Invariants of Inversive 2-structures on Groups of Labels

A. Ehrenfeucht ${ }^{1}$, T. Harju ${ }^{2}$ and G. Rozenberg ${ }^{3}$

May 5, 2005

${ }^{1}$ Department of Computer Science, University of Colorado at Boulder, Boulder, Co 80309, U.S.A.
${ }^{2}$ Department of Mathematics, University of Turku, FIN-20014 Turku, Finland
${ }^{3}$ Department of Computer Science, Leiden University, P.O.Box 9512, 2300 RA Leiden, The Netherlands

1995, revised September 1996

Abstract

For a finite set D of nodes let $E_{2}(D)=\{(x, y) \mid x, y \in D, x \neq y\}$. We define an inversive $\Delta 2$-structure g as a function $g: E_{2}(D) \rightarrow \Delta$ into a given group Δ satisfying the property $g(x, y)=g(y, x)^{-1}$ for all $(x, y) \in E_{2}(D)$. For each function (selector) $\sigma: D \rightarrow \Delta$ there corresponds an inversive $\Delta 2$-structure g^{σ} defined by $g^{\sigma}(x, y)=\sigma(x)$. $g(x, y) \cdot \sigma(y)^{-1}$. A function η mapping each g into the group Δ is called an invariant, if $\eta\left(g^{\sigma}\right)=\eta(g)$ for all g and σ. We study the group of free invariants η of inversive $\Delta 2$-structures, where η is defined by a word from the free monoid with involution generated by the set $E_{2}(D)$. In particular, if Δ is abelian, then the group of free invariants is generated by triangle words of the form $\left(x_{0}, x_{1}\right)\left(x_{1}, x_{2}\right)\left(x_{2}, x_{0}\right)$.

Contents

1 Introduction and Motivation 2
1.1 Group labeled 2-structures 2
1.2 Connections to graph theory 5
1.3 Evolution of networks 7
2 Preliminaries on Monoids and Groups 9
3 Free Invariants 11
3.1 General invariants 12
3.2 Free invariants 12
3.3 Variable functions and free invariants 13
4 Group Properties of $\operatorname{Inv}(D \rightarrow \Delta)$ 15
4.1 $\operatorname{Inv}(D \rightarrow \Delta)$ is an abelian group 15
4.2 Invariants and group constructions 16
4.3 Graphs of words 17
4.4 Verbal identities 20
5 Invariants on Abelian Groups 22
5.1 Independency of free invariants 22
5.2 Complete sets of invariants 23
6 Invariants on Nonabelian Groups 26
6.1 Commutators 26
6.2 Central characters of $\operatorname{Inv}(D \rightarrow \Delta)$ 27
6.3 A characterization theorem 29

1 Introduction and Motivation

In this paper we shall study complete edge-labeled directed graphs without loops or multiple edges, i.e., labeled 2-structures, see [2], with a group Δ of labels on the edges. Our treatment of these structures is a continuation of the study made in [3]. However, the present paper can be read independently. In particular, our definitions for the (inversive) labeled 2-structures on a group Δ of labels are simplified, but equivalent, versions of those given in [3].

In Section 1.1 we introduce the dynamic labeled 2-structures formally, and in Sections 1.2 and 1.3 we give some motivation of these systems. Invariants of dynamic labeled 2 -structures will be studied from Section 3 onwards.

1.1 Group labeled 2-structures

Before motivating the dynamic labeled 2-structures we shall give its formal definition. For this let D be a finite set, and let

$$
E_{2}(D)=\{(x, y) \mid x, y \in D, x \neq y\}
$$

Figure 1: An $\mathbb{R}^{+} 2$-structure g
be the complete set of (directed) edges between the elements of D. For an edge $e=(x, y) \in E_{2}(D)$ we let $e^{-1}=(y, x)$ be the reverse edge of e.

Let Δ be a (possibly infinite) group. The identity element of Δ is usually denoted by 1_{Δ}. A Δ-labeled 2 -structure (or a $\Delta 2$-structure, for short) $g=$ (D, λ, Δ) is an edge-labeled directed graph with the finite domain D as its nodes, the set $E_{2}(D)$ as its edges and $\lambda: E_{2}(D) \rightarrow \Delta$ as its labeling function. The group Δ may be infinite, while the domain D is always assumed to be finite. Since g is determined by its labeling function λ, we shall later identify a $\Delta 2$-structure with its labeling function. We use this convention already in the next definition.

An inversive Δ 2-structure is a mapping $g: E_{2}(D) \rightarrow \Delta$ satisfying $g\left(e^{-1}\right)=$ $g(e)^{-1}$ for all $e \in E_{2}(D)$. The family of inversive $\Delta 2$-structures with domain D will be denoted by $\mathcal{R}(D, \Delta)$.

In a pictorial representation of an inversive $\Delta 2$-structure g we shall usually omit the edges

- that have the label 1_{Δ};
- the reverses of the drawn edges.

Example 1. Let $\Delta=\left(\mathbb{R}^{+}, \cdot\right)$ be the multiplicative group of positive real numbers. In Fig. 1 we have a $\mathbb{R}^{+} 2$-structure g, where, e.g., we have $g\left(x_{2}, x_{1}\right)=$ $g\left(x_{1}, x_{2}\right)^{-1}=1, g\left(x_{2}, x_{3}\right)=\frac{3}{2}$, and $g\left(x_{3}, x_{2}\right)=\frac{2}{3}$.

The group Δ of labels of a $g \in \mathcal{R}(D, \Delta)$ becomes employed by the selectors, which, in essence, label the nodes $x \in D$ by the elements of the group Δ.

A function $\sigma: D \rightarrow \Delta$ is called a selector. For each selector σ and $g \in \mathcal{R}(D, \Delta)$ define g^{σ} by

$$
g^{\sigma}(x, y)=\sigma(x) \cdot g(x, y) \cdot \sigma(y)^{-1}
$$

Figure 2: The image g^{σ}
for all $(x, y) \in E_{2}(D)$. The family

$$
[g]=\left\{g^{\sigma} \mid \sigma: D \rightarrow \Delta\right\}
$$

is a (single axiom) dynamic Δ 2-structure (generated by g).
Hence a selector σ transforms each $g: E_{2}(D) \rightarrow \Delta$ into a $g^{\sigma}: E_{2}(D) \rightarrow \Delta$ by a direct left and an (inversive) right multiplication. The new value of an edge depends on the (values of the) nodes and on the label of the edge.

Example 2. Let g be as in Example 1, see Fig. 1. Define a selector $\sigma: D \rightarrow$ \mathbb{R} by $\sigma\left(x_{i}\right)=5-i$. Then, e.g., we have $g^{\sigma}\left(x_{1}, x_{2}\right)=4 \cdot 1 \cdot \frac{1}{3}=\frac{4}{3}$. The image g^{σ} is drawn in Fig. 2, where we have labeled the nodes by the values of σ.

This paper deals with invariants of $\Delta 2$-structures. We give now a short overview of our results. The exact definitions concerning invariants are presented in Section 3.

A function η mapping the inversive $\Delta 2$-structures g into the group Δ is an invariant, if $\eta\left(g^{\sigma}\right)=\eta(g)$ for all g and σ. An invariant is thus immune to the selectors.

Each word $w=e_{1} e_{2} \ldots e_{k}$ from the free monoid $M(D)$ with involution, generated by the set $E_{2}(D)$, defines in a natural way a mapping $\psi_{w}, \psi_{w}(g)=$ $g\left(e_{1}\right) g\left(e_{2}\right) \ldots g\left(e_{k}\right)$, such that $\psi_{w}(g) \in \Delta$ for each $g \in \mathcal{R}(D, \Delta)$. If ψ_{w} is an invariant, then it is called a free invariant.

We show that the free invariants form an abelian group $\operatorname{Inv}(D \rightarrow \Delta)$ consisting of mappings into the center $Z(\Delta)$ of the group Δ of labels. Moreover, the free invariants are closely related to verbal identities of the quotient group $\Delta / Z(\Delta)$ and of Δ itself. Our main result in this respect is that for a word w, which forms a closed walk, the mapping ψ_{w} is a free invariant if and only if w is a verbal identity of the quotient group $\Delta / Z(\Delta)$.

If Δ is abelian, then the group of free invariants is generated by triangle words of the form $\left(x_{0}, x_{1}\right)\left(x_{1}, x_{2}\right)\left(x_{2}, x_{0}\right)$. This result generalizes a result of [14], where the case $\Delta=\mathbb{Z}_{2}$ is considered. In the abelian case $\operatorname{Inv}(D \rightarrow \Delta)$ is independent of Δ. For the nonabelian case we give a partial characterization of the group of free invariants in terms of 'characteristic' powers of triangles and commutator words. We note that in the general case the structure of the group $\operatorname{Inv}(D \rightarrow \Delta)$ depends on the verbal identities of Δ.

1.2 Connections to graph theory

Directed graphs, where the labels of the edges come from a group, are investigated in several areas of graph theory. The most notable of these is the study of Cayley graphs, see e.g. [7] or [11].

In topological graph theory the voltage graphs are defined as directed graphs with an (inversive) group labeling of the edges, see [6]. It is interesting to notice - especially in view of Section 1.3 - that in the theory of voltage graphs an action similar to a selector becomes defined in a natural way.

The case where Δ is the cyclic group $\mathbb{Z}_{2}=\{0,1\}$ of two elements has received much attention in literature. Seidel switching was defined in connection with the problem of finding equilateral n-tuples of points in elliptic geometry, see [10]. This problem gives rise to the following problem for undirected graphs: determine the equivalence classes of undirected graphs with n nodes with respect to the following operation (called Seidel switching). Let $G \rightarrow G^{\prime}$, if there is a node x such that $G^{\prime}=\left(D, E^{\prime}\right)$ is obtained from $G=(D, E)$ by removing all edges (x, y) and (y, x) incident with x, and adding all pairs (x, y) and (y, x) not in E. Hence $G \rightarrow G^{\prime}$, if for some node x,

$$
E^{\prime}=(E \backslash\{(x, y),(y, x) \mid y \neq x\}) \cup\{(x, y),(y, x) \mid(x, y) \notin E\} .
$$

Let then \leftrightarrow^{*} be the equivalence relation determined by \rightarrow, i.e., $G \leftrightarrow^{*} G^{\prime}$ if and only if $G=G^{\prime}$ or there exists a finite sequence $G_{0} \rightarrow G_{1} \rightarrow \cdots \rightarrow G_{k}$ with $\left\{G, G^{\prime}\right\}=\left\{G_{0}, G_{k}\right\}$. One now asks how many equivalence classes of \leftrightarrow^{*} are there for a set D of nodes (up to isomorphism of graphs)?

We can reformulate the above problem in terms of dynamic $\mathbb{Z}_{2} 2$-structures as follows. Let us consider a $g \in \mathcal{R}\left(D, \mathbb{Z}_{2}\right)$ as an undirected graph, where $g(e)=1(g(e)=0$, resp.) means that e is (not, resp.) an edge of g. Consider a node $x \in D$ and a selector σ, for which $\sigma(x)=1$, and $\sigma(y)=0$ for all other nodes $y \neq x$. Clearly, the image g^{σ} represents a graph, where the existing connections from x are removed and the nonexistent connections from

Figure 3: g with labels in \mathbb{Z}_{2}

0
1 \qquad 0
1

Figure 4: The images g^{σ}
x are created. Therefore $G \rightarrow G^{\prime}$ holds if and only if for the corresponding \mathbb{Z}_{2} 2-structures g and $g^{\prime}, g^{\prime}=g^{\sigma}$ for such a selector σ. From this we obtain that $g \leftrightarrow^{*} g^{\prime}$ if and only if $g^{\prime}=g^{\sigma}$ for a selector $\sigma: D \rightarrow \mathbb{Z}_{2}$.

Example 3. Let $D=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and consider the $\mathbb{Z}_{2} 2$-structure g from Fig. 3, where a line denotes value 1 of \mathbb{Z}_{2}. There are $2^{|D|}=16$ different selectors $\sigma: D \rightarrow \Delta$, but some of them have the same image g^{σ}. In fact, there are only 8 different images g^{σ} as depicted in Fig. 4, where again the nodes are labeled by the values of a selector σ which applied to g yields g^{σ}.

Seidel switching is closely connected to signed graphs and two-graphs. We refer to $[5,8,15,16,17]$ for these topics.

Let then $\Delta=\mathbb{Z}_{3}$ be the cyclic group of three elements $0,1,2$. An inversive $\mathbb{Z}_{3} 2$-structure g can be identified with an oriented graph, i.e., with a

Figure 5: $\mathbb{Z}_{3} 2$-structure g and its image g^{σ}
directed graph $G=(D, E)$, where $e \in E$ implies $e^{-1} \notin E$. Indeed, we can choose $E=\left\{e \in E_{2}(D) \mid g(e)=1\right\}$, and interpret $g(e)=0$ as $e, e^{-1} \notin E$, $g(e)=2$ as $e \notin E, e^{-1} \in E$, and $g(e)=1$ as $e \in E, e^{-1} \notin E$.

Example 4. Let g be the directed cycle of Fig. 5, where an arrow denotes the value $1 \in \mathbb{Z}_{3}$. The second inversive $\mathbb{Z}_{3} 2$-structure of Fig. 5 is obtained from g using the selector σ, for which $\sigma\left(x_{1}\right)=1, \sigma\left(x_{2}\right)=0=\sigma\left(x_{3}\right)$. The third directed graph of Fig. 5 is a redrawing of g^{σ} using our conventions.

Let us choose $\Delta=\mathbb{Z}_{4}$. All directed graphs can be represented as inversive \mathbb{Z}_{4} 2-structures. Indeed, if $G=(D, E)$ is a directed graph, then we define the representing $\mathbb{Z}_{4} 2$-structure g by

$$
g(e)= \begin{cases}0, & \text { if } e, e^{-1} \notin E, \\ 1, & \text { if } e \in E, e^{-1} \notin E, \\ 2, & \text { if } e, e^{-1} \in E, \\ 3, & \text { if } e \notin E, e^{-1} \in E .\end{cases}
$$

We would also like to point out that, as discussed in [3], dynamic labeled 2-structures are closely related to graph transformations as considered in the area of graph grammars, see e.g. [4]. Providing techniques for proving or disproving that an edge-labeled graph can be derived from another one, is important also from the point of view of graph transformations.

1.3 Evolution of networks

The dynamic labeled 2-structures were motivated in [3] by evolutionary processes of networks. We shall now briefly describe this motivation.

Assume we are given a finite network of processors D in which each pair $\{x, y\}$ of processors communicates through the two channels $e=(x, y)$ and $e^{-1}=(y, x)$ directed in opposite ways. The states of the channels

$$
(x) \underset{\varphi_{x}\left(\gamma_{y}(a)\right)}{\gamma_{y}\left(\varphi_{x}(a)\right)} y
$$

Figure 6: Concurrent actions
are (coded by) elements of a set Δ, which need not have group structure. Each processor $x \in D$ has two sets of actions, output actions O_{x} and input actions I_{x}, by which it can change the states of the channels from and to x, respectively. The actions of x are thus transformations of Δ, i.e., each $\varphi_{x} \in O_{x}$ or $\gamma_{x} \in I_{x}$ is a function $\Delta \rightarrow \Delta$. An action $\varphi_{x} \in O_{x}$ will change the contents of the outgoing channels: if the value of a channel (x, y) is $a_{y} \in \Delta$, then it will be changed to $\varphi_{x}\left(a_{y}\right)$ by this action. Similarly, an action $\gamma_{x} \in I_{x}$ changes the contents of the incoming channels: the value b_{y} of the channel (y, x) will be changed to $\gamma_{x}\left(b_{y}\right)$ by this action.

Notice that for each (x, y) there are two processors, x and y, that change the state of this channel; x changes it by a transformation $\varphi_{x} \in O_{x}$ and y changes it by a $\gamma_{y} \in I_{y}$.

At any stage the locally determined choices for the actions $\varphi_{x} \in O_{x}$ and $\gamma_{x} \in I_{x}$ of the processors $x \in D$ are represented by a selector, that is, by a function σ that for each x gives its actions, $\sigma(x)=\left(\varphi_{x}, \gamma_{x}\right) \in O_{x} \times I_{x}$.

The network as a whole is modified by the concurrent actions of the processors. It is assumed that a network satisfies the following natural axioms.

In order to avoid unnecessary sequencing of actions it is assumed that (1) the composition of two actions from O_{x} (I_{x}, resp.) is again an action, i.e., the sets O_{x} and I_{x} are transformation semigroups on Δ.

In order to assure that the effect of concurrent actions in different processors is well-defined it is assumed that
(2) the combined action of $\varphi_{x} \in O_{x}$ and $\gamma_{y} \in I_{y}$ for $x \neq y$ should be independent of the order in which they are taken, i.e., the transformation semigroups O_{x} and I_{y} must permute: $\varphi_{x} \gamma_{y}=\gamma_{y} \varphi_{x}$, see Fig. 6.

In order to assure a minimal freedom of the actions for each processor it is assumed that
(3) for each $a, b \in \Delta$ and $x \in D$ there exist $\varphi \in O_{x}$ and $\gamma \in I_{x}$ such that $\varphi(a)=b$ and $\gamma(a)=b$, i.e., the semigroups O_{x} and I_{x} are transitive.

When these axioms are assumed, the situation in the network becomes simple. Indeed, it was shown in [3], see also [1], that if $|D| \geq 3$, then for all $x, y \in D, O_{x}=O_{y}$ and $I_{x}=I_{y}$, and hence, in a network satisfying the above
axioms, the actions come from two semigroups O and I that are independent of the processors. Moreover, as shown in [3], the transformation semigroups O and I are isomorphic (simply transitive) groups of permutations. (In essence, O and I become defined by left and (inversive) right multiplication of a group). Further, we can define an operation on the alphabet Δ such that Δ becomes a group isomorphic to O (and I).

A global state of (all the channels of) a network will be represented by a $\Delta 2$-structure. Hence an evolution of a network becomes represented by a family of $\Delta 2$-structures, each of which represents a possible global state of the network. The transitions from one labeled 2-structure to another (hence from one global state to another) are the transformations induced by the selectors.

2 Preliminaries on Monoids and Groups

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a (finite) set of symbols, called letters or variables. The set A of letters is called an alphabet. Each finite sequence $w=\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{m}}\right)$ of letters is called a word over A. The empty sequence is the empty word, and it will be denoted by 1 . The word w is usually written as a concatenation of the letters, $w=a_{i_{1}} a_{i_{2}} \ldots a_{i_{m}}$. We denote by A^{*} the set of all words (including the empty word 1) over A. The set A^{*} forms a monoid under the operation of catenation: for all words $w_{1}, w_{2} \in A^{*}, w_{1} \cdot w_{2}=w_{1} w_{2}$. This monoid A^{*} is the free (word)monoid generated by A, and it satisfies the following basic extension property, see [9].

Theorem 1. Let A be an alphabet and M a monoid. Then each function $\alpha: A \rightarrow M$ can be extended to a unique (monoid) homomorphism $\alpha^{b}: A^{*} \rightarrow$ M.

A word u is a subword of a word $w \in A^{*}$, if $w=w_{1} u w_{2}$ for some words $w_{1}, w_{2} \in A^{*}$. We say also that a letter $a \in A$ occurs in a word w, if a is a subword of w. The number of occurrences of a letter a in a word w is denoted by $|w|_{a}$. Hence $|w|_{a}=0$ in case a does not occur in w, and in general

$$
\left|w_{1} w_{2}\right|_{a}=\left|w_{1}\right|_{a}+\left|w_{2}\right|_{a} .
$$

Let M be a monoid. A bijection $\delta: M \rightarrow M$ is called an involution of M, if δ is an antiautomorphism of order two, i.e., if $\delta(x \cdot y)=\delta(y) \cdot \delta(x)$ and $\delta^{2}(x)=x$ for all $x, y \in M$. In this case (M, δ) is called a monoid with involution.

Let $\left(M_{1}, \delta_{1}\right)$ and $\left(M_{2}, \delta_{2}\right)$ be two monoids with involution. A function $\alpha: M_{1} \rightarrow M_{2}$ is a homomorphism (between monoids with involution), denoted $\alpha:\left(M_{1}, \delta_{1}\right) \hookrightarrow\left(M_{2}, \delta_{2}\right)$, if α is a monoid homomorphism, $\alpha(x y)=$ $\alpha(x) \alpha(y)$ for all $x, y \in M_{1}$, and, $\alpha\left(\delta_{1}(x)\right)=\delta_{2}(\alpha(x))$ for all $x \in M_{1}$.

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be an alphabet, and let $A^{-1}=\left\{a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{n}^{-1}\right\}$ be another alphabet disjoint from A. The alphabet $B=A \cup A^{-1}$ is called an alphabet with involution.

Consider the free monoid B^{*} generated by the letters $a_{i} \in A$ and $a_{i}^{-1} \in$ A^{-1}, and define a function $\delta: B^{*} \rightarrow B^{*}$ by $\delta(1)=1$, and

$$
\delta\left(b_{1} b_{2} \ldots b_{k}\right)=\delta\left(b_{k}\right) \delta\left(b_{k-1}\right) \ldots \delta\left(b_{1}\right) \quad\left(b_{i} \in B\right)
$$

where $\delta\left(a_{i}\right)=a_{i}^{-1}$ and $\delta\left(a_{i}^{-1}\right)=a_{i}$ for each $a \in A$. Clearly, δ is an involution of the monoid B^{*}. This involution of B^{*} is denoted simply by the inverse notation: $\delta(b)=b^{-1}$ with $\left(b^{-1}\right)^{-1}=b$ for all $b \in B$. The monoid $\left(B^{*},,^{-1}\right)$ with involution is denoted by $M(B)$, and it is called the free monoid with involution over B (or over A). Clearly, for all words $w_{1}, w_{2}, \ldots, w_{k} \in M(B)$,

$$
\left(w_{1} w_{2} \ldots w_{k}\right)^{-1}=w_{k}^{-1} w_{k-1}^{-1} \ldots w_{1}^{-1} .
$$

An analogy of Theorem 1 holds for monoids with involutions, see [12]:
Theorem 2. Let $B=A \cup A^{-1}$ be an alphabet with involution and (M, δ) any monoid with involution. Then each function $\alpha: A \rightarrow M$ can be extended to a unique homomorphism $\alpha^{b}: M(B) \hookrightarrow(M, \delta)$.

By Theorem 2 each homomorphism $\alpha: M(B) \hookrightarrow(M, \delta)$ is uniquely determined by its images $\alpha(a)$ on the generators $a \in A$. We say that a homomorphism $\alpha: M(B) \hookrightarrow M$ becomes defined by the mapping $\alpha \mid A: A \rightarrow M$.

Let $B=A \cup A^{-1}$ be an alphabet with an involution. We say that the words $w_{1}, w_{2} \in B^{*}$ are freely equal, denoted $w_{1}=F w_{2}$, if w_{1} can be obtained from w_{2} by a finite number of additions or deletions of subwords of the form $w w^{-1}$ and $w^{-1} w$, where $w \in B^{*}$. Clearly, the relation $=_{F}$ is an equivalence relation on B^{*}. Moreover, it satisfies the following congruence condition:

$$
\begin{equation*}
w_{1}=_{F} w_{2} \text { and } w_{3}=_{F} w_{4} \Longrightarrow w_{1} w_{3}=_{F} w_{2} w_{4} . \tag{1}
\end{equation*}
$$

The equivalence classes

$$
[w]_{F}=\left\{u \mid u \in B^{*}, u=_{F} w\right\}
$$

form the free group $F(B)$ over the alphabet B, when the product is defined by

$$
\left[w_{1}\right]_{F} \cdot\left[w_{2}\right]_{F}=\left[w_{1} w_{2}\right]_{F} \quad\left(w_{1}, w_{2} \in B^{*}\right) .
$$

By (1) this operation is well defined. The inverse $[w]_{F}^{-1}$ of an element $[w]_{F}$ is $\left[w^{-1}\right]_{F}$, and the identity element of $F(B)$ is $[1]_{F}$.

A group Δ is a monoid $\left(\Delta,^{-1}\right)$ with its inverse function as its involution. Therefore we have the following result.

Lemma 1. Let $\alpha: M(B) \hookrightarrow \Delta$ be a homomorphism for a group Δ. If $w_{1}={ }_{F} w_{2}$, then $\alpha\left(w_{1}\right)=\alpha\left(w_{2}\right)$.

In particular, if $\alpha: A \rightarrow \Delta$ is any function from a set A to a group Δ, then, by Theorem $2, \alpha$ has an extension to a monoid homomorphism $\alpha^{b}: M(B) \hookrightarrow \Delta$, where $B=A \cup A^{-1}$, and $w_{1}=_{F} w_{2}$ implies $\alpha^{b}\left(w_{1}\right)=$ $\alpha^{b}\left(w_{2}\right)$.

Let again $B=A \cup A^{-1}$. A group Δ is said to satisfy a verbal identity $u \in B^{*}$, if for all homomorphisms $\alpha: M(B) \hookrightarrow \Delta, \alpha(u)=1_{\Delta}$.

Example 5. 1. The free group $F(B)$ has only the trivial verbal identities, i.e., if $u \in B^{*}$ is a verbal identity of $F(B)$, then u is freely equal to the empty word, $u={ }_{F} 1$.
2. If Δ is an Abelian group, then it satisfies the verbal identity $x^{-1} y^{-1} x y$ for $x, y \in A$.
3. A finite group Δ of order $k=|\Delta|$ satisfies the verbal identity x^{k}, where $x \in A$.
4. The free Burnside group $B(d, n)$ (of exponent d and rank $n \geq 1$) is defined so that it satisfies the verbal identity x^{d}, where $x \in A$. Note that here $B(d, n)$ is nonabelian if $d \geq 3$ and $n \geq 2$. However, $B(2, n)$ is always Abelian, see [11].

3 Free Invariants

We shall consider now the problem how to recognize that a $\Delta 2$-structure g is obtainable from another $\Delta 2$-structure h by an application of a selector. In order to answer this question we study invariant properties of $\Delta 2$-structures, and show that the invariants are shown to be closely connected to the verbal identities of the group Δ of labels.

3.1 General invariants

The inversive $\Delta 2$-structures in $\mathcal{R}(D, \Delta)$ are naturally divided into dynamic labeled 2-structures, i.e., the family $\{[g] \mid g \in \mathcal{R}(D, \Delta)\}$ forms a partition of $\mathcal{R}(D, \Delta)$. A function $\eta: \mathcal{R}(D, \Delta) \rightarrow \Delta$ is called an invariant, if it maps the elements of each $[g]$ into the same element,

$$
\eta\left(g_{1}\right)=\eta\left(g_{2}\right) \quad \text { if } \quad\left[g_{1}\right]=\left[g_{2}\right] .
$$

Hence an invariant is immune to the selectors, and, in the terminology of networks, the study of invariants is the study of those properties of a network that remain unchanged during its evolution.

If η is a constant mapping, $\eta(g)=a$ (for some $a \in \Delta$) for all $g \in \mathcal{R}(D, \Delta)$, then clearly η is an invariant. In particular, if the group Δ is trivial, $\Delta=$ $\left\{1_{\Delta}\right\}$, then the only function $\eta: \mathcal{R}(D, \Delta) \rightarrow \Delta$ there is, the constant function $\eta(g)=1_{\Delta}$, is an invariant. The case $|D|=1$ is also trivial, for in this case we have $E_{2}(D)=\emptyset$ and therefore there exists only one labeled 2-structure g in $\mathcal{R}(D, \Delta)$.

3.2 Free invariants

In general an invariant is a function that can be independent of the specific properties of the inversive $\Delta 2$-structures. In order to reflect these properties, we shall restrict ourselves to those invariants that are more faithful to the labeled 2 -structures in the sense that they are defined by variables corresponding to the edges. We use free monoids with involution to formulate this correspondence.

We denote by $M(D)$ the free monoid with involution $\left(E_{2}(D),{ }^{-1}\right)$. Hence $M(D)$ consists of the free monoid $E_{2}(D)^{*}$ of words generated by the elements of $E_{2}(D)$ together with a naturally defined involution,

$$
\left(e_{1} e_{2}\right)^{-1}=e_{2}^{-1} e_{1}^{-1},
$$

where e^{-1} is as before the reverse edge of e.
In order to clarify the distinction between the edges of a $\Delta 2$-structure and the generators of the free monoid $M(D)$ with involution, the generators $e \in M(D)$ will be called variables.

By Theorem 2, each inversive $\Delta 2$-structure $g: E_{2}(D) \rightarrow \Delta$ extends to a unique homomorphism $g^{b}: M(D) \hookrightarrow \Delta$ such that $g^{b}(e)=g(e)$ and $g^{b}\left(e^{-1}\right)=$ $g(e)^{-1}$ for all $e \in E_{2}(D)$. We note also that if $\alpha: M(D) \hookrightarrow \Delta$ is any homomorphism, then $\alpha=g^{b}$, where $g \in \mathcal{R}(D, \Delta)$ is defined by $g(e)=\alpha(e)$. Hence we have the following simple result.

Theorem 3. The mappings g^{b} for $g \in \mathcal{R}(D, \Delta)$ are exactly the homomorphisms $M(D) \hookrightarrow \Delta$.

3.3 Variable functions and free invariants

Each word $w=e_{1} e_{2} \ldots e_{k} \in M(D)$ defines a function ψ_{w} from $\mathcal{R}(D, \Delta)$ into Δ as follows:

$$
\psi_{w}(g)=g\left(e_{1}\right) g\left(e_{2}\right) \ldots g\left(e_{k}\right) \quad(g \in \mathcal{R}(D, \Delta)) .
$$

We call the function ψ_{w} the variable function represented by w, and we let

$$
\operatorname{Var}(D \rightarrow \Delta)=\left\{\psi_{w}: \mathcal{R}(D, \Delta) \rightarrow \Delta \mid w \in M(D)\right\}
$$

be the set of all variable functions represented by the words in $M(D)$. We shall also write ψ_{w}^{Δ} instead of ψ_{w}, when the group Δ is not clear from the context.

Further, two words w_{1} and w_{2} from $M(D)$ are said to be equivalent (over Δ), denoted $w_{1} \equiv w_{2}$, if they represent the same variable function: $\psi_{w_{1}}=\psi_{w_{2}}$.

The relation \equiv is clearly an equivalence relation on words. Moreover, the following lemma is easy to prove.
Lemma 2. If the words $w_{1}, w_{2} \in M(D)$ are freely equal then they are equivalent: $w_{1}={ }_{F} w_{2}$ implies $w_{1} \equiv w_{2}$.

An invariant $\psi_{w} \in \operatorname{Var}(D \rightarrow \Delta)$ is called a free invariant of $\mathcal{R}(D, \Delta)$. We denote by $\operatorname{Inv}(D \rightarrow \Delta)$ the set of all free invariants of $\mathcal{R}(D, \Delta)$.

If w is freely equal to the empty word 1 , then $w \equiv 1$, and consequently in this case $\psi_{w}=\psi_{1} \in \operatorname{Inv}(D \rightarrow \Delta)$, since the constant function $\psi_{1}, \psi_{1}(g)=$ 1_{Δ}, is a free invariant.

Example 6. (1) Let $\Delta=\mathbb{Z}_{3}=\{0,1,2\}$ be the cyclic group of order three (with the additive notation), and let $D=\left\{x_{1}, x_{2}, x_{3}\right\}$. We write $e_{i j}=$ $\left(x_{i}, x_{j}\right)$ for all $i \neq j$. The word $w_{1}=e_{12} e_{23} e_{31}$ represents an invariant, i.e., $\psi_{w_{1}} \in \operatorname{Inv}(D \rightarrow \Delta)$, since for all $g \in \mathcal{R}(D, \Delta)$ and $\sigma: D \rightarrow \Delta$ with $\sigma\left(x_{i}\right)=a_{i}, \psi_{w_{1}}(g)=g\left(e_{12}\right)+g\left(e_{23}\right)+g\left(e_{31}\right)$ and

$$
\begin{aligned}
\psi_{w_{1}}\left(g^{\sigma}\right) & =g^{\sigma}\left(e_{12}\right)+g^{\sigma}\left(e_{23}\right)+g^{\sigma}\left(e_{31}\right) \\
& =\left(a_{1}+g\left(e_{12}\right)-a_{2}\right)+\left(a_{2}+g\left(e_{23}\right)-a_{3}\right)+\left(a_{3}+g\left(e_{31}\right)-a_{1}\right) \\
& =g\left(e_{12}\right)+g\left(e_{23}\right)+g\left(e_{31}\right)=\psi_{w_{1}}(g),
\end{aligned}
$$

because Δ is abelian.

Figure 7: Inversive $\mathbb{Z}_{3} 2$-structures

For the inversive $\Delta 2$-structures g_{1} and g_{2} from Fig. 7, we have $\psi_{w_{1}}\left(g_{1}\right)=$ $2 \neq 1=\psi_{w_{1}}\left(g_{2}\right)$, which implies that for all selectors $\sigma, g_{2} \neq g_{1}^{\sigma}$, since $\psi_{w_{1}}\left(g_{1}^{\sigma}\right)=2$ but $\psi_{w_{1}}\left(g_{2}\right)=1$ for each σ. Hence in this case $\left[g_{1}\right] \neq\left[g_{2}\right]$.

On the other hand, let $w_{2}=e_{12} e_{23}^{-1} e_{31}$. Now, $\psi_{w_{2}}(g)=g\left(e_{12}\right)+g\left(e_{32}\right)+$ $g\left(e_{31}\right)$ and

$$
\psi_{w_{2}}\left(g^{\sigma}\right)=g^{\sigma}\left(e_{12}\right)+g^{\sigma}\left(e_{32}\right)+g^{\sigma}\left(e_{31}\right)=2 a_{3}-2 a_{2}+\psi_{w_{2}}(g),
$$

and thus $\psi_{w_{2}}\left(g^{\sigma}\right)=\psi_{w_{2}}(g)$ if and only if $2 a_{3}-2 a_{2}=0$ in \mathbb{Z}_{3}. It follows that $\psi_{w_{2}}$ is not an invariant of $\mathcal{R}(D, \Delta)$, since the selector may have chosen $a_{2}=1$ and $a_{3}=2$.
(2) Suppose the group Δ satisfies the verbal identity e_{1}^{n}, i.e., $a^{n}=1_{\Delta}$ for all $a \in \Delta$. Then obviously the word $w=e^{n}$ represents an invariant for each variable $e \in M(D)$. In fact, w is equivalent to the empty word 1 .

The following example shows that if the domain D has at most two elements, then for any group $\Delta \operatorname{Inv}(D \rightarrow \Delta)=\left\{\psi_{1}\right\}$ for the trivial free invariant ψ_{1} represented by the empty word 1 .
Example 7. Assume $D=\{x, y\}$, and write $e=(x, y)$. then each invariant ψ_{w} is represented by a word e^{k} for an integer k, that is, $w \equiv e^{k}$, because $(x, y)(y, x)=(x, y)(x, y)^{-1} \equiv 1$. Assume that ψ_{w} is an invariant for $w=e^{k}$ for some $k \neq 0$. Define $g \in \mathcal{R}(D, \Delta)$ to be such that $g(e)=1_{\Delta}$. Let $a \in \Delta$, and let σ be the selector for which $\sigma(x)=a$ and $\sigma(y)=1_{\Delta}$. We have now that $g^{\sigma}(e)=a$ and hence $\psi_{w}\left(g^{\sigma}\right)=\psi_{w}(g)$ implies $a^{k}=g(e)^{k}=1_{\Delta}$. Consequently, for all $a \in \Delta$, we have that $a^{k}=1_{\Delta}$. Therefore ψ_{w} is a constant mapping: for all $g \in \mathcal{R}(D, \Delta), \psi_{w}(g)=\psi_{1}(g)=1_{\Delta}$. Hence the cases where $|D| \leq 2$ are trivial.

The constant functions $\eta: \mathcal{R}(D, \Delta) \rightarrow \Delta$ are invariants of $\mathcal{R}(D, \Delta)$, but as verified in the next example only the trivial constant function is a free invariant.

Example 8. Let $g \in \mathcal{R}(D, \Delta)$ be defined by $g(e)=1_{\Delta}$ for all $e \in E_{2}(D)$. Hence the homomorphism g^{b} is a constant, $g^{b}(e)=1_{\Delta}$ for each $e \in E_{2}(D)$, and thus if $w \in M(D)$, then $\psi_{w}(g)=1_{\Delta}$. This implies that the only constant invariant $\eta: \mathcal{R}(D, \Delta) \rightarrow \Delta$ that is represented by a word, is the identity ψ_{1} of $\operatorname{Var}(D \rightarrow \Delta)$.

From the definition of $\operatorname{Var}(D \rightarrow \Delta)$ we obtain immediately that for all $w, w_{i} \in M(D)(i=1,2)$, and for all $g \in \mathcal{R}(D, \Delta)$:

$$
\psi_{w_{1} w_{2}}(g)=\psi_{w_{1}}(g) \cdot \psi_{w_{2}}(g), \quad \psi_{w^{-1}}(g)=\psi_{w}(g)^{-1} \quad \text { and } \quad \psi_{1}(g)=1_{\Delta}
$$

From this observation we obtain the following result.
Theorem 4. The variable functions $\operatorname{Var}(D \rightarrow \Delta)$ from a group under the operation

$$
\psi_{w_{1}} \cdot \psi_{w_{2}}=\psi_{w_{1} w_{2}} \quad\left(w_{1}, w_{2} \in M(D)\right)
$$

The identity of the group $\operatorname{Var}(D \rightarrow \Delta)$ is ψ_{1} for the empty word 1. Furthermore, we have

$$
\psi_{w^{k}}(g)=\psi_{w}(g)^{k} \quad \text { for all } w \in M(D), k \in \mathbb{Z}, g \in \mathcal{R}(D, \Delta)
$$

Hence we can write $\psi_{w^{k}}=\psi_{w}^{k}$ for a word w and an integer k. In particular, $\psi_{w^{-1}}=\psi_{w}^{-1}$.

It is clear that $\operatorname{Var}(D \rightarrow \Delta)$ is generated by the variable functions ψ_{e} represented by the variables, $e \in E_{2}(D)$. Since $E_{2}(D)$ is always finite, the group $\operatorname{Var}(D \rightarrow \Delta)$ is finitely generated.

4 Group Properties of $\operatorname{Inv}(D \rightarrow \Delta)$

4.1 $\operatorname{Inv}(D \rightarrow \Delta)$ is an abelian group

In the following result we prove that each free invariant $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ is, in fact, a mapping $\psi_{w}: \mathcal{R}(D, \Delta) \rightarrow Z(\Delta)$ into the center

$$
Z(\Delta)=\{a \in \Delta \mid a b=b a \text { for all } b \in \Delta\}
$$

of the group Δ. It follows from this that $\operatorname{Inv}(D \rightarrow \Delta)$ is an abelian group.
Theorem 5. 1. For all $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ and $g \in \mathcal{R}(D, \Delta), \psi_{w}(g) \in$ $Z(\Delta)$.
2. $\operatorname{Inv}(D \rightarrow \Delta)$ is a subgroup of $Z(\operatorname{Var}(D \rightarrow \Delta))$.

In particular, $\operatorname{Inv}(D \rightarrow \Delta)$ is an abelian group.

Proof. Let $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ be a free invariant for the word $w=e_{1} e_{2} \ldots e_{k}$, and let $g \in \mathcal{R}(D, \Delta)$. Define for each $a \in \Delta$ a selector σ_{a} by $\sigma_{a}(x)=a$ for all $x \in D$. Hence $\psi_{e}\left(g^{\sigma_{a}}\right)=a \cdot g(e) \cdot a^{-1}$ for all $e \in E_{2}(D)$. We have now that

$$
\begin{aligned}
\psi_{w}\left(g^{\sigma_{a}}\right) & =a g\left(e_{1}\right) a^{-1} a \ldots a^{-1} a g\left(e_{k}\right) a^{-1} \\
& =a g\left(e_{1}\right) g\left(e_{2}\right) \ldots g\left(e_{k}\right) a^{-1}=a \psi_{w}(g) a^{-1},
\end{aligned}
$$

from which it follows that $a \cdot \psi_{w}(g)=\psi_{w}(g) \cdot a$, since $\psi_{w}\left(g^{\sigma_{a}}\right)=\psi_{w}(g)$. This shows that $\psi_{w}(g)$ commutes with every element of Δ and thus $\psi_{w}(g) \in Z(\Delta)$ as was required in Case (1).

Let then $\psi_{w_{i}} \in \operatorname{Inv}(D \rightarrow \Delta)$, for $i=1,2$, and let σ be a selector. Hence $\psi_{w_{i}}\left(g^{\sigma}\right)=\psi_{w_{i}}(g)$ for all $g \in \mathcal{R}(D, \Delta)$. Now, for all $g \in \mathcal{R}(D, \Delta)$,

$$
\left(\psi_{w_{1}} \psi_{w_{2}^{-1}}\right)\left(g^{\sigma}\right)=\psi_{w_{1}}\left(g^{\sigma}\right) \cdot \psi_{w_{2}^{-1}}\left(g^{\sigma}\right)=\psi_{w_{1}}(g) \cdot \psi_{w_{2}}(g)^{-1}=\left(\psi_{w_{1}} \psi_{w_{2}^{-1}}\right)(g),
$$

which shows that $\operatorname{Inv}(D \rightarrow \Delta)$ is a subgroup of $\operatorname{Var}(D \rightarrow \Delta)$.
On the other hand, if $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ and $\psi_{w_{1}} \in \operatorname{Var}(D \rightarrow \Delta)$, then, by the previous case, $\psi_{w}(g) \in Z(\Delta)$ for all $g \in \mathcal{R}(D, \Delta)$, and thus $\psi_{w_{1}}(g)$. $\psi_{w}(g)=\psi_{w}(g) \cdot \psi_{w_{1}}(g)$, which implies that $\psi_{w_{1}} \psi_{w}=\psi_{w} \psi_{w_{1}}$. Therefore, $\operatorname{Inv}(D \rightarrow \Delta)$ is a subgroup of the center $Z(\operatorname{Var}(D \rightarrow \Delta))$.

By Theorem 5, if the center $Z(\Delta)$ is trivial, $Z(\Delta)=\left\{1_{\Delta}\right\}$, then also the group $\operatorname{Inv}(D \rightarrow \Delta)$ is trivial, $\operatorname{Inv}(D \rightarrow \Delta)=\left\{\psi_{1}\right\}$. See also Example 9 below.

4.2 Invariants and group constructions

The following theorem relates invariants for a group Δ to the invariants for some basic constructions of groups.

Theorem 6. Let $w \in M(D)$ with $\psi_{w}^{\Delta} \in \operatorname{Inv}(D \rightarrow \Delta)$ for a group Δ.

1. For each subgroup N of $\Delta, \psi_{w}^{N} \in \operatorname{Inv}(D \rightarrow N)$.
2. If $\alpha: \Delta \rightarrow \Sigma$ is a group homomorphism onto Σ, then $\psi_{w}^{\Sigma} \in \operatorname{Inv}(D \rightarrow$ $\Sigma)$.
3. For a normal subgroup N of $\Delta, \psi_{w}^{\Delta / N} \in \operatorname{Inv}(D \rightarrow \Delta / N)$.

Proof. The first claim is obvious because if N is a subgroup of Δ, then each $g \in \mathcal{R}(D, N)$ belongs to $\mathcal{R}(D, \Delta)$ and each selector $\sigma: D \rightarrow N$ is also a selector $\sigma: D \rightarrow \Delta$.

Let $w=e_{1} e_{2} \ldots e_{k}$ with $e_{i} \in E_{2}(D)$, and assume then that $\alpha: \Delta \rightarrow \Sigma$ is a surjective group homomorphism. Let $g_{1} \in \mathcal{R}(D, \Sigma)$ and $\sigma_{1}: D \rightarrow \Sigma$ be arbitrary. Consider a $g \in \mathcal{R}(D, \Delta)$ that satisfies the equalities $\alpha(g(e))=$ $g_{1}(e)$ for all $e \in E_{2}(D)$. Such a g exists because α is onto Σ. Similarly, let $\sigma: D \rightarrow \Delta$ be a selector such that $\alpha(\sigma(x))=\sigma_{1}(x)$ for all $x \in D$. Now,

$$
\alpha\left(\psi_{w}^{\Delta}(g)\right)=\alpha\left(g\left(e_{1}\right) g\left(e_{2}\right) \ldots g\left(e_{k}\right)\right)=g_{1}\left(e_{1}\right) g_{1}\left(e_{2}\right) \ldots g_{1}\left(e_{k}\right)=\psi_{w}^{\Sigma}\left(g_{1}\right)
$$

and, similarly,

$$
\alpha\left(\psi_{w}^{\Delta}\left(g^{\sigma}\right)\right)=g_{1}^{\sigma_{1}}\left(e_{1}\right) \ldots g_{1}^{\sigma_{1}}\left(e_{k}\right)=\psi_{w}^{\Sigma}\left(g_{1}^{\sigma_{1}}\right) .
$$

By assumption ψ_{w}^{Δ} is a free invariant, and thus $\psi_{w}^{\Delta}(g)=\psi_{w}^{\Delta}\left(g^{\sigma}\right)$, which implies that $\psi_{w}^{\Sigma}\left(g_{1}\right)=\psi_{w}^{\Sigma}\left(g_{1}^{\sigma_{1}}\right)$ as required in Case (2).

Case (3) follows from Case (2), since every quotient Δ / N with respect to a normal subgroup N is a homomorphic image of the group Δ.

4.3 Graphs of words

In this section we present some general results connecting free invariants to graphs of words.

A variable function ψ_{w} need not follow the paths of $\Delta 2$-structures. We define now variable functions that are faithful also to the graphical presentation of inversive $\Delta 2$-structures.

A word $w \in M(D)$ is a closed walk of length n, if $w=e_{1} e_{2} \ldots e_{n}$, where $e_{i}=\left(x_{i}, x_{i+1}\right)$ for $i=1,2, \ldots, n-1$, and $e_{n}=\left(x_{n}, x_{1}\right)$ for some nodes $x_{i} \in D$. A closed walk

$$
t\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}, x_{1}\right)\left(x_{1}, x_{2}\right)\left(x_{2}, x_{0}\right)
$$

is called a triangle at x_{0}, if $x_{i} \neq x_{j}$ for each $i \neq j$. We also say that the empty word $1 \in M(D)$ is a (trivial) walk. For a fixed node $x_{0} \in D$, the set

$$
T_{D}^{x_{0}}=\left\{t\left(x_{0}, y, z\right) \mid x_{0}, y, z \in D \text { are distinct }\right\}
$$

is the bucket of triangles at x_{0}.
Theorem 7. Let $w \in M(D)$ a closed walk. Then $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ if and only if $\psi_{w}(g) \in Z(\Delta)$ for all $g \in \mathcal{R}(D, \Delta)$. In particular, if Δ is abelian, then ψ_{w} is a free invariant of $\mathcal{R}(D, \Delta)$.

Proof. First of all, if $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$, then by Theorem $5(1), \psi_{w}(g) \in$ $Z(\Delta)$ for all $g \in \mathcal{R}(D, \Delta)$.

Let then $w=\left(x_{1}, x_{2}\right) \cdots\left(x_{n}, x_{1}\right) \in M(D)$ be any closed walk, $g \in$ $\mathcal{R}(D, \Delta)$ and let σ be a selector. Hence

$$
\psi_{w}(g)=g\left(x_{1}, x_{2}\right) g\left(x_{2}, x_{3}\right) \ldots g\left(x_{n-1}, x_{n}\right) g\left(x_{n}, x_{1}\right)
$$

and

$$
g^{\sigma}\left(x_{i}, x_{i+1(n)}\right)=\sigma\left(x_{i}\right) \cdot g\left(x_{i}, x_{i+1(n)}\right) \cdot \sigma\left(x_{i+1(n)}\right)^{-1}
$$

for each $i=1,2, \ldots, n$. After the reductions $\sigma\left(x_{i}\right) \sigma\left(x_{i}\right)^{-1}=1_{\Delta}$ for $i=$ $2, \ldots, n$, we obtain that $\psi_{w}\left(g^{\sigma}\right)$ is a conjugate of $\psi_{w}(g): \psi_{w}\left(g^{\sigma}\right)=\sigma\left(x_{1}\right)$. $\psi_{w}(g) \cdot \sigma\left(x_{1}\right)^{-1}$. Clearly, if $\psi_{w}(g) \in Z(\Delta)$, then $\psi_{w}\left(g^{\sigma}\right)=\psi_{w}(g)$. This proves the claim.

Example 9. Consider the dihedral group $D_{2 n}$ of $2 n$ elements $(n \geq 3)$,

$$
D_{2 n}=\left\{1, a, a^{2}, \ldots, a^{n-1}, b, b a, b a^{2}, \ldots, b a^{n-1}\right\}
$$

where 1 is the identity element of $D_{2 n}$. The group $D_{2 n}$ is the symmetry group of a regular n-gon of the Euclidean plane, and it is generated by a rotation a (with an angle of $2 \pi / n$) together with a reflection b with respect to a diagonal of the n-gon. These generators satisfy the following defining relations

$$
a^{n}=1, \quad b^{2}=1, \quad a b=b a^{-1}
$$

It is rather immediate that if n is odd, then $Z\left(D_{2 n}\right)$ is trivial, and hence in this case the group $\operatorname{Inv}(D \rightarrow \Delta)$ of free invariants is also trivial by Theorem 5 .

On the other hand, if n is even, then $Z\left(D_{2 n}\right)$ contains two elements, i.e., it is isomorphic to the cyclic group \mathbb{Z}_{2}. Let us consider the case $n=4$. In this case $Z\left(D_{8}\right)=\left\{1, a^{2}\right\}$. Assume that the domain D has at least three nodes, and let w be any closed walk. We claim that the variable function $\psi_{w^{2}}$ is a free invariant. Here w^{2} is the closed walk that traverses w twice around. Indeed, let g be an inversive $\Delta 2$-structure. Then

$$
\psi_{w^{2}}(g)=\left(\psi_{w}(g)\right)^{2}
$$

and it is easy to check that for all $c \in D_{8}, c^{2}=1$ or a^{2}. Therefore $\psi_{w^{2}}(g) \in$ $Z\left(D_{8}\right)$ for all $g \in \mathcal{R}(D, \Delta)$, and thus $\psi_{w^{2}}$ is a free invariant by Theorem 7 .

Figure 8: The supporting graph $G(w)$ of $w=e_{12} e_{45} e_{67} e_{32} e_{23} e_{56} e_{74}$

Let $w=\left(x_{1}, y_{1}\right) \ldots\left(x_{n}, y_{n}\right) \in M(D)$ be a word. The supporting graph of w is the undirected graph $G(w)=(D, E(w))$, where the set of edges is

$$
E(w)=\left\{\left(x_{i}, y_{i}\right),\left(y_{i}, x_{i}\right) \mid i=1,2, \ldots, n\right\}
$$

For a connected component C of $G(w)$ let $\alpha_{C}: M(D) \hookrightarrow M(D)$ be the homomorphism such that

$$
\alpha_{C}((x, y))= \begin{cases}(x, y), & \text { if } x, y \in C \\ 1, & \text { otherwise }\end{cases}
$$

The word $w_{C}=\alpha_{C}(w)$ is called a connected component of w. If $w=w_{C}$ for a connected component w_{C} of w, then w is said to be connected.

Example 10. Let $D=\left\{x_{1}, \ldots, x_{7}\right\}$, and denote again $e_{i j}=\left(x_{i}, x_{j}\right)$ for each $i \neq j$. If $w=e_{12} e_{45} e_{67} e_{32} e_{23} e_{56} e_{74}$, then the graph $G(w)$ of w is in Fig. 8. The connected components of w are $w_{1}=e_{12} e_{32} e_{23}$ ($\equiv e_{12}$) and $w_{2}=e_{45} e_{67} e_{56} e_{74}$.

Note that the graph $G(w)$ clearly depends on the word $w \in M(D)$ and hence the above definition does not define graphs for the functions $\psi_{w} \in \operatorname{Var}(D \rightarrow \Delta)$.

The connected components of words representing invariants provide smaller words for invariants:

Theorem 8. If ψ_{w} is a free invariant, then so is $\psi_{w_{C}}$ for each connected component w_{C} of w.

Proof. Assume that $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ for $w \in M(D)$, and let w_{C} be a connected component of w. For a selector σ define a new selector σ_{C} by

$$
\sigma_{C}(x)= \begin{cases}\sigma(x) & \text { if } x \in C, \\ 1_{\Delta} & \text { if } x \notin C .\end{cases}
$$

Clearly, $\psi_{w_{C}}\left(g^{\sigma}\right)=\psi_{w_{C}}\left(g^{\sigma_{C}}\right)$, since only the nodes $x \in C$ occur in the variables of w_{C}. Moreover, let $g_{1}: E_{2}(D) \rightarrow \Delta$ be defined by

$$
g_{1}(x, y)= \begin{cases}g(x, y) & \text { if } x, y \in C \\ 1_{\Delta} & \text { if } x \notin C \text { or } y \notin C\end{cases}
$$

Clearly, $\psi_{w_{C}}(g)=\psi_{w}\left(g_{1}\right)$ and hence $\psi_{w_{C}}(g)=\psi_{w}\left(g_{1}^{\sigma_{C}}\right)$, since ψ_{w} is a free invariant. Finally, $\psi_{w}\left(g_{1}^{\sigma_{C}}\right)=\psi_{w_{C}}\left(g^{\sigma_{C}}\right)$ by the definition of σ_{C}, and thus $\psi_{w_{C}}\left(g^{\sigma}\right)=\psi_{w_{C}}(g)$ as required.

For an abelian group Δ we can prove also the converse of Theorem 8. Indeed, each $\psi_{w} \in \operatorname{Var}(D \rightarrow \Delta)$ is a product $\psi_{w}=\psi_{w_{C_{1}}} \psi_{w_{C_{2}}} \ldots \psi_{w_{C_{k}}}$, where $w_{C_{1}}, w_{C_{2}}, \ldots, w_{C_{k}}$ are the connected components of w. Since $\operatorname{Inv}(D \rightarrow \Delta)$ is a group, we have shown

Theorem 9. Let Δ be an abelian group and $w \in M(D)$. Then $\psi_{w} \in$ Inv $(D \rightarrow \Delta)$ if and only if $\psi_{w_{C}} \in \operatorname{Inv}(D \rightarrow \Delta)$ for all connected components w_{C} of w.

4.4 Verbal identities

We note first that if $w \in M(D)$ is a verbal identity of a group Δ, then $\alpha(w)=1_{\Delta}$ for all homomorphisms $\alpha: M(D) \hookrightarrow \Delta$, and hence, by Theorem $3, g^{b}(w)=1_{\Delta}$ for all $g \in \mathcal{R}(D, \Delta)$. Therefore $w \equiv 1$, and $\psi_{w}=\psi_{1}$ is the trivial free invariant.

The following result is a straightforward corollary to Theorem 6(3) and the fact that for all $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta), \psi_{w}(g) \in Z(\Delta)$.

Theorem 10. If $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$, then the word $w \in M(D)$ is a verbal identity of the quotient $\Delta / Z(\Delta)$.

The variable functions represented by closed walks are graphically most interesting, and for these also the converse of Theorem 10 holds.

Theorem 11. Let $w \in M(D)$ be a closed walk. Then $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ if and only if w is a verbal identity of $\Delta / Z(\Delta)$.

Proof. Let us denote $Z=Z(\Delta)$ for short, and assume w is a verbal identity of the quotient Δ / Z. Hence $\alpha(w)=1_{\Delta / Z}$ for all homomorphisms $\alpha: M(D) \rightarrow \Delta / Z$.

Let $g \in \mathcal{R}(D, \Delta)$, and define $\alpha: M(D) \hookrightarrow \Delta / Z$ by $\alpha(u)=g^{b}(u) Z$. Clearly, α is a homomorphism, and $Z=1_{\Delta / Z}=\alpha(w)=g^{b}(w) Z$. Hence $\psi_{w}(g)=g^{\mathrm{b}}(w) \in Z$, and so $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ by Theorem 7 .

In the other direction the claim follows directly from Theorem 10.

Theorem 11 is an improvement of the statement for abelian groups in Theorem 7 , since if Δ is abelian, then $Z(\Delta)=\Delta$ and $\Delta / Z(\Delta)$ is a trivial group, for which all words are verbal identities; in particular, the closed walks are verbal identities.

Example 11. Consider the quaternion group Q_{8} generated by two elements a and b, and which is subject to the relations

$$
a^{4}=1, b^{2}=a^{2}, b a=a^{3} b .
$$

The group Q_{8} consists of the following eight elements: $1, a, a^{2}, a^{3}, b, a b, a^{2} b$ and $a^{3} b$, and it is a nonabelian group. Usually, Q_{8} is represented as a group of unit coordinate vectors (in a four-dimensional vector space), in which the elements are $-1,1, i,-i, j,-j, k,-k$ and they satisfy the following relations:

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=k=-j i, \quad j k=i=-k j, \quad k i=j=-k j,
$$

or Q_{8} is represented as a group of matrices generated by

$$
A=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

over complex numbers. The center of Q_{8} consists of two elements: $Z\left(Q_{8}\right)=$ $Z=\left\{1, a^{2}\right\}$, and the quotient Q_{8} / Z is a four-element abelian group. The right cosets are $Z, a Z, b Z$ and $a b Z$. Further, the elements of Q_{8} / Z are all of order two. Therefore for any closed walk $w, \psi_{w^{2}}$ is a free invariant.

In the next theorem we relate the free invariants ψ_{w} to special verbal identities of the group Δ itself. These results, although more general and more restrictive, are less appealing than the simple characterization in Theorem 11 for closed walks.

We denote $D^{ \pm 1}=D \cup D^{-1}$, where $D^{-1}=\left\{x^{-1} \mid x \in D\right\}$ is disjoint from D, and let

$$
W(D)=E_{2}(D) \cup D \cup D^{-1}
$$

be an alphabet with the natural involution. Consider the free monoid $M(W(D))$ with (the natural) involution generated by $W(D)$. Further, let $\gamma: M(D) \hookrightarrow M(W(D))$ be the homomorphism, which comes defined by

$$
\gamma((x, y))=x \cdot(x, y) \cdot y^{-1}
$$

Theorem 12. Let Δ be a group.

1. Two words $w_{1}, w_{2} \in M(D)$ are equivalent over Δ if and only if $w_{1} w_{2}^{-1}$ is a verbal identity of Δ.
2. For a word $w \in M(D), \psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ if and only if the word $\gamma(w) w^{-1}$ is a verbal identity of Δ.
3. If $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ for a word $w=e_{1} e_{2} \ldots e_{n}$ with $e_{i}=\left(x_{i}, y_{i}\right)$, then the word $x_{1} y_{1}^{-1} x_{2} y_{2}^{-1} \ldots x_{n} y_{n}^{-1}$ over $D^{ \pm 1}$ is a verbal identity of Δ.

Proof. By definition and Theorem 3, $w_{1} \equiv w_{2}$ if and only if $\alpha\left(w_{1}\right)=\alpha\left(w_{2}\right)$, i.e., $\alpha\left(w_{1} w_{2}^{-1}\right)=1_{\Delta}$, for all homomorphisms $\alpha: M(D) \hookrightarrow \Delta$. Hence, by the definition of verbal identity, Case (1) of the claim follows.

Let then $w=e_{1} e_{2} \ldots e_{n} \in M(D)$ with $e_{i}=\left(x_{i}, y_{i}\right)$. Hence $\gamma(w)=$ $x_{1} e_{1} y_{1}^{-1} \cdots \cdots x_{n} e_{n} y_{n}^{-1}$. Now, $\gamma(w) w^{-1}$ is a verbal identity of Δ if and only if for all homomorphisms $\alpha: M(W(D)) \hookrightarrow \Delta, \alpha\left(\gamma(w) w^{-1}\right)=1_{\Delta}$ if and only if $\alpha \gamma(w)=\alpha(w)$. Here

$$
\begin{aligned}
\alpha(\gamma(w)) & =\alpha\left(x_{1}\right) \alpha\left(e_{1}\right) \alpha\left(y_{1}\right)^{-1} \cdots \cdots \alpha\left(x_{n}\right) \alpha\left(e_{n}\right) \alpha\left(y_{n}\right)^{-1} \\
& =\sigma\left(x_{1}\right) g\left(e_{1}\right) \sigma\left(y_{1}\right)^{-1} \cdots \cdots \sigma\left(x_{n}\right) g\left(e_{n}\right) \sigma\left(y_{n}\right)^{-1}=\psi_{w}\left(g^{\sigma}\right) ; \\
\alpha(w) & =\alpha\left(e_{1}\right) \alpha\left(e_{2}\right) \cdots \cdots \alpha\left(e_{n}\right)=g\left(e_{1}\right) g\left(e_{2}\right) \ldots g\left(e_{n}\right)=\psi_{w}(g),
\end{aligned}
$$

where the selector σ and the inversive g are defined by

$$
\begin{equation*}
\sigma=\alpha \mid D \quad \text { and } \quad g=\alpha \mid E_{2}(D) . \tag{2}
\end{equation*}
$$

Claim (2) follows when we observe that each selector σ and $g \in \mathcal{R}(D, \Delta)$ define a homomorphism $\alpha: M(W(D)) \hookrightarrow \Delta$ by the conditions (2).

If $u \in M(W(D))$ is a verbal identity of a group Δ and $\alpha: M(W(D)) \hookrightarrow$ $M(W(D))$ is an endomorphism, then $\alpha(u)$ is also a verbal identity of Δ, because for each homomorphism $\beta: M(W(D)) \hookrightarrow \Delta$, also $\beta \alpha$ is a homomorphism $M(W(D)) \hookrightarrow \Delta$. Letting $\alpha: M(W(D)) \hookrightarrow M(W(D))$ be the endomorphism such that $\alpha(x)=x$ for all $x \in D^{ \pm 1}$, and $\alpha(e)=1_{\Delta}$ for all $e \in E_{2}(D)$, we obtain Case (3) of the claim using Case (2).

5 Invariants on Abelian Groups

5.1 Independency of free invariants

We shall show that in the abelian case the invariants represented by the triangles at x_{0} form a 'complete' set of invariants.

We start with some general remarks on abelian invariants.
Clearly, in the abelian case, for $w_{1}, w_{2} \in M(D)$ we have $w_{1} w_{2} \equiv w_{2} w_{1}$. Hence the occurrences of the variables in $w \in M(D)$ can be freely permuted without violating invariant properties.

For an abelian group Δ the group $\operatorname{Inv}(D \rightarrow \Delta)$ of free invariants has properties that are independent of the 2 -structures. To see this let $w=$ $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$ be a word and $\sigma: D \rightarrow \Delta$ a selector. Then we have for all $g \in \mathcal{R}(D, \Delta)$,

$$
\begin{aligned}
\psi_{w}\left(g^{\sigma}\right) & =\sigma\left(x_{1}\right) g\left(x_{1}, y_{1}\right) \sigma\left(y_{1}\right)^{-1} \cdots \cdot \sigma\left(x_{n}\right) g\left(x_{n}, y_{n}\right) \sigma\left(y_{n}\right)^{-1} \\
& =\sigma\left(x_{1}\right) \sigma\left(y_{1}\right)^{-1} \cdots \cdots \sigma\left(x_{n}\right) \sigma\left(y_{n}\right)^{-1} \cdot \psi_{w}(g)
\end{aligned}
$$

and thus ψ_{w} is a free invariant if and only if $\sigma\left(x_{1}\right) \sigma\left(y_{1}\right)^{-1} \ldots \sigma\left(x_{n}\right) \sigma\left(y_{n}\right)^{-1}=$ 1_{Δ} for all selectors σ. Here the latter condition does not depend on g. Let us define for each selector σ a homomorphism $\bar{\sigma}: M(D) \rightarrow \Delta$ such that

$$
\left.\bar{\sigma}((x, y))=\sigma(x) \sigma(y)^{-1} \quad \text { for all }(x, y) \in E_{(} D\right)
$$

By the above observations we have then
Theorem 13. Let Δ be an abelian group. The following conditions are equivalent for a variable function ψ_{w} :

1. ψ_{w} is a free invariant of $\mathcal{R}(D, \Delta)$.
2. For each $g \in \mathcal{R}(D, \Delta)$ and for each selector $\sigma, \psi_{w}\left(g^{\sigma}\right)=\psi_{w}(g)$.
3. For each selector $\sigma, \bar{\sigma}(w)=1_{\Delta}$.
4. There exists a $g \in \mathcal{R}(D, \Delta)$ such that for all selectors $\sigma, \psi_{w}\left(g^{\sigma}\right)=$ $\psi_{w}(g)$.

By the condition (3) of Theorem 13, the free invariants are independent from the inversive $\Delta 2$-structures. Indeed, in order to verify that a variable function ψ_{w} is a free invariant, one needs only to check that for all selectors σ the corresponding homomorphism $\bar{\sigma}$ gives the identity on w.

5.2 Complete sets of invariants

Each triangle $t \in T_{D}^{x_{0}}$ is a closed walk, and so, by Theorem $7, t$ represents a free invariant $\psi_{t} \in \operatorname{Inv}(D \rightarrow \Delta)$ for abelian Δ. We shall show next that these invariants generate $\operatorname{Inv}(D \rightarrow \Delta)$.

Theorem 14. Let Δ be an abelian group and x_{0} an element of the domain D. Then $\operatorname{Inv}(D \rightarrow \Delta)$ is generated by the free invariants represented by the triangles at x_{0}.

Proof. Let $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ for a word $w=e_{1} e_{2} \ldots e_{n} \in M(D)$.
For each variable $e=(y, z)$ with $y \neq x_{0}$ and $z \neq x_{0}$ we have

$$
e \equiv\left(x_{0}, y\right)^{-1} \cdot\left(x_{0}, y\right)(y, z)\left(z, x_{0}\right) \cdot\left(z, x_{0}\right)^{-1}=\left(x_{0}, y\right)^{-1} \cdot t\left(x_{0}, y, z\right) \cdot\left(x_{0}, z\right)
$$

and because Δ is abelian, $w \equiv w_{0} w_{1}$, where w_{0} is a product of triangles at x_{0} and w_{1} consists of variables from the set $W=\left\{\left(x_{0}, y\right),\left(y, x_{0}\right) \mid y \neq\right.$ $\left.x_{0}\right\}$. By Theorem $7, \psi_{w_{0}} \in \operatorname{Inv}(D \rightarrow \Delta)$. Since $\psi_{w_{1}}=\psi_{w} \psi_{w_{0}}^{-1}$ and $\psi_{w} \in$ $\operatorname{Inv}(D \rightarrow \Delta)$, also $\psi_{w_{1}} \in \operatorname{Inv}(D \rightarrow \Delta)$. For the claim it is enough to show that $w_{1} \equiv 1$, since this implies that $w \equiv w_{0}$, i.e., $\psi_{w}=\psi_{w_{0}}$.

Using commutativity of Δ, w_{1} can be written in an equivalent form

$$
w_{1} \equiv e_{1}^{\epsilon_{1}} e_{2}^{\epsilon_{2}} \ldots e_{k}^{\epsilon_{k}}
$$

where for each $i=1,2, \ldots, k, \epsilon_{i} \in \mathbb{Z}$ and $e_{i}=\left(x_{0}, y_{i}\right)$ with $y_{i} \neq y_{j}$ for $i \neq j$.
Let $g_{1} \in \mathcal{R}(D, \Delta)$ be such that $g_{1}(e)=1_{\Delta}$ for each edge e. Hence $\psi_{w_{1}}\left(g_{1}\right)=1_{\Delta}$. For each $a \in \Delta$ and $i=1,2, \ldots, k$ define a selector $\sigma_{i, a}$ by $\sigma_{i, a}\left(y_{i}\right)=a^{-1}$ and $\sigma_{i, a}(y)=1_{\Delta}$ for $y \neq y_{i}$. We have then $\psi_{w_{1}}\left(g_{1}^{\sigma_{i, a}}\right)=a^{\epsilon_{i}}$ for all i and a. Since $\psi_{w_{1}} \in \operatorname{Inv}(D \rightarrow \Delta)$, we have that $a^{\epsilon_{i}}=1_{\Delta}$ for all $a \in \Delta$. This implies that $e_{i}^{\epsilon_{i}} \equiv 1$, and, consequently, $w_{1} \equiv 1$, which proves the claim.

Next we show that the triangles (at x_{0}) not only represent generators of $\operatorname{Inv}(D \rightarrow \Delta)$ but form a large enough set to characterize the equivalence relation $[g]=[h]$ between the inversive labeled 2 -structures on an abelian Δ.

A set W of invariants for $\mathcal{R}(D, \Delta)$ is said to be a complete, if W satisfies for all $g_{1}, g_{2} \in \mathcal{R}(D, \Delta)$ the condition: $\left[g_{1}\right]=\left[g_{2}\right]$ if and only if $\eta\left(g_{1}\right)=\eta\left(g_{2}\right)$ for all $\eta \in W$.

In the above definition the converse implication is always valid, that is, if $g_{1}^{\sigma}=g_{2}$ for a selector σ, then for every invariant η of $\mathcal{R}(D, \Delta), \eta\left(g_{2}\right)=$ $\eta\left(g_{1}^{\sigma}\right)=\eta\left(g_{1}\right)$. On the other hand, if a set of invariants W is complete and $\left[g_{1}\right] \neq\left[g_{2}\right]$ for two elements $g_{1}, g_{2} \in \mathcal{R}(D, \Delta)$, then there exists an invariant $\eta \in W$ such that $\eta\left(g_{1}\right) \neq \eta\left(g_{2}\right)$.

Theorem 15. Let Δ be an abelian group. For each $x_{0} \in D$ the bucket of triangles $T_{D}^{x_{0}}$ a complete set of invariants for $\mathcal{R}(D, \Delta)$.

Figure 9: $\Delta=\mathbb{Z}_{2}$

Proof. Let $g_{i} \in \mathcal{R}(D, \Delta)$ for $i=1,2$ be such that for all triangles $t=$ $t\left(x_{0}, y, z\right), \psi_{t}\left(g_{1}\right)=\psi_{t}\left(g_{2}\right)$. We have to show that $\left[g_{1}\right]=\left[g_{2}\right]$.

Define the selectors $\sigma_{i}, i=1,2$, as follows:

$$
\sigma_{i}\left(x_{0}\right)=1_{\Delta} \quad \text { and } \quad \sigma_{i}(y)=g_{i}\left(x_{0}, y\right) \quad \text { for all } y \neq x_{0}
$$

It follows that $g_{i}^{\sigma_{i}}\left(x_{0}, y\right)=1_{\Delta}$ for all $y \neq x_{0}$. On the other hand, each $t \in$ $T_{D}^{x_{0}}$ represents an invariant and thus $\psi_{t}\left(g_{1}^{\sigma_{1}}\right)=\psi_{t}\left(g_{1}\right)=\psi_{t}\left(g_{2}\right)=\psi_{t}\left(g_{2}^{\sigma_{2}}\right)$. However, if $t=t\left(x_{0}, y, z\right)$, then $\psi_{t}\left(g_{i}^{\sigma_{i}}\right)=g_{i}^{\sigma_{i}}(y, z)$ for $i=1,2$, and thus, by above, $g_{1}^{\sigma_{1}}(y, z)=g_{2}^{\sigma_{2}}(y, z)$ for all $(y, z) \in E_{2}(D)$ with $y \neq x$ and $z \neq x$. Consequently, $g_{1}^{\sigma_{1}}=g_{2}^{\sigma_{2}}$, and hence $\left[g_{1}\right]=\left[g_{2}\right]$ as claimed.

Theorem 15 allows the use of 'local' triangles for checking whether or not $\left[g_{1}\right]=\left[g_{2}\right]$. Indeed, if $\left[g_{1}\right] \neq\left[g_{2}\right]$, then we can find a (common) triangle X in g_{1} and g_{2}, for which $\left[s u b_{g_{1}}(X)\right] \neq\left[\operatorname{sub}_{g_{2}}(X)\right]$.

Example 12. Let $\Delta=\mathbb{Z}_{2}$ and g_{1}, g_{2}, g_{3} the structures from Fig. 9.
Consider the triangle $t=t(1,2,3)$. We have $\psi_{t}\left(g_{1}\right)=1 \neq 0=\psi_{t}\left(g_{2}\right)$, and hence by the above theorem there does not exist a selector σ for which $g_{2}=g_{1}^{\sigma}$.

On the other hand, we observe that for the triangles $t=t(1,2,3)$ and $t=t(1,3,4), \psi_{t}\left(g_{1}\right)=\psi_{t}\left(g_{3}\right)$, and hence $\psi_{t}\left(g_{1}\right)=\psi_{t}\left(g_{3}\right)$ for all $t \in T_{D}^{1}$. Hence, by Theorem 15, $\left[g_{1}\right]=\left[g_{3}\right]$.

6 Invariants on Nonabelian Groups

6.1 Commutators

In this section Δ need not be abelian. We shall refine some of the techniques of [11] for verbal subgroups in order to prove that $\operatorname{Inv}(D \rightarrow \Delta)$ is generated by the variable functions represented by certain characteristic powers of the triangles $t\left(x_{0}, y, z\right)$ at a fixed $x_{0} \in D$ together with the invariants represented by commutator words.

In order to simplify the statements and proofs of our results, we will assume in this section that $|D|>2$.

We start by recalling some group theoretical preliminaries on commutators.

A word $[u, v]=u^{-1} v^{-1} u v$ is a commutator of the words $u, v \in V^{*}$, and the submonoid of V^{*} generated by the commutators is called the commutator monoid of V^{*} and it is denoted by $[V]^{*}$. The elements of $[V]^{*}$ are commutator words. Hence each commutator word $w \in[V]^{*}$ is a finite catenation, $\left[u_{1}, v_{1}\right]\left[u_{2}, v_{2}\right] \ldots\left[u_{n}, v_{n}\right]$, of commutators.

From the definition of a commutator we obtain that for all $u, v \in V^{*}$, $u v={ }_{F} v u[u, v]$ and hence

$$
w_{1} \cdot u v \cdot w_{2}={ }_{F} w_{1} \cdot v u \cdot w_{2}\left[[u, v], w_{2}\right] \quad\left(w_{1}, u, v, w_{2} \in V^{*}\right),
$$

which implies the following result.
Lemma 3. Let $w=w_{1} w_{2} \ldots w_{n}$ be a word with subwords $w_{i} \in V^{*}, i=$ $1,2, \ldots, n$, and let π be a permutation of the index set $\{1,2, \ldots, n\}$. Then there exists a word $u_{\pi} \in[V]^{*}$ such that $w={ }_{F} w_{\pi(1)} w_{\pi(2)} \ldots w_{\pi(n)} \cdot u_{\pi}$.

For a group Δ the element $[a, b]=a^{-1} b^{-1} a b$ is a commutator of the elements a and b of Δ. Evidently, $[a, b]=1_{\Delta}$ if and only if $a b=b a$ in Δ. The subgroup generated by the commutators is called the commutator subgroup (or derived group) of Δ.

As shown below in Example 13, unlike in the abelian case, in the general case the group $\operatorname{Inv}(D \rightarrow \Delta)$ of free invariants depends on the structure of the group Δ, i.e., $\operatorname{Inv}(D \rightarrow \Delta)$ depends on the (special) identities that are satisfied in Δ. This was also witnessed by Theorems 12 and 5 . In particular, if the center of Δ is trivial, then there are no nontrivial free invariants.

Example 13. Let V be a set of variables with an involution, and assume G is a group which satisfies a verbal identity $u \in V^{*}$. Let A be an abelian group, and $\Delta=G \times A$ the direct product of G and A with projections $\pi_{1}: \Delta \rightarrow G$ and $\pi_{2}: \Delta \rightarrow A$.

Further, let $\beta: V^{*} \rightarrow M(D)$ be any homomorphism which maps the variables to triangles (at a fixed node x_{0}), $\beta\left(v_{i}\right)=t_{i} \in T_{D}^{x_{0}}$ for all $v_{i} \in V$. Define a word $w \in M(D)$ by $w=\beta(u)$. Hence w is a product of triangles. We show that $\psi_{w} \in \operatorname{Var}(D \rightarrow \Delta)$ is a free invariant.

First of all, for each $g \in \mathcal{R}(D, \Delta)$ we have

$$
\psi_{w}(g)=g^{b}(w)=g^{b} \beta(u)=\left(\pi_{1} g^{b} \beta(u), \pi_{2} g^{b} \beta(u)\right)
$$

where $\pi_{1} g^{b} \beta$ is a homomorphism from V^{*} into G and hence $\pi_{1} g^{b} \beta(u)=1_{G}$ by our assumption on u. Clearly, $\psi_{w}(g) \in Z(\Delta)$ for all $g \in \mathcal{R}(D, \Delta)$.

For a selector σ we have $\psi_{t_{i}}\left(g^{\sigma}\right)=\sigma\left(x_{0}\right) \psi_{t_{i}}(g) \sigma\left(x_{0}\right)^{-1}$ and, consequently, $\psi_{w}\left(g^{\sigma}\right)=\sigma\left(x_{0}\right) \psi_{w}(g) \sigma\left(x_{0}\right)^{-1}$, where, by above, $\pi_{1} \psi_{w}\left(g^{\sigma}\right)=1_{G}$, and $\pi_{2} \psi_{w}\left(g^{\sigma}\right)=\pi_{2} \psi_{w}(g)$, since A is abelian and hence $\psi_{w}\left(g^{\sigma}\right)=\psi_{w}(g)$ by Theorem 14. It follows that $\psi_{w}\left(g^{\sigma}\right)=\psi_{w}(g)$ as required.

6.2 Central characters of $\operatorname{Inv}(D \rightarrow \Delta)$

Next we shall show that if $\mathcal{R}(D, \Delta)$ has nontrivial free invariants, then it is restricted in the following sense: there is a specific nonnegative integer $d=d_{\Delta}$, called the central character of Δ, for which $\Delta^{d} \subseteq Z(\Delta)$. Here Δ^{d} is the subgroup of Δ generated by the elements of $\left\{a^{d} \mid a \in \Delta\right\}$.

Recall that the number of occurrences of a variable e in a word w is denoted by $|w|_{e}$. Hence $|w|_{e}=0$ in case v does not occur in w.

The exponent number of $w \in M(D)$ on $e \in E_{2}(D)$ is defined to be the integer

$$
\varepsilon_{e}(w)=|w|_{e}-|w|_{e^{-1}}
$$

In particular, if e and e^{-1} do not occur in the word w, then $\varepsilon_{e}(w)=0$. It is also immediate that for all words $w, \varepsilon_{e}(w)=-\varepsilon_{e^{-1}}(w)$.

Let $w \in M(D)$, and define $d_{w}=0$, if $\varepsilon_{e}(w)=0$ for all $e \in E_{2}(D)$. Otherwise, let,

$$
d_{w}=\operatorname{gcd}\left(\varepsilon_{e}(w) \mid e \in E_{2}(D), \varepsilon_{e}(w)>0\right)
$$

be the greatest common divisor of the positive exponent numbers of w.
Example 14. Let $D=\left\{x_{1}, x_{2}, x_{3}\right\}$ and denote again $e_{i j}=\left(x_{i}, x_{j}\right)$. For the word $w=e_{12} e_{23} e_{23} e_{21}, \varepsilon_{e_{12}}(w)=0, \varepsilon_{e_{23}}(w)=2, \varepsilon_{e_{13}}(w)=0$. In this case $d_{w}=2$.

If u is a commutator word, then clearly $d_{u}=0$. For the proof of the following result we refer again to [11, p.79].

Lemma 4. Let $w \in M(D)$ be a word. Then $w={ }_{F}$ u for a commutator word u if and only if $d_{w}=0$.

We define now $d_{\Delta}=0$, if for all $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta), d_{w}=0$. Otherwise, let

$$
d_{\Delta}=\operatorname{gcd}\left(d_{w} \mid d_{w} \geq 1, \psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)\right)
$$

The integer d_{Δ} is called the central character of $\operatorname{Inv}(D \rightarrow \Delta)$.
Clearly, the central character is well defined, and $d_{\Delta}=0$ if and only if each free invariant $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ is represented by commutator words only. It is also immediate that if $d_{\Delta} \geq 1$, then there exists a finite set, $w_{1}, w_{2}, \ldots, w_{r}$, of words such that $d_{\Delta}=\operatorname{gcd}\left(d_{w_{1}}, d_{w_{2}}, \ldots, d_{w_{r}}\right)$.

If Δ is a finite group, then there exists a word, e.g. $w=e^{|\Delta|}$ for an $e \in$ $E_{2}(D)$, representing an invariant (in fact, $w \equiv 1$), for which $|\Delta| \geq d_{w}>0$, and thus in this case $1 \leq d_{\Delta} \leq|\Delta|$.

The central character is related to the center of the group Δ as follows.
Theorem 16. For all groups $\Delta, \Delta^{d_{\Delta}} \subseteq Z(\Delta)$. Moreover, if for each $a \in \Delta$, $a^{k}=1_{\Delta}$ for some $k \geq 1$, then d_{Δ} divides k. In particular, if Δ is finite, then d_{Δ} divides the order $|\Delta|$ of Δ.

Proof. If $d_{\Delta}=0$, then there is nothing to prove. Suppose then that $d_{\Delta} \geq 1$, and let ψ_{w} be a free invariant. Assume that $E_{2}(D)=\left\{e_{1}, \ldots, e_{n}\right\}$.

We shall first show that $a^{d_{w}} \in Z(\Delta)$ for each $a \in \Delta$. First of all, by the definition of d_{w}, there are integers $m_{i} \in \mathbb{Z}$ such that $d_{w}=\sum_{i=1}^{n} m_{i}$. $\varepsilon_{e_{i}}(w)$. Moreover, for each $a \in \Delta$ and $i=1,2, \ldots, n$, define an inversive $\Delta 2$-structure $g_{a, i}$ by

$$
g_{a, i}(x, y)= \begin{cases}a & \text { if } e_{i}=(x, y) \\ a^{-1} & \text { if } e_{i}^{-1}=(y, x) \\ 1 & \text { otherwise }\end{cases}
$$

Then obviously $\psi_{w}\left(g_{a, i}\right)=a^{\varepsilon_{e_{i}}(w)}$ and, by Theorem $5, a^{\varepsilon_{e_{i}}(w)} \in Z(\Delta)$. Consequently,

$$
a^{d_{w}}=a^{\sum_{i=1}^{n} m_{i} \cdot \varepsilon_{e_{i}}(w)} \in Z(\Delta)
$$

By assumption, $d_{\Delta}>0$, and hence there are a finite number of words $w_{i}, i=1,2, \ldots, r$, with $\psi_{w_{i}} \in \operatorname{Inv}(D \rightarrow \Delta)$ such that $d_{\Delta}=\operatorname{gcd}\left(d_{1}, \ldots, d_{r}\right)$, where $d_{i}=d_{w_{i}}$, for short. Hence there are integers s_{i} such that

$$
d_{\Delta}=\sum_{i=1}^{r} s_{i} \cdot d_{i}
$$

By above, for all $a \in \Delta, a^{d_{i}} \in Z(\Delta)$ and thus also $a^{d_{\Delta}} \in Z(\Delta)$. Hence $\Delta^{d_{\Delta}} \subseteq Z(\Delta)$.

For the second claim we need only to note that if $a^{k}=1_{\Delta}$ for all $a \in \Delta$, then $w=e^{k} \equiv 1$ represents an invariant for all $e \in E_{2}(D)$, and thus, by the definition of d_{Δ}, d_{Δ} divides k.

In particular, if $d_{w}=1$ for a free invariant ψ_{w}, then Δ is necessarily an abelian group.

Theorem 17. For the central character d_{Δ} of $\operatorname{Inv}(D \rightarrow \Delta), d_{\Delta}=1$ if and only if Δ is an abelian group.

Proof. The claim follows from the preceding theorem and from the fact that a triangle word $t=\left(x_{1}, x_{2}\right)\left(x_{2}, x_{3}\right)\left(x_{3}, x_{1}\right)$ represents an invariant for which $d_{t}=1$, whenever $|D| \geq 3$, and hence $d_{\Delta}=1$ for all abelian groups Δ.

For a triangle t and a positive integer d, t^{d} is a d-triangle, where t^{d} is a catenation of t with itself d times. By Theorem 7 and Theorem 16 we have the following lemma.

Lemma 5. Let $d=d_{\Delta}$ be the central character of $\operatorname{Inv}(D \rightarrow \Delta)$ for the group Δ. Then $\psi_{t}^{d}\left(=\psi_{t^{d}}\right)$ is an invariant for all triangles t.

Proof. If $d=0$, then $\psi_{t}^{d}=\psi_{1}$ and the claim is true. Assume then that $d \geq 1$.

Let $g \in \mathcal{R}(D, \Delta)$ and a selector σ be arbitrary. For a triangle $t=t(x, y, z)$ we have $\psi_{t}\left(g^{\sigma}\right)=\sigma(x) \psi_{t}(g) \sigma(x)^{-1}$ and hence $\psi_{t}^{d}\left(g^{\sigma}\right)=\sigma(x) \psi_{t}^{d}(g) \sigma(x)^{-1}$. By Theorem $16, \psi_{t}^{d}(g) \in Z(\Delta)$ and thus $\psi_{t}^{d}\left(g^{\sigma}\right)=\psi_{t}^{d}(g)$, which proves the claim.

6.3 A characterization theorem

The following theorem gives our main characterization result on invariants for nonabelian groups. It reduces the free invariants into products of d triangles and commutator words. This theorem is weak in the sense that we do not characterize the free invariants ψ_{u} of the commutator words u.

Theorem 18. Let Δ be a group and $d=d_{\Delta}$ be the central character of $\operatorname{Inv}(D \rightarrow \Delta)$. For a word $w \in M(D), \psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ if and only if $\psi_{w}=\psi_{s} \cdot \psi_{u}$ for a product s of d-triangles and a commutator word u representing an invariant.

Proof. If $\psi_{w}=\psi_{s} \cdot \psi_{u}$, where ψ_{s} and ψ_{u} are free invariants, then ψ_{w} is a free invariant, because the group $\operatorname{Inv}(D \rightarrow \Delta)$ is closed under products.

In the other direction, let $\psi_{w} \in \operatorname{Inv}(D \rightarrow \Delta)$ for a word $w=e_{1} e_{2} \ldots e_{n} \in$ $M(D)$, and let $x_{0} \in D$ be a fixed node.

If $d=0$, then by Lemma $4, w \equiv u$ for a commutator word u, and the claim is obvious in this case. Let us assume that $d \geq 1$. We write $T=T_{D}^{x_{0}}$, for short.

For each $e=(y, z)$ with $y \neq x_{0}$ and $z \neq x_{0}$, we have

$$
e \equiv\left(x_{0}, y\right)^{-1} \cdot\left(x_{0}, y\right)(y, z)\left(z, x_{0}\right) \cdot\left(z, x_{0}\right)^{-1} \equiv\left(y, x_{0}\right) \cdot t\left(x_{0}, y, z\right) \cdot\left(x_{0}, z\right)
$$

Let w_{0} be a word obtained from w by substituting each (y, z) by the sequence $\left(y, x_{0}\right) t\left(x_{0}, y, z\right)\left(x_{0}, z\right)$ for $y \neq x_{0}$ and $z \neq x_{0}$. Consequently, $w \equiv w_{0}$, and the word w_{0} will be written as $w_{0}=u_{1} u_{2} \ldots u_{m} \in M(D)$, where for each $i=1,2, \ldots, m$ either $u_{i} \in W=\left\{\left(x_{0}, y\right),\left(y, x_{0}\right) \mid y \in D, y \neq x_{0}\right\}$ or $u_{i} \in T$.

Consider, for a while, w_{0} as a word over the alphabet $W^{ \pm 1} \cup T^{ \pm 1}$, where the inverse of a triangle $t=t\left(x_{0}, y, z\right)$ is the triangle $t^{-1}=t\left(x_{0}, z, y\right)$. Let $\left\{y_{1}, \ldots, y_{k}\right\}$ be a strict linear ordering of the set $D \backslash\left\{x_{0}\right\}$, and denote

$$
\left\{t_{1}, t_{2}, \ldots, t_{r}\right\}=\left\{t\left(x_{0}, y_{i}, y_{j}\right) \mid i<j\right\}
$$

and $w_{i}=\left(x_{0}, y_{i}\right)$ for $i=1,2, \ldots, k$.
Further, let ε_{i} be the exponent number of w_{0} on $t_{i} \in T$, and γ_{i} the exponent number of w_{0} on $w_{i}=\left(x_{0}, y_{i}\right)$ with respect to this new set $W^{ \pm 1} \cup$ $T^{ \pm 1}$ of variables.

By the formation of the triangles $t_{i}=t\left(x_{0}, y, z\right)$, it is evident that ε_{i} equals the exponent number of w on $(y, z) \in E_{2}(D)$. Hence, by Lemma 5 , the words $t_{i}^{\varepsilon_{i}}$ represent invariants of $\mathcal{R}(D, \Delta)$, because for each i either $\varepsilon_{i}=0$ or d divides ε_{i}.

Let π be a permutation of the index set $\{1,2, \ldots, m\}$ of $w_{0}=u_{1} u_{2} \ldots u_{m}$ such that

$$
u_{\pi(1)} u_{\pi(2)} \ldots u_{\pi(m)}=t_{1}^{\varepsilon_{1}} t_{2}^{\varepsilon_{2}} \ldots t_{r}^{\varepsilon_{r}} \cdot w_{1}^{\gamma_{1}} w_{2}^{\gamma_{2}} \ldots w_{k}^{\gamma_{k}}
$$

and denote $s_{0}=t_{1}^{\varepsilon_{1}} t_{2}^{\varepsilon_{2}} \ldots t_{r}^{\varepsilon_{r}} \cdot w_{1}^{\gamma_{1}} w_{2}^{\gamma_{2}} \ldots w_{k}^{\gamma_{k}}$ and $s=t_{1}^{\varepsilon_{1}} t_{2}^{\varepsilon_{2}} \ldots t_{r}^{\varepsilon_{r}}$. By above, $\psi_{t_{i}}^{\varepsilon_{i}} \in \operatorname{Inv}(D \rightarrow \Delta)$, and hence $\psi_{s} \in \operatorname{Inv}(D \rightarrow \Delta)$ as a product of d-triangles.

By Lemma 3, there exists a commutator word $u \in\left[W^{ \pm 1} \cup T^{ \pm 1}\right]^{*}$ such that

$$
w_{0} \equiv s \cdot w_{1}^{\gamma_{1}} w_{2}^{\gamma_{2}} \ldots w_{k}^{\gamma_{k}} \cdot u \equiv s_{0} \cdot u
$$

Now, $\psi_{s} \in \operatorname{Inv}(D \rightarrow \Delta)$, and hence the word $s_{1}=w_{1}^{\gamma_{1}} w_{2}^{\gamma_{2}} \ldots w_{k}^{\gamma_{k}} \cdot u$ represents an invariant, since $\psi_{s_{1}}=\psi_{s}^{-1} \psi_{w_{0}}$.

Let $g \in \mathcal{R}(D, \Delta)$ be defined by $g(e)=1_{\Delta}$ for all $e \in E_{2}(D)$. Now, trivially, $\psi_{s_{1}}(g)=1_{\Delta}$. Furthermore, for each $i=1,2, \ldots, k$ and $a \in \Delta$, define a selector $\sigma_{i, a}$ by $\sigma_{i, a}\left(y_{i}\right)=a$ and $\sigma_{i, a}(z)=1_{\Delta}$ for all other nodes $z \in D$. We have immediately that for the commutator word $u, \psi_{u}\left(g^{\sigma_{i, a}}\right)=$ 1_{Δ}, since only the element a is involved in the labels of $g^{\sigma_{i, a}}$. Further, for $w_{i}=\left(x_{0}, y_{i}\right)$ we have $\psi_{w_{i}}^{\gamma_{i}}\left(g^{\sigma_{i, a}}\right)=a^{-\gamma_{i}}$ and $\psi_{w_{j}}^{\gamma_{j}}\left(g^{\sigma_{i, a}}\right)=1_{\Delta}$ for $j \neq i$. By combining these results we obtain that $\psi_{s_{1}}\left(g^{\sigma_{i, a}}\right)=a^{-\gamma_{i}}$. Since $\psi_{s_{1}}$ is an invariant, $a^{-\gamma_{i}}=\psi_{s_{1}}(g)=1_{\Delta}$. In conclusion, we have shown that $a^{\gamma_{i}}=1_{\Delta}$ for all $i=1,2, \ldots, k$ and $a \in \Delta$, from which it follows that $w_{i}^{\gamma_{i}} \equiv 1$ for $i=1,2, \ldots, k$, and thus, by the definition of $s_{1}, s_{1} \equiv u$, that is, $\psi_{u}=\psi_{s_{1}}$ is an invariant represented by a commutator word u. Finally, $w \equiv w_{0} \equiv s u$, which completes the proof.

The main characterization result for abelian groups, Theorem 14, is a special case of Theorem 18, because if Δ is abelian, then $d_{\Delta}=1$ by Lemma 17 , and every commutator word is equivalent to the empty word.

Note that, by Example 8.1, the d_{Δ}-triangles (or the commutator words representing invariants) do not suffice alone to produce the free invariants in $\operatorname{Inv}(D \rightarrow \Delta)$.

We end this section by showing that the free invariants can be specified in a balanced form.

Denote $V(x)=\{(x, y) \mid y \neq x\}$ the set of all variables which contain the node $x \in D$ in the first position. Note that $(x, y)^{-1} \notin V(x)$ for all $y \in D$. For a word $w \in M(D)$ define the exponent number of w on the node $x \in D$ by

$$
\varepsilon_{x}(w)=\sum_{e \in V(x)} \varepsilon_{e}(w) .
$$

Theorem 19. Let ψ_{w} is a free invariant for a word $w \in M(D)$. Then $a^{\varepsilon_{x}(w)}=1_{\Delta}$ holds for each $a \in \Delta$ and $x \in D$. Moreover, there exists a word w_{0} such that $w_{0} \equiv w$ and $\varepsilon_{x}\left(w_{0}\right)=0$ for each $x \in D$.
Proof. Let us fix a node $x \in D$. Consider the selectors $\sigma_{a}, a \in \Delta$, for which $\sigma_{a}(x)=a$ and $\sigma_{a}(z)=1_{\Delta}$ for all other nodes $z \in D$. Let $g \in \mathcal{R}(D, \Delta)$ be such that $g(e)=1_{\Delta}$ for all edges $e \in E_{2}(D)$. Clearly, $\psi_{w}(g)=1_{\Delta}$ and $\psi_{w}\left(g^{\sigma_{a}}\right)=a^{\varepsilon_{x}(w)}$. Since w is an invariant, $a^{\varepsilon_{x}(w)}=\psi_{w}\left(g^{\sigma_{a}}\right)=\psi_{w}(g)=1_{\Delta}$, and the first claim follows.

The second claim follows from Theorem 18, because for each triangle t, $\varepsilon_{x}(t)=0$, and for each commutator word $u, \varepsilon_{x}(u)=0$.

Acknowledgement. The authors are grateful to BRA Working Groups ASMICS, COMPUGRAPH and Stiltjes Institute for their support.

References

[1] Ehrenfeucht, A., Harju, T. and Rozenberg, G. (1993) Permuting transformation monoids. Semigroup Forum 47, 123-125.
[2] Ehrenfeucht, A. and Rozenberg, G. (1990) Theory of 2-structures, Part I. Theoret. Comput. Sci. 70, $277-303$.
[3] Ehrenfeucht, A. and Rozenberg, G. (1996) Dynamic labeled 2-structures. Math. Struct. in Comp. Science, to appear.
[4] Ehrig, H., Kreowski, H.-J. and Rozenberg, G., eds. (1991), Graph Grammars and Their Applications to Computer Science. Lecture Notes in Computer Science 532, Spinger-Verlag.
[5] Ellingham, M. N. Vertex-switching, isomorphism, and pseudosimilarity. J. Graph Theory 15, 563-572.
[6] Gross, J. L. and Tucker, T. W. (1987) Topological Graph Theory. Wiley.
[7] Grossman, I. and Magnus, W. (1964) Groups and Their Graphs. The Mathematical Association of America.
[8] Harary, F. (1953-54) On the notion of balance of a signed graph. Michigan Math. J. 2, 143 - 146; addendum, 2 (1953-54) preceding p.1.
[9] Howie, J. (1976) An Introduction to Semigroup Theory. Academic Press.
[10] van Lint, J. H. and Seidel, J. J. (1966) Equilateral points in elliptic geometry. Proc. Nederl. Acad. Wetensch Ser A 69, 335-348.
[11] Magnus, W., Karrass, A. and Solitar, D. (1976) Combinatorial Group Theory. Dover, Second ed.
[12] Petrich, M. (1984) Inverse semigroups. Wiley.
[13] Rotman, J. J. (1995) The Theory of Groups: An Introduction. Springer, Fourth ed.
[14] Seidel, J. J. A survey on two-graphs, in Atti Colloq. Internaz. Teorie Combinatorie, Roma 1973, Vol. I, Accademia Nazionale Lincei, 481 - 511.
[15] Seidel, J. J. and Taylor, D. E. (1978) Two-graphs, a second survey, in Proc. Internat. Colloq. on Algebraic Methods in Graph Theory, Szeged.
[16] Zaslavsky, T. (1981) Characterization of signed graphs. J. Graph Theory 5, 401 - 406.
[17] Zaslavsky, T. (1982) Signed graphs. Discrete Appl. Math. 4, 47-74: erratum 5 (1983), p. 248.

