∞,(6.8)

where Bn −Bn := {r −r ′ : r, r ′ ∈ Bn}. Since (r, r ′) �→ r −r ′ is continuous, Bn −Bn

is again compact. Then we have for all measurable C′ ⊂ Bn and r ∈ Bn that

EQ[f ξ(C′ − r)] ≤ EQ[f ξ(Bn − Bn)] < ∞.

Assume now that C ⊂ Bn is satisfying the assumptions made in (6.6) and let C0 :=
Bn \ C. Applying (6.7) to Bn yields for λ-a.e. r ∈ Bn

EQ

[∫
f (θs)1C0(r − s)ξ(ds)

]
+ EQ

[∫
f (θs)1C(r − s)ξ(ds)

]

(6.9)
= EQ[f ξ(C0 − r)] + EQ[f ξ(C − r)].

Since ∂C0 ⊂ ∂Bn ∪ ∂(G \ C) = ∂Bn ∪ ∂C, we have λ(∂C0) = 0. Hence, we can
apply (6.7) to C0 to obtain that the respective first summands in (6.9) coincide
λ-a.e. r ∈ C0. Therefore, the respective second summands coincide λ-a.e. r ∈ C0.
Combining this with (6.7) gives

EQ

[∫
f (θs)1C(r − s)ξ(ds)

]
= EQ[f ξ(C − r)], λ-a.e. r ∈ Bn.(6.10)

Integrating (6.10) over a measurable set D ⊂ Bn, using (on both sides) Fubini’s
theorem and a change of variables gives

EQ

[∫∫
f (θs)1D(r + s)1C(r)ξ(ds) dr

]
= EQ

[
f

∫∫
1D(r − s)1C(r)ξ(ds) dr

]
.

As both sides are finite measures in C (the right-hand side is bounded by
EQ[f ξ(Bn−Bn)]) and the class G′ := {C ∈ G :C ⊂ Bn,λ(∂C) = 0} is stable under
intersections and generates G∩Bn, we obtain this equation even for all measurable
C ⊂ Bn. [To check that σ(G′) = G ∩ Bn, it is sufficient to show for any nonempty
open U ⊂ G that there is a nonempty open U ′ ⊂ U such that U ′ ∩ Bn ∈ G′. This
can be achieved with an open ball U ′ having λ(∂U ′) = 0.] Reversing the above
steps, we obtain (6.10) for all measurable C ⊂ Bn. Since G is countably generated,
we can choose the corresponding null-sets independently of C. This means that
there is a measurable set B ′

n ⊂ Bn such that λ(Bn \ B ′
n) = 0 and

EQ

[∫
f (θs)1C(r − s)ξ(ds)

]

(6.11)
= EQ[f ξ(C − r)], r ∈ B ′

n, C ∈ G ∩ Bn.
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Still keeping n ∈ N fixed in (6.11), we now lift the assumption (6.8) on
f :� → [0,∞). If EQ[f ] < ∞, we can apply (6.11) with f replaced by
f 1{ξ(Bn − Bn) ≤ m} and then let m → ∞. For general f , we decompose �

into measurable sets Dm ↑ � with Q(Dm) < ∞, apply the previous result to
1Dm min{f, k}, and let m,k → ∞. Then (6.11) still holds for all r ∈ B ′′

n ∈ G, where
B ′′

n ⊂ Bn such that λ(Bn \B ′′
n) = 0. For notational simplicity, we assume B ′′

n = B ′
n.

In the final step of the proof we would like to take the limit in (6.11) as n → ∞.
First we can assume without loss of generality that λ(B1) > 0. Let r0 ∈ B1 \ B∗,
where B∗ is the λ-null set

⋃
n Bn \B ′

n. Then r0 ∈ B ′
n for all n ≥ 1. Take an arbitrary

C̃ ∈ G. Applying (6.11) to C := C̃ ∩ Bn and letting n → ∞ yields

EQ

[∫
f (θs)1C′(−s)ξ(ds)

]
= EQ

[∫
f 1C′(s)ξ(ds)

]
,(6.12)

for C′ = C̃ − r0 and hence for any C′ ∈ G. The measure EQ[∫ 1{(θ0, s) ∈ ·}ξ(ds)]
is finite on measurable product sets of the form {μ ∈ D :μ(B) ≤ k} × B , where
Q(D) < ∞, B is compact, and k ∈ N. Since � × G is the monotone union of
countably many of such sets, it is now straightforward to proceed from (6.12) to
the full Mecke equation (2.7). �

REMARK 6.4. The inversion formula (2.6) implies that the measure Q in The-
orem 6.3 determines P.

Let C be as in (6.2) and assume that 0 ∈ intC. Then ξ(C + t) > 0 for all t ∈
supp ξ and one might think (at least at first glance) that a Palm measure of ξ is
invariant under TC . The following simple example (other examples can be based
on the Poisson process) shows that this is wrong.

EXAMPLE 6.5. Consider the group G = {0,1,2} with addition modulo 3. Let
ξ0, ξ1, ξ2 be independent Bernoulli (1/2) random variables. The distribution P of
the point process ξ0δ0 + ξ1δ1 + ξ2δ2 is stationary. Let Q be the Palm probabil-
ity measure P0

ξ , defined in the setting of Example 2.1. Since λ is (a multiple of)
the counting measure, we can take B := {0} in (2.3) to see that ξ{1} and ξ{2}
are independent Bernoulli (1/2) under Q. [Of course, we have Q(ξ{0} = 1) = 1.]
Consider the set C := {0,1} and the event A := {ξ{1} = 1}, where we recall that ξ

is the identity on � = M. Then we obtain from a trivial calculation that

EQ

[∫
1A(θs)TC(0, ds)

]
= EQ

[∫
1{ξ{1 + s} = 1}TC(0, ds)

]
= 3

8
.

Since Q(A) = 1/2, Q is not invariant under TC .
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7. Discussion of mass-stationarity. As in Section 6, consider an invariant
random measure ξ on G together with a σ -finite measure Q on (�,F ). Assume
that Q(ξ(G) = 0) = 0. In the point process case, [7] and [8] answered a question,
raised in [28] and [4], positively by proving that Q is a Palm measure of ξ if and
only if Q is invariant under all σ(ξ) ⊗ G-measurable bijective point-allocations τ

for ξ , that is, with θτ defined by (4.4):

Q(θτ ∈ A) = Q(A), A ∈ F .(7.1)

At this stage one might be tempted to guess that (7.1) characterizes Palm measures
also for general ξ . The following example shows that, in general, randomization
is needed to define mass-stationarity. We will construct a probability measure Q

and an invariant random measure ξ satisfying (7.1) for all ξ -preserving allocation
rules τ ; see Example 3.4. Still Q will be no Palm measure of ξ . The construction
applies to any Abelian group as considered in this paper.

EXAMPLE 7.1. Assume that (�,F ) = (M × M,M ⊗M) and (abusing nota-
tion) θsω = (θsμ, θsν) for ω = (μ, ν) ∈ M × M. Let � denote the distribution of
a stationary Poisson process with intensity 1, considered as a probability measure
on (M,M). It is well known that the associated Palm probability measure (defined
in the framework of Example 2.1) is given by �0 = ∫

1{μ + δ0 ∈ ·}�(dμ). Let
Q := �0 ⊗ � and c > 0 be an irrational number. Define an invariant random mea-
sure ξ on G by ξ := ξ1 + cξ2, where ξ1 and ξ2 are the projections of � onto the
first and second component, respectively. Let τ be a ξ -preserving allocation rule,
that is, ∫

1{τ(s) = t}ξ1(ds) + c

∫
1{τ(s) = t}ξ2(ds) = ξ{t}, t ∈ G.

Since c is irrational, this can only hold if τ is ξ1-preserving. As it can be straight-
forwardly checked that Q is the Palm measure of ξ1, Theorem 4.1 implies (7.1).

We now show that Q is not mass-stationary for ξ . Therefore and by Theo-
rem 6.3, it cannot be a Palm measure of ξ . Consider a set C ∈ G as in Definition 6.1
and place it at random around the origin. This random set will contain a ξ2-point
with positive probability; this point will in turn be chosen with positive probability
as a new origin. Thus, if Q was mass-stationary for ξ , it should also have mass c

at 0 with positive probability. But this is not the case.

Instead of working with general invariant (weighted) transport-kernels, we de-
fine mass-stationarity by (6.2). This property has the advantage of having the direct
probabilistic interpretation (6.3) when Q is a probability measure. In order to see
how it is related to invariance under weighted transport-kernels, let C ∈ G be as
in Definition 6.1 and D ∈ G with λ(C ∩ D) > 0. Define the invariant weighted
transport-kernel T ′

C,D := λC(D)−1TC,D , where TC,D is given by (6.4). As noted
at (6.4), we have that T ′

C,D is ξ -preserving. Also T ′
C,D is bounded but in general
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not Markovian. Mass-stationarity of Q is equivalent to assuming invariance of Q

under all these transport-kernels. Now, Theorem 6.1 and Theorem 4.1 yield the
following result.

THEOREM 7.2. The measure Q is mass-stationary for ξ iff it is invariant un-
der bounded ξ -preserving invariant weighted transport-kernels T .

Further results on mass-stationary random measures will be provided in the
papers [15, 17] and [18].

We finish this section with some open problems related to mass-stationarity.
A kernel T from � × G to G is called ξ -measurable if T (·, ·,B) is σ(ξ) ⊗ G-
measurable for all B ∈ G.

PROBLEM 7.3. Assume that Q is invariant under ξ -preserving and ξ -
measurable invariant transport-kernels. Is Q mass-stationary for ξ?

The condition in Problem 7.3 implies that of the following problem.

PROBLEM 7.4. Assume that

EQ

[∫∫
1A(θs)TC(−r, ds)λC(dr)

]
= Q(A), A ∈ F ,(7.2)

holds for all C as in Definition 6.1. Is Q mass-stationary for ξ?

The counterexample in Example 7.1 arises because mass-atoms of relatively
prime size cannot be mapped into each other in a measure-preserving way. But
what about diffuse random measures?

PROBLEM 7.5. Assume that ξ is diffuse and that (7.1) holds for all ξ -
preserving [and σ(ξ) ⊗ G-measurable] allocation rules τ . Is Q mass-stationary
for ξ?

If the answer to Problem 7.5 is negative, we might (as is the key idea in [27]
and [28]) attempt to introduce a stationary independent background:

PROBLEM 7.6. Let θt , t ∈ G, and ξ be defined on (�,F ,Q). Introduce a
stationary independent background as follows: let θ ′

t , t ∈ G, be another flow de-
fined on a space (�′,F ′,Q′), where Q′ is stationary under the flow, and consider
the joint flow on (�,F ,Q) ⊗ (�′,F ′,Q′) with ξ defined in the natural way on
this extended space. Assume that ξ is diffuse and that Q ⊗ Q′ is invariant under
ξ -preserving [and σ(ξ) ⊗ G-measurable] allocation rules for all such stationary
independent backgrounds. Is Q mass-stationary for ξ?
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PROBLEM 7.7. Same as Problem 7.6 but now only assume that Q—and not
Q ⊗ Q′—is invariant.

REMARK 7.8. The second author wants to use this oportunity to correct a mis-
take in [27] and [28]. Remark 3.2 in [27] claims that the answer to Problem 7.7 is
positive in the case of simple point processes on Rd . This claim is a mistake stem-
ming from the author’s forgetting that the argument in Section 4.4 in [27] relies on
the joint invariance. Similarly, Lemma 4.1 in [27] needs to be corrected by adding
the background in (4.11). The same applies to Remark 9.3.2 and Lemma 9.4.1
in [28].

Acknowledgments. We would like to thank Alexander Holroyd, Yuval Peres
and an anonymous referee for valuable comments.

REFERENCES

[1] ALDOUS, D. and LYONS, R. (2007). Processes on unimodular random networks. Electron. J.
Probab. 12 1454–1508 (electronic). MR2354165

[2] BENJAMINI, I., LYONS, R., PERES, Y. and SCHRAMM, O. (1999). Group-invariant percola-
tion on graphs. Geom. Funct. Anal. 9 29–66. MR1675890

[3] CHATTERJEE, S., PELED, R., PERES, Y. and ROMIK, R. (2008). Gravitational allocation to
Poisson points. Ann. Math. To appear.

[4] FERRARI, P. A., LANDIM, C. and THORISSON, H. (2004). Poisson trees, succession lines
and coalescing random walks. Ann. Inst. H. Poincaré Probab. Statist. 40 141–152.
MR2044812

[5] GEMAN, D. and HOROWITZ, J. (1975). Random shifts which preserve measure. Proc. Amer.
Math. Soc. 49 143–150. MR0396907

[6] HARRIS, T. E. (1971). Random measures and motions of point processes. Z. Wahrsch. Verw.
Gebiete 18 85–115. MR0292148

[7] HEVELING, M. and LAST, G. (2005). Characterization of Palm measures via bijective point-
shifts. Ann. Probab. 33 1698–1715. MR2165576

[8] HEVELING, M. and LAST, G. (2007). Point shift characterization of Palm measures on Abelian
groups. Electron. J. Probab. 12 122–137 (electronic). MR2280261

[9] HOLROYD, A. E. and LIGGETT, T. M. (2001). How to find an extra head: Optimal random
shifts of Bernoulli and Poisson random fields. Ann. Probab. 29 1405–1425. MR1880225

[10] HOLROYD, A. E. and PERES, Y. (2003). Trees and matchings from point processes. Electron.
Comm. Probab. 8 17–27 (electronic). MR1961286

[11] HOLROYD, A. E. and PERES, Y. (2005). Extra heads and invariant allocations. Ann. Probab.
33 31–52. MR2118858

[12] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Springer, New York.
MR1876169

[13] KALLENBERG, O. (2007). Invariant measures and disintegrations with applications to Palm
and related kernels. Probab. Theory Related Fields 139 285–310. MR2322698

[14] LAST, G. (2006). Stationary partitions and Palm probabilities. Adv. in Appl. Probab. 38 602–
620. MR2256871

[15] LAST, G. (2009). Modern random measures: Palm theory and related models. In New Per-
spectives in Stochastic Geometry (W. Kendall und I. Molchanov, eds.). Clarendon Press,
Oxford. To appear.

http://www.ams.org/mathscinet-getitem?mr=2354165
http://www.ams.org/mathscinet-getitem?mr=1675890
http://www.ams.org/mathscinet-getitem?mr=2044812
http://www.ams.org/mathscinet-getitem?mr=0396907
http://www.ams.org/mathscinet-getitem?mr=0292148
http://www.ams.org/mathscinet-getitem?mr=2165576
http://www.ams.org/mathscinet-getitem?mr=2280261
http://www.ams.org/mathscinet-getitem?mr=1880225
http://www.ams.org/mathscinet-getitem?mr=1961286
http://www.ams.org/mathscinet-getitem?mr=2118858
http://www.ams.org/mathscinet-getitem?mr=1876169
http://www.ams.org/mathscinet-getitem?mr=2322698
http://www.ams.org/mathscinet-getitem?mr=2256871


INVARIANT TRANSPORTS 813

[16] LAST, G. (2009). Stationary random measures on homogeneous spaces. To appear.
[17] LAST, G. and THORISSON, H. (2009). Characterization of mass-stationary by Bernoulli and

Cox transports. To appear.
[18] LAST, G. and THORISSON, H. (2008). Constructions of stationary and mass-stationary random

measures. (In preparation.)
[19] LIGGETT, T. M. (2002). Tagged particle distributions or how to choose a head at random. In

In and Out of Equilibrium (Mambucaba, 2000). Progr. Probab. 51 133–162. Birkhäuser,
Boston. MR1901951

[20] MATTHES, K., KERSTAN, J. and MECKE, J. (1978). Infinitely Divisible Point Processes. Wi-
ley, Chichester. MR0517931

[21] MECKE, J. (1967). Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z.
Wahrsch. Verw. Gebiete 9 36–58. MR0228027

[22] MECKE, J. (1975). Invarianzeigenschaften allgemeiner Palmscher Maße. Math. Nachr. 65 335–
344. MR0374385

[23] NEVEU, J. (1977). Processus ponctuels. In École D’Été de Probabilités de Saint-Flour, VI—
1976. Lecture Notes in Mathematics 598 249–445. Springer, Berlin. MR0474493

[24] PORT, S. C. and STONE, C. J. (1973). Infinite particle systems. Trans. Amer. Math. Soc. 178
307–340. MR0326868

[25] RACHEV, S. T. and RÜSCHENDORF, L. (1998). Mass Transportation Problems. Vol. I: Theory.
Springer, New York. MR1619170

[26] THORISSON, H. (1996). Transforming random elements and shifting random fields. Ann.
Probab. 24 2057–2064. MR1415240

[27] THORISSON, H. (1999). Point-stationarity in d dimensions and Palm theory. Bernoulli 5 797–
831. MR1715440

[28] THORISSON, H. (2000). Coupling, Stationarity, and Regeneration. Springer, New York.
MR1741181

[29] TIMÁR, Á. (2004). Tree and grid factors for general point processes. Electron. Comm. Probab.
9 53–59 (electronic). MR2081459

[30] ZÄHLE, U. (1988). Self-similar random measures. I. Notion, carrying Hausdorff dimension,
and hyperbolic distribution. Probab. Theory Related Fields 80 79–100. MR970472

INSTITUT FÜR STOCHASTIK

UNIVERSITÄT KARLSRUHE

76128 KARLSRUHE

GERMANY

E-MAIL: last@math.uni-karlsruhe.de

SCIENCE INSTITUTE

UNIVERSITY OF ICELAND

DUNHAGA 3
107 REYKJAVIK

ICELAND

E-MAIL: hermann@hi.is

http://www.ams.org/mathscinet-getitem?mr=1901951
http://www.ams.org/mathscinet-getitem?mr=0517931
http://www.ams.org/mathscinet-getitem?mr=0228027
http://www.ams.org/mathscinet-getitem?mr=0374385
http://www.ams.org/mathscinet-getitem?mr=0474493
http://www.ams.org/mathscinet-getitem?mr=0326868
http://www.ams.org/mathscinet-getitem?mr=1619170
http://www.ams.org/mathscinet-getitem?mr=1415240
http://www.ams.org/mathscinet-getitem?mr=1715440
http://www.ams.org/mathscinet-getitem?mr=1741181
http://www.ams.org/mathscinet-getitem?mr=2081459
http://www.ams.org/mathscinet-getitem?mr=970472
mailto:last@math.uni-karlsruhe.de
mailto:hermann@hi.is

	Introduction
	Preliminaries on stationary random measures
	Transport-kernels and an exchange formula
	Invariance properties of Palm measures
	Existence of balancing invariant transport-kernels
	Mass-stationarity
	Discussion of mass-stationarity
	Acknowledgments
	References
	Author's Addresses

