
Invariants – A New Design Methodology for
Network Architectures

Bengt Ahlgren† Marcus Brunner‡

Lars Eggert‡

Robert Hancock§

Stefan Schmid‡

†
Swedish Institute of Computer Science

Box 1263
SE-164 29 Kista

Sweden
bengt.ahlgren@sics.se

 ‡
NEC Network Laboratories

Kurfürstenanlage 36
69115 Heidelberg

Germany
{brunner, eggert, schmid}@netlab.nec.de

§
Siemens/Roke Manor Research

Old Salisbury Lane
Romsey, Hampshire, SO51 0ZN

United Kingdom
robert.hancock@roke.co.uk

ABSTRACT
The first age of Internet architectural thinking concentrated on
defining the correct principles for designing a packet-switched
network and its application protocol suites. Although these same
principles remain valid today, they do not address the question of
how to reason about the evolution of the Internet or its
interworking with other networks of very different heritages. This
paper proposes a complementary methodology, motivated by the
view that evolution and interworking flexibility are determined
not so much by the principles applied during initial design, but by
the choice of fundamental components or “design invariants” in
terms of which the design is expressed. The paper discusses the
characteristics of such invariants, including examples from the
Internet and other networks, and considers what attributes of
invariants best support architectural flexibility.

Categories and Subject Descriptors
C.2.1 [Computer Communications Networks]: Network
Architecture and Design – network communications.

General Terms
Design, Standardization, Theory.

Keywords
Network Architecture Design, Design Methodology, Design
Principles, Invariants.

1. INTRODUCTION
In a complex system with components from many different
manufacturers, standards play a key role for interoperability. As
Tanenbaum observed [9]: “The nice thing about standards is that

you have so many to choose from; furthermore, if you do not like
any of them, you can just wait for next year’s model.” This
observation has wide applicability. Systems can frequently
incorporate new standards during their lifetime to enable new
functionality. At some point, however, an existing system simply
cannot support desired new functionality and some or even all of
its components become obsolete. The characteristics that limit this
evolution can be thought of as its lowest common denominators or
fixed points. This paper uses the term invariants to denote such
limiting properties, which cannot be changed without loss of
backward compatibility. It argues that any design includes such
invariants, whether they are explicitly stated or not.

One very successful system is the Internet. Its architecture is
flexible in many ways. The Internet easily accommodates new
applications, protocols and link technologies. Indeed, the
principles of protocol layering in general and network
transparency in particular practically enforce such flexibility, and
have been adopted in many subsequent network architectures.
Despite this flexibility, the Internet has invariants. Specifically, the
physical architecture of the Internet has always been expressed in
terms of interfaces attached to links, generally identified by a
unique IP address. The ease with which any entity in the network
can be referred to by its IP address resulted in it being used as the
sole identifier in most network layer protocols, and also
overloaded as an endpoint identifier for the transport layer.
Although this behavior is not mandated by the fundamental
principles of packet switching, the IP address – right down to its
format and allocation policies – is effectively the primary
invariant of today’s Internet. A trivial change of the address format
cannot be accommodated, even though the fundamental principles
are unaltered.

This paper identifies architectural invariants as the limiting factors
of system designs. Software Engineering uses the term in a similar
way [8]. Formal correctness proofs for programs require
verification of each instruction according to a predefined proof
template. A correctness proof for a loop instruction involves
explicitly identifying its variants and invariants, i.e., the pieces of
system state that must and must not change across iterations. Both
pieces of information are critically important to ensure the
correctness of a loop. This paper argues to similarly identify and
evaluate both the explicit design choices of a system together with
their implicit invariants. Evaluating and designing systems based
on both pieces of information enables a more complete
investigation of the behavior and limitations of architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30 & Sept. 3, 2004, Portland, OR, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008...$5.00.

The invariants of a design are the specific characteristics that limit
its future adaptation, flexibility and evolvability. Two different
kinds of invariants exist. Explicit invariants are planned
characteristics resulting from deliberate decisions that are known
to limit the flexibility of a design. These characteristics are the
desired fixed points that define the option space of a design.
Although restricting the potential directions of the evolution of a
system, explicit invariants typically do so in a carefully planned
way that offers significant benefits in other design areas. If chosen
well, invariants can provide a consistent set of building blocks on
which new capabilities and concepts can be built without
requiring fundamental system restructuring. Although designs can
still ultimately fail when explicit invariants were chosen wrongly,
this is typically due to planning errors. We believe it is important
to establish criteria that allow such errors to be avoided in the
future.

Implicit invariants, on the other hand, are the unplanned side
effects of deliberate design choices. They can arise where a
particular function requires a common network-wide approach,
but instead of explicit support, its implementation evolves during
deployment and growth, for example, by overloading other
network functions. Another source of implicit invariants is where
an apparently simple network function acquires unanticipated
social (economic or political – c.f., Clark et al’s “tussle spaces”
[2]) significance, and loses its ability to adapt to changed network
requirements. This paper argues that identifying the likely implicit
invariants of a system early during a design provides a better
understanding of its limitations and can help to correct it.
Identifying the invariants of different design approaches for the
same problem can aid in comparing and evaluating approaches
and establish greater confidence in the final design.

This paper argues that any system will have invariants, regardless
of the design process applied. Many approaches to system design
exist. Typically, design processes start with identifying explicit
requirements and goals, resolve conflicts among them and then
focus on deriving design candidates from them. Eventually,
system designs emerge that start to conform to the initial
requirements. Often, conformance to requirements is the single
criterion that decides whether a design is successful.

After implementation and deployment, the environments in which
systems operate change over time. A thorough design process will
try to predict and accommodate these changes by including them
into the requirements. Predicting the future is hard, however, and
unforeseen environmental developments can limit a design in
unpredictable ways. The concept of architectural invariants and
their use to aid the design and evaluation of new systems are the
main contributions of this paper.

Section 2 gives a more concrete definition of explicit and implicit
invariants, and illustrates their use by identifying some of the
main invariants of the Internet architecture and the third-
generation wireless network architecture. Section 3 focuses on the
concept of evaluating architectures based on their invariants. It
proposes to categorize identified invariants according to a set of
criteria and compare the results to the underlying design
principles. Section 4 describes the use of invariants in creating
new designs for a given set of requirements. Identifying invariants
early during the design process complements a design process and
creates a more complete understanding of the characteristics of a

new design. Finally, Section 5 summarizes and concludes this
paper.

2. INVARIANTS
Research into network architectures often focuses on architectural
principles as a basis for guiding the design [1][2][4][7]. One
example is the Internet architecture – although some would argue
that today’s Internet architecture is an unplanned result, the
Internet still has an architecture that can serve as an example. The
Internet’s basic principles include packet switching, global self-
addressing of datagrams, and – maybe most prominently – the
end-to-end principle. This combination of principles has resulted
in a simple service for basic communication that has proven
exceptionally flexible. The Internet has incorporated new
applications, protocols, node characteristics and link technologies
while undergoing an explosive, multi-dimensional growth. Fast
optical links, slow modem links, and lossy wireless links all
interoperate – maybe not optimally where raw performance is
concerned, but that is beside the point of this paper.

Other aspects of the Internet architecture are less flexible. One of
its key limitations is the inability for end-to-end addressing of
more than 232 nodes due to ubiquitous dependence on the IPv4
address format. Although the declared successor – IPv6 – is
readily available, adoption of the new protocol is slow at best.
While IPv6 allows addressing of many more nodes, it does so by
replacing parts of the existing architecture in ways that are not
backwards compatible. Remaining IPv4 nodes cannot
communicate with all IPv6 nodes, simply because they cannot
address them all. Until all nodes have converted to the new
protocol, Internet communication becomes fragmented.

This paper uses the term invariants to describe aspects of a design
that limit its changeability. They can also be described as a
design’s fixed points. Independent of specific terminology, these
characteristics limit backwards-compatible evolution of an
architecture and require disruptive changes.

2.1 Invariants vs. Principles
The following definitions may help to clarify the relationship
between design principles and invariants. They may further
illustrate the benefits of considering invariants as a complement to
a principle-based design process:

Design principles specify desirable, but not fully measurable
objectives that aid designers during the network design process.
Design principles are motivated by their expected positive
consequences based either on experience or abstract reasoning.

Invariants of a particular design are specific characteristics that
limit its changeability. In other words, they are the fixed points
that limit the backwards-compatible evolution of a design.
Depending on how invariants emerge, they are further categorized
as follows:

• Explicit invariants are planned or predicted fixed points of a
design based on the foreseeable consequences of applied
design principles

• Implicit invariants are unplanned or unpredictable fixed
points of a design. They are the unexpected side effects of a
set of desired design principles that limit its evolution.

An example may illustrate the relationship between invariants and
design principles. Two of the principles that guided the original
design of the Internet architecture were robustness and the use of
individually addressed datagrams. One consequence of this
deliberate decision is the dependence on globally routable
addresses to establish end-to-end communication in the Internet.
This constraining characteristic results from the decision to build
a system that is robust in the presence of network failures; in the
terminology defined above, it is thus an explicit invariant. Global
routeability has become a fundamental part of the Internet
architecture. Attempts to soften the principle (e.g., with network
address translation) have resulted in considerable complications
and frequently require changes to deployed applications and
protocols.

2.2 Examples
The beginning of this section has defined invariants as the specific
characteristics that limit the changeability of a design. This
section will clarify this new concept by identifying and discussing
the implicit and explicit invariants of two different network
architectures, the Internet and the third-generation mobile
networks.

2.2.1 Internet Invariants

Section 1 already identified one implicit invariant of the Internet
architecture, maybe its most prominent one: the IPv4 address. The
semantics of the IPv4 address overload locator and identifier
functionality, which are logically separate concepts. When the
address is used as a topological locator, it describes a node’s point
of network attachment. When used as an identifier, it uniquely
identifies a node in the network.

This combination of logically separate functions complicates
advanced network features such as mobility and multi-homing.
Because of the dual use of IP addresses, changes in location
implicitly appear as changes in identity. Similarly, multi-homed
nodes or sub-networks attach to the network at multiple, separate
locations at the same time, and this results in nodes with multiple,
concurrent identities. Several proposals introduce new addressing
or identity mechanisms that separate the two functions from one
another [5][6][10]. Some move the invariant to the naming system
[5][6], allowing not only mobility but also enabling the use of
multiple, concurrent addressing schemes.

The wholesale transition from today’s IPv4-based Internet to one
of these new proposals would be as difficult as transitioning to
IPv6. However, the new proposals enable advanced networking
features compared to the simple address space extension that IPv6
provides. In a sense, IPv6 is just as constrained as IPv4, because it
inherits its invariants and IPv6 addresses still combine location
and identity. Deployment of one of the new naming schemes
would probably result in significantly higher benefits than the
current – equally difficult – effort to deploy IPv6. The distinction
between these two paths is that, although the introduction of a
new naming system represents a much more radical architectural
shift, it can be achieved incrementally within today’s Internet.

The Internet’s transport layer also has invariants. One implicit
invariant is in the use of port numbers, which act as unique flow
identifiers when paired with IP addresses. The local use of flow
identifiers to demultiplex concurrent connections is not itself an
invariant. A second use of port numbers – the well-known ports –

is as globally unique service identifiers. Although port numbers
were originally only used by transport layer protocols (and thus
had only end host significance), they have since become deeply
embedded in other aspects of the Internet. Examples include
firewalls, the IP security architecture [13], queue management
disciplines and network management systems. These mechanisms
have become so deeply embedded that more modern transport
protocols, [11] and [12], have been driven to adopt similar port
naming schemes, although they could have used other – maybe
more appropriate – demultiplexing mechanisms. In this way, 16-
bit port numbers have become an implicit invariant in their role as
service and flow identifiers. RFC 3639 discusses the risks in this
process [14], but also notes the commercial and operational
pressures that are causing it to take place.

A commonality among the invariants of the Internet architecture
may be that they are conceptually simple, but deeply embedded.
The IPv4 address invariant, for example, affects all nodes, and the
port number invariant is nearly as influential. This may signify
that although the Internet’s variants allow for a great deal of
planned flexibility, its invariants are extremely difficult to shift.

2.2.2 Cellular Network Invariants

Modern cellular networks present an interesting contrast to the
case of the Internet, both in terms of the types of invariants they
expose and the impact they have on network flexibility compared
to the underlying architectural principles. This section discusses
the Universal Mobile Telecommunications System (UMTS) as
developed by 3GPP, for which initial studies of evolution exist
[16][17]. However, note that nearly identical conclusions would
apply both to other contemporary networks and their immediate
predecessors.

Like other telecommunications networks, the UMTS design is
aimed primarily at the delivery of certain services to users. This is
visible not only in the nature of the standardization process and
the level at which system requirements are expressed, but also in
the style of invariant that the system design exposes. Another
difference, rooted in the underlying business models involved, is
that networks are defined and evolve on a scale much larger than
the individual node. The critical interfaces for evolution and
interworking are those between the user and operator, and
between operators, but these represent a relatively small
proportion of overall network functionality compared to the case
of the Internet.

The service-centric origin of UMTS has the result that the
important architectural invariants are associated with describing
services or their endpoints (i.e., users), rather than describing the
supporting network infrastructure. The primary invariant of the
3GPP family of networks is probably the concept of a hardware
token, the subscriber identity module (SIM or variants), to
represent not only the public identity of the user but also the
contractual relationship between the user and service provider. In
so far as this is an identifier, it could be compared with the
corresponding invariant (the IP address) from the Internet, but the
differences are wide ranging. Compared to the IP address, the
SIM represents primarily an endpoint rather than a location,
locations being transitory in mobile networks. Very few nodes in
the UMTS network are directly exposed to the specification
details of the token; instead, information derived from it is carried
in a variety of higher layer protocols to configure the underlying

network. All other identifiers are localized within the lower layers.
However, the broad security and contractual implications of the
use of identity tokens have a much more pervasive influence on
business models and technology evolution, so much so that it is
extremely difficult operationally to introduce new access
mechanisms even for existing services unless they can be tied to
SIM operation. It also imposes a model of user-device
relationships that is hard to generalize.

The second significant invariant of UMTS networks is the set of
services that is provided, both their definition and their
instantiation in particular sessions. As is the case for identifiers,
the services (a voice bearer and specific classes of data bearer) are
defined at a relatively high level in the protocol stack compared to
the supporting infrastructure. Although the layering is still quite
strict, transparency to new services is less significant than the
ability to offer the existing ones over a variety of network types.
Those network types are not exposed to the user, and can change
radically from system generation to generation (or even release to
release). Adding a new service invariant is a much more
significant operation, again as much as anything for non-technical
reasons.

Both these invariants are explicit, rather than implicit: they are the
result of deliberate design choices, and follow quite directly from
the commercial environment within which the technology has
been developed. Because the system requirements are based rather
directly on end “user” requirements (and also because the
development of new applications is rather tightly controlled), few
if any implicit invariants have emerged as a result of system
deployment, at least within the network layer. One example where
major efforts have recently been expended is the introduction of
multicast capability to the radio access and core networks [20].
Because of the way in which cellular networks have previously
focused only on the problem of providing end-to-end unicast
links, this has required significant re-engineering inside many
elements of the network. (Given that the goals for the introduction
of multicast services include charging and security functions, this
is hardly surprising.)

Nevertheless, cellular networks continue largely to be used within
the constraints that their original designers expected, and so they
have not been challenged with the same diversity of new usage
models that has exposed the implicit invariants of the Internet.
Rather, again in contrast to the case of the Internet, the
inflexibilities in evolution and interworking arise from limitations
in the underlying architectural principles.

3. INVARIANTS-BASED ARCHITECTURE
EVALUATION

This section discusses the use of architectural invariants to
evaluate and compare different architecture designs. Section 4 will
discuss how this analysis, applied throughout the design process,
can aid in finding design alternatives that both fulfill the
requirements and remain flexible. If a certain set of metrics could
“measure” the invariants of a design, it may result in a method for
comparison that should at least be partly objective. What,
however, would be the criteria for such comparisons? Which
characteristics distinguish good invariants from bad ones? How
does one know if a system has enough invariants, or if it has too
many?

A first approach is to simply count the number of invariants for a
given design. Obviously, this approach is problematic, because a
reliable method for discovering and enumerating invariants does
not exist. At this point, identification of invariants entirely
depends on human experience and skill. However, some general
criteria for considering the overall quality of a candidate set of
invariants would include at least the following:

• Is the set complete? A network design whose set of
invariants ignores some communications requirements is
vulnerable to the emergence of implicit invariants, usually
by the overloading of functions intended for other purposes.
An example from the Internet is the case of the continual
strain on the DNS [15] caused by its extension into areas of
functionality for which it was never intended. If a candidate
set of invariants does not have the expressive power to
handle the services that will be demanded of the network, it
can be expected that implicit invariants will later emerge to
fill the gaps in an unplanned way.

• Is the set independent? Ockham’s razor suggests avoiding
to provide multiple ways to express the same concept or
achieve the same function within a design. More simply,
because invariants imply constraints, it appears beneficial to
minimize their number if extra invariants provide no
additional functionality. This approach can be reflected
practically in a design by the systematic elimination of
redundant concepts where they can be expressed in terms of
better “quality” candidate invariants, similar to the process
of relational database normalization. An idealization of this
criterion would be to ask for the set to be “orthogonal”, with
each invariant having no direct interactions with any other.

These considerations imply that any design must expose a set of
invariants; a design that exhibits none (or too few) will be
deficient in the long term, despite its superficial flexibility.
However, these criteria alone are not enough to judge between all
competing designs, and certain characteristics of individual
invariants may be good basis for comparison and selection
between alternatives. These characteristics include:

• Does an invariant affect many components or just a few?
The rationale behind this argument is that invariants that are
more widespread have a higher potential to cause conflicts.
For instance, the IPv4 address invariant affects all nodes,
but the SIM card invariant only affects some nodes in their
respective networks. Consequently, the SIM card invariant
may be less problematic.

• Does an invariant affect many aspects of an architecture
or just a few? The less a specific invariant affects an
architecture, the better. For example, invariants that affect
only the control or data plane of a network may be less
restricting than invariants that affect both. Invariants that
affect multiple layers will be equally problematic, especially
as the same property typically increases the number of
affected nodes.

• Does an invariant affect silicon or just bits? One could
argue that an invariant embedded in hardware poses more of
a potential issue than an invariant that affects software only.
By extension, invariants that affect the data plane are more
problematic than those affecting the control plane (if the

latter represents a lower percentage of investment or
maintenance cost than the former).

• Does an invariant have security or privacy implications?
Invariants concerning user characteristics or behavior may
be more limiting than others. Examples include the SIM
card on which cellular networks depend for user
authentication. In the Internet, IPv4 addresses are still
frequently used by various security mechanisms, such as in
IPsec [13]. Additional problems arise where these invariants
become associated with regulatory constraints (location
privacy, traffic interception, competition policy through
identifier portability).

• Does an invariant have internal flexibility? An invariant,
especially one used as some sort of identifier, may have the
disadvantage of being ubiquitous or deeply embedded in
implementations. However, if it has an evolution path of its
own (typically some non-trivial syntax) this can mitigate
one or both of these problems. An example from the Internet
is the evolution from classful to classless IP addressing,
where the IP address format could be re-interpreted with a
more sophisticated syntax in a way that was transparent to
end systems. Telecommunications identifier schemes have
often exploited the possibility to do relatively complex
processing within the control plane to use variable as
opposed to fixed length identifiers.

It is important to note that the goal of evaluating the invariants of
various architectural designs is to determine which design is likely
to gracefully adapt to future change – in a sense, how far in the
future the design’s expiration date lays. This evaluation is not
concerned with quality, functionality or usefulness. The designers
will of course also need to consider all these aspects during the
design process. Evaluating competing designs solely based on
invariants may result in an architecture with minimal invariants
but no useful functionality.

The main Internet invariant, the IPv4 address, is definitely
ubiquitous. It affects all nodes, and has security implications.
Therefore, it would rate poorly according to the above criteria. On
the other hand, one might argue that one ubiquitous invariant is
better than many “less worse” ones.

A common characteristic of the invariants in the Internet
architecture is that the problematic ones are confined to the
network and transport layers, i.e., to the “waist” of the hourglass
in the protocol stack. In this respect, they get good marks on the
second criterion. This classification supports the expectation of
flexibility that the architecture has shown with respect to new
applications and link technologies. Confining invariants to a
limited part of the design, whether physical equipment, logical
layers or something else, is important to not unnecessarily limit
future change. However, note that confining an invariant to the
network layer is still an imperfect state of affairs, given the way in
which all nodes of that layer participate in end-to-end data
transfer; hence the interest in localization architectures and
localized addressing schemes in recent years [3].

Are all invariants bad? No, even though invariants prevent
changes to specific parts of the system, their identification is
necessary to enable changes in the other parts. With clearly
spelled out invariants, an engineer can redesign the parts that are
not constrained, knowing that the architecture will not fall apart.
With this argument, invariants enable evolution in that they, when

well-defined, facilitate change. One conclusion that can be drawn
from this argument is that an architecture is better with few, strong
and well-defined invariants, than many loosely defined ones.

4. INVARIANTS-AWARE
ARCHITECTURE DESIGN

One of the main objectives behind the proposed invariant
methodology is to facilitate designers to assess an emerging
(network) architecture in order to identify potential problems or
inconsistencies with the actual architectural objectives as early in
the design phase as possible.

For this, we propose that designers follow an iterative design
process that requires the architects to revise an evolving
architecture several times. This also means that the architecture
needs to be analyzed very early in the process in order to reduce
the number of redundant artifacts. At each round of the design
cycle, the architects use the following process:

• Identify the architectural invariants. Review the draft
architecture and identify its invariants. Because of various
possible viewpoints about an architecture [18], identifying
its invariants might involve several iterations. Nevertheless,
an evaluation from any viewpoint is expected to yield some
set of invariants. A formal way of identifying a complete set
of invariants, however, is not likely to exist. Typically,
implicit invariants may be hardest to identify. Challenging
an architecture with usage scenarios that were not
considered during the initial design may be an effective tool
to isolate them.

• Evaluate the invariants against the set of characteristics
given in Section 3 and determine if the invariants only apply
where expected. For example, to support terminal mobility
host identity should be independent from terminal location.
Verify whether all invariants conform to the design
requirements. For example, if a design requirement is high
scalability, verify that no invariant design decision limits
this characteristic.

• Revise architecture based on invariant evaluation. If
invariants conflict, modify the architecture early to reduce
the potential for inconsistencies during the implementation
or deployment phases. This iterative design process helps
reduce undesired side effects.

Note that evaluation based on invariants also aids in finding
consensus on the quality of a given architecture. However,
evaluation highly depends on the applied characteristics of an
invariant. There is no proven set of characteristics, or a formal
way for rating a given invariant against them. Additionally, the
main target of evaluation is the degree to which the architecture
can evolve over time. Functional requirements on the architecture
are not taken into account in that design methodology, but they
are rather obviously given by potential users/stakeholders of the
architecture.

5. CONCLUSION
This paper proposed a methodology for designing new network
architectures, motivated by the view that evolution and
interworking flexibility are constrained not so much by the

principles, but by the choice of fundamental design invariants.
Therefore, the architecture design cycle includes the evaluation of
the architectural invariants and tries to adapt the architecture to
avoid unwanted invariants. This methodology only targets the
aspect of evolution of architecture and not other important
questions such as the capabilities or functional distribution of the
architecture. However, we believe that an easy to evolve
architecture is key for the success of a network in the long term.

This methodology based on invariants is at its early stages of
development. Based on the current analysis of case studies from
existing networks, there is good reason to hope that it can provide
valuable guidance. However, the method can only be developed
and proven by its application in the development of concrete new
network architectures, which have to meet the challenges of
evolution of existing systems, interworking between different
network types, as well as the introduction of new network
functionality. The first test case will be to apply this design
methodology in the context of the European Union’s Ambient
Networks project [19]. Furthermore, we need to enhance the set of
characteristics of invariants with the objective to get completeness
and a more formal way of using the methodology.

ACKNOWLEDGMENTS
This document is a byproduct of the Ambient Networks project,
partially funded by the European Commission under its Sixth
Framework Programme. It is provided “as is” and without any
express or implied warranties, including, without limitation, the
implied warranties of fitness for a particular purpose. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the
Ambient Networks project or the European Commission.

Bengt Ahlgren is also partly supported by the Winternet program
which is funded by the Swedish Foundation for Strategic
Research.

REFERENCES
[1] Robert Hancock and Josef Urban. Beyond Hosts and

Routers: Some Architectural Principles for Future Mobile
Networks. Presented at ACM SIGCOMM Workshop on
Future Directions in Network Architecture (FDNA-03),
Karlsruhe, Germany, August 2003.

[2] David D. Clark, John Wroclawski, Karen R. Sollins and
Robert Braden. Tussle in Cyberspace: Defining Tomorrow’s
Internet. Proc. ACM SIGCOMM 2002, Pittsburgh, PA, USA,
August 19-23, 2002, pp. 347-356.

[3] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy
Roscoe and Andrew Warfield. Plutarch: An Argument for
Network Pluralism. Proc. ACM SIGCOMM Workshop on
Future Directions in Network Architecture (FDNA-03),
Karlsruhe, Germany, August 2003, pp. 258-266.

[4] David D. Clark, Karen Sollins, John Wroclawski and Ted
Faber. Addressing Reality: An Architectural Response to
Real-World Demands on the Evolving Internet. Proc. ACM
SIGCOMM Workshop on Future Directions in Network
Architecture (FDNA-03), Karlsruhe, Germany, August 2003,
pp. 247-257.

[5] David D. Clark, Robert Braden, Aaron Falk and Venkata
Pingali. FARA: Reorganizing the Addressing Architecture.
Proc. ACM SIGCOMM Workshop on Future Directions in
Network Architecture (FDNA-03), Karlsruhe, Germany,
August 2003, pp. 313-321.

[6] Andreas Jonsson, Mats Folke and Bengt Ahlgren. The Split
Naming/Forwarding Network Architecture. Proc. First
Swedish National Computer Networking Workshop
(SNCNW), Arlandastad, Sweden, September 8-10, 2003.

[7] Joe Touch, Yu-Shun Wang, Lars Eggert and Greg Finn. A
Virtual Internet Architecture. ISI Technical Report ISI-TR-
570, USC Information Sciences Institue, March 2003.
Presented at ACM SIGCOMM Workshop on Future
Directions in Network Architecture (FDNA-03), Karlsruhe,
Germany, August 2003.

[8] David Gries. The Science of Programming (Monographs in
Computer Science). Springer-Verlag Berlin and Heidelberg
GmbH & Co. KG, 1987.

[9] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[10] Robert Moskowitz and Pekka Nikander. Host Identity
Protocol Architecture. Work in Progress (draft-moskowitz-
hip-arch-05.txt), September 2003.

[11] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip
Sharp, Hanns J. Schwarzbauer, Tom Taylor, Ian Rytina,
Malleswar Kalla, Lixia Zhang and Vern Paxson. Stream
Control Transmission Protocol. RFC 2960, October 2000.

[12] Eddie Kohler, Mark Handley and Sally Floyd. Datagram
Congestion Control Protocol (DCCP). Work in Progress
(draft-ietf-dccp-spec-06.txt), February 2004.

[13] Stephen Kent and Ran Atkinson. Security Architecture for
the Internet Protocol. RFC 2401, November 1998.

[14] Michael St. Johns and Geoff Huston (eds.) Considerations on
the use of a Service Identifier in Packet Headers. RFC 3639,
October 2003.

[15] John Klensin. Role of the Domain Name System. RFC 3467,
February 2003.

[16] TSG Services and System Aspects: Evolution of 3GPP
System. 3GPP TR 21.902, September 2003.

[17] TSG Radio Access Network: Feasibility Study on the
Evolution of UTRAN Architecture. 3GPP TR 25.897, August
2003.

[18] Reference Model of Open Distributed Processing. ITU-T
Rec. X.901-5, March 2000.

[19] Norbert Niebert, Andreas Schieder, Henrik Abramowicz,
Göran Malmgren, Joachim Sachs, Uwe Horn, Christian
Prehofer and Holger Karl. Ambient Networks - An
Architecture for Communication Networks Beyond 3G. IEEE
Wireless Communications, Vol. 11, No. 2, April 2004, pp.
14-22.

[20] TSG Services and System Aspects: Multimedia
Broadcast/Multicast Service; Stage 1 (Release 6). 3GPP TS
22.146, June 2004.

