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INVARIANTS OF FINITE GROUPS GENERATED
BY PSEUDO-REFLECTIONS IN
POSITIVE CHARACTERISTIC
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Haruhisa NAKAJIMA

Introduction

Let R be a commutative ring, and let V be a finitely generated free R-module.
Let R[V] be a polynomial ring over R associated with V. Then a finite subgroup
G of GL(V) acts naturally on R[V]. We denote by R[V]? the ring of invariants
of R[V] under the action of G.

Let R=F be a field and suppose that |G| is a unit of 2 It is known ([4],[9]
[31[8]) that A[V1¢ is a polynomial ring if and only if G is generated by pseudo-
reflections in GL(V").

But, in the case where |G|=0 mod char(k), there are only the following results:

(1) L.E.Dickson [5]; FJlT,, -, Tnlf*™® and F[T, -+, T»]5*“ @ are polynomial
rings, where F, is the finite field of g elements.

(2) M.-]. Bertin [1]; F [T\, ---, T J/"»®¢ is a polynomial ring, where
1 0
Unipn, @)=laeGL(n,q): o=| .

* 1

(3) J.-P. Serre [8]; (i) If 2[V']¢ is a polynomial ring, then G is generated by
pseudo-reflections in GL(V). (ii) F[T\, Ts, Ts, T4]%F2> is not a polynomial ring,
where O} (Fy) is the orthogonal group and char(Fg)=2.

The purpose of this paper is to determine finite irreducible subgroups G of
GL(V) such that k[ V¥ are polynomial rings in the case where |G|=0 mod char(k).
Let ¥V be an n-dimensional vector space over a finite field & of characteristic p and
let G be a subgroup of GL(V). Then our results are the following

(1] If G is a transitive imprimitive group genevated by pseudo-reflections, then
ELV6 is a polynomial ring.

[I1] Suppose that p=2, n=3 and G is an irreducible group genevated by trans-
vections. Then B[V ¢ is a polynomial ring if and only if G is conjugate in GL(V)
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to SL(n, q).

[(III1 Suppose that p=2 and V is a faithful linear representation of least degree
of the symmetric group Sn of degree m with m=7. Then k[ V1= is a polynomial
ring if and only if (m,p)=1 and all transpositions of S, are represented by reflec-
tions in GL(V).

[IV] Let F be a subfield of kB and let O.(F) be the orthogonal group of dimen-
sion n over F. Suppose that G is a subgroup of O.(F) which contains the commutator
subgroup Q.(F) of O(F). If n=d, then [V ¢ is not a polynomial ring.

Let GEGL(V) be an irreducible primitive group and let px2. If G is generated
by transvections, G is called a transvection group. Transvection groups are classified
by A.E. Zalesskii and V.N. Serezkin [11I]. This result will be used in the proof
of [IIl. On the other hand G is called a reflection group if G is a group generated
by reflections which contains no transvections. By using the classification stated
in V.N. Serezkin [7], we can determine all reflection groups G such that & V¢
are polynomial rings under the assumption of =4, p>7. For convenience we will
describe their results in §1.

§1. Preliminaries

Let V be a vector space over a field £ According to[2], an element veGL(V)
is called a pseudo-reflection in V if dimV,=<1 where V,=(1—-0a)V.

On the other hand an automorphism ¢ of an integral domain R is called a
generalized reflection in R if (6—1)REp for some prime ideal p of R of height 1.
For a subgroup G of Au#(R) and a prime ideal p of R, we put Da(d)={oeG: o(p)=
p} (resp. la(p)={geG: (e—1)REP}) which is called the decomposition group of G at
b (resp. the inertia group of G at p).

Let R= 1(%0 R: be a graded algebra over R, with a graduation {R;}. We define

that
Aut (R)={ve Aut(R): o preserves the graduation of R},
Autp,-g(R)y={s€ Auty,(R): o acts trivially on R},
R.=®R;.

i>0

THeEOREM 1.1. ([8]) Lel R be a regular local ring with the residue class field k.
Let G be a finite subgroup of Aut(R) such that 1G|-1lre U(R) and k¢=Fk, where U(R)
denotes the wunit group of R. Then RC is a regular local rving if and only if G is
generated by generalized reflections.

The following lemma is well known.
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LemMva 1.2. Let R be a noetherian graded algebra over a field k. Then the
following conditions arve equivalent .

(1) R is a graded polynomial algebra over k.

(2) Rr, is a regular local ring.

For an element ¢ of Au#(R) and a o-stable prime ideal p, ¢ induces an element

of Aut(R,) which is denoted by the same symbol ¢. Let R= @ R; be a noetherian
i=0

graded polynomial algebra over a field Ry,=k. Then, for ceAut; ;(R), o is a gen-

eralized reflection in R if and only if ¢ is so in Rg,. Therefore, from (1.1), we
obtain

CoroLLARY 1.3. Let R= é})Rg; be a noethevian graded polynomial algebra over
a field Ry,=Fk, and let G be at_ﬁom'te subgroup of Autr_g(R) such that \G|-1ie UE).
Then RC is a graded polynomial algebra over k if and only if G is generated by
generalized veflections.

LemMA 14. (e.g. [2]) Suppose that R=k[T, ---, T,] is a polynomial ring over an
algebraically closed field k and that G is a finite subgroup of GL,(k). If R is a
polynomial ving, then RPe {s a polynomial ring for any maximal ideal m of R and
De(mt) is generated by pseudo-reflections.

Proor. dim( R, =dim{(R)nnpe) and R,?6¢“ is unramified over (R%)unge.
Hence R,Pe¢‘ is a regular local ring. Since m is Ds(m)-stable,

RmDG(m) =(RDG(m))mnRDG(mJ .

On the other hand there exist elements a;:€& (1=<i=<#) such that m=(T\—ay, -+, Th—
an). Put Xi=Ti—a; (1=i=») and regard R=Fk[ X, ---, X,,] as a graded algebra by
degX;=1. Then Das(m)S Auty_,(R) and R.=m. Therefore S=RP¢ is a graded
‘subalgebra of R and S,=mnR¢™.  Since Ss, is a regular local ring, S is a
polynomial ring over & by (1.2). Hence Dg(m) is generated by pseudo-reflections.

From here to the end of this section, we assume that V is an #-dimensional
vector space over a finite field & of characteristic p=2. A pseudo-reflection o1 is
called a transvection if ¢ V,=1 and a reflection if ¢|V,=—1. Let G be a subgroup
of GL{V). Then we use the following notation :

P(G)={seG: ¢ is a pseudoreflection},
T{Gy={oeG : ¢ is a transvection},

R(G)={veG: v is a reflection} .
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A.E. Zalesskii and V.N. Serezkin obtained the following result which gives
the classification of transvection groups.

TueEorREM 16. ([111) Suppose that GSGL(V) (n=2) is a transvection group. Then
G is conjugate in GL(V) to one of the groups SL(n,q), Sp(n,q) or SUn, q), except
Sfor the case where G=SL(2,5), GESL(Z, 3%).

Recently V.N. Serezkin obtained the following

Tueorem 1.7. ([6],[7]) Suppose n>3, p>5. Let GSGL(V) be a reflection group.
Then G is conjugate in GL(V) to one of the groups in the following list:

(1) The orthogonal groups Osm (F), Oi(F), where F is a subfield of k and
n=2m+1, 2m respectively, or the groups x-2, where xe R(O,(F)) and 2 is the com-
mutator subgroup of the orthogonal group On(F).

(2) The symmetric groups Sn.1 wherve n+1x0 mod p, and Sy, where n+2=0
mod p.

(3) The nine exceptional groups, namely,

W(F,), W(N,), EW(N,), W(H,) where n=4; W(K;) where n=5;
W(Ks), W(Es) where n=6; W(E:) where n=T; W(Es) where n=38.
However the complete proof of this result has not been published yet.

For a field & of characteristic p>7, the orders of the groups in part (3) of (1.7)
are units in k.

§2. Monomial groups

Let V be a finitely generated free module over a commutative ring R. A
subgroup G of GL(V) is said to be monomial if G has a monomial form on some
R-basis of V ((12], §43). For a field &, if GSGL.(k) is a finite transitive imprimitive
group generated by pseudo-reflections, then G is a monomial group.

In this section, we use the following notation.

NoTATION 2.1. Let R be an integral domain and k be the quotient field of R.
Put
H,(Ry={oeGL,(R): ¢ is a permutation matrix},
Du(Ry={oeGL.R): o is diagonal}.
For a finite subgroup G of GL.(R) of monomial form, the sequence 1—>D(G)—+GT

I.(R) is exact, where 4: G—II,(R) is the canonical homomorphism and D(G)=
Dw(RyNG. Let
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ﬁ(G)z{aeG: o is a pseudo-reflection in GL(E)}.
We identify Sy with 1[,(R).

LEMMA 2.2. Let GEGLL(R) be a finite subgroup of monomial form generated
by pseudo-reflections in GL.(k). Asswme that the following conditions are satisfied:

(1) The sequence 1->D(G)—>G—II,(R)—>1 is exact and I ,(R) is contained in
G.

(2) BDG)={E.
Then R[T, -, T is a polynomial ring.

Proor. For re ﬁ(G)—{En}, there exists r,€ll,(R) such that z,~'d(ryrr,eH=
diag[Dy(R), 1,_s] where diag[Dy(R), 1a_2] = {diaglo, 1a_z]: oeDy(R)}. For matrices
A, B,C, -, diaglA, B,C, ---] means the block diagonal matrix defined canonically.
Put L={r,"4(¥)rc,: reﬁ(G)—{En}}U{En}. Then L is a subgroup of A and there is
a monomorphism from L into U{R). Hence L is generated by o, =diagla, a !, 1._:].
Let ox=diagla, 1, a™, Ls_s], -+, on_1=diagla, la_s, @='] and put m=|<{a>|. It is easy to
show that D(G)={ai, 0s, -+, 0n_1>. Since any monomial of R[Ti, -, T,] is a semi-
invariant of D(G), we have R[T\,---, T.)?® = R[TV™, -, Tw"™, ﬁ 7i}. Let S=
RITy, -, T,0P®, S=R[T\™, -, "], U= ﬁ Ti, Xi=T™1=i=n). Then s=S@Su®p
- @SU™ and G/D(G) acts on S as permﬁ%ations of {Xi, .-, X}, Let U; (1=i=n—-1)
be the fundamental symmetric polynomial of degree i in R[Xj, ---, X,]. Then we
must have R[T%, -, TR1°=R[U,, -+, U, 1, U]

Lemma 23, Lel V= é—l)RYi be a free R-module and let G be a finite subgroup
of GL(V) generated by thelzét ﬁ(G) such that G has a monomial form on the basis
{Yy, -, Yu). Then there is an R-basis {Xi, -, Xa} of V such that the following
conditions are satisfied:

(1) G has a monomial form on the basis {X, ---, Xu}.

We regard G as a subgroup of GLn(R) afforded by {Xi, -, Xu}. Let 4: G—Il,(R)
be the canonical homomorphism.

(2) There exists a canonical isomorphism H=1{ n (R)X o X I3 (R), where H=
Im(d) and Zs] ni=n.

(3) Hl —z'ls contained in G.

Proor. We identify G with the image of the matrix representation of G afforded
by the R-basis {Y1,---, Ya}. Let H’ be the image of the canonical homomorphism
4" G>II(R). Since G is generated by the set ﬁ(G), we may assume that H' =
Hix.-xXH; where
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ledzag£HﬂI(R)! 111,—711] ’ Hz :diag[lnl’ Hﬂg(R), 111,—“1"”2] 3
eeey Hszdiag[ln’”_y’ H'n._,(R)] .

Since A’“‘((i,i+1))ﬂﬁ(G)ﬂF¢ (1=i=n-1), we can choose the following elements:
41, 20N PG)36, -, 4-Y(1, #)) N P(G)20P_s,
4y +1, 2 +2)N P(G)361®, -,
A=Yy +1, m+m)) N B(G202,

------------------------

s—1 —1 ~
(w1, T mr2) ) nPGraow, -,
i=1

s
i=1

s—1 ~
1={(Zm+12)) 0 G208
i=1
Put

ofD) o1
X=Y,X%=Y"", - X, =Y, ",

(2 (2)

o T No—
an 1= Ynlr;—l, Xn]_nz: Yn11+n ) an+n2= Ynl"Jrzl ',
........................

€3]

“ng—1
X5 =Y, » "t Xn:YS—ls -
3 ng+l X nytl = omgtl
1= i=1 i=1

Then {Xi, -, Xa} is the R-basis of V such that the conditions stated in this lemma
are satisfied.

THEOREM 2.4. Let G be a finite monomial subgroup of GL.(R) generated by
pseudo-reflections in GLy(k). Then R[T\, -, Txl? is a polynomial ring over R.

Proor. By (2.3), we may assume that G is indecomposable in GL,(R). Hence
G contains the group II.(R). Since H =(P(D(G))> is a normal subgroup of G, there
is an integer m such that R[Th, -, Tn]?=R[T\", -, Tx"]. G/H acts R-linealy on
ﬁ] RX; and G/H has a monomial form on the basis {Xj, :--, Xa}, where X;=T;" (1=
;'i_‘én). If we regard G as a subgroup of GLn(R), then the sequence 1—-D(G/H)—
G|H—II(R)—1 is exact and [//,(R) is contained in G/H. If ﬁ(D(G/H))ﬂF{En}, we
continue this procedure. So we may assume that B(D(GIH)={E,;}. In this case,
by (2.2), R[X,, -+, Xx]¢“H is a polynomial ring over K.

8§ 3. Unipotent abelian groups

We will consider about invariants of subgroups of the group:
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En O

A(m, n:q)z{[M £

]: MeMatnxm(Fq)}.
We preserve the following notation in this section.

NoraTion 31. Let k=F, where q=p/ and p is a prime. Let

L, O
JZI:M En]’ Mz[ﬂl"'#m]

where i (L=i=m) are column vectors. If ox1, we put (o) =i, where iy,=min{i:
%0 And if o=1, put o(6)=0. For a subgroup G of the group A(m,n:q), set
d(G)=dimlo(P(G)>r, where {p(P(G))> is the subspace of the column vector space
k" spanned by the set o(P(G)). The group A(m, n:q) acts linearly on the polynomial
ving S=k[X,, -+, Xin, Y1, o+, Yol in the form that for o=[oi;Je A(m,n:q)

(L[XI: Y Xm: YI) t Yn])vz[gij]t[Xh Tty Xm, Yl’ ) Yn] .

LemMma 3.2. Let G be a subgroup of Alm,n:q) generated by pseudo-reflections.
Then therve exists an element 6¢GL(n, q) such that Z;eS% (d(G)<i=n) where

1z, -, Zu=0'1Y,, -, Yn] .

Proor. Put d=d(G). We can choose elements ;€ P(G) (1=i=d) such that
(PG> = EdB ko(a;). Hence, for some deGL(n, q), we have ¢(3'0:0'V)eke, (1=<i=d),
where 5’=dil;(;[1m, é] and {e,, --+, e,} is the standard basis of &". Since G=<{(P(G))
and <¢(P(G))>k=§—)l ke(os), this lemma is obvious.

ProrosiTioN 3.3. Let G be a subgroup of Alm,n:q) of order p*© generated
by pseudo-reflections. Then S° is a polynomial ring.

Proor. Put d=d(G) and choose elements ;€ P(G) (1 =i=d) such that {o(P(G))>s
= ékf,ﬂ(ai). By (3.2) there exists ¥’ =diag[1n, ¥]eGL(m+n, g) such that o(¥/a"~)e
ke:_(lléiéd) and Z;eS% (d<i=mn), where {e,, ---, es} is the standard basis of £ and
UZy, o, Zn)=W Yy, -, YV,]. Set

En

?lf’oﬂf’“‘=[ o
Wiy Wim

lgn} (1=i=d).
Then we have W;=wie; (1=i=d;1=j=m) for some w;;ek. Let
m r-1
Wi:zg_(z wijx,-) Z (=i=d).
i=1

57 is integral over KX, -, Xm, Wi, -, Wa, Za.1, -+, Zs). Since the rings have the
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common quotient field, we obtain

SG:k[XI; Tty Xm; Wl) Tty Wda Zd+17 an] .

ProrosiTIiON 34. Let G be a subgroup of Al,n:q). Then kX, Y, -, Y,0¢ is
a polynomial ring and we can construct a system of fundamental invariants of G.

Proor. Assume that |G| > p*@. Choose elements o, ---, 6%, €G such that
<¢(P(G))>k=g)k@(a§‘)). Put G,=<{a{®, -+, adle>, and take a suitable element ¥/=
diagll, !lf]eGE(1n+1, ¢) as we did in the proof of (3.3). Let (2, -+, Zu]=¥"{ Y, -, Y]
and let W;=Z—(w;X)*'Z; (1=i=d(G)), where the elements wiek (1=i=d(G)) are
determined by ¥/. Then we have k[ X, Y,, -, Vo] =k[ X, Wy, -, Wacey, Zawerc1y *+*5 Zn)
and Ziek[X, Yy, -, Y2 ]¢ (d(G)<i=n). For 0eGP=G/G,, there exist elements ai”ek
(1=i=d(G)) which satisfy Wi'=W;+a®X?. Let X=X? and set

Vb XDEW.® - DEWaayDEZacer B DkZy .

Then G acts linearly and faithfully on the k-space V and we can identify the
group G with the image of the canonical homomorphism from G’ to the group
A(l, d(G): ¢) which is defined on the basis {X, Wy, -, Waw). If d(G®)=0, then
we can construct a subgroup G. of G such that |G,|=p2 ¢ =pi@>, By (3.3),
KX, Wi, -+, Wi, )¢ is a polynomial ring. Hence (£[X, Y}, -, Y2]“1)¢2 is a polynomial
ring. Put G®=GPG,. If d(G®)=x:0, then we continue this procedure. Since G
is finite, there is an integer j>0 such that d(G9)=0. d(G“)=0 implies G’ ={1},
and so this proposition is proved.

PROPOSITION 3.5. Let G be a subgroup of Am,1:q). Then k(X -, Xm Y]¢

is a polynomial ring.

Proor. First we suppose that G is contained in A(m,1:p) and G=_>L< {t;y. In
this case we may assume that Y i=Y+4+a@;X; (1=i=t) for some elements t;:ek. Put
VD) =T?—(a, X)" T and define Vi (T)=Vi(T)? - Vi(a: Xi)’ ' Vi(T) 1=:1<4) in-
ductively. Then we must have A[X,, -, X, Y19=E[ X}, -+, Xu, Vi(Y)]. Using this
result we can prove the general case. The canonical isomorphism &= F, 1D F .

B F w30 —> (00, -+, 0)e F} as Fy-spaces induces a group homomorphism 7:
Am,1:q9)—Almf,1:p) defined by
bl,"',bm 1 bil),"',bff),"',b%), "')bﬂ(nf) 1 )

Let R=A[X®D, oo, X oo, X® oo X V] be a polynomial ring of mf+1 variables
with the canonical action of »(G). Define a ring homomorphism ¢ from R to S=
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k[Xla Y Xm9 Y] bY p(Y):Yv .‘)(le):le p(XI(Z)):WZXI’ B P(Xff)>:wa1; T P(X;Tfl))
=X, -y, p(XH)=w;Xm. There exists a polynomial V(Y )eR such that

RO =p[ XD, . XD o) X® oo XD V(Y.
Then we obtain SE=K[X;, -+, X, po( V(Y ))].

THEOREM 3.6. Let G be a subgroup of GL.(E) and lel R=KT,, -, T,]. Then
for any minimal prime ideal p of R, R76¢W is a polynomial ring and can be determined
effectively.

Proor. We may assume that |N|=0 mod p where N=Iz(p). There exists a
normal p-subgroup A of N such that (N:H],p)=1. Since the action of H on R
preserves the natural graduation of R, p is generated by a homogeneous polynomial

of degree 1. Exchanging the basis of (—B kT, we can regard H as a subgroup of

Al,n—1:q). By (34), R¥ is a polynom1a1 ring. N/H is generated by generalized
reflections in R#, therefore RY=(RZ)V/H i3 a polynomial ring.

THEOREM 3.7. Preserve the notation of (3.6) and let I(p)={10:;]: 6=[015]€ Ia(p)}
for any minimal prime ideal v of R. Then RI&® is a polynomial ring.

Proor. This theorem is reduced to (3.5).

REmark 3.8. Let V be an n-dimensional k-space and let G be an abelian sub-
group of GL(V) generated by pseudo-reflections. If n=3, then K[V 1% is a polynomial
ring. Suppose that n=4 and that G=Sp4,p)NA2,2:p). Then G is an abelian
group generated by transvections, but R[V % is not a polynomial ring.

§4. Symmetric groups

First we will give a remark.

ProrosiTioN 4.1. Let k be a field and let G be a finite growp. Let V and
W be finite dimensional G-faithful kG-modules. Suppose thal there exists a kG-
epimorphism ¢ V—W. If k[V'1° is a polynomial ring, then EIW 1 is a polynomial
¥ing.

Proor. Put ¢g= ]GI Then k[V]—Z} RLVI¢f; for some fiek[V] (1=i=q). It
follows that A[ W= Z LW 14a( f3), Where the homomorphism ¢: ALV ]—E[W] is the

epimorphism induced by ¢. Since G acts faithfully on W, &2[W] is a free R[W ¢-
module. Hence E[W]? is a polynomial ring.
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We preserve the following notation from here to (4.4).

NOTATION 4.2. Suppose that k is a finite field of c/zamcteristic b2 and that
n is an integer with n+2=0 mod p, n=3. Let V= G—)kel, V= EB.fe(ez éo) and V=
V' ik Z‘ e; be vector spaces with natural kSp, .- maa’ule stmcture, where Snie 1S the
symmez‘rzc group of degree n+2. Let F: Suie=>GLypo(R) (resp. F' :Sne—>GLu,(R))

be the matrix representation of Sy.s on the basis {e,, e, -+, €ni1} (resp. {e.—ey, -+, €0, 1 —

eo)) and put G=Im(F) (resp. G'=Im(F")). Let
[ 1 7 1 1.--1]
1 1 1.--1
w= ' €GLusk), 2=|1 1 2.-+1|€GLni(k),
: 0 A
| -1 1] 1 1 1.--2]
G=uwGw , G=2G"2"".

We denote by G the subgroup of GLy(k)
1 0
eGLA(R): [ ]eG”} .
{g (k) b, ¢

Let &:6-G" (resp. ¥ : G'>G) be the canonical isomorphism GGG’ (resp. G'—
G""—G). Then the two maps P(G)36 —> D(6)e P(G"), P(G"36 — U (a)e P(G) are
bijective.

LemMA 4.3, E[V'1Sn+2 and k[ V1S~+2 are not polynomial rings.

Proor. G’ (resp. G) acts naturally on the column vector space k"*! (resp. &").

(A) Let G’(a’) be the stabilizer of G’ at @’, where @’ =41, 2, ---, p—1,0,1, -+, p—
10,1, p—1]ek™'. We identify S... with the group of permutation matrices
in GLr,2(R). For deG'(a’), there is an element d of F, such that

¢(5)[2]=[§]+[ Z ]

Since @-8)eP(G) for de P(G'(a’)), we have d=0. Therefore O-YP(G'(@")))=1{(to, jo):
to=jomod p, io>jo} U{Ens2}. On the other hand

€G'(a’),




Invariants of Finite Groups Generated by Pseudo-Reflections 119

but ¢’ is not contained in {P(G'(«’))>. Since G’(¢’) is the decomposition group of G’
at some maximal ideal of 2[V’], we have shown that [ V’]°*% is not a polynomial
ring by (1.4).

(BY TFor some «¢k”, za’:[g]. Let G(a) be the stabilizer of G at «. Then
(G (@"))=Gla). Since (PG'(@)))x=G'(a") and P(G")37r+—— ¥ (r)e P(G) is bijective,
we obtain (P(G(@))>=G(ez). Hence [ V]°*'% is not a polynomial ring by (1.4).

REMARK 4.4. Suppose that V'* is the dual space of V'. Then E[V'*]°"2 is g
polynomial ring over k by (4.1).

THEOREM 4.5. Let k be a finite field of characteristic px2 and let 'V be a
faithful linear vepresentation of least degrvee of S, with n=7. Then the following
conditions arve equivalent:

(1) Ek[VI= is a polynomial ring.

(2) (n,p)=1 and all transpositions of S. ave rvepresented by reflections in
GL(V).

And if 'V satisfies these conditions, then we have dim(V)=n—1.

Proor. According to and (4.3), it is sufficient to show that (2) implies (1).
We can obtain the AS,-module V as in (2) as follows. Let V be a canonical
representation of S, of degree n. Since (1, p)=1, the sequence O——>I~/Sn—_—>1'7—>Coker(i)—+0
is a split exact sequence of &S,-modules and Coker(i) is kSn-iS(;morphic to V.
Therefore, by (4.1), X[V 1= is a polynomial ring over k.

§ 5. Classical groups

In this section %k is a finite field of characteristic p=2.

TurOREM B5.1. Let G be a subgroup of GLy(E). Suppose that TXG)=¢ in the
case of p=3. Then k[T, T:1¢ is a polynomial ring if and only if G is generated by
pseudo-veflections.

Proor. We have only to show the if part. Assume that G is generated by
pseudo-reflections. Since 7T(G)=¢ implies (|G|, p)=1, E[T1, T:]¢ is a polynomial ring
in the case of T(G)=¢. Suppose that 7(G)=x¢ and let H={T(G)). Then we have
(|G/H|,p)=1. If G is reducible, we may assume that A is contained in A(l,1:¢g).
Since A[T4, T2}¥ is a polynominal ring, &[7, T21%=(k[T,, T2]%)*H is regular by (1.3).
Hence, by (2.4), we can suppose that G is irreducible primitive. By Clifford’s theorem
§49), H is irreducible and H is conjugate in GL.(k) to SL(2, qg). It is known
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that &[T}, T2} is a polynomial ring. By (1.3), k[T, 7%]¢ is regular. Thus the proof
is completed.

Tueorem 5.2, For a transvection group GSGLy(k) n=3), the following con-
ditions ave equivalent :

(1) E[T\, -, T)¢ is a polynomial ring over k.

(2) G is conjugate in GLn(k) to SL(n, q).

Proor. According to (1.6), it suffices to prove that k[T, -+, T%]¢ is not a poly-
nomial ring for G=Sp(n, q) or SU(n, ¢*). Put S=k[T,, -, Tn).

(A) First we suppose that =4 and G=Sp4,q). Let {T:, T, Ts, T} be the
canonical basis on which G can be expressed in the form {seSL(4,q): ‘c®Pa=0)

0 E
@:[_ 7 02].
Take maximal ideals m,=(T\—1, Ty, T, To), me=(T", Te—1, Ts, Ty), ms=(Ty, Ts, Ts—
1, T2, me=(Ty, Tp, Ts, Ta—1) of S and put H= (" De(tmy), N=(Dy(ms), Da(m)>. Then
there exist homogeneous polynomials X;, X, of (;lzelgree gsuch that S¥ =4[ T, T2, Xi, X:].
We regard S¥= é (S¥); and SH= é (S#); as graded subalgebras of S. Assume that
S% is a polynom;;f ring. Since dil;zok(SHh:Z, there are homogeneous polynomials
fu f2, which satisfy SZ=Ek[T, Ty, f1,f2]. SY is integral over S¥ and so the set
{Ty, Te, f1, f2} is a system of parameters of SV at origin. Let ¢:SY—k[X), X;]CS
be a ring homomorphism defined by ¢(T)=¢(7T:)=0 and ¢(X,)=X; ((i=1,2). From
o(f:)x0, we obtain deg(fi)=deg(p(f:)) in S (i=1,2). Hence deg(f;) is a power of
q. But |Hi=¢°= 121 deg(f:) and ¢((S7)g)=¢((S¥)e)*’¥)=0, which is a contradiction.
Therefore S¢ is 2r;cl)t a polynomial ring by (1.4). The general case is reduced to

the case of Sp(4, q) with aids of (1.2) and (1.4).
(B) We consider the case of G=SU(n, ¢*). It is sufficient to prove the assertion

where

for n=3. Let i+ 2 be an involutory automorphism of the field Fy, and let ce
F% be an element such that T¥e)=0. We denote

I'(@>=1{0eSL(3,q% : “¥o="}

0 £ 0
= —c 0 0].
0 01

Suppose that H is the stabilizer of 7'(g®) at ‘1,0, 0] under the natural action of I'(¢?)

where
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on the column vector space Fiover Fp. It is easy to show that H is not generated
by pseudo-reflections in GL(3,4?. Since G is conjugate to I'(g%), S¢ is not a poly-
nomial ring by (1.4).

We give the following remark which is a generalization of the preceding result
without its proof.

REMARK 5.3. Let G be an irveducible subgroup of GLn(B) which contains a
transvection and suppose n=4. Then k[Tl, -, T8 is a polynomial ving if and only
if G is genervated by pseudo-reflections and the normal subgroup (T(G)> is conjugate
to SL(n,q) in GLu(R).

THEOREM 5.4. Let F be a subfield of k and let @ be the orthogonal group of
a non-singular quadratic form Q of dimension n over F. Suppose that G is a sub-
group of O which contains the commutator subgroup 2 of ©. If n=4, then
BTy, -, Twl® is not a polynomial ring over k.

Proor. Let v be the index of @ and let V be the n-dimensional F-space with
the quadratic form @. For a subgroup N of @, we denote by N(z) the stabilizer
of N at xeV under the natural action of N on V. Let W be a suitable maximal
totally isotropic subspace of V. If n=2y, then we have H= "\ @(z)=F*®-b/2  In

TEW
general V can be expressed as an orthogonal direct sum of hyperbolic planes M;

(1=i=v) and a quadratic space L of index 0. Hence, if v=2, we obtain /= "\ @'(z)
reW
SFYCD2 where @/ = (N @(x). Suppose that »=2. Consequently we can take
el _
maximal ideals m; (1=i=v-+2) of E[Ty, -, T} such that

Fro-v vtz D N vt2 D .
= Q o (111:) Q so(lits)

where
SO=SL.(RNO .

Since SO Q= F*|F*=Z2Z, F\zDg(mi)ﬂp{l} follows. On the other hand we have
=1

P(Z\fDé(mi))z{l}. Hence ﬁDG(mi) is not generated by pseudo-reflections. Next we
assume that v=1. Then it follows that #=4 and @=0;(¥). Take an isotropic
point and a non-isotropic point of V appropriately. Then we can choose maximal
ideals 1y, ns of BTy, Ts, Ts, Tu] such that |<P(épo;m(ni))>|=2 and i\lDSO;(F,(m)
=F where SO;(F)=SL(E)NO7(F). Since |SO{(F)/Q2|=2, E\Dg(m-) is not generated
by pseudo-retlections. In both cases &[T, ---, 7] is not al_];olynomial ring by (14).

REMARK 5.5. Let GEGL,(k) be a reflection group and let n>3, p>7. Then



122

Haruhisa NAKATIMA

KT, -, Tal¢ is a polynomial ring over k if and only if G is conjugalte in GLx(k)
to one of the groups in the following list:

RY
[2]
(31
[4]
(5]

{61

[7]

[9]
(10}

1]

[12]

(1) The symmetric group Sn.: where n-+1%0mod p.
(il) The groups in part (3) of (1.7).

This follows from (1.3), (1.7), (4.3), (4.4) and (5.4).
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