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Abstract. Bifurcation problems with one parameter are studied here. We

develop a method for computing a topological invariant, the number of fold

points in a stable one-parameter unfolding for any given bifurcation of finite

codimension.

We introduce another topological invariant, the algebraic number of folds.

The invariant gives the number of complex solutions to the equations of fold

points in a stabilization, an upper bound for the number of fold points in

any unfolding. It can be computed by algebraic methods, we show that it

is finite for germs of finite codimension. An open question is whether this

value is always attained as the maximum number of fold points in a stable

unfolding.

We compute these two invariants for simple bifurcations in one dimen-

sion, answering the question above in the affirmative. We discuss other

invariants in the literature and verify that the algebraic number of folds and

the Milnor number form a complete set of invariants for simple bifurcations

in one dimension.

1. Introduction

In this paper we study germs of smooth bifurcation problems f(x, λ), with
n variables x ∈ Rn and one parameter λ ∈ R. We consider invariants that
arise in the classification of such problems. Our main goal is to bring into the
classification of bifurcation problems an approach used in the study of map-germs
for the definition of invariants associated to real singularities.
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Any invariant associated to a map-germ f : Rn+1, (0, 0)−→Rn, 0 is also an in-
variant of the bifurcation problem f(x, λ). For instance, although the expressions
x2 + λ and x + λ2 represent completely different bifurcations, they will have the
same invariants as maps f : R2−→R. Thus, in the study of bifurcation problems
some invariants have to be introduced, in order to take into account the special
role of the parameter λ.

A similar procedure is followed in [19], where a method for counting the number
of branches in a bifurcation diagram is obtained using the formula of Eisenbud and
Levine [8] for the degree of an isolated singularity. The number of branches for
positive (resp. negative) λ provides an invariant for bifurcations. These invariants
are discussed in section 3.

An important issue in bifurcation theory is to understand the geometry of
stabilizations of a given bifurcation problem. The important information is the
number of folds of (x, λ) 7→ F (x, λ, t) for fixed t 6= 0, small. This number usually
depends on the choice of stabilization and on the sign of t: the transition set
generally divides the unfolding parameter space into more than one connected
component. This is in strong contrast to the complex theory, where the comple-
ment of the transition set is connected.

We use the results in [8, 19] to develop in section 3 a method for counting
the number of folds appearing in a stable one-parameter perturbation of f . The
maximum value (over all possible stabilizations) of this number is the geometric
number of folds associated to the bifurcation problem.

We introduce in section 4 a new topological invariant of a bifurcation problem
f , the algebraic number of folds, that we denote by β(f). The invariant β(f)
is the codimension of an ideal associated to the bifurcation f and it counts the
number of complex solutions to the equations for fold points. We show that f

has finite codimension if and only if β(f) < ∞.
One open question is whether the geometric and algebraic number of folds

coincide for bifurcation problems in one variable, i.e. if there is a stable perturba-
tion with exactly β(f) folds. We have computed the invariants for all the simple
bifurcations in one variable (section 5) and found the answer to be yes, in the
case of simple germs, but it remains open in general.

2. Preliminary results and definitions

For basic results we refer the reader to Golubitsky and Schaeffer [12] and to
Keyfitz [16], whose notation we use. We recall some notation used in the study of
germs of smooth bifurcation problems f(x, λ), f : Rn×R, (0, 0)−→Rn, 0. The set
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of all such germs forms a free module,
−→
Exλ, of rank n over the ring Exλ of germs

of smooth functions g : Rn ×R, (0, 0)−→R. The ring Exλ has a unique maximal
ideal M and a subring Eλ of germs of functions depending only on λ.

To each bifurcation germ f(x, λ) we associate its bifurcation diagram, the germ
of the set {(λ, x) : f(x, λ) = 0}, the set of equilibria of the differential equation
ẋ = f(x, λ).

Two bifurcation germs f(x, λ) and g(x, λ) are bifurcation equivalent (called
here b-equivalent) if and only if there are germs of maps S(x, λ), X(x, λ) and
Λ(λ) such that

f(x, λ) = S(x, λ)g (X(x, λ), Λ(λ))

where S(x, λ) is linear for each (x, λ) and detS(0, 0) > 0 and where dxX(0, 0) is
invertible with Λ′(0) > 0.

The usual concepts of strong and unipotent equivalence can be extended to
this context as well as those of codimension and unfolding. For definitions and
calculation methods, see [11], [12] and references therein.

Recall that the tangent space at f to the b-strong-equivalence class of f , called

the restricted tangent space of f , is the Exλ submodule of
−→
Exλ given by

RT(f) =
〈

fiej , xi
∂fk

∂xj
, λ

∂fk

∂xj
i, j, k = 1, . . . n

〉

Exλ

⊂
−→
Exλ

where ej denotes the elements of the standard basis of Rn. A bifurcation problem

f has finite codimension if and only if RT(f) has finite codimension in
−→
Exλ.

For n = 1, all bifurcation problems of codimension seven or less have been
classified by Keyfitz [16]. The only non trivial bifurcations of codimension zero,
called stable bifurcations, are the folds f(x, λ) = ±x2 ± λ and their suspensions
in Rn, (x2

1 + λ, x2, . . . , xn), also called folds in this paper.

2.1. The fold ideal. Let B(f) ⊂ Exλ be the ideal

B(f) = 〈f1(x, λ), . . . , fn(x, λ), Jxf(x, λ)〉,

where Jxf denotes the determinant of dxf . We call B(f) the fold ideal of f .

Theorem 1. A bifurcation problem f : Rn×R, 0−→Rn, 0 has finite codimension
if and only if B(f) has finite codimension.

Proof. Assume f has finite codimension and therefore RT(f) ⊃ Mk
−→
Exλ for

some k. Following the argument of Gaffney in [10], Lemma 2.12, we will show
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that B(f) contains Mkn. In fact, let u ∈Mkn, say u =
∏n

i=1 ui where ui ∈Mk.
Since RT(f) contains the germs uiei, then the matrix equation

dxf ·A =











u1 0 . . . 0
0 u2 . . . 0
...

...
...

0 0 . . . un











has a solution A with entries in Exλ, modulo 〈fiej〉i,j=1,...,n. Taking the deter-
minant of each side it follows that u ∈ 〈Jxf〉 (mod 〈f1, . . . , fn〉), and thus the
condition is necessary.

To see the sufficiency, assume B(f) ⊃ Mk for some k. It is enough to prove
that dxf(

−→
M) ⊃ 〈Jxfei i = 1, . . . , n〉Exλ

. The proof is again just a parametrized
version of Gaffney’s argument.

Let A(i, j) be the cofactor of the element
∂fi

∂xj
in the matrix dxf . Then we can

write the vector whose only nonzero entry is Jxf in the l-th position as:

















0
...

Jxf
...
0

















=



























∂f1

∂x1
. . .

∂f1

∂xn
...

...
∂fl

∂x1
. . .

∂fl

∂xn
...

...
∂fn

∂x1
. . .

∂fn

∂xn



























·

















A(l, 1)
...

A(l, l)
...

A(l, n)

















proving the result. £

3. Branches and Folds

Given a finite codimension bifurcation problem f , consider a representative
of a one-parameter unfolding F (x, λ, t) of f defined in a neighbourhood U ⊂
Rn×R×R of the origin. The representative F : U−→Rn, is a stabilization of f

if it has the property that for t 6= 0 the only singularities of Ft(x, λ) = F (x, λ, t)
in Ut = U∩Rn×R×{t} are folds and for t = 0 the only singular point of F0(x, λ)
in U0 is the origin.

In this section, given a stabilization F (x, λ, t) of a bifurcation problem f(x, λ),
we obtain a formula for the number, b+(F ), of fold points of F (x, λ, t) for small
fixed t > 0. This number usually depends on the choice of one-parameter un-
folding and also on the sign of t. The theory for real bifurcation problems is in
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strong contrast to the complex case: all stabilizations of a complex bifurcation
correspond to equivalent problems.

The formula for b+(F ) is obtained by applying to the germ of g(y, t) =
((F (y, t), JxF (y, t)), where y = (x, λ), the results of Nishimura, Fukuda and Aoki
[19] on the number of branches of a bifurcation problem. The folds in the stabi-
lization F are branches in the higher dimensional problem g(y, t).

Given a map germ g : Rn+1, 0−→Rn, 0, let r(g) denote the number of half-
branches in the bifurcation diagram of g, i.e. the number of connected components
of g−1(0) − {0}. Denote by r+(g) and r−(g), the number of half branches with
λ > 0 (resp. λ < 0) in the bifurcation diagram of g and r±(g) = r+(g) − r−(g).
The numbers r+(g) and r−(g) are invariants for b-equivalence.

Nishimura, Fukuda and Aoki [19], have shown that r(g) is twice the topological
degree of Φ1 : Rn+1, 0−→Rn+1, 0, given by Φ1(y, λ) = (g(y, λ), λJyg(y, λ)), where
Jyg(y, λ) is the Jacobian of g. Similarly, r±(g) is twice the topological degree
of the germ Φ2 : Rn+1, 0−→Rn+1, 0, given by Φ2(y, λ) = (g(y, λ), Jyg(y, λ)).
Therefore, r(g), r+(g) and r−(g) are topological invariants and the degrees of Φ1

and Φ2 can be computed using the important result of Eisenbud and Levine [8]
that we shall describe briefly.

Let 〈Φ〉 be the ideal in Ey generated by the components of a map germ Φ(y),
Φ : Rm, 0−→Rm, 0. If 〈Φ〉 has finite codimension, consider the algebra Q(Φ) =
Ey/〈Φ〉 and let I be an ideal of Q(Φ) that is maximal with respect to the property
I2 = 0. Then Eisenbud and Levine [8] show that if Q(Φ) is finite-dimensional
then |degree(Φ)| = dimRQ(Φ)− 2dimRI.

The algebra Q(Φ) has a minimal ideal, called the socle, generated by the class
J0 of JyΦ. Another way to obtain the degree, from [8], is to consider any linear
functional l in Q(Φ) such that l(J0) > 0. Then the degree of Φ is the signature
of the bilinear form L : Q(Φ)×Q(Φ)−→R given by L(p, q) = l(pq).

Given a stabilization F (x, λ, t) of a finite codimension bifurcation problem
f(x, λ), consider the algebras

Q1(F ) = Exλt/〈F, JxF, tJxλ(F, JxF )〉

and

Q2(F ) = Exλt/〈F, JxF, Jxλ(F, JxF )〉 .

Lemma 1. If f has finite codimension and F is a stabilization of f then the
algebras Q1(F ) and Q2(F ) have finite dimension as real vector spaces.
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Proof. Without loss of generality we may assume F is analytic, since f has
finite codimension. Let FC : Cn+1 ×C, 0−→Cn, 0 be the complexification of F ,
that we will denote by F in the remainder of this proof. If we show that the
varieties of the ideals 〈F, JxF, tJxλ(F, JxF )〉 and 〈F, JxF, Jxλ(F, JxF )〉 reduce to
0 then the result follows from Hilbert Nullstellensatz.

We start by the second ideal. The equations F = 0 , JxF = 0 are defin-
ing conditions for folds in the unfolding F . Folds satisfying the last equation
Jxλ(F, JxF ) = 0 are degenerate: at these points either the gradient ∇x(JxF ) is
equal to zero or the gradient is orthogonal to the kernel of DxF . Both possibilities
characterize points that are more degenerate than folds and therefore this implies
t = 0, since F is stable for t 6= 0. For t = 0, the first two equations reduce to
f(x, λ) = 0, Jxf(x, λ) = 0 and have a unique solution (x, λ) = (0, 0) since we
have already shown that the fold ideal has finite codimension when cod(f) < ∞
and thus the claim holds.

For the first ideal, there are two possibilities, t = 0 and t 6= 0, both covered by
the arguments above. £

Each one of the algebras Q1(F ) and Q2(F ) has a socle generated, respectively,
by the residue classes of

s1 = Jxλt (F, JxF, tJxλ(F, JxF )) and s2 = Jxλt (F, JxF, Jxλ(F, JxF )) .

In each algebra Qi(F ), let li be a linear functional satisfying li(si) > 0 and let Li

be the bilinear form Li(p, q) = li(pq), as in the Eisenbud and Levine [8] result.

Theorem 2. If F is a stabilization of a bifurcation problem f of finite codimen-
sion, then the number b+(F ) of folds in F for t > 0 is b+(F ) = signature(L1) +
signature(L2).

Proof. Consider the map germs Φ1 and Φ2 : Rn+2, 0−→Rn+2, 0 given by

Φ1 = (F, JxF, tJxλ(F, JxF )) and Φ2 = (F, JxF, Jxλ(F, JxF )) .

Their algebras, Q1(F ) and Q2(F ), are finite dimensional by Lemma1. Therefore,
by the results of [8] the degree of each Φi is the signature of Li.

On the other hand, the fold points of F are precisely the nondegenerate zeros
of

g(x, λ, t) = (F (x, λ, t), JxF (x, λ, t))

i.e., the branches of the bifurcation problem g(y, t) with y = (x, λ), and bifurcation
parameter t. Therefore, the total number of fold points of F for t > 0 and t < 0
equals the total number, r(g), of half-branches of g and the difference between
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the number of folds with t > 0 and t < 0 is r±(g). From [19] it follows that
r(g) = 2 degree(Φ1) and r±(g) = 2 degree(Φ2). £

From the computation of r± in the proof above, it follows:

Corollary 1. If F is a stabilization of a bifurcation problem f of finite codimen-
sion, then the number of folds for t > 0 is congruent modulo 2 to the number of
folds for t < 0.

Another formulation of Theorem 2, less easy to compute, can be obtained using
the results of [8]:

Theorem 3. If F is a stabilization of a bifurcation problem f of finite codimen-
sion, then the number b+(F ) of folds in F for t > 0 is b+(F ) = dim(Q1(F )) −
dim(Q2(F ))− 2 dimR(I1) + 2 dimR(I2), where each Ii ⊂ Qi(F ) is an ideal that is
maximal with respect to the property I2

i = 0.

The singular set Σ in the unfolding of a bifurcation problem of finite codimen-
sion was defined in section 4 in the proof of Theorem 1. It is shown in [12] that
generic points in Σ are hysteresis, bifurcation or double limit points. Crossing
a double limit point only changes the relative position of folds in a bifurcation
diagram. Crossing a hysteresis or a bifurcation point creates (or destroys) a pair
of folds. Thus it follows:

Corollary 2. If F is a stable germ in a versal unfolding of a bifurcation problem
f of finite codimension, then the number of folds is constant modulo 2.

3.1. Weighted homogeneous bifurcations. We say that g : Rm−→Rp is
weighted homogeneous if we may assign weights w(xi) > 0, i = 1, . . . , m so that
each of the coordinate functions gi, i = 1, . . . , p is weighted homogeneous, of
weight w(gi).

If the germ f has a weighted homogeneous representative, the calculation of
b+(F ) is easier (see [21], [3] and [4] for details). This is the case of the following
result, which is a special case of Damon’s Corollary 3 in [3].

Corollary 3. Let f : Rn × R−→Rn be a polynomial bifurcation problem that
is weighted homogeneous and such that the germ of f at the origin has finite
codimension. If F (x, λ, t) is a weighted homogeneous stabilization of f , where t

has odd weight, then b+(F ) = b−(F ).

Proof. We show that the bilinear form L2 of Theorem 2 has signature zero.
The map Φ2 = (F, JxF, Jxλ(F, JxF )) is weighted homogeneous and this induces
a filtration of Q2(F ) where the maximum weight M is that of the socle, s2 =
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JyΦ2(y) with y = (x, λ, t). If s2 = 0 in Q2(F ), then the result is trivial. Otherwise,
the maximum weight M is given by

M = w(s2) = 4w(JxF )− 2w(λ)− w(t) .

Consider the subspaces Q1/2, Q< and Q> of Q2(F ) of elements of weight
= M/2, < M/2 and > M/2, respectively. Since the multiplication is additive
on weights, the signature of the bilinear form L2 is determined by the signature
of its restriction to Q1/2: the multiplication dually pairs Q< with Q>, so these
subspaces give no contribution to the signature. Since M is odd then Q1/2 is
empty and the signature is zero. £

A similar construction for the map Φ1 = (F, JxF, tJxλ(F, JxF )) shows that in
this case we only have to compute the signature of the bilinear form L1 in the
subspace of Q1(F ) of elements of weights

M

2
=

1
2
w(s1) = 2w(JxF )− w(λ) .

The hypothesis of Corollary 3 on the stabilization F holds when f is a finite
codimension weighted homogeneous b-simple germ. In fact, let T(f) be the ex-
tended tangent space to the b-orbit of f — see [12] for the definition of T(f). If
f is b-simple, one can find a finite dimensional complementary subspace to T(f)
generated by weighted homogeneous maps p(x, λ) = (p1(x, λ), . . . , pn(x, λ)), such
that each component pi has weight less than w(fi) — this holds, for instance, if all
the pis are monomials of appropriate weight. Then for every stable germ g(x, λ)
in an unfolding of f there is a weighted homogeneous stabilization F (x, λ, t) of
f , with w(t) = 1, such that for some t 6= 0 the germs g(x, λ) and Ft(x, λ) are
b-equivalent and Corollary 3 can be applied. To see why this holds, consider the
transition set Σ, the set of values of the unfolding parameters corresponding to
non-stable germs; Σ is defined by a weighted homogeneous equation. Thus there
is a weighted homogeneous curve of the form ui = taiui0 for unfolding parameters
ui connecting the stable g to the original f and missing the transition set Σ.

4. Algebraic Folds

An upper bound for the number of folds appearing in any stabilization of a
given bifurcation problem is the number of folds appearing in a complexification
of the problem. We define the algebraic number of folds β(f) of a bifurcation f

as the codimension of B(f). It is an invariant for b-equivalence that counts the
number of simple solutions (x, λ) ∈ Cn+1 of F (x, λ, α) = 0, JxF (x, λ, α) = 0
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for generic fixed α on an unfolding F of f , as we show below, i.e. it counts the
number of points where Fα is equivalent to a fold.

Theorem 4. For a bifurcation problem f : Rn×R, 0−→Rn, 0 of finite codimen-
sion, β(f) is an invariant for b-equivalence giving the number of folds appearing
in a stable deformation of the complexification of f .

Proof. Recall that, by Theorem 1, B(f) has finite codimension. Let F̃ : Cn×C×
Cu, 0−→Cn, 0 be a versal unfolding of the complexification of f , and F : W−→Cn

a representative of F̃ defined in a neighbourhood W of the origin in Cn×C×Cu.
We can take W = U × T, where U ⊂ Cn × C and T ⊂ Cu are connected
neighbourhoods of the origin in each space.

Let Σ be the transition set — the set of u ∈ T for which there exists a point
(x, λ) ∈ U, which is a singular point of Fu = F (., ., u), more degenerate than a
fold, where either the kernel of dxF has dimension more than one, or the curve
Fu = 0 has a contact with the kernel of dxF more degenerate than a quadratic.

The transition set Σ is a proper analytic set of Cu, and therefore its complement
in T is connected. Then for any u and ũ in the complement of Σ we have that
Fu and Fũ are b-equivalent. Thus, for f complex, the number of folds does not
depend on the choice of stabilization.

Let Fα be a representative of a stabilization of the complexification of f defined
in a neighbourhood of the origin. Then for each α 6= 0

β(Fα) =
∑

(xi,λi)

dimC

Exλ
(xi, λi)

〈

JxFα
(xi, λi)

, Fα
(xi, λi)

〉

where the summation is taken over all the (xi, λi) that are fold points and
(xi, λi)

stands for germs at (xi, λi).
Each fold point contributes 1 to the summation, since

dim
(

Exλ

B(x2
1 ± λ, x2, . . . , xn)

)

= 1

and thus β(Fα) is the number of folds for Fα. Since B(Fα) defines a family of
complete intersection with isolated singularity, it follows [17] that the multiplicity
β(Fα) is constant and therefore β(Fα) = β(f). £

The invariant β(f) counts the number of complex solutions of Fα = 0, JxFα =
0, with multiplicity, for an unfolding F of f . In the real case, for a stabilization
Ft(x, λ) of f , the number of real solutions of Ft = 0, JxFt = 0 depends on the
choice of stabilization Ft.
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The stabilization can be viewed as a path in a versal unfolding of f . In the real
case the space of unfolding parameters may be separated by the transition set Σ.
Then b(Ft) is constant in each component of the complement of Σ, but may vary
from one component to another. Its maximum bmax(f) over all stabilizations of
a given germ f is clearly an invariant of b-equivalence.

A natural question is whether bmax(f) = β(f) . In other words, we want to
know if the geometric and algebraic number of folds coincide. This is the case for
all simple bifurcations in one spatial dimension studied in [16] (see section 5).

If in the definition of b-equivalence we drop the requirement that the change
of parameter Λ does not depend on x we obtain the usual definition of contact
equivalence (K-equivalence) of maps. Every invariant of K-equivalence of germs

in
−→
Exλ is also invariant under b-equivalence, the second being a specialization of

the first. An analogous result holds [6] for K-versal unfoldings of germs of maps
in R2 K-codimension and if G(y, α) is a K-versal unfolding of g = (g1, g2) then
there is a germ of an open, path connected set A of parameters α with the origin
in the closure of A, such that for each α ∈ A the map y 7→ G(y, α) has exactly m

zeros where m is the codimension of 〈g1, g2〉Ey .

Conjecture 1. Let f : R ×R, (0, 0)−→R, 0 be a finite codimension bifurcation
problem and F (x, λ, α) a b-versal unfolding of f . Then there is a germ of an open,
path connected set A of parameters α, with the origin in the closure of A, such
that for each α ∈ A the bifurcation diagram of x 7→ F (x, λ, α) contains exactly
β(f) fold points.

A natural way to prove Conjecture 1 would be to reduce it to the K-equivalence
case by considering the germ g(x, λ) = (f(x, λ), fx(x, λ)) and a K-versal unfolding
of the form G(x, λ, α) = (F (x, λ, α), Fx(x, λ, α)). Then for suitable α, the germ G

would have precisely β(f) zeros and F would factor through any b-versal unfolding
of f . Unfortunately it is often not possible to find a K-versal unfolding of the form
(F, Fx). For instance, consider the simple bifurcation problem f(x, λ) = x3 − xλ.
An unfolding G(x, λ, α) of g(x, λ) = (x3 − xλ, 3x2 − λ) is K-versal if and only if
〈 ∂G

∂αi
〉R forms a complement for TKg in the Exλ-module of germs of maps from the

plane to the plane, where TKg =
{

(u, v) u, v ∈M2 + 〈λ〉
}

+ 〈(x, 1)〉Exλ
. Clearly,

the constant germ (0, 1) cannot be written as (h, hx) + η with h ∈ Exλ, η ∈ TKg.
The question of whether the number of complex solutions for stabilizations can

be realized for the real case has arisen in several situations and can be quite diffi-
cult. In the context of multiplicity of stable map germs of discrete algebra type,
this was shown to be true by Damon and Galligo [6]. For plane curves the exis-
tence of a maximal deformation was shown by A’Campo [1] and by Gusein-Zade
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[14]. Arnol’d [2] and Entov [9] have shown the existence of maximal morsifications
for singularities of type Ak and Dk.

The failure to realize in the real case the number occurring for the complex
case can happen for situations such as multiplicity of stable map germs studied
by Iarrobino [15]; for vanishing cycles for images of the stabilization of A-finite
germs from C2, 0 to C3, 0, studied by Marar and Mond [18]; and for vanishing
cycles of bifurcation sets studied by Damon [5].

A similar question is raised in [20] for map-germs from Rn to Rp, n ≥ p under
A-equivalence.

5. Examples

In this section we compute invariants for some examples of bifurcation prob-
lems. Invariants for b-equivalence are the algebraic number of folds, β(f) (section
4) and the number, r+(f) (resp. r−(f)), of half branches with λ > 0 (resp. λ < 0)
in the bifurcation diagram of f as well as r±(f) = r+(f)− r−(f) (section 3). We
show that Conjecture 1 holds for simple bifurcations in one spatial dimension, as
well as for two modal families (cm and qm, see below).

We also compute invariants of K-equivalence since they are also invariant under
b-equivalence, and a b-versal unfolding of a bifurcation f(x, λ) is also a K-versal
unfolding of the germ f . One K-invariant treated here is the number, r(f),
of half-branches in the bifurcation diagram of f , i.e. the number of connected
components of f−1(0)− {0} (section 3).

normal form f k cod(f) β(f) bmax(f) µ(f) r(f) r±(f)
±x3 ± λ2 3 4 4 2 2 0
±xk ± λ k even k − 2 k − 1 k − 1 0 2 ±2

k ≥ 2 k odd 2 0
±x2 ± λk k even k − 1 k k k − 1 4 0

k ≥ 2 k odd 2 ±2
±xk ± xλ k even k − 1 k k 1 4 0

k ≥ 3 k odd 4 ±2
Table 1. invariants for simple bifurcations, n = 1

Another K-invariant is the Milnor number µ(f) of a bifurcation f . For n = 1,
µ(f) is the codimension of the ideal Iµ(f) ⊂ Exλ given by

Iµ(f) = 〈fx(x, λ), fλ(x, λ)〉.
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It gives an upper bound for the number of Morse critical points appearing in any
germ in the unfolding of f . Note that these critical points do not have to be zeros
of f and thus the Milnor number cannot be “read” from the bifurcation diagram.

We start in Table 1 with simple bifurcations in one spatial dimension (see [16]).
For these simple bifurcations it is easy to find a suitable unfolding explicitly and
to check that Conjecture 1 holds, i.e., bmax(f) = β(f). This is also the case of
some modal bifurcations as can be seen in Table 2.

normal form restrictions cod(f) β(f) bmax(f) µ(f)

cm(x, λ) = ±(x3 − 3mxλ2 ± 2λ3) m 6= 0, 1 5 6 6 4

qm(x, λ) = ±x4 + 2mx2λ± λ2 m 6= 0,±1 5 6 6 3

±xk ± λ2 k ≥ 4 2k − 3 2k − 2 2k − 2 k − 1

Table 2. invariants for some modal bifurcations, n = 1

No two simple bifurcation problems have the same invariants β(f) and µ(f).
Modal bifurcations in one dimension, however, are not classified by the Milnor
number and the algebraic number of folds, as can be seen in Tables 2 and 3.

normal form restrictions cod(f) β(f) µ(f)
±xk ± xλ2 k ≥ 4 2k − 1 2k k + 1
±xk ± xλ2 ± λ3 k ≥ 4 2k − 2 2k k + 1
±xk+1 ± xk−1λ2 ± λ3 k ≥ 3 3k − 2 2k k + 1
±xk ± xk−2λ± λ2 k ≥ 5 2k − 4 2k − 2 k − 1

Table 3. invariants for some modal bifurcations, n = 1

For most cases studied here, if two bifurcation problems have the same codi-
mension and the same values of β and of µ, then they are b-equivalent. The ex-
ceptions are the natural cases of germs inside the modal families cm, and qm(x, λ)
together with the germ of ±x4 ± λ2 = q0.
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