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An N-element interferometer measures correlations among pairs of array elements. Closure invari-
ants associated with closed loops among array elements are immune to multiplicative, element-based
(“local”) corruptions that occur in these measurements. Till recently, it has been unclear how a
complete set of independent invariants can be analytically determined. We view the local, element-
based corruptions in co-polar correlations as gauge tranformations belonging to the gauge group
GL(1,C). Closure quantities are then naturally gauge invariant. We use this to provide a sim-
ple and effective formalism, and identify the complete set of independent closure invariants from
co-polar interferometric correlations using only quantities defined on (N − 1)(N − 2)/2 elementary
and independent triangular loops. The (N − 1)(N − 2)/2 closure phases and N(N − 3)/2 closure
amplitudes (totaling N2

−3N+1 real invariants), familiar in astronomical interferometry, naturally
emerge from this formalism, which unifies what has required separate treatments until now. We do
not require auto-correlations, but can easily include them if reliably measured. This unified view
clarifies issues relating to noise and inference of object model parameters. It also allows us to extend
the rule of parallel transport associated with Pancharatnam phase in optics to apply to amplitudes
as well. The framework presented here extends to GL(2,C) for full polarimetric interferometry
as presented in a companion paper, which generalizes and clarifies earlier work. Our findings are
relevant to state of the art co-polar and full polarimetric very long baseline interferometry mea-
surements to determine features very near the event horizons of blackholes at the centers of M87,
Centaurus A, and the Milky Way.

Keywords: Gauge theories; Gauge theory techniques; Geometric & topological phases; Geometrical & wave
optics; Group theory; Imaging & optical processing; Interferometry; Lattice gauge theory; Mathematical
physics; Radio, microwave, & sub-mm astronomy

I. INTRODUCTION

Interferometry, which began with Young’s double slit
experiment, has blossomed over the years into a tech-
nique now widely used in physics, biology and astronomy.
Examples include the use of astronomical interferometry
in the first determination of the double-lobed morphol-
ogy of Cygnus A [1], the first imaging of the event hori-
zon of a black hole in the center of the M87 galaxy [2–8]
and inner jet structures around the black hole in Centau-
rus A [9], determination of crystal structures [10–14, and
references therein], seismic imaging [15, and references
therein], remote sensing using radar and sonar [16, 17,
and references therein].
In each of these applications, accurate measurement

of both the amplitude and phase of the coherence (rep-
resented as complex values) is critical for success. Of-
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ten, accurate measurements of the complex-valued cor-
relations is made difficult by corruptions introduced by
the propagation medium, and non-ideal behavior of the
instrument as well as of the measurement process. For ex-
ample, in radio interferometry, the electromagnetic wave-
fronts are corrupted by ionospheric and tropospheric tur-
bulences at low and high frequencies, respectively, as well
as by corrupting factors in the array element responses.
In optical interferometry, the atmospheric turbulence and
imperfections in the telescope’s surface geometry tend to
destroy the phase information.

These element-based effects can be calibrated if there is
a standard object of known morphology available [18, 19].
An alternative strategy is self-calibration [20, 21], which
is a self-consistent scheme which uses iteration and feed-
back to successively refine the image starting with an
initial model. But this is not always possible at the de-
sired level of accuracy when the signal-to-noise ratio or
the a priori knowledge of the calibrator object is in-
adequate. Therefore, there is considerable interest in
calibration-independent quantities that are unaffected by
these element-specific factors, and are hence true observ-
able properties of the object’s structure.
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Such interferometric invariants are typically con-
structed using the product of pairwise correlations mea-
sured on a closed loop of array elements, and we call them
closure invariants. In co-polar interferometry (correla-
tions between measurements of the same polarization at
all the array elements) at radio and optical wavelengths,
they are widely known as closure phases and amplitudes
[18, 19, 22, and references therein]. The analog of clo-
sure invariants include the triplet and quartet invariants
in X-ray crystallography [10–14, and references therein],
and Bargmann invariants in quantum mechanics [23]. A
detailed geometric insight into closure phase and its con-
nections to various disciplines is provided in [24].
In astronomical interferometry, closure quantities can

be traced to [25, 26]. Since then, they have been invalu-
able tools for interferometry at optical [22, 27–30] and ra-
dio frequencies [20, 31–33, and references therein]. This
is particularly true of high spatial resolution applications
using very long baseline interferometry (VLBI) at radio
frequencies. A famous example is the recent imaging of
the event horizon of the supermassive black hole at the
center of the M87 galaxy [2–8]. Recently, new approaches
of probing the structure formation in the intergalactic
medium through application of closure phases on faint
spectral line emission from the early universe during the
cosmic reionization epoch (z & 6) are also being explored
[34–36].
In the context of co-polar correlations in astronomi-

cal interferometry, a detailed mathematical approach to
determining the number of generic closure invariants (in-
cluding closure phases and closure amplitudes), and im-
plications for the resulting signal-to-noise ratios was pre-
sented by [37]. Recently, first steps in the extension of
closure invariants (called “closure traces”) to correlations
of full polarimetric antenna measurements were taken in
[38], which relied on including antenna auto-correlations
to derive an independent set of closure traces involving
four correlations.
In this and an accompanying paper [39] (hereafter pa-

pers I and II, respectively), we establish a formalism us-
ing a combination of group-theoretic and linear algebraic
approaches that advances the previous work [37, 38].
In contrast to [38], we do not rely on the use of auto-
correlations (which in radio astronomy tend to be sus-
ceptible to significant noise biases, besides instabilities
caused by radio frequency interference and instrumen-
tal systematics), but can incorporate them if reliably
measured, and derive a complete and independent set
of closure invariants using gauge theory. In this paper,
we employ the GL(1,C) gauge group1 and its associated
gauge freedom to treat and derive the complete and in-
dependent set of closure invariants in the co-polar case.
The closure phases and closure amplitudes familiar in ra-

1 In general, GL(n,C) refers to the group of nonsingular n×n ma-
trices under multiplication, so GL(1,C) is the group of nonzero
complex numbers under multiplication.

dio interferometery emerge naturally from our formalism
which treats triangular loops as fundamental units, and
thus unifies the prescription for obtaining closure phases
and closure amplitudes. In paper II, we build on the foun-
dations presented in this paper and provide a formalism
using the GL(2,C) gauge group and its associated gauge
freedoms for deducing the complete and independent set
of closure invariants in the general case of full polari-
metric interferometry. In both papers, we also confirm
our findings with a parallel and independent viewpoint
using conventional linear algebra along with numerical
simulations. We also generalize the analysis to provide
a prescription for extracting all the independent closure
invariants in an N -element interferometer array. These
closure invariants represent true observables about the
system under observation, which in the case of interfer-
ometric imaging in astronomy corresponds to the true
physical properties of the target object’s morphology.

This paper is structured as follows. Section II lays out
the co-polar interferometry context within which we seek
a full set of independent invariants. In section III, we
present the expected number of independent closure in-
variants through a dimension count analysis. Section IV
develops a formalism that provides multiple but equiv-
alent methods to produce a complete and independent
set of closure invariants, which can be readily identified
with closure phases and closure amplitudes familiar in
radio interferometry. These invariants are listed explic-
itly in the case of three, four, and N array elements.
Section V summarizes this work. In Appendix A, we de-
scribe a scheme for reliably measuring auto-correlations
as the coincidence limit of cross-correlations if an ex-
tra short-spaced pair of elements is available. In Ap-
pendix B, we place our work in relation to the widely used
‘self-calibration’ technique, which implicitly uses closure
quantities. Appendix C describes the numerical scheme
used to confirm our analytic results, and Appendix D
brings out how our approach clarifies some aspects of the
choice of invarints as it relates to the effects of noise and
to object model parameters. In Appendix E, we high-
light the explicit connection between the closure phase
and Pancharatnam phase [40, 41] in optics. Motivated
by the radio astronomy application, we extend the Pan-
charatnam rule to include amplitudes as well.

II. CO-POLAR INTERFEROMETRY

Consider an interferometer array with N elements la-
beled by the indices a, b = 0, . . . , N − 1. Each element,
a, in the array measures the amplitude and phase of
the same polarization (co-polar, or scalar) state of elec-
tric field, ea (represented by a complex number), inci-
dent on it, which is stochastic. The true correlation of
the stochastic fields between pairs of array elements is,
by definition, obtained by cross-multiplication and av-

eraging, Sab :=
〈
eae

†
b

〉
, where, † denotes the conjugate
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transpose operator, which reduces to complex conjuga-
tion for GL(1,C) matrices in the co-polar interferometric
case dealt in this paper.
The complex electric fields, ea, may be subject to arbi-

trary gains Ga at each element, where, Ga are non-zero
complex numbers representing both amplitude and phase
distortion of the measured signal. In ideal conditions, all
the gains Ga would be unity and the measured signal
at each baseline would accurately reflect the true signal
correlation, Sab, of emission from the object. In fact, the
measured correlation, Cab, which is a corrupted form of
the true correlation, can be written as

Cab = Ga

〈
eae

†
b

〉
G†

b = Ga Sab G
†
b (1)

because of local gain distortions at each element. Gener-
ally, the cross-correlations are complex-valued with non-
zero amplitudes. From the definition, cross-correlations

satisfy Cab = C†
ba. The auto-correlations, Aaa := Caa,

are real and positive. Our objective is to construct quan-
tities which are immune to the gain distortions and ac-
tually reflect true properties of the object’s morphology,
rather than local conditions at the individual elements of
the interferometer.
We relate this problem to the ‘gauge’ theories of funda-

mental forces like electromagnetism. The local gains Ga

are regarded as gauge transformations and our objective
is to isolate a maximal set of gauge invariant quantities
which we will call closure invariants. This term encom-
passes both closure amplitudes and closure phases. Our
treatment places them on an equal footing by working
with a GL(1,C) gauge group.

III. COUNTING ARGUMENTS

Let us first do a dimensional count to see how many
closure invariants we would expect to find. The number
of measured cross-correlations is N(N − 1)/2, this being
the number of baselines or element pairs, i.e., the num-
ber of non-repeating combinations among N elements
taken two at a time. Since each cross-correlation is a
complex number we have N(N − 1) real numbers. If nA

auto-correlations (described by nA real numbers) are also
measured, we would have to add nA to the above count.
Without loss of generality, we can assume that nA is ei-
ther zero or one2. In radio astronomy, auto-correlation
measurements are unreliable because they are dominated
by non-astronomical systematics. Our formalism for clo-
sure invariants works with or without auto-correlations.
The unknown element-based gains are N complex

numbers, but note that there may be sets of gains Ga

2 In radio astronomy, measuring any more auto-correlations does
not give us new information due to the implicit assumption of
spatial stationarity.

which do not affect the correlations. That is, they sat-

isfy GaCabG
†
b = Cab for all a, b. This yields GaG

†
b = 1

and so GaG
†
aGbG

†
b = 1. If the correlations themselves

are unchanged, then so will the triple products of cor-

relations. Thus, using GaG
†
bGbG

†
cGcG

†
a = 1 (assuming

N ≥ 3, and distinct a, b, c) gives us GcG
†
c = 1 for all c.

This means Ga = eiθ for all a, which is simply an overall
phase factor that cancels out in Eq. (1). This gives us a
count of 2N − 1 real numbers in the unknown gains.
Assuming none of the measured correlations is redun-

dant (they are all independent of each other) and all of
them are used, the number of closure invariants (that are
independent of any choice of the unknown gains) is the
difference

N(N − 1) + nA − (2N − 1) = N2 − 3N + 1 + nA . (2)

Note that this equals the number of closure phases,
(N−1)(N−2)/2, plus the number of closure amplitudes,
N(N − 3)/2 + nA [18, 37]. For example, this equals 1
(one closure phase) or 5 (three closure phases and two
closure amplitudes) when nA = 0 for N = 3 or N = 4,
respectively, and 2 (one closure phase and one closure
amplitude) or 6 (three closure phases and three closure
amplitudes) when nA = 1 for N = 3 and N = 4, re-
spectively. As N becomes large, the structural informa-
tion about the object that can be extracted using closure
phases and closure amplitudes asymptotically approaches
that which can be extracted using correlations.

IV. FORMALISM FOR CLOSURE INVARIANTS

From a gauge theory perspective, we can regard each of
the N elements a = 0, . . . , N − 1 as vertices in a graph.
The gains that represent element-based corruption fac-
tors are local variables and multiplication by the gain
factor results in a gauge transformation at each vertex.
Each baseline is an edge ab or link carrying “connec-
tion” variables that are bilocal since they are defined on
the link connecting two vertices. These are the cross-
correlations. In the language of gauge theory, each trian-
gle, ∆(abc) ≡ (a, b, c) is called an “elementary plaquette”
and defines a “Wilson loop”. The Wilson loop of any
closed circuit can be determined from those of the ele-
mentary triangular plaquettes. Our objective is to list
a complete and independent set of elementary Wilson
loops. These are the closure invariants of radio astron-
omy.
In a U(1) gauge theory like electromagnetism, the

gauge group would be unitary and complex conjugation
in Eq. (1) would be the same as inversion. One can
then form independent closure invariants from each ele-
mentary triangular plaquette abc by simply multiplying
correlations around the triangle, as in Babc = CabCbcCca.
(Babc is called the “bispectrum” in interferometry). How-
ever, our gauge group GL(1,C) is not unitary. Using
G = {Ga}, a = 0, . . . , N − 1 to denote a general gauge
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transformation at every vertex, a, on the graph, the bis-
pectrum and other higher order products (“polyspectra”)
of a set of Cab around a closed loop, Γ, transform as

PΓ
G
7−→ |Ga|

2 |Gb|
2 . . .PΓ . (3)

The phase of PΓ is invariant under gauge transformations
G = {Ga}, a = 0, . . . , N − 1 and this is familiarly known
as the closure phase. However, because the gauge group
is not unitary, the amplitude of PΓ is not invariant as it
still depends on the gain amplitudes, |Ga|.
Similarly, one can define closure amplitudes for every

even-edged loop. For example, given the loop Γ = abcda,
the quantity

QΓ = Cab C
−1
bc Ccd C

−1
da (4)

transforms as

QΓ
G
7−→ GaG

†−1
a GbG

†−1
b GcG

†−1
c GdG

†−1
d QΓ. (5)

It follows, since
∣∣GaG

†−1
a

∣∣ = 1 that |QΓ|, the modulus of
QΓ, is a closure invariant:

|QΓ|
G
7−→ |QΓ| . (6)

However, the phase of Q is not an invariant because it
still depends on the phases of Ga at the loop vertices.
The virtues of PΓ and QΓ can be combined in a sin-

gle quantity CΓ by defining a hat operator, Ẑ = (Z†)−1,
on non-zero complex numbers. We introduce the term
covariants as the set of even number of products of cor-
relations around a closed loop, Γ, with even numbered
terms “hatted” starting with the second. For exam-
ple, a covariant on a 4-vertex loop can be written as

CΓ = CabĈbcCcdĈda. Hence, covariants transform as

CΓ
G
7−→ G0 CΓ G

−1
0 . (7)

Because the gauge group of Ga, GL(1,C), is Abelian,

CΓ
G
7−→ CΓ . (8)

Thus, the covariants are invariant3 under the gauge
transformation effected by the element-based corruption,
and form the closure invariants we are seeking in co-polar
interferometry. Some of the notation above is deliber-
ately kept general so that it transfers easily to the more
difficult non-Abelian case discussed in paper II.

A. Triangular Plaquettes

The need to have an even number of correlations in
the product around a closed loop appears to impose the

3 Note that a four-edged covariant essentially resembles a cross-

ratio, which is a well-known invariant in projective geometry
[42, 43, and references therein].

requirement of elementary quadrilaterals rather than tri-
angles. However, it is unclear beforehand which even-
vertexed loops will provide us with a complete set of in-
dependent invariants. We show below that such a set
can be obtained by considering variables on elementary
triangular plaquettes that are independent, rather than
quadrilateral plaquettes. The latter can be entirely de-
rived from the former.
The independent triangles in an N -element interfer-

ometer can be obtained by fixing a base vertex (for ex-
ample, 0) and choosing all the triangles that contain this
vertex [18]. There are N∆ = (N − 1)(N − 2)/2 such in-
dependent triangles. We construct elementary triangular
plaquette variables pinned at vertex 0 that includes just

three elements (0, a, b): Aab = C0aĈabCb0. This quan-
tity is neither a bispectrum nor a covariant, but acts as
a building block that can be used to construct all the
closure invariants. These triangular variables are clearly
independent and complete as all closed loops can be de-
composed into triangles and each distinct triangle is in-
dependent. Around the closed loop pinned at vertex 0
(Γ0), they undergo gauge transformations with G0 as

Aab
G
7−→ |G0|

2
Aab . (9)

We term such quantities as advariants in this paper. A
special advariant is A0 = A00, the auto-correlation. The
notation clarifies that this auto-correlation advariant is
a local variable based at 0. Note that advariants have
an advantage that their gauge freedom is restricted to
just a scaling by a single |G0|

2 in contrast to polyspectra
(including bispectrum) whose gauge transformations de-
pend on |Ga| of all the vertices in the loop. Thus, |G0|

2

is the only unknown quantity in the advariants that has
to be eliminated to arrive at invariant quantities. How-
ever, the phase of a triangular advariant is equal to the
phase of the corresponding bispectrum, and thus gives
the closure phase [25], which is an invariant.

B. Complete and Independent Set of Invariants

1. Method 1

Consider all the N∆ elementary triangular plaquettes
pinned at vertex 0. Each of them gives us a complex
number Aab. These complex numbers scale as in Eq. (9).
The real and imaginary parts of these complex numbers

give us M = 2N∆ real numbers, {Ĩm},m = 1, . . . ,M ,
all of which transform by the unknown scale, |G0|

2, un-

der gauge transformations. The ratios of these Ĩm with

respect to any of them (Ĩ0, for example) or some sym-

metric combination ([
∑

m Ĩ2m]1/2, for example), will elim-
inate this unknown scale, and thus give us M − 1 real

closure invariants, {Ĩk/Ĩ0}, k = 2, . . . ,M . Their num-
ber is N2 − 3N + 1, which is in exact agreement with
the expectation in Eq. (2). This gives us a complete
and independent set of closure invariants. Also, there is
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no need for auto-correlations in this construction. If we
were to add A00 as a measured quantity, we would gain
a single real invariant because A0 = A00 being real and
positive, would only contribute one more real number to

{Ĩm}. Note that the practical problem of systematic ef-
fects affecting auto-correlations can be mitigated by the
use of cross-correlations between a pair of closely spaced
elements in cases where the angular size of the object is
much smaller than the angular resolution corresponding
to the short spacing, and is described in Appendix A.
While this method of taking ratios completely solves

the problem we sought to address, namely, the determi-
nation of a complete and independent set of co-polar in-
terferometric invariants, we provide below an alternative
formalism that allows us to better visualize the closure
phases and amplitudes, as they are familiarly known in
radio interferometry, in terms of combinations of the in-
variants determined here.

2. Method 2

The elementary covariant quantity defined earlier as
the closed loop product of an even number of correla-
tions with alternate terms hatted starting with the sec-
ond (a minimum of 4 terms) can be equivalently defined
as the multiplication of an even number (minimum of
two) advariants with every alternate term hatted start-
ing with the second. For example, consider two trian-
gles, ∆1 ≡ ∆(0,1,2) (the base triangle) and ∆ℓ ≡ ∆(0,a,b)

chosen from the set of N∆ triangles, both pinned at
vertex 0, and their reversed forms, ∇1 ≡ ∆(0,2,1) and
∇ℓ ≡ ∆(0,b,a). The covariant, which is an invariant, can
now be expressed by pairing the advariants on these tri-
angles as

I∆1;∆ℓ
= C∆1;∆ℓ

= A∆1
Â∆ℓ

(10)

or, I∆1;0 = C∆1;0 = A∆1
Â0 , (11)

which are in general complex-valued. In the co-polar case
studied in this paper, since covariants are indeed invari-
ants, they will be used interchangeably. However, the
same is not true in the full polarimetric case presented
in paper II.
The following properties of covariants are noted:

• A∆1
scales as |G0|

2, whereas Â∆ℓ
, and Â0 scale as

|G0|
−2, thereby cancelling the unknown scale factor

in Eqs. (10) and (11), and making the covariant an
invariant.

• A covariant formed with ∆1 and ∆ℓ has the same
amplitude as that formed with ∆1 and ∇ℓ. That
is, |I∆1;∆ℓ

| = |I∆1;∇ℓ
|, and thus do not pro-

vide independent amplitude information. Similarly,
|I∆ℓ;∆1

| = |I∆1;∆ℓ
|−1.

• If φ∆1
and φ∆ℓ

are the phases of the advariants (clo-
sure phases), then the phases of I∆1;∆ℓ

and I∆1;∇ℓ

are φ∆1
+ φ∆ℓ

and φ∆1
− φ∆ℓ

, respectively.

• Each invariant, I∆1;∆ℓ
, is complex-valued and thus

contains two real-valued invariants, except when
∆ℓ = ∆1. In that case, |I∆1;∆1

| = 1, and there-
fore, contains only one real invariant, namely, its
phase which is twice the closure phase, 2φ∆1

.

Using the above properties, a set of covariants (in-
variants) can be constructed by pairing all the indepen-
dent triangular advariants, A∆ℓ

with the advariant of the

base triangle, A∆1
, as I∆1∆ℓ

= A∆1
Â∆ℓ

, ℓ = 1, . . . , N∆.
Each of these complex invariants yields two real invari-
ants for ℓ 6= 1 and only one real invariant for ℓ = 1 as
noted above. Therefore, the total number of real invari-
ants is 2N∆ − 1 = N2 − 3N + 1. The presence of an
auto-correlation measurement will increase this count to
N2−3N +2 due to one additional real-valued amplitude

invariant in A∆1
Â0. Therefore, this method provides

N2−3N+1+nA real invariants, which is a complete and
independent set, and is consistent with the first method
using ratios as well as with the dimension count analysis
in section III. We also verified these results numerically
as detailed in Appendix C.

C. Closure Phases and Amplitudes

Using the second method, we can directly identify the
closure phases and amplitudes familiar in radio interfer-
ometry with the closure invariants obtained here.
The independent closure phases are directly given by

the phases of the N∆ independent triangular advariants.
But they can be derived from the covariants, I∆1∆ℓ

, as
well, where ∆ℓ is any triangle that shares vertex 0 with
the reference triangle, ∆1. The phase of I∆1∆1

is 2φ∆1
,

which yields φ∆1
to within an ambiguity of π. This ambi-

guity can be addressed by using the phase of the advari-
ant, A∆1

, which gives φ∆1
directly without the aforemen-

tioned ambiguity. The phase of the rest of the covariants
I∆1∆ℓ

is φ∆1
+φ∆ℓ

, which will directly yield φ∆ℓ
via plain

substitution of the previously determined φ∆1
. This will

yield N∆ independent closure phases. The same con-
struct also yields closure amplitudes.
An inspection of |I∆1∆ℓ

| shows that it is indeed a clo-
sure amplitude, |C01||C21|

−1|C20||Ca0|
−1|Cab||C0b|

−1. In
general, closure amplitudes formed from a pair of tri-
angular advariants involves six such terms. However,
when ∆ℓ shares an edge with ∆1 (a = 2, for exam-
ple), then the contributions, |C20| and |Ca0|

−1, associated
with that edge cancel each other, and the closure ampli-
tude reduces to the familiar form containing four terms,
|C01||C21|

−1|C2b||C0b|
−1. Noting that |I∆1∆1

| does not
contribute an amplitude (it always has unit amplitude),
there are N∆− 1 = N(N − 3)/2 independent closure am-
plitudes (from the N∆ − 1 triangle pairs sharing vertex
0 with the base triangle ∆1). The auto-correlation mea-
surement, if present, adds one more independent closure

amplitude through |A∆1
Â0| = |C01||C21|

−1|C20|A
−1
00 .

Therefore, there are N∆ − 1 + nA independent closure
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amplitudes in general. It may also be noted that if
an auto-correlation can be reliably measured, we can
obtain all the invariants just from triangles with the
auto-correlation advariant as the base advariant using

I0;∆l
= A0Â∆1

, without requiring quadrilaterals or 6-
edged loops.

The set of closure amplitudes and phases contains a
total of 2N∆−1+nA = N2−3N+1+nA real invariants
as given in Eq. (2), which is complete and independent,
and is in agreement with all the earlier analyses. Our ap-
proach using advariants and covariants (invariants) con-
structed only from these triangular plaquettes provides a
unifying approach that directly identifies the traditional
invariants known as closure phases and amplitudes in ra-
dio interferometry.

Then the question arises: which form of closure invari-
ants is preferable? In Appendix D, we consider this ques-
tion from the viewpoint of correlations within the chosen
set of invariants and their overall contribution to the de-
termination of the likelihood of parameterized models. In
brief, the choice of invariants is immaterial in the deter-
mination of the likelihood function of the model parame-
ters as long as the set of invariants employed is complete.
However, certain choices of coordinates in which the in-
variants are represented could lead to coordinate-induced
correlations among the invariants, and also to situations
when one or more of the invariants become ill-defined in
those coordinates. A well-known example occurs when
representing real and imaginary parts of random vari-
able in polar form, where the amplitude and phase angle
can become correlated in general and the phase angle
becomes ill-defined in low S/N regimes even if the real
and imaginary parts are perfectly uncorrelated and well-
defined. For these reasons, even if the real and imaginary
parts of the invariants in our approach may be correlated,
we still prefer this representation over the polar form con-
sisting of phases and amplitudes.

D. Illustration with Examples

For illustration, we consider the familiar examples of
3- and 4-elements arrays below.

1. 3-element Array

Consider an array withN = 3 and one auto-correlation
measured (nA = 1). We have 1 and 6 real values in the
auto- and cross-correlations, respectively, totaling 7 real
measurements. We have 2N−1 = 5 unknown real-valued
parameters in the three complex-valued element gains.
From dimension counting used in Eq. (2), we expect to
find two real-valued closure invariants. From these mea-
surements, we can form a triangular advariant, A∆1

, cor-
responding to the triangle ∆1 ≡ ∆(0,1,2), and an auto-

correlation advariant, A0. The complex invariant

I∆1;0 = A∆1
Â0 =

|C01||C20|

|C12|A00
eiφ∆1 (12)

gives both these real-valued invariants. The magnitude
of this complex quantity is like a closure amplitude (with
one auto-correlation) and the phase is the standard clo-
sure phase of three elements. These two quantities are
evidently independent. I∆1;∆1

= e2iφ∆1 will give no new
invariants.
If auto-correlation is not measured (nA = 0), the num-

ber of real measurements reduces by 1 to 6. Hence, we
now expect only one invariant from Eq (2). Using the
only advariant available, A∆1

, we find

I∆1;∆1
= A∆1

Â∆1
= e2iφ∆1 (13)

contains that expected invariant, namely, its phase,
which is twice the standard closure phase associated with
∆1, and carries an ambiguity of π. However, the clo-
sure phase, φ∆1

, can be unambiguously obtained from
the phase of A∆1

directly.

2. 4-element Array

For an N = 4 array, we have N∆ = 3 independent tri-
angles, ∆1 ≡ ∆(0,1,2),∆2 ≡ ∆(0,2,3),∆3 ≡ ∆(0,1,3), and
hence, three complex advariants, A∆1

,A∆2
, and A∆3

.
If the auto-correlation A0 is measured we have an ad-
ditional real advariant. The dimension count analysis
predicts six invariants when the auto-correlation is mea-
sured and five when it is not.
When auto-correlation is not measured (nA = 0), we

combine the reference triangle ∆1, first with itself, and
then with the two other independent ones, ∆2 and ∆3.

I∆1;∆1
= A∆1

Â∆1
= e2iφ∆1 (14)

I∆1;∆2
= A∆1

Â∆2
=

|C01||C23|

|C21||C03|
ei(φ∆1

+φ∆2
) (15)

I∆1;∆3
= A∆1

Â∆3
=

|C20||C31|

|C21||C30|
ei(φ∆1

+φ∆3
) . (16)

We see that there are five real-valued invariants in the
equations above – three independent closure phases and
two independent closure amplitudes familiar in radio in-
terferometry for a 4-element co-polar interferometer ar-
ray.
When nA = 1, we can write down the following three

complex invariants – A∆1
Â0, A∆2

Â0, and A∆3
Â0 –

which gives us six real invariants comprising of three clo-
sure phases and three closure amplitudes (two as above,
and one more due to auto-correlation). The invariant

phase in A∆1
Â∆1

is redundant due to the presence of

A∆1
Â0, and can therefore be ignored.

Thus, the closure phases and closure amplitudes
emerge naturally in our approach which treats indepen-
dent triangles as fundamental. We break this up into
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a single invariant associated with the reference triangle,
∆1, and two for each of the rest. The auto-correlation
measurement will provide one additional closure ampli-
tude.

E. Quadrilateral Closure Amplitudes

We have so far emphasized the role of triangles in con-
structing advariants. The complete set of closure invari-
ants we generate include four-sided loops (quadrilaterals)
as well as six-sided loops. Traditionally, closure ampli-
tudes have been discussed by astronomers using quadri-
laterals. In order to connect with this discussion we ask:
Can we obtain a complete, independent set with only
quadrilateral-based closure amplitudes? A clear method-
ology is provided in [44] which involves placing the N
elements on a ring and considering two non-overlapping
pairs of elements where each pair is made of consecutive
elements. Here, we provide an alternate method based
on our formalism.
One way to ensure independence is to ensure that

each loop contains a unique element pair not present in
any other. To do this, we fix the element pair (0, 1)
and consider the quadrilateral made with two more el-
ements a and b. We arrange for 1 < a < b < N and
choose the set (which we call A) of closure amplitudes,
|C01||C1a|

−1|Cab||Cb0|
−1. So, each such choice of a pair

(a, b) with a < b gives us an independent closure am-
plitude. The number of closure amplitudes in the set
A is therefore the number of such (a, b) pairs, which is
(N − 2)(N − 3)/2. However, we know from basic count-
ing [18] and linear algebra [37] that the total number
of independent closure amplitudes is N(N − 3)/2. We
therefore need (N − 3)[N − (N − 2)]/2 = N − 3 more
independent closure amplitudes to complete the desired
list. We supply these in a set B, by observing that ele-
ment 0 is only paired with b and hence never paired with
element 2 in the set A. We therefore add precisely N − 3
more closure amplitudes by including the pair, (0, 2), as
|C01||C1b|

−1|Cb2||C20|
−1, which contains C02 in addition

to our base choice of C01. The set B is only indexed by b
which can take N −3 values, and its members are clearly
independent of each other, since each contains the ele-
ment pair (1, a) which is unique to it within this set A.
Every member of B is also independent of all those of
set A, since none of those contains the pair (0, 2). This
completes the explicit construction of N(N − 3)/2 in-
dependent quadrilateral closure amplitudes. Although
this construction has been described in a self-contained
way, it was arrived at by considering quadrilateral closure
amplitudes as the product of two advariants, sharing an
edge.
The closure amplitudes from our approach and the

ring-based approach in [44] are essentially equivalent.
However, a consequence of the fundamental difference in
the methodologies leads to one notable difference in the
invariants constituting the complete and independent set

when an N + 1-th element (indexed by a = N) is added
to the array. In the approach of [44], the inclusion of a
new member, a = N , in the ring will remove the ear-
lier pairing of (N − 1, 0) because they are no longer ad-
jacent and the corresponding second set of consecutive
pairs will also get removed. In their place, two new pairs
of consecutive indices, (N − 1, N) and (N, 0), and the
corresponding sets of second adjacent pairings will have
to be included. In other words, some members of the
original set of closure amplitudes will be removed and re-
placed with a larger but different set. A similar removal
and replacement process also occurs when an array ele-
ment has to be excluded. In our approach, the additional
element yields N − 1 triangles (and advariants) pinned
at base vertex 0 containing this element that were not
present before. When paired with the base triangle, we
get N − 1 new complex-valued invariants in addition to
the existing set. That is, the members of the original set
are undisturbed and 2N − 2 real-valued invariants are
added, amounting to a total of N2 − N − 1 real invari-
ants for the N + 1-element array. This difference may
have practical consequences when certain array elements
are flagged at specific times or frequencies due to poor
quality of data. Our approach will be robust to such
practical challenges.
Thus, we have provided multiple methods of explicitly

listing the closure invariants in an N -element interfer-
ometer array. These methods do not yield the same set
of invariants, but carry exactly equivalent information.
Our approach unifies the treatment of all co-polar clo-
sure invariants, including the triangular closure phases
and quadrilateral closure amplitudes familiar in radio in-
terferometry as seen earlier.

V. SUMMARY

In this paper, we have explicitly enumerated from co-
polar interferometric measurements a complete and in-
dependent set of closure invariants that are immune to
corruptions local to the elements of an interferometer ar-
ray. The solution relies on mathematical ideas borrowed
from gauge theories of particle physics and the geomet-
ric phase of quantum mechanics and optics. Specifically,
the co-polar interferometric invariants presented here are
invariant under gauge transformations by the element-
based corruption factors which belong to the Abelian
gauge group, GL(1,C).
Invariants such as closure phases and closure ampli-

tudes have been in wide use in many disciplines for
decades. However, they relied on using closed triangular
and quadrilateral loops, respectively, and thus required
different treatments. The solution presented here relies
on using only independent triangular plaquettes, which
form the simplest non-trivial loops and are well deter-
mined, as our basis. The quantity defined on these trian-
gles, called advariants, can be combined with an advari-
ant chosen on a reference triangle to produce a complete
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set of independent invariants. The main result of this
work is that using this formalism we have unified the
treatment of closure invariants, which have historically
required separate methods. Thus, we have provided an
altered and unified perspective which improves our global
understanding of interferometric closure invariants from
a symmetry viewpoint. The familiar closure phases and
closure amplitudes emerge naturally from this approach.
Radio astronomers are aware that auto-correlation

measurements are unreliable because they could be dom-
inated by non-astrophysical systematic effects. Our for-
malism works even without auto-correlations, but can
naturally accommodate them if they are reliably mea-
sured. We have also outlined a methodology for using a
cross-correlation on a short-spaced element pair in place
of an auto-correlation to increase the number of invari-
ants by 1, without introducing systematic errors associ-
ated with a direct single-element auto-correlation mea-
surement.
Our approach clarifies certain aspects related to the

choice of the form of closure invariants and their impli-
cations for their covariance properties and their impact
on the likelihood of model parameters. While the meth-
ods presented here are specific to co-polar interferometry,
the concepts serve as a stepping stone and reveal their

full power when applied to a discussion of invariants in
full polarimetric interferometry in paper II. We expect
that this solution will aid astronomers in processing data
collected from VLBI measurements and other radio in-
terferometry experiments.

There is also an unexpected spinoff from this applica-
tion which is described in more detail in Appendix E. As
explained there, there is a strong connection between clo-
sure phases in astronomy and the Pancharatnam phase
in optics and quantum mechanics. The present applica-
tion suggests how the Pancharatnam phase rule can be
generalized to include amplitudes as well as phases. This
rule goes beyond existing ideas in the physics literature
and shows how an astronomical application can enrich
the physics which is being applied.
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Appendix A: Auto-correlations from Short-spaced

Elements

We have seen that auto-correlations can be used to
construct covariants, not just advariants, from a trian-
gle of elements such as in Eq. (12). This option is usu-
ally unavailable because of systematic errors in measuring
auto-correlations. However, when the angular size of the
object (θobj) is small compared to the angular resolution
determined by the element spacing, we can recover this
advantage, by using a cross-correlation, C00′ , when the
elements 0 and 0′ have a small separation (D00′), such
that θobj ≪ λ/D00′ , where, λ is the wavelength of obser-
vation.
We assume that the gains of the these closely spaced

elements are independent of each other, while their cor-
relation in C00′ is free from the problems that a single-
element auto-correlation poses. One example would be
an additional element, 0′, in close proximity to the base
element 0. Another possibility is to use two physically
close but independent subarrays (denoted by 0 and 0′)
that are phased from a dense array that is being used
as a single element in a “phased array” mode. An exam-
ple is the Atacama Large Millimeter/submillimeter Array
(ALMA) in the EHT observations of M87 and Centau-
rus A [3, 9]. Although 0′ can be paired with all the other
existing elements, the true correlations, Sa0′ , will carry
no new information that is not redundant4 with Sa0, ex-
cepting S00′ , which is a good approximation to S00.
Thus, we have two closely spaced elements, 0 and

0′, which do not resolve the object’s features but
have independent element gains, G0 and G0′ . This
means that S00′ ≈ S00 = S0′0′ . We can form the
covariant, C00′Ĉ0′aCabĈb0 = G0S00′ Ŝ0′aSabŜb0G

−1
0 ≈

S00Ŝ0aSabŜb0. Note that the G0 terms are eliminated be-
cause our group is Abelian and we have used S00′ ≈ S00,

4 The redundancy, however, may be useful towards obtaining a
calibration that is independent of knowledge of the sky bright-
ness distribution, and forms the basis of redundant-calibration
schemes in radio interferometry [45, 46, for example]
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which is the true auto-correlation. Thus, we have effec-
tively included auto-correlations as the coincidence limit
of cross-correlations, which will increase the number of
real-valued independent invariants by 1 corresponding to
the auto-correlation. The use of closely located elements
was suggested in [38] as a diagnostic for non element-
dependent errors. Here, we are using them to provide one
more invariant effectively involving an auto-correlation.
Since we have used advariants as the building blocks,

we can also reformulate this in terms of the advariant
C00′Ĉ0′aCa0 = G0S00′ Ŝ0′aSa0G

†
0, where, a /∈ {0, 0′}. Un-

der our assumption of closeness of elements 0 and 0′, this

can be written as ≈ G0S00Ŝ0aSa0G
†
0. Since Ŝ0aSa0 = 1,

we are therefore left with only G0S00G
†
0, which is exactly

what an auto-correlation advariant pinned at 0 would
have yielded. This means the earlier discussion with
nA = 1 is applicable and we gain one invariant. This
agrees with the preceding discussion based on covariants,
as expected.
We can also explain this using the dimension counting

principles. The presence of an additional S00′ ≈ S00,
which is nearly real and positive, effectively increases the
dimensionality of the real values in the true correlations
by nA = 1 to N(N−1)+1. It would appear that we have
introduced an unknown complex gain, G0′ , consisting of
two real parameters in the process. However, because of
the redundancy Sa0′ ≈ Sa0, G0′ can be expressed as

G0′ ≈ C0′aC
−1
0a G0, (A1)

which is fully determined by G0, and therefore not an
independent degree of gauge freedom. Hence, the number
of unknown real parameters in the gains is still 2N − 1.
Thus, the resulting number of real invariants increases
by nA = 1, to N2− 3N +2, which confirms the alternate
viewpoints presented above.

Appendix B: Relation to self-calibration

The parameters describing the element-dependent ef-
fects can be determined if there is a standard signal. In
practice, measurements on a point-like object are inter-
spersed with those of the target object, to get a prelimi-
nary calibration. A major improvement of this procedure
is ‘self-calibration’ [20, 21, 32]. The approximate calibra-
tion parameters are only used as an initial guess to pro-
duce an approximate image. The image is then refined
by alternating steps of deconvolution, with adjustment of
the instrumental parameters to best fit the current image
at each stage. This converges, in favourable cases, to a
much better image than was earlier possible. The word
‘better’ reveals that criteria based on a priori informa-
tion, such as positivity, smoothness, and compactness of
the emission, play a role via the deconvolution step.
Our work is concerned with a related but distinct no-

tion of using closure invariants, which directly charac-
terize the source and are independent of any model or

deconvolution scheme. Forming images using just these
invariants alone has been explored, especially in VLBI,
by ‘forward-modeling’, that is fitting a model to the
measured closure invariants. This approach would be
appropriate in cases where the data are not extensive
enough to constrain a free-form fitting procedure like self-
calibration. Invariants can be used to discriminate be-
tween different proposed models, purely in the domain of
observations, without bringing in deconvolution with its
attendant a priori assumptions. A fully converged self-
calibration solution will, of course, automatically satisfy
all invariants. However, invariants have a role even when
self-calibration is not directly applicable.

Appendix C: Numerical Test for Independence of

Invariants

Here, we numerically verify the independence of the
invariants derived through various analytical methodolo-
gies described in this paper. We begin with the sim-
plest case with three elements which gives three cross-
correlations. We also include one auto-correlation. We
generate multiple realizations of one random positive
real number for the uncorrupted auto-correlation, S00,
and three random complex numbers for the uncorrupted
cross-correlations, S01, S12, and S31, and three more ran-
dom complex numbers for the element-based gains (cor-
ruptions), G0, G1, and G2. These can be used to con-
struct the measured correlations, A00, C01, C12, and C20

using Eq. (1), which are described by 7 real values. From
these, we construct the advariants, A∆1

and A0 and com-

pute the triangular invariant, A∆1
Â0, whose real and

imaginary parts are the two closure invariants.
Analytically, the test for independence of these invari-

ants would be to look at the two real invariants as func-
tions of the real and imaginary parts of the input true
correlations. We construct the Jacobian matrix of partial
derivatives relating first order changes in the output to
those in the input. The rank of the Jacobian matrix gives
the number of independent invariants. Numerically, we
construct the elements of this Jacobian matrix by vary-
ing one input quantity xi at a time by a small amount,
and recording the output changes yj as a column. In this
case, there will be 7 columns of length 2, so the Jaco-
bian is a 2 × 7 matrix. The rank is checked numerically
by carrying out a singular value decomposition (SVD)
of the Jacobian and examining the list of non-zero sin-
gular values. Zero-valued singular values appear as very
small values (compared to the non-zero singular values by
many orders of magnitude) due to finite-precision compu-
tations. The number of zero singular values (also called
the corank) gives the reduction in the number of inde-
pendent invariants, compared to the total number being
calculated. In geometric terms, we are finding the di-
mension of the surface onto which a given, general set
of measured visibilities gets mapped when we compute a
number of invariants of our own choosing. This dimen-
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sion is in general less than the maximum possible rank,
by the number of zeros.
The rank of a Jacobian can also be used to cross-check

the dimension counting. While we have pointed out the
most obvious redundancy in the gains, namely, an overall
phase, one might want to verify that no others have been
missed. In this case, we simulate random true correla-
tions as the input, and apply randomly chosen gains to
them to get the measured correlations as output. Now,
we vary all the gain parameters in small increments and
find the Jacobian via the partial derivatives of all the
real-valued parameters in the measured correlation with
respect to these changes in the 2N real gain parameters.
Not surprisingly, in all cases the corank is 1, and the
count of 2N−1 for the number of independent variations
of the gains which modify the measured correlations, is
confirmed. This numerical scheme generalizes to full po-
larimetric measurements as well.

Appendix D: Choice of Invariants, Noise, and

Imaging

We have seen in section IV that a complete and inde-
pendent set of invariants is not necessarily unique and
can take multiple forms. How do we choose the form
for a complete and independent set of invariants from
all possible sets? We approach this question from two
considerations – one from that of likelihood on the in-
ferred model parameter space, and another from antici-
pated noise properties of the invariants themselves.
Let us consider determining the likelihood of a

parametrized set of models, e.g., a ring of emission with
azimuthal asymmetries as in [7]. Here and below, we use
a single symbol like M to denote an entire set of vari-
ables, in this case parameters describing the model. This
model will lead to a predicted set of correlations from
which a predicted set of invariants follows, Ip(M). The
noise on the correlations, presumed known, can be prop-
agated to a probability distribution for the invariants I
around Ip(M), using the functional relation I = f(C).
We denote this density by PI(I). Evaluating this at the
measured values of the invariants Im gives the likelihood
function on the model space, L(M|Im) = PI(I

m).
Now consider working with two different, but complete,

sets of invariants, I and Ĩ. There is a two-way functional
relation between them. Because the probability densities

for I and Ĩ are related by PI(I) dI = P
Ĩ
(Ĩ) dĨ, we get

L(M|Im) = L(M|Ĩm) |J|, where, |J| := det(J) is the

determinant of the Jacobian matrix, J ≡ Jpq = ∂Ĩp/∂Iq.
|J| is evaluated at the measured values of the two sets
of invariants, and does not depend on the model, M.
Hence, |J| appears as a simple proportionality factor in
the space of M. Therefore, the maximum likelihood so-
lution does not depend on the choice of invariants.
In Bayesian approaches, including the maximum en-

tropy methods, there is an additional factor, namely, a
prior depending solely on M. It may be noted that the
standard approach of self-calibration does not even use
invariants explicitly, while satisfying them implicitly, so
the question of a choice does not arise. It is therefore
satisfying that direct use of invariants in determining the
maximum likelihood of the models is also independent of
the chosen form of invariants.
While the maximum likelihood of the models does not

depend on the chosen form of the invariants, there may
however be other considerations of noise characteristics
and interpretations that may favour one form of invari-
ants over another. Here, we compare and contrast our ap-
proach to that of [44]. Their construction of N(N − 3)/2
independent closure amplitudes, and the demonstration
that all other such amplitudes can be constructed from
these is elegant and complete, and has the convenience
of interpretation in terms of amplitudes and phases.
In our approach based on gauge theory, the use of tri-

angles as the generators of all other loops and their asso-
ciated invariants is more natural. These emerge as com-
plex quantities, the magnitudes being generalized closure
amplitudes (since some have six baselines) and the phases
are sums of the standard closure phases on two triangles.
We have chosen to work with the real and imaginary
parts rather than the amplitudes and phases of our set of
invariants. Our primary motivation is described below.
Following [18], for simplicity, consider an ideal case of

bivariate Gaussian distribution of two uncorrelated vari-
ables, X and Y , denoting the real and imaginary parts
of a complex number, respectively. Their joint probabil-
ity distribution, without loss of generality, is taken to be
centered on (X0, 0) with a variance of σ2, and is given by

PX,Y (X,Y ) =
1

2πσ2
exp

[
−
(X −X0)

2 + Y 2

2σ2

]
. (D1)

Here, PX,Y (X,Y ) = PX(X)PY (Y ). By change of vari-
ables, X = A cos θ and Y = A sin θ, the joint probability
distribution in polar form becomes

PA,θ(A, θ) =
A′

2πσ2
exp

[
−
(A−X0)

2 − 2X2
0 cos θ + 4(A−X0)X0 sin

2 θ
2

2σ2

]
. (D2)

where, A′ = A exp
[
−X2

0/σ
2
]
. The first and the second terms inside the exponential in Eq. (D2) depend only on



13

A − X0 and θ, respectively. However, the third term
depends on both, which makes A and θ correlated in
general. Only when S/N ≫ 1 (|A−X0| ≪ |X0|), the ap-
parent correlation term may be neglected and the joint
distribution becomes separable into amplitude and phase
terms, PA,θ(A, θ) = PA(A)Pθ(θ), where Pθ(θ) reduces to
a von Mises distribution, that can be further approxi-
mated as a Gaussian distribution in θ [18, 44]. However,
when S/N . 1, approximating that A and θ are un-
correlated is not only invalid, but the phase is also not
well-defined. So, the joint distribution is preferably rep-
resented in real and imaginary coordinates (X and Y )
rather than their polar form (A and θ). Thus, it is evi-
dent that purely on account of the choice of the coordi-
nate system on which the joint probability distribution is
represented, it can not only induce covariance among the
random variables but also cause one or more variables to
be poorly defined. Therefore, in such cases, a different
coordinate system is clearly preferred.
The closure invariants, regardless of the form they are

represented in, are generally higher order functions of
the correlations, and are thus expected to be neither
Gaussian distributed nor have an uncorrelated behavior.
When expressed as amplitudes and phases, they could
suffer from induced covariance and singularities in low
S/N regimes. Thus, owing to such scenarios, we consider
the real and imaginary parts of the covariants as “bet-
ter” variables and prefer them over their amplitude and
phase representation, even though they carry the same
physical information.

Appendix E: Connection to Pancharatnam phases

The electric field time-series, ea(t), received at element,
a, as a function of time can be viewed as a vector in
Hilbert space [47, 48],

|ea〉 = {ea(t) | 0 ≤ t ≤ T } , (E1)

where, T is the integration time. The correlation func-

tion,
〈
eae

†
b

〉
, provides an inner product between these

vectors,

〈eb|ea〉 = Cab =
1

T

∫ T

0

e∗b(t) ea(t) dt . (E2)

Closure phases can now be understood as a Pancharat-
nam phase [40, 41] (see [33] for an earlier radio astron-

omy application). Pancharatnam’s work in polarization
optics gives us a rule (known in mathematics as a “con-
nection”) for comparing phases between vectors based at
a and b. We fix |ea〉 at element a and define |eb〉 to be in

phase with |ea〉 if the correlation 〈eb|ea〉 is real and posi-
tive. The physical motivation is that the intensity of the
superposed beam achieves a maximum under this con-
dition. This gives a rule for transporting a phase from
element a to b, that is, modifying the phase of |eb〉 so
that it is “in agreement” with |ea〉. Iterating this rule
and going in a closed loop from element a to b to c and
back to a, we find on returning to a that the cyclic appli-
cation of the rule gives a non-trivial phase change with
respect to the original phase of |ea〉. In words, |eb〉 can be
“in phase” with |ea〉, and |ec〉 with |eb〉, but then |ec〉 in
general is not “in phase” with |ea〉. The Pancharatnam
phase is

arg 〈eb|ea〉 〈ec|eb〉 〈ea|ec〉 = argCabCbcCca , (E3)

which astronomers will recognize as the closure phase
[25]. Closure phases, thus, emerge as the curvature of
the Pancharatnam rule for comparing phases. This is a
discrete version of the curvature familiar from parallel
transport along a closed curve on a sphere.

A natural question arises at this point: is there a trans-
port rule for the amplitude as well as the phase? The
idea is to modify the vector |eb〉 representing the sig-
nal at b so that it is ‘in agreement’ with |ea〉 in both
phase and amplitude. This is achieved as follows. The
vector |eb〉

′
= fb |eb〉 is proportional to |eb〉, but is now

rescaled by a complex factor fb, i.e., in amplitude and
phase so that 〈ea|e

′
b〉 = fb 〈ea|eb〉 = 1 (note that in

the case of phases this was only made real and positive,
but the magnitude was left undetermined). This gives
fb = 1/ 〈ea|eb〉. At the next stage, the vector |ec〉 is
rescaled to fc |ec〉 so that its inner product with fb |eb〉 is
1, i.e., f∗

b fc 〈eb|ec〉 = 1. This gives fc = 〈ea|eb〉
∗
/ 〈eb|ec〉.

The pattern is now clear. After an even number of steps,
returning to a, we obtain a vector fa |ea〉 which can be
compared in amplitude and phase to the original |ea〉.
The rescaling factor, fa, comes out to be nothing but our
four element complex closure invariant, made up of corre-
lations with alternate terms hatted. This transport rule,
applicable to amplitudes and phases, can be regarded as
a spinoff from radio astronomy to possible application in
other areas. The restriction to an even number of steps
has appeared before in relativity in a discussion of the
analogue of Fermi transport for null curves [49].


