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1. Introduction

In classical projective geometry, the Segre cubic 3-fold6 has been extensively
studied in Baker [1] and Coble [4]. It is the GIT quotient(P1)6//PGL(2,C) of
(P1)6 by the diagonal action of PGL(2,C) for the natural linearization on the line
bundle�6

i=1OP1(1). It has been shown in Baker [1] and Coble [4] that the Segre
cubic 3-fold arises on considering the linear system of quadrics inP3 that pass
through five points in general position. The variety6 thus embedded inP4 as
a cubic hypersurface is actually the blow-up ofP3 at these points, but with the
proper transform of all lines joining any two points blown down to the ten nodes
of 6. A general pointω ∈ 6 of the Segre cubic 3-fold can obviously be inter-
preted as a curveC = Cω of genusg = 2 with level 2-structure. Indeed, Van
der Geer [12] showed that the variety dual to6, which is a quartic 3-fold, can be
identified with the Satake compactification of the moduli spaceM2,2 of smooth
projective curves of genusg = 2 with level 2-structure.

A beautiful classical theorem (see [1; 4]) states that ifω ∈6 is a general point
then theapparent contour—namely, the locus of points of contact of tangent to6
from this pointω—is the Kummer surface Kum(C) of the curveC = Cω asso-
ciated toω ∈ 6. In other words, the projection from the pointω maps6 as a
2 :1 covering ofP3 with Kummer surface Kum(C) as its branch locus and the ap-
parent contour as its ramification locus. The composition of the birational map
P3 99K 6 and the 2 :1rational map6 99K P3 yields a 2 :1rational mapP3 99K P3,

which is induced by the quadrics passing through six points inP3 in general posi-
tion. The ramification locus of this rational map is called theWeddle surface.The
Weddle surface with six nodes is a birational model of the Kummer surface. A
nice modern account of these results may be found in the book by Dolgachev and
Ortland [8].

The aim of this paper is to generalize all this beautiful geometry to higher di-
mensions. Forg ≥ 2, we consider the GIT quotient(P1)2g+2//G of (P1)2g+2

by the diagonal action ofG = PGL(2,C) for the naturalG-linearization on the
line bundleL = �2g+2

i=1 OP1(1); we call it ageneralized Segre varietyor theSegre
g-variety6g. We show that the Segreg-variety6g is obtained by the linear sys-
tem� of g-forms onP2g−1 that vanish with multiplicityg − 1 through 2g + 1
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pointse1, . . . , e2g+1 in general position (cf. Theorem 4.1). In other words, the ra-
tional mapι� induced by� mapsP2g−1 birationally onto6g.

A general pointω ∈6g represents a hyperelliptic curve of genusg together with
a special level-2 structure—namely, those given rise to by an ordering of the Weier-
strass points (wheng = 2, all level 2-structures arise in this way). Ife0 ∈ P2g−1

such thatι�(e0) = ω, then we consider the partial linear system3 of g-forms in
� that vanish with multiplicityg − 1 at all the 2g + 2 pointse1, . . . , e2g+1, e0 =
e2g+2. The projection of6g into |3|∗ yields a rational map of degree 2 onto its
imageSi , a connected component of the moduli space of semistable vector bun-
dles of rank 2 with trivial determinant overC = Cω, which are invariant under
the hyperelliptic involution. Also, this rational map is branched precisely along
the Kummer variety Kum(C) in Si (see Theorem 4.2). This is the precise general-
ization of the classical relationship between the Segre cubic 3-fold and curves of
genusg = 2 to higher dimension. Moreover, it establishes a connection between
6g and certain moduli spaces of invariant vector bundles of rank 2 on hyperelliptic
curves.

A part of this generalization was carried out by Coble in his two papers [5; 7]
and a survey article [6]. His aim was to find a higher-dimensional analog of the
Weddle surface and study its geometry relative to the geometry of Kummer vari-
ety. Coble showed that the linear system3 is the 2θ -linear system on the Jacobian
of the hyperelliptic curveC = Cω and that it induces a rational map of degree 2
onto its image, which is branched precisely along the Kummer variety; the ram-
ification locus of this rational map is what Coble calls theWeddle manifold.We
have given a modern account of the work of Coble and hope that this will lead to
a better understanding of his work.

We now give a brief overview of this paper. First we discuss certain moduli
spaces of semistable vector bundles of rank 2 on a hyperelliptic curveC of genus
g ≥ 2. LetK = KC andh be thecanonicalandhyperelliptic line bundlesonC,
respectively. LetW = {w1, . . . , w2g+2} be an ordered set of all Weierstrass points
of C. Setw0 = w2g+2. Then all extensions of the form 0→ O(−w0)→ E →
K(w0)→ 0 are parameterized byH1(C,K−1⊗ h−1) and hence there is a rational
extension mapε : P = PH1(C,K−1⊗ h−1) 99K SUC(2,K), where SUC(2,K) is
the moduli space of semistable vector bundles of rank 2 and determinantK on the
curveC. Bertram [3] showed that the rational mapε, even forC nonhyperelliptic,
is induced by the linear systemH 0(P, I g−1

C ⊗OP(g)), which is canonically iso-
morphic to the 2θ -linear system on the Jacobian Picg−1(C), whereIC is the ideal
sheaf ofC in P and Picg−1(C) is the space of all line bundles of degreeg − 1 on
C. Since the line bundleK−1⊗ h−1 is invariant under the hyperelliptic involution
i : C → C, there is an involution on the cohomology groupH1(C,K−1⊗ h−1) '
H 0(C, h2g−1)∗. Let P+ be the linear subspace ofP corresponding to the positive
eigenspace for this involution. ThenP+ is of dimension 2g − 1, that is,P+ '
P2g−1. Restricting the rational mapε toP+ yields a rational mapε+ : P+ 99K Sinv,

whereSinv is thei-invariant locus in SUC(2,K). We showed thatε+ is generically
2 :1 onto its imageSi , a connected component inSinv, and it is branched along
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the Kummer variety Kum(C) = Picg−1(C)/± in Si (see Corollary 2.1). Then in
the next section we give another proof of a result of Coble that the linear sys-
tem3 is isomorphic to the 2θ -linear systemH 0(Picg−1(C),O(2θ)). In the last
section, we established a relationship between Segreg-variety and hyperelliptic
curves of genusg that generalizes the relationship between the Segre cubic 3-fold
and curves of genusg = 2.

Acknowledgment. The author is grateful to his thesis advisor Professor S. Ra-
manan for suggesting this problem and for giving valuable help in the preparation
and revision of this paper. Without his help, this paper could not have been writ-
ten. We were not aware of [5] or [7] and thank the referee for drawing our attention
to these works. The referee also made many useful comments that helped improve
the exposition of this paper.

2. Invariant Vector Bundles of Rank 2

LetE be an invariant vector bundle of rank 2 on a hyperelliptic curveC of genus
g ≥ 2. Let j : E → E be a lift of i-action toE. Then(E, j) is called avector
bundle pair. Two vector bundle pairs(E, j) and(E ′, j ′) are said to beequiva-
lent if there is a vector bundle isomorphismf : E→ E ′ such thatj ′ B f = f B j.
We say that the vector bundle pair(E, j) is semistable(resp.,stable) if, for every
j -invariant line subbundleF of E,

deg(F ) = µ(F ) ≤ µ(E) = deg(E)

2
(resp.,µ(F ) < µ(E)).

Let W = {w1, . . . , w2g+2} be the ordered set of all Weierstrass points ofC.

Consider a vector bundle pair(E, j). Then, for everyw ∈W, jw : Ew → Ew is an
involution on the fiberEw. Let Si0 be the moduli space of semistable vector bun-
dle pairs(E, j) of rank 2 on the hyperelliptic curveC with det(E) = K and trace
Tr(jw) = 0 for allw ∈W. The existence of the moduli spaceSi0 follows from the
work of Seshadri [11] onπ -vector bundles.

Let p : Si0→ Sinv be the map given byp((E, j)) = E and letSi be the image
of p. Then we show thatSi0 is a ramified double cover ofSi .

Theorem 2.1. The mapp : Si0→ Si given byp((E, j)) = E is generically2 :1
with the Kummer varietyKum(C) in Si as its branch locus.

Proof. If (E, j) and(E, j ′) are two vector bundle pairs overE ∈ Si , thenj ′ =
Aj for someA ∈Aut(E). If E is stable, then Aut(E) ' C∗. Thusj ′ = ±j and
so, for every stable bundleE ∈Si , there are two nonequivalent vector bundle pairs
(E, j), (E,−j) overE. This shows thatp is generically 2 :1. Now the Kummer
variety Kum(C) of the curveC is embedded inSi by the mapα 7→ α ⊕ i∗α,
and it corresponds to strictly semistable (i.e., semistable but not stable) bundles
in Si . If E = α ⊕ i∗α for someα ∈ Picg−1(C), then any two lifts ofE in Si0 are
equivalent.
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We claim that the rational extension mapε+ : P+ 99K Si lifts to the rational
map ε̄ : P+ 99K Si0. For v ∈ P+, the two extensions 0→ O(−w0) → Ev →
K(w0) → 0 and 0→ O(−w0) → i∗(Ev) → K(w0) → 0 are isomorphic, so
Ev comes with a liftjv of i-action. Thus(Ev, jv) is a vector bundle pair. Also
the trace Tr((jv)w) = 0 for eachw ∈W. Since a generic extension is semistable,
(Ev, jv) ∈ Si0 for a genericv ∈ P+. Thus we define a rational mapε̄ : P+ 99K Si0
by ε̄(v) = (Ev, jv).
Theorem 2.2. The rational map̄ε : P+ 99K Si0 is birational.

Proof. It suffices to prove that, for a generic(E, j)∈Si0, there exists a unique
v ∈ P+ such thatε̄(v) = (E, j). Let 2i

0 be the generalized theta divisor on
Si0; that is, Supp(2i

0) = {(E, j) ∈ Si0 : H 0(C,E) 6= 0}. If (E, j) /∈ 2i
0

then, from the short exact sequence 0→ E→ E(w0)→ E(w0)
∣∣
w0
→ 0, we

have dim(H 0(C,E(w0))) ≤ 2. Since the Euler characteristicχ(E(w0)) = 2,
we have dim(H 0(C,E(w0))) = 2. Then involutionj onE induces an involution
j̄ onH 0(C,E(w0)). Now, by the Atiyah–Bott fixed point theorem (see [2]), the
trace Tr(j̄ ) = 0. Thus dim(H 0(C,E(w0))

+) = dim(H 0(C,E(w0))
−) = 1 and

so, for each(E, j) /∈2i
0, there exists a unique extension 0→ O(−w0)→ E →

K(w0)→ 0, where the inclusionO(w0)→ E is induced by the unique invariant
nonzero section ofE(w0). Clearly,E andi∗E are the same as extensions. Hence
there is a uniquev ∈P+ such that̄ε(v) = (E, j).
Corollary 2.1. The rational mapε+ : P+ 99K Si is generically2 :1 with the
Kummer varietyKum(C) in Si as its branch locus.

Proof. Sinceε+ = p B ε̄, the proof follows from Theorems 2.1 and 2.2.

3. 2θ -Linear System

In this section, we identify the 2θ -linear system on the Jacobian Picg−1(C) of a
hyperelliptic curveC with the linear system3C = 3 on P+ ' P2g−1. From the
canonical isomorphismH 0(Picg−1(C),O(2θ)) ' H 0(P, I g−1

C ⊗O(g)), we ob-
tain a linear map

res:H 0(P, I g−1
C ⊗O(g))→ H 0(P+,O(g))

by restricting the sections ofH 0(P, I g−1
C ⊗O(g)) to P+. We recall that the lin-

ear system3C = 3 consists of all theg-forms onP+ ' P2g−1 that vanish
with multiplicity g − 1 at the Weierstrass pointsw1, . . . , w2g+2 in P+. We will
prove that the mapping res induces an isomorphism between the 2θ -linear system
H 0(P, I g−1

C ⊗ O(g)) and the linear system3. But first we prove the following
results.

Lemma 3.1. LetQ∈H 0(PN,O(n)), and letA andB be any two distinct points
onPN. Suppose then-formQ vanishes with multiplicityl andm atA andB, re-
spectively. ThenQ vanishes along the lineAB with multiplicity at leastl+m−n.
If l +m− n ≤ 0, then the conclusion is vacuous.
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Proof. Let r = l + m − n. We need only consider the case 0< r ≤ l, m. Let
∂ |r−1|Q be a partial derivative ofQ of orderr −1. Then deg(∂ |r−1|Q) = n− r +1
and∂ |r−1|Q vanishes with multiplicityl− r +1 andm− r +1 atA andB, respec-
tively. Since(l−r+1)+ (m−r+1) = n−r+2> n−r+1= deg(∂ |r−1|Q), the
line AB intersects∂ |r−1|Q = 0 in a divisor greater than its degree deg(∂ |r−1|Q).
Hence∂ |r−1|Q vanishes identically onAB.

Corollary 3.1. LetQ ∈ H 0(PN,O(n)). Let {ui : i ∈ 1} be a collection of
finitely many points inPN in general position such thatQ vanishes with multi-
plicity n− 1 at theui. ThenQ

∣∣
P(I )
= 0, whereP(I ) = 〈ui : i ∈ I 〉 ⊂ PN is the

linear subspace spanned byui with i ∈ I ⊂ 1 and#(I ) ≤ n− 1.

Proof. Let #(I ) = r ≤ n − 1. Then we claim that then-form Q vanishes with
multiplicity n− r onP(I ). Using Lemma 3.1, this claim can be proved by induc-
tion onr.

Remark. With notation as in Corollary 3.1, ifQ
∣∣
P(J )
= 0 for everyJ ⊂ 1 with

#(J ) = n, thenQ
∣∣
P(1)
= 0. By induction, one proves thatQ

∣∣
P(H )
= 0 forH ⊂

1 with #(H ) ≥ n. For instance, if #(H ) = n+ 1, then by assumptionQ
∣∣
P(J )
=

0 for everyJ ⊂ H with #(J ) = n. ThusQ
∣∣
P(H )

is a product ofn+1 hyperplanes
in P(H ). SinceQ is an-form, it is absurd unlessQ

∣∣
P(H )
= 0.

Lemma 3.2. The linear mapres:H 0(P, I g−1
C ⊗O(g))→ H 0(P+,O(g)) is in-

jective, and its image is contained in3.

Proof. Let Q ∈ H 0(P, I g−1
C ⊗ O(g)) be such that res(Q) = Q

∣∣
P+ = 0. Let

z1, . . . , zg be any generalg points on the hyperelliptic curveC in P. Consider the
g-secantPg−1 = 〈z1, . . . , zg〉 spanned by thezi . Since theg-form Q vanishes
on the curve with multiplicityg − 1, by Corollary 3.1 it follows that theg-form
Q
∣∣
Pg−1 is (up to a constant factor) a product ofg hyperplanes of the formPg−2 =

〈z1, . . . , ẑi , . . . , zg〉 in Pg−1. ButPg−1∩P+ 6= ∅ and, for a generalg-secantPg−1,

we may assume thatP+ does not meet any of these hyperplanesPg−2 in Pg−1.

SinceQ
∣∣
P+ = 0 andP+ meetsPg−1 in the complement of the hyperplanes just

described, we must haveQ
∣∣
Pg = 0. Thus, theg-form Q vanishes on a general

g-secant to the hyperelliptic curveC in P. SinceC is nondegenerate inP, by the
remark to Corollary 3.1 we have thatQ is identically zero. This proves that the
mapping res is injective. AlsoC ∩P+ = W, the set of all Weierstrass points ofC
in P. Thus res(Q)∈3.

Remarks. (i) Since dim(H 0(P, I g−1
C ⊗ O(g))) = 2g and res is injective, we

have dim(3) ≥ 2g. Thus, to show that res is an isomorphism onto3, it is enough
to prove that dim(3) ≤ 2g.

(ii) EveryQ∈3 vanishes with multiplicityg − 2 on the rational normal curve
S in P+ besides vanishing with multiplicityg−1 at the Weierstrass points (see [7,
Thm. 1.4]).
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Lemma 3.3. Let {ui : i ∈1} be a finite collection of points inP2g−1 in general
position. LetQ be an-form onP2g−1 for n ≤ g. SupposeQ vanishes atui with
multiplicity n − 1 for i ∈ 1. LetP(I ) = 〈ui : i ∈ I 〉 for I ⊂ 1. Let P2g−n be
a linear subspace ofP2g−1 such thatP2g−n ∩ P(I ) = ∅ for I ⊂ 1 with #(I ) =
n− 1. If Q

∣∣
P2g−n = 0, thenQ

∣∣
P(1)
= 0.

Proof. From Corollary 3.1, we may assume that #(1) ≥ n. Also, in view of the
remark to Corollary 3.1, it is enough to prove thatQ

∣∣
P(J )
= 0 for J ⊂ 1 with

#(J ) = n. But again by Corollary 3.1,Q vanishes on hyperplanesP(I ) in P(J ),
I ⊂ J,with #(I ) = n−1. ThusQ

∣∣
P(J )

is a product ofn hyperplanes. SinceP2g−n

intersectsP(J ) in the complement of the hyperplanesP(I ) and sinceQ
∣∣
P2g−n =

0, we must haveQ
∣∣
P(J )
= 0.

Lemma 3.4. LetQ∈3. Suppose{wi : i ∈1} is a subset ofW andPg+r is a lin-
ear subspace ofP+ ' P2g−1 such thatPg+r∩P(I ) = ∅ for I ⊂ {wi : i ∈1}with
#(I ) = g−r−1. If Q

∣∣
Pg+r = 0 thenQ

∣∣
S r(1)
= 0,whereS r(1) = Secr(S)∗P(1)

is the join ofrth-order secant variety to the rational normal curveS in P+ and
the linear spaceP(1). For r = 0, S 0(1) = P(1).
Proof. We proceed by an induction onr. For r = 0, it follows from Lemma 3.3
thatQ

∣∣
P(1)
= 0. Thus, by induction we assume thatQ

∣∣
S r−1(1)

= 0. Now con-
siderr general pointsz1, . . . , zr onS. LetP(z1, . . . , zr ,1) = z1 ∗ · · · ∗ zr ∗P(1).
Then, by induction assumption,Q

∣∣
P(z1,. . . ,zr ,1)

is a product ofr hyperplanes of the
form P(z1, . . . , ẑi , . . . , zr ,1) and a(g − r)-form Q′ in P(z1, . . . , zr ,1). Since
everyQ ∈ 3 vanishes with multiplicityg − 2 along the rational normal curveS
(see [7, Thm. 1.4]), the(g − r)-formQ′ vanishes with multiplicityg − r − 1 at
z1, . . . , zr andwi (i ∈ 1). Becausez1, . . . , zr are general points ofS, it follows
from Lemma 3.3 thatQ′

∣∣
P(z1, ...,zr ,1)

= 0. This implies thatQ
∣∣
S r(1)
= 0.

We now proceed to show that the dimension of the linear system3C = 3 is 2g.
Let In = {1, . . . , n} for n ≤ 2g and letP(In) = 〈wi ∈W : i ∈ In〉 ⊂ P+. Then
P(In) ' P n−1 and we have a complete flag

P(I1) ⊂ P(I2) ⊂ · · · ⊂ P(I2g) ' P+

for the projective spaceP+ ' P2g−1. We define a decreasing filtration on3 as
follows. LetFk3 =

{
Q ∈3 : Q

∣∣
P(Ig+k−1)

= 0
}

for 0 ≤ k ≤ g + 1. SinceQ ∈3
vanishes with multiplicityg−1atw ∈W,we haveQ

∣∣
P(Ig−1)

= 0. Thus,F03 = 3;
also,Fk3 ⊃ Fk+13 andFg+13 = 0. Hence we have a finite decreasing filtration

3 = F03 ⊃ F13 ⊃ · · · ⊃ Fg3 ⊃ Fg+13 = 0

of the linear system3. The associated graded linear space for this filtration is given
by
⊕g

k=0 Grk 3=⊕g

k=0(Fk3/Fk+13). Therefore, dim(3)=∑g

k=0 dim(Grk 3).
Let 3k =

{
Q
∣∣
P(Ig+k) : Q ∈ Fk3

}
. Then we have a short exact sequence 0→

Fk+13 → Fk3 → 3k → 0, whereFk3 → 3k is the natural restriction map.
Thus dim(Grk 3) = dim(3k).

Lemma 3.5. dim(Grk 3) ≤
( g

g−k
)
.
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Proof. Since dim(Grk 3) = dim(3k), we show that dim(3k) ≤
( g

g−k
)
. For I ⊂

Ig = {1, . . . , g} with #(I ) = g − k, we define linear subspacesP(I ; g − k) of
P(Ig+k) by P(I ; g − k) = span of{wi : i ∈ I } and{wg+1, . . . , wg+k}. Then each
P(I ; g−k) is isomorphic to aPg−1, and the number of suchP(I ; g−k)-subspaces
is precisely

( g

g−k
)
. Let3P(I ;g−k) =

{
Q
∣∣
P(I ;g−k) : Q ∈3} and consider the natu-

ral restriction mapr : 3k →⊕
#(I )=g−k(3P(I ;g−k)),where the direct sum is taken

over allI ⊂ Ig with #(I ) = g − k. We claim thatr is injective. LetQ ∈3k be
such thatr(Q) = 0. ThenQ ∈3, Q∣∣

P(Ig+k−1)
= 0, andQ

∣∣
P(I ;g−k) = 0 for every

I ⊂ Ig with #(I ) = g − k.
We need to show thatQ

∣∣
P(Ig+k) = 0. Fork ≤ 1 this is trivial, so assume thatk ≥

2. SinceP(Ig+k−1) ' Pg+k−2 andQ
∣∣
Pg+k−2 = 0,we deduce from Lemma 3.3 that

Q
∣∣
S k−1(W ′ ) = 0, whereW ′ = {wi ∈W : i /∈ Ig+k−1}. Now considerPg = span of

{wj ; j ∈ J } and{wg+1, . . . , wg+k}, whereJ ⊂ Ig with #(J ) = g − k + 1. By as-
sumption,Q

∣∣
P(I ;g−k) = 0 for I ⊂ J with #(I ) = g − k, andQ

∣∣
P(J ;g−k+1) = 0

becauseQ
∣∣
P(Ig+k−1)

= 0. This shows thatQ
∣∣
Pg is a product ofg − k + 2 hyper-

planes and a(k − 2)-formQ′ on Pg. Also,Q′ vanishes with multiplicityk − 2
at the pointswg+k, wj (j ∈ J ) whereas it vanishes with multiplicityk − 3 at
the remaining pointswg+1, . . . , wg+k−1. This implies thatQ′ must be a cone over
a (k − 2)-form Q′′ on P k−2 = 〈wg+1, . . . , wg+k−1〉. Now, for a generalk − 2
pointsz1, . . . , zk−2 ∈ S we havePg ∩ P(z1, . . . , zk+2,W

′′) 6= ∅, whereW ′′ =
W ′ − {wg+k} andP(z1, . . . , zk−2,W

′′) ' Pg−1. SinceQ
∣∣
S k−1(W ′′ ) = 0, it follows

thatQ
∣∣
Pg = 0 contains a(k− 2)-dimensional subvariety ofPg. The same is true

for Q′
∣∣
Pg = 0 and hence also forQ′′ = 0 in P k−2, sinceQ′ is a cone overQ′′.

Thus we must haveQ′′ ≡ 0, and soQ
∣∣
Pg ≡ 0.

On similar lines, we can deduce thatQ
∣∣
Pg+i ≡ 0, wherePg+i = span of{wj :

j ∈ J } and{wg+1, . . . , wg+k}, and thatJ ⊂ Ig with #(J ) = g−k+1+ i. Thus, for
i = k−1, we haveQ

∣∣
P(Ig+k) = 0 and hencer is injective. Now, in view of Corol-

lary 3.1, dim(3P(I ;g−k)) ≤ 1 and so dim(3k) ≤ dim
(⊕

#I=g−k(3P(I ;g−k))
) ≤( g

g−k
)
.

Theorem 3.1 (Coble). The linear system3C = 3 on P+ is isomorphic to the
2θ -linear system on the JacobianPicg−1(C) of the hyperelliptic curveC.

Proof. Since dim(H 0(P, I g−1
C ⊗O(g))) = 2g and the linear map res:H 0(P,

I g−1
C ⊗O(g))→ 3 is injective, it follows that dim(3) ≥ 2g. But from Lemma 3.5

we have dim(3) =∑g

k=0 dim(Grk 3) ≤∑g

k=0

( g

g−k
) = 2g. Thus dim(3) = 2g

and res induces an isomorphism of the 2θ -linear systemH 0(P, I g−1
C ⊗O(g)) '

H 0(Picg−1(C),O(2θ)) with 3.

Remark. Since dim(3) = 2g, we have dim(Grk 3) =
( g

g−k
)
.

Theorem 3.2. The rational mapι3 : P+ 99K |3|∗ induced by the linear system
3C = 3 is generically2 :1ontoSi , and its branch locus is the Kummer variety
Kum(C) in Si .

Proof. From Theorem 3.1, the pull-back of the linear systemH 0(Si , 2i), which
is isomorphic to the 2θ -linear systemH 0(Picg−1(C),O(2θ)) under the rational
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mapε+ : P+ 99K Si , is isomorphic to the linear system3, where2i is the gen-
eralized theta divisor onSi . SinceSi is embedded in the linear system|2i|∗, the
rational mapε+ : P+ 99K Si is induced by the linear system3. Now the theorem
follows from Corollary 2.1.

4. Higher-Dimensional Segre Varieties

In this section we discuss a higher-dimensional analog of the Segre cubic 3-
fold. As in Section 1, we consider the GIT quotient(P1)2g+2//G of (P1)2g+2 by
the diagonal action ofG = PGL(2,C) for the naturalG-linearization onL =
�2g+2
i=1 OP1(1) and call it theSegreg-variety6g.
Using the theory of associated point sets [8], we have a duality isomorphism

(P1)2g+2//G ' (P2g−1)2g+2//G′,

whereG′ = PGL(2g,C) acts diagonally on(P2g−1)2g+2 for the naturalG′-
linearization on the line bundleM = �2g+2

i=1 OP2g−1(g). Moreover, we have
H 0(L)G ' H 0(M)G

′
. Now let e1, . . . , e2g+1 be any 2g + 1 points in general

position inP2g−1. Without loss of generality, we may assume thatej = [0 : · · · :
1 : · · · : 0] for j = 1, . . . ,2g ande2g+1= [1 : · · · : 1]. Then we define an inclusion
f : P2g−1 → (P2g−1)2g+2 by e 7→ (e1, . . . , e2g+1, e). On composingf with the
GIT quotient map and using the preceding duality isomorphism, we derive a ratio-
nal mapf̄ : P2g−1 99K 6g. Any two general pointst = (t1, . . . , t2g+2)∈ (P1)2g+2

andz = (z1, . . . , z2g+2)∈ (P2g−1)2g+2 are associated to each other under the above
duality isomorphism if and only if there is a rational normal curveγ : P1→ P2g−1

such thatγ (tj ) = zj for 1≤ j ≤ 2g+2 (see [8]). Any 2g+1 points in general po-
sitions inP2g−1 can be mapped toe1, . . . , e2g+1 by an automorphismT of P2g−1,

so if T(γ (t2g+2)) = e thenf̄ (e) is the image oft = (t1, . . . , t2g+2) under the GIT
quotient map. For a general pointe ∈ P2g−1, there is a unique rational normal
curve throughe1, . . . , e2g+1, e. This shows that the rational map̄f : P2g−1 99K 6g
is birational.

Let � be the linear system ofg-forms onP2g−1 that vanish with multiplicity
g − 1 at 2g + 1 pointse1, . . . , e2g+1 in P2g−1. We then show that the rational map
f̄ is induced by the linear system�.

Theorem 4.1. The linear system� onP2g−1 is isomorphic toH 0(L)G, and the
rational mapι� : P2g−1 99K |�∗| induced by the linear system� is birational
onto6g.

Proof. We consider the birational map̄f : P2g−1 99K 6g induced by the above du-
ality isomorphism. By the Hilbert–Mumford numerical criterion for semistability
(see [10]), we check that the indeterminacy locus off̄ consists of all the(g −1)-
planes〈ej1, . . . , ejg 〉 spanned byej (j = 1, . . . ,2g + 1). The Segreg-variety6g
embeds inP(H 0(L)G)∗ and so, for a sections ∈H 0(6g,O6g(1)) ' H 0(L)G, the
pull-back sectionf̄ ∗(s) ∈H 0(P2g−1,OP2g−1(g)) is ag-form that vanishes on the
indeterminacy locus off̄ . In other words, theg-form f̄ ∗(s) vanishes on all the
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(g − 1)-planes spanned by theej . But these conditions are equivalent to the con-
dition thatf̄ ∗(s) vanish with multiplicityg −1 at the 2g +1 pointse1, . . . , e2g+1.

Thus the pull-backf̄ ∗ yields a linear mapρ : H 0(L)G → �. Sincef̄ is bira-
tional,ρ is nontrivial. Hence, to complete this proof we need only show thatρ is
an isomorphism.

We now compute the dimension of�. Let Nk = {1, . . . , k}, R = {I ⊂ N2g :
#(I ) = g}, andC = {J ⊂ N2g : #(J ) = g − 2}, and letxI denote the monomial
xi1 . . . xig if I = {i1, . . . , ig}. Theg-formQ vanishes with multiplicityg−1 at the
pointse1, . . . , e2g if and only if it is expressed asQ =∑I∈R aIxI with aI ∈C. If
Q also vanishes with multiplicityg − 1 ate2g+1 then we have the condition that,
for eachJ ∈ C,∑J⊂I∈R aI = 0. Therefore

� =
{∑
I∈R

aIxI :
∑

J⊂I∈R
aI = 0 ∀J ∈ C

}
.

The incidence matrix(λIJ )I∈R,J∈C, given byλIJ = 1 if J ⊂ I andλIJ = 0 if J 6⊂
I, is of maximal rank, so all conditions among the generators{xI : I ∈R} of the
linear system� are independent. Thus dim(�) = #(R)− #(C ) = (2g

g

)− ( 2g
g−2

)
.

Now letWk be the symmetric group onk symbols. We recall thatH 0(L)G
is an irreducibleW2g+2-module corresponding to the Young tableau consisting
of 2-rows and(g + 1)-columns; by the Hook length formula, dim(H 0(L)G) =

(2g+2)!
(g+2)! (g+1)! (see [8]). Forgetting the last symbol,H 0(L)G is also an irreducible

W2g+1-module. For everyσ ∈W2g+1, there is a unique automorphismTσ ofP2g−1

such thatTσ(ej ) = eσ(j) for j = 1, . . . ,2g+1. Now the mapsQ 7→ T ∗σ (Q) for σ ∈
W2g+1 define an action ofW2g+1 on�, and it can be checked thatρ is equivariant
for theseW2g+1-actions. SinceH 0(L)G is an irreducibleW2g+1-module,ρ must
be injective. Also, since dim(H 0(L)G) = dim(�), ρ must be an isomorphism.

A general point on the Segreg-varietyω ∈ 6g represents a hyperelliptic curve
C = Cω with a special level 2-structure as mentioned in Section 1. Ife0 ∈ P2g−1

such thatι�(e0) = ω, then we consider the linear system3 of g-forms onP2g−1

that pass with multiplicityg −1 through 2g + 2 pointse1, . . . , e2g+1, e0 = e2g+2.

Then3 is a partial linear system of�. We can identifyP2g−1 with P+ by a
unique projective transformation takingei towi for i = 1, . . . ,2g + 2. In view of
Theorem 3.2, we now have our main theorem.

Theorem 4.2. The Segreg-variety 6g embeds in the projective space|�|∗.
Projecting6g into the linear system|3|∗ yields a rational map of degree2 onto its
imageSi , and it is branched precisely along the Kummer varietyKum(C) in Si .

Proof. By Theorem 4.1, the Segreg-variety6g embeds into|�|∗. Also, the linear
system3 corresponds to the linear system3C under the foregoing identification
of P2g−1 with P+. The result then follows from Theorem 3.2.

As an application of Theorem 4.2, we give an alternative proof of a result of
Narasimhan and Ramanan [9].
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Theorem 4.3 (Narasimhan–Ramanan).The moduli spaceSUC(2,K) is isomor-
phic toP3 for a smooth projective curveC of genusg = 2.

Proof. For g = 2, i∗E = E for all E ∈ SUC(2,K); thusSi = SUC(2,K). The
Segre cubic 3-fold6 is a cubic in|�|∗ ' P4, and projecting away from a general
pointω ∈6 yields a rational map of degree 2 from6 onto|3|∗ ' P3. Thus, from
Theorem 4.2, we derive thatSi ' P3.
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