INVARIANTS OF FINITE GROUPS GENERATED BY PSEUDO-REFLECTIONS IN POSITIVE CHARACTERISTIC

By Haruhisa Nакајіма

Introduction

Let R be a commutative ring, and let V be a finitely generated free R-module. Let R[V] be a polynomial ring over R associated with V. Then a finite subgroup G of GL(V) acts naturally on R[V]. We denote by $R[V]^G$ the ring of invariants of R[V] under the action of G.

Let R=k be a field and suppose that |G| is a unit of k. It is known ([4], [9], [3], [8]) that $k[V]^g$ is a polynomial ring if and only if G is generated by pseudoreflections in GL(V).

But, in the case where $|G| \equiv 0 \mod char(k)$, there are only the following results:

- (1) L.E. Dickson [5]; $F_q[T_1, \dots, T_n]^{GL(n,q)}$ and $F_q[T_1, \dots, T_n]^{SL(n,q)}$ are polynomial rings, where F_q is the finite field of q elements.
 - (2) M.-J. Bertin [1]; $F_q[T_1, \dots, T_n]^{Unip(n,q)}$ is a polynomial ring, where

$$Unip(n,q) = \left\{ \sigma \in GL(n,q) : \sigma = \begin{bmatrix} 1 & & 0 \\ & \ddots & \\ * & & 1 \end{bmatrix} \right\}.$$

(3) J.-P. Serre [8]; (i) If $k[V]^G$ is a polynomial ring, then G is generated by pseudo-reflections in GL(V). (ii) $\mathbf{F}_q[T_1, T_2, T_3, T_4]^{O_4^+(\mathbf{F}_q)}$ is not a polynomial ring, where $O_4^+(\mathbf{F}_q)$ is the orthogonal group and $char(\mathbf{F}_q) \neq 2$.

The purpose of this paper is to determine finite irreducible subgroups G of GL(V) such that $k[V]^G$ are polynomial rings in the case where $|G| \equiv 0 \mod \operatorname{char}(k)$. Let V be an n-dimensional vector space over a finite field k of characteristic p and let G be a subgroup of GL(V). Then our results are the following

- [I] If G is a transitive imprimitive group generated by pseudo-reflections, then $k[V]^G$ is a polynomial ring.
- [II] Suppose that $p \neq 2$, $n \geq 3$ and G is an irreducible group generated by transvections. Then $k[V]^G$ is a polynomial ring if and only if G is conjugate in GL(V)

to SL(n, q).

[III] Suppose that $p \neq 2$ and V is a faithful linear representation of least degree of the symmetric group S_m of degree m with $m \geq 7$. Then $k[V]^{S_m}$ is a polynomial ring if and only if (m, p) = 1 and all transpositions of S_m are represented by reflections in GL(V).

[IV] Let F be a subfield of k and let $O_n(F)$ be the orthogonal group of dimension n over F. Suppose that G is a subgroup of $O_n(F)$ which contains the commutator subgroup $\Omega_n(F)$ of $O_n(F)$. If $n \ge 4$, then $k[V]^G$ is not a polynomial ring.

Let $G \subseteq GL(V)$ be an irreducible primitive group and let $p \neq 2$. If G is generated by transvections, G is called a transvection group. Transvection groups are classified by A. E. Zalesskii and V. N. Serezkin [11]. This result will be used in the proof of [II]. On the other hand G is called a reflection group if G is a group generated by reflections which contains no transvections. By using the classification stated in V. N. Serezkin [7], we can determine all reflection groups G such that $k[V]^G$ are polynomial rings under the assumption of $n \geq 4$, p > 7. For convenience we will describe their results in § 1.

§ 1. Preliminaries

Let V be a vector space over a field k. According to [2], an element $\sigma \in GL(V)$ is called a pseudo-reflection in V if $\dim V_{\sigma} \leq 1$ where $V_{\sigma} = (1-\sigma)V$.

On the other hand an automorphism σ of an integral domain R is called a generalized reflection in R if $(\sigma-1)R\subseteq \mathfrak{p}$ for some prime ideal \mathfrak{p} of R of height 1. For a subgroup G of Aut(R) and a prime ideal \mathfrak{p} of R, we put $D_G(\mathfrak{p})=\{\sigma\in G:\sigma(\mathfrak{p})=\mathfrak{p}\}$ (resp. $I_G(\mathfrak{p})=\{\sigma\in G:(\sigma-1)R\subseteq \mathfrak{p}\}$) which is called the decomposition group of G at \mathfrak{p} (resp. the inertia group of G at \mathfrak{p}).

Let $R = \bigoplus_{i=0}^{\infty} R_i$ be a graded algebra over R_0 with a graduation $\{R_i\}$. We define that

$$\begin{split} Aut_{gr}(R) &= \{\sigma \in Aut(R): \ \sigma \ \text{preserves the graduation of} \ R \} \ , \\ Aut_{R_0-gr}(R) &= \{\sigma \in Aut_{gr}(R): \ \sigma \ \text{acts trivially on} \ R_0 \} \ , \\ R_+ &= \bigoplus_{i>0} R_i \ . \end{split}$$

THEOREM 1.1. ([8]) Let R be a regular local ring with the residue class field k. Let G be a finite subgroup of Aut(R) such that $|G| \cdot 1_R \in U(R)$ and $k^G = k$, where U(R) denotes the unit group of R. Then R^G is a regular local ring if and only if G is generated by generalized reflections.

The following lemma is well known.

Lemma 1.2. Let R be a noetherian graded algebra over a field k. Then the following conditions are equivalent:

- (1) R is a graded polynomial algebra over k.
- (2) R_{R_+} is a regular local ring.

For an element σ of Aut(R) and a σ -stable prime ideal \mathfrak{p}, σ induces an element of $Aut(R_{\mathfrak{p}})$ which is denoted by the same symbol σ . Let $R = \bigoplus_{i=0}^{\infty} R_i$ be a noetherian graded polynomial algebra over a field $R_0 = k$. Then, for $\sigma \in Aut_{k-gr}(R)$, σ is a generalized reflection in R if and only if σ is so in R_{R_+} . Therefore, from (1.1), we obtain

COROLLARY 1.3. Let $R = \bigoplus_{i=0}^{\infty} R_i$ be a noetherian graded polynomial algebra over a field $R_0 = k$, and let G be a finite subgroup of $Aut_{k-gr}(R)$ such that $|G| \cdot 1_k \in U(k)$. Then R^G is a graded polynomial algebra over k if and only if G is generated by generalized reflections.

Lemma 1.4. (e.g. [2]) Suppose that $R = k[T_1, \dots, T_n]$ is a polynomial ring over an algebraically closed field k and that G is a finite subgroup of $GL_n(k)$. If R^G is a polynomial ring, then $R^{D_G(\mathfrak{m})}$ is a polynomial ring for any maximal ideal \mathfrak{m} of R and $D_G(\mathfrak{m})$ is generated by pseudo-reflections.

PROOF. $dim(R_{\mathfrak{m}}^{D_G(\mathfrak{m})}) = dim((R^G)_{\mathfrak{m} \cap R^G})$ and $R_{\mathfrak{m}}^{D_G(\mathfrak{m})}$ is unramified over $(R^G)_{\mathfrak{m} \cap R^G}$. Hence $R_{\mathfrak{m}}^{D_G(\mathfrak{m})}$ is a regular local ring. Since \mathfrak{m} is $D_G(\mathfrak{m})$ -stable,

$$R_{\mathfrak{m}}{}^{D}G^{(\mathfrak{m})} = (R^{D}G^{(\mathfrak{m})})_{\mathfrak{m} \cap R^{D}G^{(\mathfrak{m})}}$$
.

On the other hand there exist elements $a_i \in k$ $(1 \le i \le n)$ such that $\mathfrak{m} = (T_1 - a_1, \dots, T_n - a_n)$. Put $X_i = T_i - a_i$ $(1 \le i \le n)$ and regard $R = k[X_1, \dots, X_n]$ as a graded algebra by $deg X_i = 1$. Then $D_G(\mathfrak{m}) \subseteq Aut_{k-gr}(R)$ and $R_+ = \mathfrak{m}$. Therefore $S = R^{D_G(\mathfrak{m})}$ is a graded subalgebra of R and $S_+ = \mathfrak{m} \cap R^{D_G(\mathfrak{m})}$. Since S_{S_+} is a regular local ring, S is a polynomial ring over k by (1.2). Hence $D_G(\mathfrak{m})$ is generated by pseudo-reflections.

From here to the end of this section, we assume that V is an n-dimensional vector space over a finite field k of characteristic $p \neq 2$. A pseudo-reflection $\sigma \neq 1$ is called a transvection if $\sigma | V_{\sigma} = 1$ and a reflection if $\sigma | V_{\sigma} = -1$. Let G be a subgroup of GL(V). Then we use the following notation:

 $P(G) = \{ \sigma \in G : \sigma \text{ is a pseudo-reflection} \},$

 $T(G) = \{ \sigma \in G : \sigma \text{ is a transvection} \},$

 $R(G) = \{ \sigma \in G : \sigma \text{ is a reflection} \}$.

A. E. Zalesskii and V. N. Serezkin obtained the following result which gives the classification of transvection groups.

Theorem 1.6. ([11]) Suppose that $G \subseteq GL(V)$ $(n \ge 2)$ is a transvection group. Then G is conjugate in GL(V) to one of the groups SL(n,q), Sp(n,q) or SU(n,q), except for the case where $G \cong SL(2,5)$, $G \subseteq SL(2,3^2)$.

Recently V. N. Serezkin obtained the following

THEOREM 1.7. ([6], [7]) Suppose n>3, p>5. Let $G\subseteq GL(V)$ be a reflection group. Then G is conjugate in GL(V) to one of the groups in the following list:

- (1) The orthogonal groups $O_{2m+1}(F)$, $O_{2m}^{\pm}(F)$, where F is a subfield of k and n=2m+1, 2m respectively, or the groups $x \cdot \Omega$, where $x \in R(O_n(F))$ and Ω is the commutator subgroup of the orthogonal group $O_n(F)$.
- (2) The symmetric groups S_{n+1} where $n+1 \equiv 0 \mod p$, and S_{n+2} where $n+2 \equiv 0 \mod p$.
 - (3) The nine exceptional groups, namely,

```
W(F_4), W(N_4), EW(N_4), W(H_4) where n=4; W(K_5) where n=5; W(K_6), W(E_6) where n=6; W(E_7) where n=7; W(E_8) where n=8.
```

However the complete proof of this result has not been published yet.

For a field k of characteristic p>7, the orders of the groups in part (3) of (1.7) are units in k.

§ 2. Monomial groups

Let V be a finitely generated free module over a commutative ring R. A subgroup G of GL(V) is said to be monomial if G has a monomial form on some R-basis of $V([12], \S43)$. For a field k, if $G \subseteq GL_n(k)$ is a finite transitive imprimitive group generated by pseudo-reflections, then G is a monomial group.

In this section, we use the following notation.

Notation 2.1. Let R be an integral domain and k be the quotient field of R. Put

```
II_n(R) = \{ \sigma \in GL_n(R) : \sigma \text{ is a permutation matrix} \},
D_n(R) = \{ \sigma \in GL_n(R) : \sigma \text{ is diagonal} \}.
```

For a finite subgroup G of $GL_n(R)$ of monomial form, the sequence $1 \rightarrow D(G) \rightarrow G \rightarrow II_n(R)$ is exact, where $\Delta: G \rightarrow II_n(R)$ is the canonical homomorphism and $D(G) = D_n(R) \cap G$. Let

 $\widetilde{P}(G) = \{ \sigma \in G : \sigma \text{ is a pseudo-reflection in } GL_n(k) \}.$

We identify S_n with $\Pi_n(R)$.

Lemma 2.2. Let $G \subseteq GL_n(R)$ be a finite subgroup of monomial form generated by pseudo-reflections in $GL_n(k)$. Assume that the following conditions are satisfied:

- (1) The sequence $1 \rightarrow D(G) \rightarrow G \rightarrow \Pi_n(R) \rightarrow 1$ is exact and $\Pi_n(R)$ is contained in G.
 - $(2) \quad \widetilde{P}(D(G)) = \{E_n\}.$

Then $R[T_1, \dots, T_n]^G$ is a polynomial ring.

PROOF. For $r \in \widetilde{P}(G) - \{E_n\}$, there exists $\tau_r \in \Pi_n(R)$ such that $\tau_r^{-1}\Delta(r)r\tau_r \in H = diag[D_2(R), 1_{n-2}]$ where $diag[D_2(R), 1_{n-2}] = \{diag[\sigma, 1_{n-2}] : \sigma \in D_2(R)\}$. For matrices $A, B, C, \cdots, diag[A, B, C, \cdots]$ means the block diagonal matrix defined canonically. Put $L = \{\tau_r^{-1}\Delta(r)r\tau_r : r \in \widetilde{P}(G) - \{E_n\}\} \cup \{E_n\}$. Then L is a subgroup of H and there is a monomorphism from L into U(R). Hence L is generated by $\sigma_1 = diag[a, a^{-1}, 1_{n-2}]$. Let $\sigma_2 = diag[a, 1, a^{-1}, 1_{n-3}], \cdots, \sigma_{n-1} = diag[a, 1_{n-2}, a^{-1}]$ and put $m = |\langle a \rangle|$. It is easy to show that $D(G) = \langle \sigma_1, \sigma_2, \cdots, \sigma_{n-1} \rangle$. Since any monomial of $R[T_1, \cdots, T_n]$ is a semi-invariant of D(G), we have $R[T_1, \cdots, T_n]^{D(G)} = R[T_1^m, \cdots, T_n^m, \prod_{i=1}^n T_i]$. Let $S = R[T_1, \cdots, T_n]^{D(G)}$, $\widetilde{S} = R[T_1^m, \cdots, T_n^m]$, $U = \prod_{i=1}^n T_i$, $X_i = T_i^m (1 \le i \le n)$. Then $S = \widetilde{S} \oplus \widetilde{S} U \oplus \cdots \oplus \widetilde{S} U^{m-1}$ and G/D(G) acts on S as permutations of $\{X_1, \cdots, X_n\}$. Let U_i $(1 \le i \le n-1)$ be the fundamental symmetric polynomial of degree i in $R[X_1, \cdots, X_n]$. Then we must have $R[T_1, \cdots, T_n]^G = R[U_1, \cdots, U_{n-1}, U]$.

Lemma 2.3. Let $V = \bigoplus_{i=1}^{n} RY_i$ be a free R-module and let G be a finite subgroup of GL(V) generated by the set $\widetilde{P}(G)$ such that G has a monomial form on the basis $\{Y_1, \dots, Y_n\}$. Then there is an R-basis $\{X_1, \dots, X_n\}$ of V such that the following conditions are satisfied:

- (1) G has a monomial form on the basis $\{X_1, \dots, X_n\}$. We regard G as a subgroup of $GL_n(R)$ afforded by $\{X_1, \dots, X_n\}$. Let $\Delta: G \to \Pi_n(R)$ be the canonical homomorphism.
- (2) There exists a canonical isomorphism $H \cong II_{n_1}(R) \times \cdots \times II_{n_s}(R)$, where $H = Im(\Delta)$ and $\sum_{i=1}^s n_i = n$.
 - (3) H is contained in G.

PROOF. We identify G with the image of the matrix representation of G afforded by the R-basis $\{Y_1, \dots, Y_n\}$. Let H' be the image of the canonical homomorphism $\Delta': G \to \Pi_n(R)$. Since G is generated by the set $\widetilde{P}(G)$, we may assume that $H' = H_1 \times \dots \times H_s$ where

$$H_1 = diag[\Pi_{n_1}(R), 1_{n-n_1}], \quad H_2 = diag[1_{n_1}, \Pi_{n_2}(R), 1_{n-n_1-n_2}], \dots, H_s = diag[1_{n-n_s}, \Pi_{n_s}(R)].$$

Since $\Delta'^{-1}((i,i+1)) \cap \widetilde{P}(G) \neq \phi$ $(1 \leq i \leq n-1)$, we can choose the following elements:

$$\begin{split} & \varDelta'^{-1}((1,2)) \cap \widetilde{P}(G) \ni \sigma_1^{(1)}, \, \cdots, \, \varDelta'^{-1}((1,n_1)) \cap \widetilde{P}(G) \ni \sigma_{n_1-1}^{(1)} \, , \\ & \varDelta'^{-1}((n_1+1,n_1+2)) \cap \widetilde{P}(G) \ni \sigma_{n_2-1}^{(2)} \, , \, \cdots \, , \\ & \varDelta'^{-1}((n_1+1,n_1+n_2)) \cap \widetilde{P}(G) \ni \sigma_{n_2-1}^{(2)} \, , \end{split}$$

......

$$\Delta'^{-1}\left(\left(\sum_{i=1}^{s-1} n_i + 1, \sum_{i=1}^{s-1} n_i + 2\right)\right) \cap \widetilde{P}(G) \ni \sigma_1^{(s)}, \dots,$$

$$\Delta'^{-1}\left(\left(\sum_{i=1}^{s-1} n_i + 1, n\right)\right) \cap \widetilde{P}(G) \ni \sigma_{n_{s-1}}^{(s)}.$$

Put

$$X_{1} = Y_{1}, X_{2} = Y_{1}^{\sigma_{1}^{(1)}}, \dots, X_{n_{1}} = Y_{1}^{\sigma_{n_{1}-1}^{(1)}},$$

$$X_{n_{1}+1} = Y_{n_{1}+1}, X_{n_{1}+2} = Y_{n_{1}+1}^{\sigma_{1}^{(2)}}, \dots, X_{n_{1}+n_{2}} = Y_{n_{1}+1}^{\sigma_{n_{2}-1}^{(2)}},$$

$$\dots \dots \dots \dots \dots$$

$$X_{\substack{s-1\\ \sum\limits_{i=1}^{n}n_{i}+1}} = Y_{\substack{s-1\\ \sum\limits_{i=1}^{n}n_{i}+1}}, \cdots, X_{n} = Y_{\substack{s-1\\ s-1\\ i=1}}^{\substack{\sigma(s)\\ n_{s}-1\\ \sum\limits_{i=1}^{n}n_{i}+1}}.$$

Then $\{X_1, \dots, X_n\}$ is the R-basis of V such that the conditions stated in this lemma are satisfied.

THEOREM 2.4. Let G be a finite monomial subgroup of $GL_n(R)$ generated by pseudo-reflections in $GL_n(k)$. Then $R[T_1, \dots, T_n]^G$ is a polynomial ring over R.

PROOF. By (2.3), we may assume that G is indecomposable in $GL_n(R)$. Hence G contains the group $H_n(R)$. Since $H = \langle \tilde{P}(D(G)) \rangle$ is a normal subgroup of G, there is an integer m such that $R[T_1, \cdots, T_n]^H = R[T_1^m, \cdots, T_n^m]$. G/H acts R-lineally on $\sum_{i=1}^n RX_i$ and G/H has a monomial form on the basis $\{X_1, \cdots, X_n\}$, where $X_i = T_i^m$ $(1 \le i \le n)$. If we regard G as a subgroup of $GL_n(R)$, then the sequence $1 \to D(G/H) \to G/H \to H_n(R) \to 1$ is exact and $H_n(R)$ is contained in G/H. If $\tilde{P}(D(G/H)) = \{E_n\}$, we continue this procedure. So we may assume that $\tilde{P}(D(G/H)) = \{E_n\}$. In this case, by (2.2), $R[X_1, \cdots, X_n]^{G/H}$ is a polynomial ring over R.

§ 3. Unipotent abelian groups

We will consider about invariants of subgroups of the group:

$$A(m, n:q) = \left\{ \begin{bmatrix} E_m & 0 \\ M & E_n \end{bmatrix} : M \in Mat_{n \times m}(\mathbf{F}_q) \right\}.$$

We preserve the following notation in this section.

Notation 3.1. Let $k=\mathbf{F}_q$ where $q=p^f$ and p is a prime. Let

$$\sigma = \begin{bmatrix} E_m & 0 \\ M & E_n \end{bmatrix}, \quad M = [\mu_1 \cdots \mu_m]$$

where μ_i $(1 \le i \le m)$ are column vectors. If $\sigma \ne 1$, we put $\varphi(\sigma) = \mu_{i_0}$ where $i_0 = \min\{i : \mu_i \ne 0\}$. And if $\sigma = 1$, put $\varphi(\sigma) = 0$. For a subgroup G of the group A(m, n : q), set $d(G) = \dim_k \langle \varphi(P(G)) \rangle_k$, where $\langle \varphi(P(G)) \rangle_k$ is the subspace of the column vector space k^n spanned by the set $\varphi(P(G))$. The group A(m, n : q) acts linearly on the polynomial ring $S = k[X_1, \dots, X_m, Y_1, \dots, Y_n]$ in the form that for $\sigma = [\sigma_{ij}] \in A(m, n : q)$

$$({}^{t}[X_{1}, \dots, X_{m}, Y_{1}, \dots, Y_{n}])^{\sigma} = [\sigma_{ij}]^{t}[X_{1}, \dots, X_{m}, Y_{1}, \dots, Y_{n}].$$

Lemma 3.2. Let G be a subgroup of A(m, n : q) generated by pseudo-reflections. Then there exists an element $\delta \in GL(n, q)$ such that $Z_i \in S^G$ $(d(G) < i \le n)$ where

$${}^{\iota}[Z_1, \dots, Z_n] = \delta^{\iota}[Y_1, \dots, Y_n].$$

PROOF. Put d=d(G). We can choose elements $\sigma_i \in P(G)$ $(1 \le i \le d)$ such that $\langle \varphi(P(G)) \rangle_k = \bigoplus_{i=1}^d k \varphi(\sigma_i)$. Hence, for some $\delta \in GL(n,q)$, we have $\varphi(\delta' \sigma_i \delta'^{-1}) \in ke_i$ $(1 \le i \le d)$, where $\delta' = diag[1_m, \delta]$ and $\{e_1, \dots, e_n\}$ is the standard basis of k^n . Since $G = \langle P(G) \rangle$ and $\langle \varphi(P(G)) \rangle_k = \bigoplus_{i=1}^d k \varphi(\sigma_i)$, this lemma is obvious.

PROPOSITION 3.3. Let G be a subgroup of A(m, n : q) of order $p^{d(G)}$ generated by pseudo-reflections. Then S^G is a polynomial ring.

PROOF. Put d=d(G) and choose elements $\sigma_i \in P(G)$ $(1 \le i \le d)$ such that $\langle \varphi(P(G)) \rangle_k = \bigoplus_{i=1}^d k \varphi(\sigma_i)$. By (3.2) there exists $\Psi' = diag[1_m, \Psi] \in GL(m+n, q)$ such that $\varphi(\Psi' \sigma_i \Psi'^{-1}) \in ke_i$ $(1 \le i \le d)$ and $Z_i \in S^G$ $(d < i \le n)$, where $\{e_1, \dots, e_n\}$ is the standard basis of k^n and ${}^t[Z_1, \dots, Z_n] = \Psi^t[Y_1, \dots, Y_n]$. Set

$$\Psi'\sigma_i\Psi'^{-1} = \begin{bmatrix} E_m & 0\\ \tilde{w}_{i1} \cdots \tilde{w}_{im} & E_n \end{bmatrix} \quad (1 \leq i \leq d).$$

Then we have $\tilde{w}_{ij} = w_{ij}e_i$ $(1 \le i \le d; 1 \le j \le m)$ for some $w_{ij} \in k$. Let

$$W_i = Z_i^p - \left(\sum_{j=1}^m w_{ij} X_j\right)^{p-1} Z_i \quad (1 \le i \le d).$$

 S^{g} is integral over $k[X_{1}, \dots, X_{m}, W_{1}, \dots, W_{d}, Z_{d+1}, \dots, Z_{n}]$. Since the rings have the

common quotient field, we obtain

$$S^{G} = k[X_{1}, \dots, X_{m}, W_{1}, \dots, W_{d}, Z_{d+1}, \dots, Z_{n}].$$

PROPOSITION 3.4. Let G be a subgroup of A(1, n : q). Then $k[X, Y_1, \dots, Y_n]^G$ is a polynomial ring and we can construct a system of fundamental invariants of G.

PROOF. Assume that $|G| > p^{d(G)}$. Choose elements $\sigma_1^{(1)}, \cdots, \sigma_{d(G)}^{(1)} \in G$ such that $\langle \varphi(P(G)) \rangle_k = \bigoplus_{i=1}^{d(G)} k \varphi(\sigma_i^{(1)})$. Put $G_1 = \langle \sigma_1^{(1)}, \cdots, \sigma_{d(G)}^{(1)} \rangle$, and take a suitable element $\Psi' = diag[1, \Psi] \in GL(n+1, q)$ as we did in the proof of (3.3). Let ${}^t[Z_1, \cdots, Z_n] = \Psi^t[Y_1, \cdots, Y_n]$ and let $W_i = Z_i^p - (w_i X)^{p-1} Z_i$ $(1 \le i \le d(G))$, where the elements $w_i \in k$ $(1 \le i \le d(G))$ are determined by Ψ' . Then we have $k[X, Y_1, \cdots, Y_n]^{G_1} = k[X, W_1, \cdots, W_{d(G)}, Z_{d(G)+1}, \cdots, Z_n]$ and $Z_i \in k[X, Y_1, \cdots, Y_n]^G$ $(d(G) < i \le n)$. For $\sigma \in G^{(1)} = G/G_1$, there exist elements $a_s^{(i)} \in k$ $(1 \le i \le d(G))$ which satisfy $W_i^\sigma = W_i + a_s^{(i)} X^p$. Let $\widetilde{X} = X^p$ and set

$$\widetilde{V} = k\widetilde{X} \oplus kW_1 \oplus \cdots \oplus kW_{d(G)} \oplus kZ_{d(G)+1} \oplus \cdots \oplus kZ_n$$
.

Then $G^{(1)}$ acts linearly and faithfully on the k-space \widetilde{V} and we can identify the group $G^{(1)}$ with the image of the canonical homomorphism from $G^{(1)}$ to the group A(1,d(G):q) which is defined on the basis $\{\widetilde{X},W_1,\cdots,W_{d(G)}\}$. If $d(G^{(1)})\neq 0$, then we can construct a subgroup G_2 of $G^{(1)}$ such that $|G_2|=p^{d(G^{(1)})}=p^{d(G_2)}$. By (3.3), $k[X,W_1,\cdots,W_{d(G)}]^{G_2}$ is a polynomial ring. Hence $(k[X,Y_1,\cdots,Y_n]^{G_1})^{G_2}$ is a polynomial ring. Put $G^{(2)}=G^{(1)}/G_2$. If $d(G^{(2)})\neq 0$, then we continue this procedure. Since G is finite, there is an integer j>0 such that $d(G^{(j)})=0$. $d(G^{(j)})=0$ implies $G^{(j)}=\{1\}$, and so this proposition is proved.

PROPOSITION 3.5. Let G be a subgroup of A(m, 1:q). Then $k[X_1, \dots, X_m, Y]^G$ is a polynomial ring.

PROOF. First we suppose that G is contained in A(m,1:p) and $G = \underset{i=1}{\overset{t}{\bigvee}} \langle \tau_i \rangle$. In this case we may assume that $Y^{\tau_i} = Y + a_i X_i$ $(1 \le i \le t)$ for some elements $a_i \in k$. Put $V_1(T) = T^p - (a_1 X_1)^{p-1}T$ and define $V_{i+1}(T) = V_i(T)^p - V_i(a_i X_i)^{p-1}V_i(T)$ $(1 \le i < t)$ inductively. Then we must have $k[X_1, \dots, X_m, Y]^g = k[X_1, \dots, X_m, V_t(Y)]$. Using this result we can prove the general case. The canonical isomorphism $k = F_p 1 \oplus F_p w_2 \oplus \dots \oplus F_p w_f \ni \sigma \longmapsto (\sigma^{(1)}, \dots, \sigma^{(f)}) \in F_p^f$ as F_p -spaces induces a group homomorphism $\eta: A(m, 1:q) \to A(mf, 1:p)$ defined by

$$\begin{bmatrix} E_m & 0 \\ b_1, \cdots, b_m & 1 \end{bmatrix} \longmapsto \begin{bmatrix} E_{mf} & 0 \\ b_1^{(1)}, \cdots, b_1^{(f)}, \cdots, b_m^{(1)}, \cdots, b_m^{(f)} & 1 \end{bmatrix}.$$

Let $R = k[X_1^{(1)}, \dots, X_1^{(f)}, \dots, X_m^{(f)}, \dots, X_m^{(f)}, Y]$ be a polynomial ring of mf + 1 variables with the canonical action of $\eta(G)$. Define a ring homomorphism ρ from R to S = 1

 $k[X_1, \dots, X_m, Y]$ by $\rho(Y) = Y$, $\rho(X_1^{(1)}) = X_1$, $\rho(X_1^{(2)}) = w_2 X_1$, ..., $\rho(X_1^{(f)}) = w_f X_1$, ..., $\rho(X_m^{(1)}) = X_m$. There exists a polynomial $V(Y) \in R$ such that

$$R^{\eta(G)} = k[X_1^{(1)}, \dots, X_1^{(f)}, \dots, X_m^{(1)}, \dots, X_m^{(f)}, V(Y)]$$
.

Then we obtain $S^G = k[X_1, \dots, X_m, \rho(V(Y))]$.

THEOREM 3.6. Let G be a subgroup of $GL_n(k)$ and let $R=k[T_1, \dots, T_n]$. Then for any minimal prime ideal \mathfrak{p} of R, $R^{I_G(\mathfrak{p})}$ is a polynomial ring and can be determined effectively.

PROOF. We may assume that $|N| \equiv 0 \mod p$ where $N = I_G(\mathfrak{p})$. There exists a normal p-subgroup H of N such that ([N:H],p)=1. Since the action of H on R preserves the natural graduation of R, \mathfrak{p} is generated by a homogeneous polynomial of degree 1. Exchanging the basis of $\bigoplus_{i=1}^n kT_i$, we can regard H as a subgroup of A(1,n-1:q). By (3.4), R^H is a polynomial ring. N/H is generated by generalized reflections in R^H , therefore $R^N = (R^H)^{N/H}$ is a polynomial ring.

THEOREM 3.7. Preserve the notation of (3.6) and let $I_G^*(\mathfrak{p}) = \{{}^t[\sigma_{ij}] : \sigma = [\sigma_{ij}] \in I_G(\mathfrak{p})\}$ for any minimal prime ideal \mathfrak{p} of R. Then $R^{t_G^*(\mathfrak{p})}$ is a polynomial ring.

PROOF. This theorem is reduced to (3.5).

Remark 3.8. Let V be an n-dimensional k-space and let G be an abelian subgroup of GL(V) generated by pseudo-reflections. If $n \le 3$, then $k[V]^G$ is a polynomial ring. Suppose that n=4 and that $G=Sp(4,p) \cap A(2,2:p)$. Then G is an abelian group generated by transvections, but $k[V]^G$ is not a polynomial ring.

§ 4. Symmetric groups

First we will give a remark.

Proposition 4.1. Let k be a field and let G be a finite group. Let V and W be finite dimensional G-faithful kG-modules. Suppose that there exists a kG-epimorphism $\varphi: V \to W$. If $k[V]^g$ is a polynomial ring, then $k[W]^g$ is a polynomial ring.

PROOF. Put g = |G|. Then $k[V] = \sum_{i=1}^{g} k[V]^{a} f_{i}$ for some $f_{i} \in k[V]$ $(1 \leq i \leq g)$. It follows that $k[W] = \sum_{i=1}^{g} k[W]^{a} \tilde{\varphi}(f_{i})$, where the homomorphism $\tilde{\varphi}: k[V] \to k[W]$ is the epimorphism induced by φ . Since G acts faithfully on W, k[W] is a free $k[W]^{g}$ -module. Hence $k[W]^{g}$ is a polynomial ring.

We preserve the following notation from here to (4.4).

Notation 4.2. Suppose that k is a finite field of characteristic $p \neq 2$ and that n is an integer with $n+2\equiv 0$ mod p, $n\geq 3$. Let $\widetilde{V}=\bigoplus_{i=0}^{n+1}ke_i$, $V'=\bigoplus_{i=1}^{n+1}k(e_i-e_0)$ and $V=V'/k\sum_{i=0}^{n+1}e_i$ be vector spaces with natural kS_{n+2} -module structure, where S_{n+2} is the symmetric group of degree n+2. Let $\widetilde{F}: S_{n+2} \to GL_{n+2}(k)$ (resp. $F': S_{n+2} \to GL_{n+1}(k)$) be the matrix representation of S_{n+2} on the basis $\{e_0, e_1, \dots, e_{n+1}\}$ (resp. $\{e_1-e_0, \dots, e_{n+1}-e_0\}$) and put $\widetilde{G}=Im(\widetilde{F})$ (resp. G'=Im(F')). Let

$$w = \begin{bmatrix} 1 & & & & \\ -1 & 1 & & 0 & \\ \vdots & & \ddots & & \\ \vdots & 0 & & \ddots & \\ -1 & & & & 1 \end{bmatrix} \in GL_{n+2}(k), \quad z = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 1 & \cdots & 1 \\ 1 & 1 & 2 & \cdots & 1 \\ & & \ddots & & \\ 1 & 1 & 1 & \cdots & 2 \end{bmatrix} \in GL_{n+1}(k),$$

$$\widetilde{\widetilde{G}} = w\widetilde{G}w^{-1}$$
, $G'' = zG'z^{-1}$

We denote by G the subgroup of $GL_n(k)$

$$\left\{g \in GL_n(k) : \begin{bmatrix} 1 & 0 \\ b_g & g \end{bmatrix} \in G^{\prime\prime}\right\}.$$

LEMMA 4.3. $k[V']^{S_{n+2}}$ and $k[V]^{S_{n+2}}$ are not polynomial rings.

PROOF. G' (resp. G) acts naturally on the column vector space k^{n+1} (resp. k^n). (A) Let G'(a') be the stabilizer of G' at a', where $a'={}^{t}[1,2,\cdots,p-1,0,1,\cdots,p-1,\cdots,p-1,\cdots,p-1]\in k^{n+1}$. We identify S_{n+2} with the group of permutation matrices in $GL_{n+2}(k)$. For $\delta \in G'(a')$, there is an element d of F_p such that

$$\Phi^{-1}(\delta) \left[\begin{array}{c} 0 \\ a' \end{array} \right] = \left[\begin{array}{c} 0 \\ a' \end{array} \right] + \left[\begin{array}{c} d \\ \vdots \\ d \end{array} \right].$$

Since $\Phi^{-1}(\delta) \in P(\tilde{G})$ for $\delta \in P(G'(a'))$, we have d=0. Therefore $\Phi^{-1}(P(G'(a'))) = \{(i_0, j_0) : i_0 \equiv j_0 \mod p, i_0 \neq j_0\} \cup \{E_{n+2}\}$. On the other hand

$$\sigma' = \begin{bmatrix} -1 & 1 & & 0 \\ -1 & & 1 & & \\ \vdots & & & \ddots & \\ \vdots & 0 & & & 1 \\ -1 & & & & \end{bmatrix} \in G'(a'),$$

but σ' is not contained in $\langle P(G'(a')) \rangle$. Since G'(a') is the decomposition group of G' at some maximal ideal of $\bar{k}[V']$, we have shown that $k[V']^{S_{n+2}}$ is not a polynomial ring by (1.4).

(B) For some $a \in k^n$, $za' = \begin{bmatrix} 0 \\ a \end{bmatrix}$. Let G(a) be the stabilizer of G at a. Then $\Psi(G'(a')) = G(a)$. Since $\langle P(G'(a')) \rangle \neq G'(a')$ and $P(G') \ni \tau \longmapsto \Psi(\tau) \in P(G)$ is bijective, we obtain $\langle P(G(a)) \rangle \neq G(a)$. Hence $k[V]^{S_{n+2}}$ is not a polynomial ring by (1.4).

Remark 4.4. Suppose that V'^* is the dual space of V'. Then $k[V'^*]^{S_{n+2}}$ is a polynomial ring over k by (4.1).

THEOREM 4.5. Let k be a finite field of characteristic $p \neq 2$ and let V be a faithful linear representation of least degree of S_n with $n \geq 7$. Then the following conditions are equivalent:

- (1) $k[V]^{S_n}$ is a polynomial ring.
- (2) (n, p)=1 and all transpositions of S_n are represented by reflections in GL(V).

And if V satisfies these conditions, then we have $\dim(V)=n-1$.

PROOF. According to [10] and (4.3), it is sufficient to show that (2) implies (1). We can obtain the kS_n -module V as in (2) as follows. Let \tilde{V} be a canonical representation of S_n of degree n. Since (n, p) = 1, the sequence $0 \to \tilde{V}^{S_n} \to \tilde{V} \to Coker(i) \to 0$ is a split exact sequence of kS_n -modules and Coker(i) is kS_n -isomorphic to V. Therefore, by (4.1), $k[V]^{S_n}$ is a polynomial ring over k.

§ 5. Classical groups

In this section k is a finite field of characteristic $p \neq 2$.

THEOREM 5.1. Let G be a subgroup of $GL_2(k)$. Suppose that $T(G) = \phi$ in the case of p=3. Then $k[T_1, T_2]^G$ is a polynomial ring if and only if G is generated by pseudo-reflections.

PROOF. We have only to show the if part. Assume that G is generated by pseudo-reflections. Since $T(G)=\phi$ implies (|G|,p)=1, $k[T_1,T_2]^G$ is a polynomial ring in the case of $T(G)=\phi$. Suppose that $T(G)\neq \phi$ and let $H=\langle T(G)\rangle$. Then we have (|G/H|,p)=1. If G is reducible, we may assume that H is contained in A(1,1:q). Since $k[T_1,T_2]^H$ is a polynominal ring, $k[T_1,T_2]^G=(k[T_1,T_2]^H)^{G/H}$ is regular by (1.3). Hence, by (2.4), we can suppose that G is irreducible primitive. By Clifford's theorem ([12], § 49), H is irreducible and H is conjugate in $GL_2(k)$ to SL(2,q). It is known

that $k[T_1, T_2]^H$ is a polynomial ring. By (1.3), $k[T_1, T_2]^G$ is regular. Thus the proof is completed.

THEOREM 5.2. For a transvection group $G \subseteq GL_n(k)$ $(n \ge 3)$, the following conditions are equivalent:

- (1) $k[T_1, \dots, T_n]^G$ is a polynomial ring over k.
- (2) G is conjugate in $GL_n(k)$ to SL(n,q).

PROOF. According to (1.6), it suffices to prove that $k[T_1, \dots, T_n]^G$ is not a polynomial ring for G = Sp(n, q) or $SU(n, q^2)$. Put $S = k[T_1, \dots, T_n]$.

(A) First we suppose that n=4 and G=Sp(4,q). Let $\{T_1, T_2, T_3, T_4\}$ be the canonical basis on which G can be expressed in the form $\{\sigma \in SL(4,q): {}^t\sigma \Phi \sigma = \Phi\}$ where

$$\Phi = \begin{bmatrix} 0 & E_2 \\ -E_2 & 0 \end{bmatrix}.$$

Take maximal ideals $\mathfrak{m}_1=(T_1-1,\,T_2,\,T_3,\,T_4)$, $\mathfrak{m}_2=(T_1,\,T_2-1,\,T_3,\,T_4)$, $\mathfrak{m}_3=(T_1,\,T_2,\,T_3-1,\,T_4)$, $\mathfrak{m}_4=(T_1,\,T_2,\,T_3,\,T_4-1)$ of S and put $H=\bigcap\limits_{i=1}^2 D_G(\mathfrak{m}_i),\,N=\langle D_H(\mathfrak{m}_3),\,D_H(\mathfrak{m}_4)\rangle$. Then there exist homogeneous polynomials $X_1,\,X_2$ of degree q such that $S^N=k[T_1,\,T_2,\,X_1,\,X_2]$. We regard $S^N=\bigoplus\limits_{i=0}^\infty (S^N)_i$ and $S^H=\bigoplus\limits_{i=0}^\infty (S^H)_i$ as graded subalgebras of S. Assume that S^H is a polynomial ring. Since $\dim_k(S^H)_1=2$, there are homogeneous polynomials f_1,f_2 , which satisfy $S^H=k[T_1,\,T_2,f_1,f_2]$. S^N is integral over S^H and so the set $\{T_1,\,T_2,f_1,f_2\}$ is a system of parameters of S^N at origin. Let $\varphi:S^N\to k[X_1,\,X_2]\subseteq S$ be a ring homomorphism defined by $\varphi(T_1)=\varphi(T_2)=0$ and $\varphi(X_i)=X_i$ (i=1,2). From $\varphi(f_i)=0$, we obtain $\deg(f_i)=\deg(\varphi(f_i))$ in S (i=1,2). Hence $\deg(f_i)$ is a power of Q. But $|H|=Q^3=\prod\limits_{i=1}^2 \deg(f_i)$ and $\varphi((S^H)_Q)=\varphi((S^N)_Q)^{H\times N})=0$, which is a contradiction. Therefore S^G is not a polynomial ring by (1.4). The general case is reduced to the case of $S^D(4,q)$ with aids of (1.2) and (1.4).

(B) We consider the case of $G=SU(n,q^2)$. It is sufficient to prove the assertion for n=3. Let $\lambda \longmapsto \bar{\lambda}$ be an involutory automorphism of the field F_{q^2} , and let $\varepsilon \in F_{q^2}^*$ be an element such that $Tr(\varepsilon)=0$. We denote

$$\Gamma(q^2) = \{ \sigma \in SL(3, q^2) : \overline{\iota_{\sigma}} \Psi_{\sigma} = \Psi \}$$

where

$$\mathcal{Y} = \begin{bmatrix} 0 & \varepsilon & 0 \\ -\varepsilon & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Suppose that H is the stabilizer of $\Gamma(q^2)$ at ${}^{\iota}[1,0,0]$ under the natural action of $\Gamma(q^2)$

on the column vector space F_{q^2} over F_{q^2} . It is easy to show that H is not generated by pseudo-reflections in $GL(3, q^2)$. Since G is conjugate to $\Gamma(q^2)$, S^G is not a polynomial ring by (1.4).

We give the following remark which is a generalization of the preceding result without its proof.

REMARK 5.3. Let G be an irreducible subgroup of $GL_n(k)$ which contains a transvection and suppose $n \ge 4$. Then $k[T_1, \dots, T_n]^G$ is a polynomial ring if and only if G is generated by pseudo-reflections and the normal subgroup $\langle T(G) \rangle$ is conjugate to SL(n,q) in $GL_n(k)$.

THEOREM 5.4. Let F be a subfield of k and let \mathcal{O} be the orthogonal group of a non-singular quadratic form Q of dimension n over F. Suppose that G is a subgroup of \mathcal{O} which contains the commutator subgroup Ω of \mathcal{O} . If $n \ge 4$, then $k[T_1, \dots, T_n]^G$ is not a polynomial ring over k.

PROOF. Let ν be the index of Q and let V be the n-dimensional F-space with the quadratic form Q. For a subgroup N of \mathcal{O} , we denote by N(x) the stabilizer of N at $x \in V$ under the natural action of N on V. Let W be a suitable maximal totally isotropic subspace of V. If $n=2\nu$, then we have $H=\bigcap_{x\in W}\mathcal{O}(x)\cong F^{\nu(\nu-1)/2}$. In general V can be expressed as an orthogonal direct sum of hyperbolic planes M_i $(1\leq i\leq \nu)$ and a quadratic space L of index 0. Hence, if $\nu\geq 2$, we obtain $H'=\bigcap_{x\in W}\mathcal{O}'(x)\cong F^{\nu(\nu-1)/2}$ where $\mathcal{O}'=\bigcap_{x\in L}\mathcal{O}(x)$. Suppose that $\nu\geq 2$. Consequently we can take maximal ideals \mathfrak{m}_i $(1\leq i\leq \nu+2)$ of $\bar{k}[T_1,\cdots,T_n]$ such that

$$F^{\nu(\nu-1)2/} \cong \bigcap_{i=1}^{\nu+2} D_{\mathcal{O}}(\mathfrak{m}_i) = \bigcap_{i=1}^{\nu+2} D_{\mathcal{SO}}(\mathfrak{m}_i)$$

where

$$S\mathcal{O} = SL_n(k) \cap \mathcal{O}$$
.

Since $S\mathcal{O}/\Omega\cong F^*/F^{*2}\cong \mathbf{Z}/2\mathbf{Z}$, $\bigcap_{i=1}^{\nu+2}D_{\mathcal{Q}}(\mathfrak{m}_i)\rightleftharpoons\{1\}$ follows. On the other hand we have $P\Big(\bigcap_{i=1}^{\nu+2}D_{\mathcal{O}}(\mathfrak{m}_i)\Big)=\{1\}$. Hence $\bigcap_{i=1}^{\nu+2}D_{\mathcal{G}}(\mathfrak{m}_i)$ is not generated by pseudo-reflections. Next we assume that $\nu=1$. Then it follows that n=4 and $\mathcal{O}=O_4^-(F)$. Take an isotropic point and a non-isotropic point of V appropriately. Then we can choose maximal ideals $\mathfrak{n}_1,\mathfrak{n}_2$ of $\bar{k}[T_1,T_2,T_3,T_4]$ such that $\Big|\Big\langle P\Big(\bigcap_{i=1}^2 D_{O_4^-(F)}(\mathfrak{n}_i)\Big)\Big\rangle\Big|=2$ and $\bigcap_{i=1}^2 D_{SO_4^-(F)}(\mathfrak{n}_i)$ $\cong F$ where $SO_4^-(F)=SL_4(k)\cap O_4^-(F)$. Since $|SO_4^-(F)/\Omega|=2$, $\bigcap_{i=1}^2 D_{\mathcal{G}}(\mathfrak{n}_i)$ is not generated by pseudo-reflections. In both cases $k[T_1,\cdots,T_n]^G$ is not a polynomial ring by (1.4).

Remark 5.5. Let $G \subseteq GL_n(k)$ be a reflection group and let n>3, p>7. Then

 $k[T_1, \dots, T_n]^G$ is a polynomial ring over k if and only if G is conjugate in $GL_n(k)$ to one of the groups in the following list:

- (i) The symmetric group S_{n+1} where $n+1 \equiv 0 \mod p$.
- (ii) The groups in part (3) of (1.7).

This follows from (1.3), (1.7), (4.3), (4.4) and (5.4).

References

- [1] Bertin, M.-J., Sous-anneaux d'invariants d'anneaux de polynomes, C. R. Acad. Sci. Paris. 260 (1965), 5655-5658.
- [2] Bourbaki, N., Groupes et algèbres de Lie, Chapitre 5, Groupes engendrés par des réflexions, Hermann, Paris, 1968.
- [3] Chevalley, C., Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
- [4] Coxeter, H. S. M., The product of generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765-782.
- [5] Dickson, L. E., A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98
- [6] Serezkin, V. N., Groups of reflections over finite fields of characteristic p>5, Preprint, Inst. Mat. Akad. Nauk BSSR, Minsk, 1976.
- [7] -----, Reflection groups over finite fields of characteristic p>5, Dokl. Akad. Nauk SSSR 227 (1976), 574-575.=Soviet Math. Dokl. 17 (1976), 478-480.
- [8] Serre, J.-P., Groupes finis d'automorphismes d'anneaux locaux reguliers, Colloq. d'Alg. E.N.S., 1967.
- [9] Shephard, G.C. and Todd, J.A., Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
- [10] Wagner, A., The faithful linear representation of least degree of S_n and A_n of odd characteristic, Math. Z. 154 (1977), 103-114.
- [11] Zalesskii, A.E. and Serezkin, V.N., Linear groups generated by transvections, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 26-49.=Math. USSR Izvestija 10 (1976), 25-46.
- [12] Curtis, C.W. and Reiner, I., Representation theory of finite groups and associative algebras, Interscience, New York, 1962.

Department of Mathematics Faculty of Technology Keio University Hiyoshi, Yokohama-shi 223 Japan