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ABSTRACT 
The first age of Internet architectural thinking concentrated on 
defining the correct principles for designing a packet-switched 
network and its application protocol suites. Although these same 
principles remain valid today, they do not address the question of 
how to reason about the evolution of the Internet or its 
interworking with other networks of very different heritages. This 
paper proposes a complementary methodology, motivated by the 
view that evolution and interworking flexibility are determined 
not so much by the principles applied during initial design, but by 
the choice of fundamental components or “design invariants” in 
terms of which the design is expressed. The paper discusses the 
characteristics of such invariants, including examples from the 
Internet and other networks, and considers what attributes of 
invariants best support architectural flexibility. 

Categories and Subject Descriptors 
C.2.1 [Computer Communications Networks]: Network 
Architecture and Design – network communications. 

General Terms 
Design, Standardization, Theory. 

Keywords 
Network Architecture Design, Design Methodology, Design 
Principles, Invariants. 

1. INTRODUCTION 
In a complex system with components from many different 
manufacturers, standards play a key role for interoperability. As 
Tanenbaum observed [9]: “The nice thing about standards is that 

you have so many to choose from; furthermore, if you do not like 
any of them, you can just wait for next year’s model.” This 
observation has wide applicability. Systems can frequently 
incorporate new standards during their lifetime to enable new 
functionality. At some point, however, an existing system simply 
cannot support desired new functionality and some or even all of 
its components become obsolete. The characteristics that limit this 
evolution can be thought of as its lowest common denominators or 
fixed points. This paper uses the term invariants to denote such 
limiting properties, which cannot be changed without loss of 
backward compatibility. It argues that any design includes such 
invariants, whether they are explicitly stated or not. 

One very successful system is the Internet. Its architecture is 
flexible in many ways. The Internet easily accommodates new 
applications, protocols and link technologies. Indeed, the 
principles of protocol layering in general and network 
transparency in particular practically enforce such flexibility, and 
have been adopted in many subsequent network architectures. 
Despite this flexibility, the Internet has invariants. Specifically, the 
physical architecture of the Internet has always been expressed in 
terms of interfaces attached to links, generally identified by a 
unique IP address. The ease with which any entity in the network 
can be referred to by its IP address resulted in it being used as the 
sole identifier in most network layer protocols, and also 
overloaded as an endpoint identifier for the transport layer. 
Although this behavior is not mandated by the fundamental 
principles of packet switching, the IP address – right down to its 
format and allocation policies – is effectively the primary 
invariant of today’s Internet. A trivial change of the address format 
cannot be accommodated, even though the fundamental principles 
are unaltered. 

This paper identifies architectural invariants as the limiting factors 
of system designs. Software Engineering uses the term in a similar 
way [8]. Formal correctness proofs for programs require 
verification of each instruction according to a predefined proof 
template. A correctness proof for a loop instruction involves 
explicitly identifying its variants and invariants, i.e., the pieces of 
system state that must and must not change across iterations. Both 
pieces of information are critically important to ensure the 
correctness of a loop. This paper argues to similarly identify and 
evaluate both the explicit design choices of a system together with 
their implicit invariants. Evaluating and designing systems based 
on both pieces of information enables a more complete 
investigation of the behavior and limitations of architectures. 
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The invariants of a design are the specific characteristics that limit 
its future adaptation, flexibility and evolvability. Two different 
kinds of invariants exist. Explicit invariants are planned 
characteristics resulting from deliberate decisions that are known 
to limit the flexibility of a design. These characteristics are the 
desired fixed points that define the option space of a design. 
Although restricting the potential directions of the evolution of a 
system, explicit invariants typically do so in a carefully planned 
way that offers significant benefits in other design areas. If chosen 
well, invariants can provide a consistent set of building blocks on 
which new capabilities and concepts can be built without 
requiring fundamental system restructuring. Although designs can 
still ultimately fail when explicit invariants were chosen wrongly, 
this is typically due to planning errors. We believe it is important 
to establish criteria that allow such errors to be avoided in the 
future. 

Implicit invariants, on the other hand, are the unplanned side 
effects of deliberate design choices. They can arise where a 
particular function requires a common network-wide approach, 
but instead of explicit support, its implementation evolves during 
deployment and growth, for example, by overloading other 
network functions. Another source of implicit invariants is where 
an apparently simple network function acquires unanticipated 
social (economic or political – c.f., Clark et al’s “tussle spaces” 
[2]) significance, and loses its ability to adapt to changed network 
requirements. This paper argues that identifying the likely implicit 
invariants of a system early during a design provides a better 
understanding of its limitations and can help to correct it. 
Identifying the invariants of different design approaches for the 
same problem can aid in comparing and evaluating approaches 
and establish greater confidence in the final design. 

This paper argues that any system will have invariants, regardless 
of the design process applied. Many approaches to system design 
exist. Typically, design processes start with identifying explicit 
requirements and goals, resolve conflicts among them and then 
focus on deriving design candidates from them. Eventually, 
system designs emerge that start to conform to the initial 
requirements. Often, conformance to requirements is the single 
criterion that decides whether a design is successful. 

After implementation and deployment, the environments in which 
systems operate change over time. A thorough design process will 
try to predict and accommodate these changes by including them 
into the requirements. Predicting the future is hard, however, and 
unforeseen environmental developments can limit a design in 
unpredictable ways. The concept of architectural invariants and 
their use to aid the design and evaluation of new systems are the 
main contributions of this paper. 

Section 2 gives a more concrete definition of explicit and implicit 
invariants, and illustrates their use by identifying some of the 
main invariants of the Internet architecture and the third-
generation wireless network architecture. Section 3 focuses on the 
concept of evaluating architectures based on their invariants. It 
proposes to categorize identified invariants according to a set of 
criteria and compare the results to the underlying design 
principles. Section 4 describes the use of invariants in creating 
new designs for a given set of requirements. Identifying invariants 
early during the design process complements a design process and 
creates a more complete understanding of the characteristics of a 

new design. Finally, Section 5 summarizes and concludes this 
paper. 

2. INVARIANTS 
Research into network architectures often focuses on architectural 
principles as a basis for guiding the design [1][2][4][7]. One 
example is the Internet architecture – although some would argue 
that today’s Internet architecture is an unplanned result, the 
Internet still has an architecture that can serve as an example. The 
Internet’s basic principles include packet switching, global self-
addressing of datagrams, and – maybe most prominently – the 
end-to-end principle. This combination of principles has resulted 
in a simple service for basic communication that has proven 
exceptionally flexible. The Internet has incorporated new 
applications, protocols, node characteristics and link technologies 
while undergoing an explosive, multi-dimensional growth. Fast 
optical links, slow modem links, and lossy wireless links all 
interoperate – maybe not optimally where raw performance is 
concerned, but that is beside the point of this paper. 

Other aspects of the Internet architecture are less flexible. One of 
its key limitations is the inability for end-to-end addressing of 
more than 232 nodes due to ubiquitous dependence on the IPv4 
address format. Although the declared successor – IPv6 – is 
readily available, adoption of the new protocol is slow at best. 
While IPv6 allows addressing of many more nodes, it does so by 
replacing parts of the existing architecture in ways that are not 
backwards compatible. Remaining IPv4 nodes cannot 
communicate with all IPv6 nodes, simply because they cannot 
address them all. Until all nodes have converted to the new 
protocol, Internet communication becomes fragmented. 

This paper uses the term invariants to describe aspects of a design 
that limit its changeability. They can also be described as a 
design’s fixed points. Independent of specific terminology, these 
characteristics limit backwards-compatible evolution of an 
architecture and require disruptive changes. 

2.1 Invariants vs. Principles 
The following definitions may help to clarify the relationship 
between design principles and invariants. They may further 
illustrate the benefits of considering invariants as a complement to 
a principle-based design process: 

Design principles specify desirable, but not fully measurable 
objectives that aid designers during the network design process. 
Design principles are motivated by their expected positive 
consequences based either on experience or abstract reasoning. 

Invariants of a particular design are specific characteristics that 
limit its changeability. In other words, they are the fixed points 
that limit the backwards-compatible evolution of a design. 
Depending on how invariants emerge, they are further categorized 
as follows: 

• Explicit invariants are planned or predicted fixed points of a 
design based on the foreseeable consequences of applied 
design principles 

• Implicit invariants are unplanned or unpredictable fixed 
points of a design. They are the unexpected side effects of a 
set of desired design principles that limit its evolution. 



An example may illustrate the relationship between invariants and 
design principles. Two of the principles that guided the original 
design of the Internet architecture were robustness and the use of 
individually addressed datagrams. One consequence of this 
deliberate decision is the dependence on globally routable 
addresses to establish end-to-end communication in the Internet. 
This constraining characteristic results from the decision to build 
a system that is robust in the presence of network failures; in the 
terminology defined above, it is thus an explicit invariant. Global 
routeability has become a fundamental part of the Internet 
architecture. Attempts to soften the principle (e.g., with network 
address translation) have resulted in considerable complications 
and frequently require changes to deployed applications and 
protocols. 

2.2 Examples 
The beginning of this section has defined invariants as the specific 
characteristics that limit the changeability of a design. This 
section will clarify this new concept by identifying and discussing 
the implicit and explicit invariants of two different network 
architectures, the Internet and the third-generation mobile 
networks.  

2.2.1 Internet Invariants 

Section 1 already identified one implicit invariant of the Internet 
architecture, maybe its most prominent one: the IPv4 address. The 
semantics of the IPv4 address overload locator and identifier 
functionality, which are logically separate concepts. When the 
address is used as a topological locator, it describes a node’s point 
of network attachment. When used as an identifier, it uniquely 
identifies a node in the network. 

This combination of logically separate functions complicates 
advanced network features such as mobility and multi-homing. 
Because of the dual use of IP addresses, changes in location 
implicitly appear as changes in identity. Similarly, multi-homed 
nodes or sub-networks attach to the network at multiple, separate 
locations at the same time, and this results in nodes with multiple, 
concurrent identities. Several proposals introduce new addressing 
or identity mechanisms that separate the two functions from one 
another [5][6][10]. Some move the invariant to the naming system 
[5][6], allowing not only mobility but also enabling the use of 
multiple, concurrent addressing schemes.  

The wholesale transition from today’s IPv4-based Internet to one 
of these new proposals would be as difficult as transitioning to 
IPv6. However, the new proposals enable advanced networking 
features compared to the simple address space extension that IPv6 
provides. In a sense, IPv6 is just as constrained as IPv4, because it 
inherits its invariants and IPv6 addresses still combine location 
and identity. Deployment of one of the new naming schemes 
would probably result in significantly higher benefits than the 
current – equally difficult – effort to deploy IPv6. The distinction 
between these two paths is that, although the introduction of a 
new naming system represents a much more radical architectural 
shift, it can be achieved incrementally within today’s Internet. 

The Internet’s transport layer also has invariants. One implicit 
invariant is in the use of port numbers, which act as unique flow 
identifiers when paired with IP addresses. The local use of flow 
identifiers to demultiplex concurrent connections is not itself an 
invariant. A second use of port numbers – the well-known ports – 

is as globally unique service identifiers. Although port numbers 
were originally only used by transport layer protocols (and thus 
had only end host significance), they have since become deeply 
embedded in other aspects of the Internet. Examples include 
firewalls, the IP security architecture [13], queue management 
disciplines and network management systems. These mechanisms 
have become so deeply embedded that more modern transport 
protocols, [11] and [12], have been driven to adopt similar port 
naming schemes, although they could have used other – maybe 
more appropriate – demultiplexing mechanisms. In this way, 16-
bit port numbers have become an implicit invariant in their role as 
service and flow identifiers. RFC 3639 discusses the risks in this 
process [14], but also notes the commercial and operational 
pressures that are causing it to take place. 

A commonality among the invariants of the Internet architecture 
may be that they are conceptually simple, but deeply embedded. 
The IPv4 address invariant, for example, affects all nodes, and the 
port number invariant is nearly as influential. This may signify 
that although the Internet’s variants allow for a great deal of 
planned flexibility, its invariants are extremely difficult to shift. 

2.2.2 Cellular Network Invariants 

Modern cellular networks present an interesting contrast to the 
case of the Internet, both in terms of the types of invariants they 
expose and the impact they have on network flexibility compared 
to the underlying architectural principles. This section discusses  
the Universal Mobile Telecommunications System (UMTS) as 
developed by 3GPP, for which initial studies of evolution exist 
[16][17]. However, note that nearly identical conclusions would 
apply both to other contemporary networks and their immediate 
predecessors. 

Like other telecommunications networks, the UMTS design is 
aimed primarily at the delivery of certain services to users. This is 
visible not only in the nature of the standardization process and 
the level at which system requirements are expressed, but also in 
the style of invariant that the system design exposes. Another 
difference, rooted in the underlying business models involved, is 
that networks are defined and evolve on a scale much larger than 
the individual node. The critical interfaces for evolution and 
interworking are those between the user and operator, and 
between operators, but these represent a relatively small 
proportion of overall network functionality compared to the case 
of the Internet. 

The service-centric origin of UMTS has the result that the 
important architectural invariants are associated with describing 
services or their endpoints (i.e., users), rather than describing the 
supporting network infrastructure. The primary invariant of the 
3GPP family of networks is probably the concept of a hardware 
token, the subscriber identity module (SIM or variants), to 
represent not only the public identity of the user but also the 
contractual relationship between the user and service provider. In 
so far as this is an identifier, it could be compared with the 
corresponding invariant (the IP address) from the Internet, but the 
differences are wide ranging. Compared to the IP address, the 
SIM represents primarily an endpoint rather than a location, 
locations being transitory in mobile networks. Very few nodes in 
the UMTS network are directly exposed to the specification 
details of the token; instead, information derived from it is carried 
in a variety of higher layer protocols to configure the underlying 



network. All other identifiers are localized within the lower layers. 
However, the broad security and contractual implications of the 
use of identity tokens have a much more pervasive influence on 
business models and technology evolution, so much so that it is 
extremely difficult operationally to introduce new access 
mechanisms even for existing services unless they can be tied to 
SIM operation. It also imposes a model of user-device 
relationships that is hard to generalize. 

The second significant invariant of UMTS networks is the set of 
services that is provided, both their definition and their 
instantiation in particular sessions. As is the case for identifiers, 
the services (a voice bearer and specific classes of data bearer) are 
defined at a relatively high level in the protocol stack compared to 
the supporting infrastructure. Although the layering is still quite 
strict, transparency to new services is less significant than the 
ability to offer the existing ones over a variety of network types. 
Those network types are not exposed to the user, and can change 
radically from system generation to generation (or even release to 
release). Adding a new service invariant is a much more 
significant operation, again as much as anything for non-technical 
reasons. 

Both these invariants are explicit, rather than implicit: they are the 
result of deliberate design choices, and follow quite directly from 
the commercial environment within which the technology has 
been developed. Because the system requirements are based rather 
directly on end “user” requirements (and also because the 
development of new applications is rather tightly controlled), few 
if any implicit invariants have emerged as a result of system 
deployment, at least within the network layer. One example where 
major efforts have recently been expended is the introduction of 
multicast capability to the radio access and core networks [20]. 
Because of the way in which cellular networks have previously 
focused only on the problem of providing end-to-end unicast 
links, this has required significant re-engineering inside many 
elements of the network. (Given that the goals for the introduction 
of multicast services include charging and security functions, this 
is hardly surprising.) 

Nevertheless, cellular networks continue largely to be used within 
the constraints that their original designers expected, and so they 
have not been challenged with the same diversity of new usage 
models that has exposed the implicit invariants of the Internet. 
Rather, again in contrast to the case of the Internet, the 
inflexibilities in evolution and interworking arise from limitations 
in the underlying architectural principles. 

3. INVARIANTS-BASED ARCHITECTURE 
EVALUATION 

This section discusses the use of architectural invariants to 
evaluate and compare different architecture designs. Section 4 will 
discuss how this analysis, applied throughout the design process, 
can aid in finding design alternatives that both fulfill the 
requirements and remain flexible. If a certain set of metrics could 
“measure” the invariants of a design, it may result in a method for 
comparison that should at least be partly objective. What, 
however, would be the criteria for such comparisons? Which 
characteristics distinguish good invariants from bad ones? How 
does one know if a system has enough invariants, or if it has too 
many? 

A first approach is to simply count the number of invariants for a 
given design. Obviously, this approach is problematic, because a 
reliable method for discovering and enumerating invariants does 
not exist. At this point, identification of invariants entirely 
depends on human experience and skill. However, some general 
criteria for considering the overall quality of a candidate set of 
invariants would include at least the following: 

• Is the set complete? A network design whose set of 
invariants ignores some communications requirements is 
vulnerable to the emergence of implicit invariants, usually 
by the overloading of functions intended for other purposes. 
An example from the Internet is the case of the continual 
strain on the DNS [15] caused by its extension into areas of 
functionality for which it was never intended. If a candidate 
set of invariants does not have the expressive power to 
handle the services that will be demanded of the network, it 
can be expected that implicit invariants will later emerge to 
fill the gaps in an unplanned way. 

• Is the set independent? Ockham’s razor suggests avoiding 
to provide multiple ways to express the same concept or 
achieve the same function within a design. More simply, 
because invariants imply constraints, it appears beneficial to 
minimize their number if extra invariants provide no 
additional functionality. This approach can be reflected 
practically in a design by the systematic elimination of 
redundant concepts where they can be expressed in terms of 
better “quality” candidate invariants, similar to the process 
of relational database normalization. An idealization of this 
criterion would be to ask for the set to be “orthogonal”, with 
each invariant having no direct interactions with any other. 

These considerations imply that any design must expose a set of 
invariants; a design that exhibits none (or too few) will be 
deficient in the long term, despite its superficial flexibility. 
However, these criteria alone are not enough to judge between all 
competing designs, and certain characteristics of individual 
invariants may be good basis for comparison and selection 
between alternatives. These characteristics include: 

• Does an invariant affect many components or just a few? 
The rationale behind this argument is that invariants that are 
more widespread have a higher potential to cause conflicts. 
For instance, the IPv4 address invariant affects all nodes, 
but the SIM card invariant only affects some nodes in their 
respective networks. Consequently, the SIM card invariant 
may be less problematic. 

• Does an invariant affect many aspects of an architecture 
or just a few? The less a specific invariant affects an 
architecture, the better. For example, invariants that affect 
only the control or data plane of a network may be less 
restricting than invariants that affect both. Invariants that 
affect multiple layers will be equally problematic, especially 
as the same property typically increases the number of 
affected nodes.  

• Does an invariant affect silicon or just bits? One could 
argue that an invariant embedded in hardware poses more of 
a potential issue than an invariant that affects software only. 
By extension, invariants that affect the data plane are more 
problematic than those affecting the control plane (if the 



latter represents a lower percentage of investment or 
maintenance cost than the former). 

• Does an invariant have security or privacy implications? 
Invariants concerning user characteristics or behavior may 
be more limiting than others. Examples include the SIM 
card on which cellular networks depend for user 
authentication. In the Internet, IPv4 addresses are still 
frequently used by various security mechanisms, such as in 
IPsec [13]. Additional problems arise where these invariants 
become associated with regulatory constraints (location 
privacy, traffic interception, competition policy through 
identifier portability).  

• Does an invariant have internal flexibility? An invariant, 
especially one used as some sort of identifier, may have the 
disadvantage of being ubiquitous or deeply embedded in 
implementations. However, if it has an evolution path of its 
own (typically some non-trivial syntax) this can mitigate 
one or both of these problems. An example from the Internet 
is the evolution from classful to classless IP addressing, 
where the IP address format could be re-interpreted with a 
more sophisticated syntax in a way that was transparent to 
end systems. Telecommunications identifier schemes have 
often exploited the possibility to do relatively complex 
processing within the control plane to use variable as 
opposed to fixed length identifiers. 

It is important to note that the goal of evaluating the invariants of 
various architectural designs is to determine which design is likely 
to gracefully adapt to future change – in a sense, how far in the 
future the design’s expiration date lays. This evaluation is not 
concerned with quality, functionality or usefulness. The designers 
will of course also need to consider all these aspects during the 
design process. Evaluating competing designs solely based on 
invariants may result in an architecture with minimal invariants 
but no useful functionality. 

The main Internet invariant, the IPv4 address, is definitely 
ubiquitous. It affects all nodes, and has security implications. 
Therefore, it would rate poorly according to the above criteria. On 
the other hand, one might argue that one ubiquitous invariant is 
better than many “less worse” ones. 

A common characteristic of the invariants in the Internet 
architecture is that the problematic ones are confined to the 
network and transport layers, i.e., to the “waist” of the hourglass 
in the protocol stack. In this respect, they get good marks on the 
second criterion. This classification supports the expectation of 
flexibility that the architecture has shown with respect to new 
applications and link technologies. Confining invariants to a 
limited part of the design, whether physical equipment, logical 
layers or something else, is important to not unnecessarily limit 
future change. However, note that confining an invariant to the 
network layer is still an imperfect state of affairs, given the way in 
which all nodes of that layer participate in end-to-end data 
transfer; hence the interest in localization architectures and 
localized addressing schemes in recent years [3].  

Are all invariants bad? No, even though invariants prevent 
changes to specific parts of the system, their identification is 
necessary to enable changes in the other parts. With clearly 
spelled out invariants, an engineer can redesign the parts that are 
not constrained, knowing that the architecture will not fall apart. 
With this argument, invariants enable evolution in that they, when 

well-defined, facilitate change. One conclusion that can be drawn 
from this argument is that an architecture is better with few, strong 
and well-defined invariants, than many loosely defined ones. 

4. INVARIANTS-AWARE 
ARCHITECTURE DESIGN 

One of the main objectives behind the proposed invariant 
methodology is to facilitate designers to assess an emerging 
(network) architecture in order to identify potential problems or 
inconsistencies with the actual architectural objectives as early in 
the design phase as possible. 

For this, we propose that designers follow an iterative design 
process that requires the architects to revise an evolving 
architecture several times. This also means that the architecture 
needs to be analyzed very early in the process in order to reduce 
the number of redundant artifacts. At each round of the design 
cycle, the architects use the following process: 

• Identify the architectural invariants. Review the draft 
architecture and identify its invariants. Because of various 
possible viewpoints about an architecture [18], identifying 
its invariants might involve several iterations. Nevertheless, 
an evaluation from any viewpoint is expected to yield some 
set of invariants. A formal way of identifying a complete set 
of invariants, however, is not likely to exist. Typically, 
implicit invariants may be hardest to identify. Challenging 
an architecture with usage scenarios that were not 
considered during the initial design may be an effective tool 
to isolate them. 

• Evaluate the invariants against the set of characteristics 
given in Section 3 and determine if the invariants only apply 
where expected. For example, to support terminal mobility 
host identity should be independent from terminal location. 
Verify whether all invariants conform to the design 
requirements. For example, if a design requirement is high 
scalability, verify that no invariant design decision limits 
this characteristic. 

• Revise architecture based on invariant evaluation. If 
invariants conflict, modify the architecture early to reduce 
the potential for inconsistencies during the implementation 
or deployment phases. This iterative design process helps 
reduce undesired side effects. 

Note that evaluation based on invariants also aids in finding 
consensus on the quality of a given architecture. However, 
evaluation highly depends on the applied characteristics of an 
invariant. There is no proven set of characteristics, or a formal 
way for rating a given invariant against them. Additionally, the 
main target of evaluation is the degree to which the architecture 
can evolve over time. Functional requirements on the architecture 
are not taken into account in that design methodology, but they 
are rather obviously given by potential users/stakeholders of the 
architecture. 

5. CONCLUSION 
This paper proposed a methodology for designing new network 
architectures, motivated by the view that evolution and 
interworking flexibility are constrained not so much by the 



principles, but by the choice of fundamental design invariants. 
Therefore, the architecture design cycle includes the evaluation of 
the architectural invariants and tries to adapt the architecture to 
avoid unwanted invariants. This methodology only targets the 
aspect of evolution of architecture and not other important 
questions such as the capabilities or functional distribution of the 
architecture. However, we believe that an easy to evolve 
architecture is key for the success of a network in the long term. 

This methodology based on invariants is at its early stages of 
development. Based on the current analysis of case studies from 
existing networks, there is good reason to hope that it can provide 
valuable guidance. However, the method can only be developed 
and proven by its application in the development of concrete new 
network architectures, which have to meet the challenges of 
evolution of existing systems, interworking between different 
network types, as well as the introduction of new network 
functionality. The first test case will be to apply this design 
methodology in the context of the European Union’s Ambient 
Networks project [19]. Furthermore, we need to enhance the set of 
characteristics of invariants with the objective to get completeness 
and a more formal way of using the methodology.   
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