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Abstract
We establish invariants for the trace map associated to a family of 1D discrete Dirac operators

with Sturmian potentials. Using these invariants we prove that the operators have purely sin-
gular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters
that define the potentials. For rotation numbers of bounded density we prove that these Dirac
operators have purely α-continuous spectrum, as to the Schrödinger case, for some α ∈ (0, 1).
To the Sturmian Schrödinger and Dirac models we establish a comparison between invariants
of the trace maps, which allows to compare the numbers α’s and lower bounds on transport
exponents.

1. Introduction

1. Introduction
In this paper we study spectral properties for the family of discrete Dirac operators

Dλ,θ,ρ(m, c) = D0(m, c) + Vλ,θ,ρI2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
mc2 + Vλ,θ,ρ c∗

c −mc2 + Vλ,θ,ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠(1)

acting on �2(Z,C2), with almost periodic Sturmian potentials Vλ,θ,ρ. Here m ≥ 0 is the mass
of a particle in the lattice Z, c > 0 represents the speed of light and ∗ is the adjoint of
the operator  with (ϕ)(k) := ϕ(k + 1) − ϕ(k), k ∈ Z. The operators Dλ,θ,ρ(m, c) act on

Ψ =

(
ψ1

ψ2

)
∈ �2(Z,C2) as follows

[
Dλ,θ,ρ(m, c)Ψ

]
(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c (ψ2(k − 1) − ψ2(k)) +

(
mc2 + Vλ,θ,ρ(k)

)
ψ1(k)

c (ψ1(k + 1) − ψ1(k)) +
(
−mc2 + Vλ,θ,ρ(k)

)
ψ2(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the potentials Vλ,θ,ρ : Z −→ R are given by

(2) Vλ,θ,ρ(k) = λ χ[1−θ,1)(kθ + ρ mod 1)

where λ ∈ R \ {0} is the coupling constant, θ ∈ (0, 1) is an irrational rotation number,
ρ ∈ [0, 1) is the phase and χI denotes the characteristic function of an interval I ⊂ [0, 1).
Important properties of the Sturmian potentials (2) can be found in [2, 10, 11]. The operators
Dλ,θ,ρ(m, c) are bounded self-adjoint operators on �2(Z,C2).
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The Sturmian Dirac model (1) can be interpreted as a relativistic version of the usual
Schrödinger operator on �2(Z), given by

(3) (Hλ,θ,ρ φ)(k) =
1

2m
[
φ(k + 1) + φ(k − 1)

]
+ Ṽλ,θ,ρ(k)φ(k)

for mass m > 0 and potentials Ṽλ,θ,ρ(k) = Vλ,θ,ρ(k) − 1/m. In fact, by Theorem 1 in [15]
the nonrelativistic limit (c → ∞) of the resolvent of each Sturmian Dirac operator (1) is
the resolvent of the corresponding Sturmian Schrödinger operator (3) (when projected on a
proper subspace). The family of operators Hλ,θ,ρ given by (3) has been intensively studied
and used to describe spectral properties of one-dimensional quasicrystals (see [2, 6, 10,
12]). It is well known [10] that each Hλ,θ,ρ has purely singular continuous spectrum of zero
Lebesgue measure and for a number θ of bounded density (see the definition in (5)), Hλ,θ,ρ

has purely α-continuous spectrum, for some α ∈ (0, 1). In this paper we show that the
family of Sturmian Dirac operators Dλ,θ,ρ(m, c) defined by (1)-(2) also present these spectral
properties (see Theorems 1.1 and 1.2 below).

Spectral properties for discrete Dirac operators DV(m, c) = D0(m, c) + VI2 of type (1)
has been studied in [5, 15], but with sparse and random potentials V . In [5], it was con-
sidered sparse potentials with randomly distributed positions; the authors have determined
the Hausdorff dimension of the spectral measure and they showed that there is a sharp
transition between pure point and singular continuous spectra. In [15], it was considered
random Bernoulli potentials taking two values; for almost all realizations and for all val-
ues of the mass, it is shown that its spectrum is pure point. For periodic potentials Vp it
can be shown, adapting ideas from the Schrödinger context [25], that the Dirac operators
DVp(m, c) = D0(m, c) + VpI2 of type (1) has purely absolutely continuous spectrum. Along
the aperiodic cases, several classes of potentials have been studied for discrete Schrödinger
operators. These classes include potentials generated by circle maps [14], potentials gener-
ated by substitutions [1, 4, 7, 9] and in special the Sturmian potentials [2, 6, 10, 11], which
lead to purely singular continuous spectrum. Here we are interested in studying this last
class of potentials from a relativistic point of view (i.e. for the Dirac model), and we also
consider the case of mass m = 0, which is not included in the Schrödinger context.

To study spectral properties for the Dirac operators (1)-(2), we follow the usual path of
the context of Schrödinger operators, that is, the construction of the trace map and associated
invariants (see Section 2). Although the trace map xk for Sturmian Dirac model satisfies a
recursive relation similar to the Sturmian Schrödinger case (Proposition 2.1-(i)), the different
forms of the transfer matrices for discrete Schrödinger and Dirac models lead to different
invariants for trace map. For the Sturmian Dirac model the invariants are functions that
depend continuously on the energy E and are given by


(D)
k (E) =

λ2

c6 E4 − 2λ3

c6 E3 +

(
λ4 − 2m2c4λ2

c6

)
E2 +

2m2c4λ3

c6 E − m2c4

c6 λ4

+
(
m4c2 + 4m2

)
λ2 + 4,

while in the case of Sturmian Schrödinger model these invariants are constants in the en-
ergy E′ and they are given by (for more details see Proposition 2.1 below and their remarks)


(S )
k (E′) = 4m2λ2 + 4.
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The different expressions of these invariants is one of the motivations for our spectral study.
Let θ ∈ (0, 1) be irrational and consider on T � [0, 1) the rotation Rθ : T → T given

by Rθ(ρ) = ρ + θ mod 1. The dynamical system (T,Rθ) is strictly ergodic (i.e. uniquely
ergodic and minimal) with the Lebesgue measure on T as the ergodic measure. Note that the
Sturmian potentials (2) can be written as Vλ,θ,ρ(k) = f (Rk

θ(ρ)), where f : T → R is the men-
surable function given by f (ρ) = λ χ[1−θ,1)(ρ). Thus, for m ≥ 0, λ and θ fixed, the family (in
ρ) of Dirac operators

{
Dλ,θ,ρ(m, c)

}
ρ∈[0,1)

is strictly ergodic. Therefore, the spectral properties
of Dλ,θ,ρ(m, c) are independent of ρ for Lebesgue almost every ρ. Due to minimality, there
exists a set Σλ,θ(m) ⊂ R such that the spectrum ofDλ,θ,ρ(m, c) equals Σλ,θ(m) for all ρ ∈ [0, 1).
Using the invariants (D)

k (E) described above, we show (Theorem 3.1) that Σλ,θ(m) coincides
with the set of zeros of the Lyapunov exponent. By a result of Kotani in [19], extended to the
Dirac model (Theorem 4.1), we conclude that Σλ,θ(m) has zero Lebesgue measure and there-
fore, for any λ, θ and m ≥ 0, the absolutely continuous spectrum of Dλ,θ,ρ(m, c) is empty (see
Theorem 4.2). Due to specific properties of the Sturmian potentials Vλ,θ,ρ and using again
the invariants (D)

k (E), we also obtain uniform absence of eigenvalues (see Theorem 5.1).
The following theorem is the first main result of this paper, which describes the spectral

type of the Dirac operators Dλ,θ,ρ(m, c) defined by (1)-(2). This result will be proven in the
Section 5.

Theorem 1.1. Fix m ≥ 0. For every λ, θ, ρ, the operator Dλ,θ,ρ(m, c) has purely singular
continuous spectrum supported on a set of zero Lebesgue measure.

This theorem says that we have a new class of almost periodic relativistic models with
purely singular continuous spectrum of zero Lebesgue measure.

Our second goal is establishing Hausdorff-dimensional properties of spectral measures of
the operators Dλ,θ,ρ(m, c). The definitions of continuity and singularity of a Borel measure
with respect to Hausdorff measure appear in Section 6.

Given θ ∈ (0, 1) irrational, we consider its expansion in continued fractions (see [2, 18]):

θ =
1

a1 +
1

a2 +
1

a3 + · · ·

= [a1, a2, a3, . . .]

with uniquely determined ak ∈ Z+ = {1, 2, . . .}. The best rational approximations associated
pk

qk
= [a1, . . . , ak] are defined by

p0 = 0, p1 = 1, pk = ak pk−1 + pk−2 for k ≥ 2,(4)

q0 = 1, q1 = a1, qk = akqk−1 + qk−2 for k ≥ 2.

Recall that θ is called a bounded density number if the following condition holds [10]:

(5) d(θ) := lim sup
N→∞

1
N

N∑
k=1

ak < ∞.

Using properties of the Sturmian potentials and the invariants (D)
k (E), we establish upper

and lower bounds on the growth of solutions of the eigenvalue problem Dλ,θ,ρ(m, c)Ψ = EΨ
(see Propositions 7.1 and 7.2), which allows us to obtain purely α-continuous spectrum



394 R.A. Prado and R.C. Charão

for the Dirac operators Dλ,θ,ρ(m, c) by a general method described in Theorem 7.1. This
method is well known for discrete Schrödinger operators (see Theorem 1 in [10]) and here
is extended to Dirac operators. The second main result of this paper, which will be proved
in Section 7, is the following.

Theorem 1.2. Fix m ≥ 0 and let θ be a bounded density number. Then, for any λ � 0
there exists α = α(m, λ, θ) ∈ (0, 1) such that for all ρ ∈ [0, 1) and Φ ∈ �2(Z,C2), the spectral
measure for the pair (Dλ,θ,ρ(m, c),Φ) is purely α-continuous, that is, Dλ,θ,ρ(m, c) has purely
α-continuous spectrum.

A consequence of Theorem 1.2 is that for the set of numbers θ of bounded density and for
any λ � 0, ρ ∈ [0, 1) and m ≥ 0, the spectrum σ(Dλ,θ,ρ(m, c)) is a set of positive Hausdorff
dimension. In fact, the positive numbers α’s obtained in Theorem 1.2 are lower bounds for
the Hausdorff dimension of σ(Dλ,θ,ρ(m, c)). In Section 8 we compare these numbers α’s
obtained for the Schrödinger and Dirac models with Sturmian potentials (see relations (36)
and (37)).

Although our spectral results (Theorems 1.1 and 1.2) are similar to the corresponding re-
sults obtained in [10] for Sturmian Schrödinger operators, the extension to the Dirac setting
is not immediate and the proofs present important nontrivial parts. We highlight below the
main points that motivated us to study similar properties for the Sturmian Dirac model.

• First of all, as previously mentioned, the different expressions of the invariants


(D)
k (E) and 

(S )
k (E′). It is important to point out that (D)

k (E) play a central role in
the proofs of Theorem 3.1, Corollary 3.1, Lemma 5.1 and Propositions 7.1 and 7.2;
these results are used to prove Theorems 1.1 and 1.2. Moreover, a comparison be-
tween 

(D)
k (E) and 

(S )
k (E′) is developed in Section 8 (see relations (32) and (33)),

which allows us to compare for such models the values of α’s mentioned above and
lower bounds on transport exponents.
• For Dirac operators with periodic potentials their spectra are purely absolutely con-

tinuous and can be characterized by boundedness of traces of transfer matrices, as in
Schrödinger case; such result is used in periodic approximations in Proposition 3.1.
• The validity of a result of Kotani for Dirac operators (Theorem 4.1), whose long

details are not reported here.
• The different representations of the m-functions (see Section 6) and the version of

the Jitomirskaya-Last inequality for discrete Dirac operators (Lemma 6.1), which
are used in the proof of Theorem 7.1.

The organization of this paper is as follows. In Section 2 we establish the trace map
associated with Sturmian Dirac model and invariants for this map. In Section 3 it is shown
that the spectrum of Sturmian Dirac operators coincides with the set of zeros of the Lyapunov
exponent. In Section 4 we establish zero Lebesgue measure spectrum and empty absolutely
continuous spectrum for all Sturmian Dirac operators. In Section 5 we establish absence of
point spectrum for all Sturmian Dirac operators and we present the proof of Theorem 1.1.
In Section 6 we introduce the m-functions for discrete Dirac operators, we present their
relation with spectral measures, Jitomirskaya-Last inequality for discrete Dirac operators
and recall the definitions of α-singular and α-continuous Borel measure. In Section 7 we
extend to Dirac operators a criterion to establish α-continuity of spectral measures of a
whole-line Dirac operator from power-law bounds on the solutions of a half-line and so we
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prove Theorem 1.2. Finally, Section 8 is dedicated to comparison of the invariants of the
trace maps, of the dimension estimates and of lower bounds on exponents of transport, for
Sturmian Schrödinger and Dirac models.

2. Sturmian Dirac Trace Map and Associated Invariants

2. Sturmian Dirac Trace Map and Associated Invariants
In this section we discuss the trace map associated with the Sturmian Dirac model (1)-

(2). In first place, we need to recall the local structure of Sturmian sequences. The Sturmian
words S k over the alphabet  = {0, λ} are defined by

S 0 = 0, S 1 = 0a1−1λ, S k+1 = S ak+1
k S k−1 for k ≥ 1,(6)

where the numbers ak’s are the coefficients of the continued fraction expansion of θ. By
definition, S k is a prefix of S k+1 for each k ≥ 1 and has length |S k| = qk → ∞. It is
known [2, 12] that the one-sided infinite sequence defined by ω

θ
= limk→∞ S k coincides

with the potential sequence {Vλ,θ,0(k)}k∈Z+ defined by (2).

Consider the Sturmian Dirac operators Dλ,θ,ρ(m, c) defined by (1)-(2). If Ψ =
(
ψ1

ψ2

)
is a

solution of the eigenvalue equation

(7) Dλ,θ,ρ(m, c)Ψ = EΨ

with E ∈ R, then for k ≥ 1,(
ψ1(k + 1)
ψ2(k)

)
= T
(
m, E,Vλ,θ,ρ(k)

)
· · ·T
(
m, E,Vλ,θ,ρ(1)

) ( ψ1(1)
ψ2(0)

)
(8)

where

T (m, E,V) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
m2c4 − (E − V)2

c2

mc2 + E − V
c

mc2 − (E − V)
c

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Fixed mass m ≥ 0 and energy E, for each word w = w1 · · ·wk ∈ k, we define the transfer
matrix

M(m, E, w) := T (m, E, wk) · · ·T (m, E, w1).

Thus, if Ψ is solution of (7), then by (8) we have

(9) Ψ̃(k + 1) = M(m, E,Vλ,θ,ρ(1) · · ·Vλ,θ,ρ(k))Ψ̃(1) , k ≥ 1,

with Ψ̃(k + 1) =
(
ψ1(k + 1)
ψ2(k)

)
.

Fixed m, E, λ, θ and taking ρ = 0, we consider the notation

Mk := M(m, E,Vλ,θ,0(1) · · ·Vλ,θ,0(qk))

= T (m, E,Vλ,θ,0(qk)) · · ·T (m, E,Vλ,θ,0(1)), k ≥ 1,

and we define the matrices
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M0 := T (m, E, 0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
m2c4 − E2

c2

mc2 + E
c

mc2 − E
c

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

M−1 := T (m, E, λ) T (m, E, 0)−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
λ(mc2 + E − λ)

c2 −λ
c

(
1 +

(mc2 + E)(mc2 + E − λ)
c2

)

λ

c
1 − λ(mc2 + E)

c2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We note here that

Mk ∈ S L(2,R) := {B ∈ M2×2(R) : det(B) = 1}, ∀k ≥ −1.

Using (6) one obtains the following recursive relation for the matrices Mk:

(10) Mk+1 = Mk−1Mak+1
k , k ≥ 0.

Now consider the Chebyshev polynomials Uk(x), x ∈ R, defined by

(11) U−1(x) = 0 , U0(x) = 1 , Uk(x) = xUk−1(x) − Uk−2(x) for k ≥ 1.

For these polynomials, the quantity UkUk−2 − U2
k−1 is constant in k:

(12) UkUk−2 − U2
k−1 = U1U−1 − U2

0 = −1 , ∀k ∈ Z+.
Given a matrix B ∈ S L(2,R) and using (11) one shows by induction on k that (see [2])

(13) Bk = Uk−1(tr (B))B − Uk−2(tr (B))I2,

where tr (B) denotes the trace of the matrix B.
The following result establishes a recursive relation and invariants for the traces of the

matrices Mk defined above.

Proposition 2.1. Let {xk}k≥−1 be the sequence defined by xk := tr (Mk).

(i) If |xk−1| > 2 for k ≥ 1, then

xk+1 = Uak+1−1(xk)
Uak (xk−1)

Uak−1(xk−1)
xk − Uak+1−2(xk)xk−1 − Uak+1−1(xk)

Uak−1(xk−1)
xk−2 .(14)

(ii) The quantity


(D)
k := x2

k+1 + x2
k + [tr (Mk Mk+1)]2 − xk+1xk tr (Mk Mk+1)(15)

is constant in k and


(D)
k = 

(D)
−1 =

λ2

c6 E4 − 2λ3

c6 E3 +

(
λ4 − 2m2c4λ2

c6

)
E2 +

2m2c4λ3

c6 E − m2c4

c6 λ4

+
(
m4c2 + 4m2

)
λ2 + 4
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for all k ≥ −1.

Remarks: 1. We call the recursive relation (14) Sturmian Dirac trace map, which is analo-
gous to Schrödinger case (Proposition 2 in [2]). In (i) the hypothesis |xk−1| > 2 implies that
Uak−1(xk−1) � 0.
2. In the particular case of Fibonacci potential Vλ,θ,ρ where θ = (

√
5 − 1)/2, one has ak = 1

for all k ∈ Z+, and the relation (14) becomes xk+1 = xk xk−1 − xk−2.
3. The quantities 

(D)
k = 

(D)
k (m, c, E, λ), defined in (15), are the Dirac invariants for the

trace map. Fixed m, c and λ, (D)
k can be seen as a polynomial function of the energy E; in

this case to emphasize the dependence on the energy E, we write 
(D)
k (E). For the Sturmian

Schrödinger model (3), these invariants are constant in the energy E′ and takes the values


(S )
k (E′) = 4m2λ2 + 4 (see [2] for mass m = 1/2). In Section 8 we compare 

(D)
−1 (E) with


(S )
−1 (E′) for energies E, E′ in the corresponding spectra (see relations (32) and (33)).

4. For fixed m > 0, λ and E we can obtain, via nonrelativistic limit, the invariants of the
Schrödinger trace map from the Dirac invariants:

lim
c→∞
(


(D)
−1 − m4c2λ2

)
= 4m2λ2 + 4 = 

(S )
−1 .

Proof of Proposition 2.1:
(i) The recursive relation (14) follows from relations (10)-(13). For more details see [2].
(ii) For matrices A, B ∈ S L(2,R) the following properties are valid:

tr (AB) = tr (A)tr (B) − tr
(
AB−1
)
, tr (AB) = tr (BA) and tr

(
A−1
)
= tr (A).

Using these properties for the matrices Mk, we have

tr
(
M−1

k+1M−1
k Mk+1Mk

)
= tr
(
(Mk Mk+1)−1

)
tr (Mk+1Mk) − tr (Mk+1Mk Mk Mk+1)

= [tr (Mk+1Mk)]2 − tr
(
M2

k M2
k+1

)
= [tr (Mk+1Mk)]2 − tr (Mk) tr

(
Mk M2

k+1

)
+ tr
(
M2

k+1

)
= [tr (Mk Mk+1)]2 − tr (Mk) [tr (Mk Mk+1)tr (Mk+1) − tr (Mk)]

+ [tr (Mk+1)]2 − 2

= x2
k+1 + x2

k + [tr (Mk Mk+1)]2 − xk+1xk tr (Mk Mk+1) − 2

= 
(D)
k − 2.

On the other hand, using the recursive relation (10), we can obtain that

tr
(
M−1

k+1M−1
k Mk+1Mk

)
= tr
(
Mk+1Mk M−1

k+1M−1
k

)
= tr
(
Mk−1Mak+1+1

k

(
Mak+1

k

)−1
M−1

k−1M−1
k

)

= tr
(
M−1

k−1M−1
k Mk−1Mk

)
= 

(D)
k−1 − 2.

Therefore, (D)
k = 

(D)
k−1 = 

(D)
−1 , ∀k ≥ 0, that is, (D)

k is constant in k.
To conclude the proof, let us calculate this invariant:
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(D)
k = 

(D)
−1 = x2

0 + x2
−1 + [tr (M−1M0)]2 − x0x−1 tr (M−1M0)

=

(
2 +

m2c4 − E2

c2

)2
+

(
2 − λ

2

c2

)2
+

(
2 +

m2c4 − (E − λ)2

c2

)2

−
(
2 +

m2c4 − E2

c2

) (
2 − λ

2

c2

) (
2 +

m2c4 − (E − λ)2

c2

)

=

[
2 +

m2c4 − (E − λ)2

c2 −
(
2 +

m2c4 − E2

c2

)]2
+

(
2 − λ

2

c2

)2

+
λ2

c2

(
2 +

m2c4 − E2

c2

) (
2 +

m2c4 − (E − λ)2

c2

)

=
(E − λ)4

c4 − 2E2(E − λ)2

c4 +
E4

c4 + 4 +
λ4

c4 +
4m2c4λ2 − 2(E − λ)2λ2 − 2E2λ2

c4

+
m4c8λ2 − m2c4λ2

[
(E − λ)2 + E2

]
+ E2(E − λ)2λ2

c6

=
λ2

c6 E4 − 2λ3

c6 E3 +

(
λ4 − 2m2c4λ2

c6

)
E2 +

2m2c4λ3

c6 E − m2c4

c6 λ4

+
(
m4c2 + 4m2

)
λ2 + 4.

The next result is a version of the Proposition 4 in [2] for the Sturmian Dirac model (1).
We omit the proof, since this can be done as in [2] using Chebyshev polynomials (11) and
Proposition 2.1.

Proposition 2.2. The sequence {xk}k≥−1, with xk = tr (Mk), is unbounded if and only if

|xk0−1| ≤ 2 , |xk0 | > 2 , |xk0+1| > 2

for some k0 ≥ 0. This number k0 is unique, it holds that

|xk+2| > |xk+1||xk|
2

> 2 for k ≥ k0

and
|xk|
2

> Cqk for some C > 1,

with qk the positive integers given in (4).
If {xk}k≥−1 is bounded, then

|xk| ≤ 2 +
√

4 + (D)
−1 for k ≥ −1,

where 
(D)
−1 = 

(D)
−1 (m, c, E, λ) is given by Proposition 2.1.

3. Spectrum and Vanishing Lyapunov Exponents

3. Spectrum and Vanishing Lyapunov Exponents
In this section our goal is to show that the spectrum σ

(
Dλ,θ,ρ(m, c)

)
= Σλ,θ(m) of the

Sturmian Dirac operators (1)-(2) coincides with the set of zeros of the Lyapunov exponent.



Spectral Properties for Sturmian Dirac Operators 399

Fixed m ≥ 0, λ ∈ R \ {0} and θ ∈ (0, 1) irrational, we denote Σλ,θ(m) by Σ.
By the subadditive ergodic theorem [3], for each E ∈ C there exists a number Γ(E) ≥ 0,

called Lyapunov exponent, such that for almost every ρ ∈ [0, 1) with respect to Lebesgue
measure,

Γ(E) := lim
k→∞

1
k

ln
∥∥∥M(m, E,Vλ,θ,ρ(1) · · ·Vλ,θ,ρ(k))

∥∥∥ ,
where M(m, E,Vλ,θ,ρ(1) · · ·Vλ,θ,ρ(k)) are the transfer matrices of the relation (9). We note
that the Lyapunov exponent Γ = Γ(E) is a function of E ∈ C.

Now, we consider the set  of real zeros of the Lyapunov exponent function, that is,

 = {E ∈ R : Γ(E) = 0}.
The main result of this section is the following.

Theorem 3.1. Let Dλ,θ,ρ(m, c) be the Dirac operators defined by (1)-(2). For any λ, θ, ρ
and m ≥ 0, we have Σ = .

Consider the stable set

 =

{
E ∈ R : |xk| ≤ 2 +

√
4 + (D)

−1 for all k ≥ −1
}
,

where 
(D)
−1 = 

(D)
−1 (m, c, E, λ) is given by Proposition 2.1.

The proof of Theorem 3.1 use ideas of [2, 8] and will be obtained from the next three
Propositions. In fact, combining these propositions we get the following chain of inclusions
Σ ⊂  ⊂  ⊂ Σ, which proves the theorem.

Proposition 3.1. Σ ⊂ .

Proof. For m ≥ 0, λ ∈ R\{0} and θ ∈ (0, 1) irrational, consider the operator Dλ,θ,0(m, c) on
�2(Z,C2), defined by (1). Let

{
Dλ,θk ,0(m, c)

}
k≥1 be the sequence of qk-periodic Dirac operators

on �2(Z,C2), defined by (1), with potentials Vλ,θk ,0 defined by (2), where θk = pk/qk is the
best approximation to θ given by (4). These potentials Vλ,θk ,0 are periodic with period qk,
taking the values S k = Vλ,θk ,0(1) · · ·Vλ,θk ,0(qk) on its period, and σ

(
Dλ,θk ,0(m, c)

)
= {E ∈ R :

|xk| ≤ 2}. We have that Dλ,θ,0(m, c) is the strong limit of Dλ,θk ,0(m, c) as k → ∞. Denoting
Ωk = R \ σ(Dλ,θk ,0(m, c)) = {E ∈ R : |xk| > 2}, it follows from Theorem VIII.24 in [24] (see
also [28]) that

⋃
N∈N

Int

⎛⎜⎜⎜⎜⎜⎜⎝
⋂
k≥N

Ωk

⎞⎟⎟⎟⎟⎟⎟⎠ ⊂ Σc ,(16)

where Int(Ω) denotes the interior of a set Ω and Σc = R \ Σ.
Using Proposition 2.2 and (16), we obtain


c ⊂
⋃
N∈N

Int

⎛⎜⎜⎜⎜⎜⎜⎝
⋂
k≥N

Ωk

⎞⎟⎟⎟⎟⎟⎟⎠ ⊂ Σc ,

which implies the result. �
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Proposition 3.2.  ⊂ .

Proof. Fix m, λ, θ and pick some ρ ∈ [0, 1) for which Γ(E) exists. Suppose there exists
E ∈  such that Γ(E) > 0. By Osceledec’s theorem [21] there exists a solution Ψ of the
eigenvalue equation (7) with

‖Ψ̃(n + 1)‖ ≤ e−Γ(E)n for large n.

Since E ∈  there is a constant C = 2 +
√

4 + (D)
−1 such that

(17) |xk| = |trM(m, E, S k)| ≤ C ∀k ≥ 1,

where S k = Vλ,θ,0(1) · · ·Vλ,θ,0(qk). Now, the word S k occur in the sequence Vλ,θ,ρ for all ρ, as
being Vλ,θ,ρ(n + 1) · · ·Vλ,θ,ρ(n + qk) for n ≥ n0 (see [11, 12]). Thus, we can use (17) for each
ρ. Pick n0 such that, for every n ≥ n0 and every j ∈ Z+, the solution Ψ obeys

(18) ‖Ψ̃(n + j)‖ ≤ e−
1
2Γ(E) j‖Ψ̃(n)‖.

Now, we choose k such that e−
1
2Γ(E)qk < 1

2C . Considering the word

S kS k = Vλ,θ,ρ(l + 1) · · ·Vλ,θ,ρ(l + qk) · · ·Vλ,θ,ρ(l + 2qk) for l ≥ n0,

and applying the Cayley-Hamilton theorem, we obtain

(19) Ψ̃(l + 2qk) − tr M(m, E, S k)Ψ̃(l + qk) + Ψ̃(l) = 0.

By (17) and (19) we have

(20) 2C max
{
‖Ψ̃(l + 2qk)‖, ‖Ψ̃(l + qk)‖

}
≥ ‖Ψ̃(l + 2qk)‖ +C‖Ψ̃(l + qk)‖ ≥ ‖Ψ̃(l)‖.

Finally, using (18) with n = l and j = qk or j = 2qk, and then (20), one obtains

max
{
‖Ψ̃(l + 2qk)‖, ‖Ψ̃(l + qk)‖

}
≤ e−

1
2Γ(E)qk ‖Ψ̃(l)‖

≤ e−
1
2Γ(E)qk 2C max

{
‖Ψ̃(l + 2qk)‖, ‖Ψ̃(l + qk)‖

}
< max

{
‖Ψ̃(l + 2qk)‖, ‖Ψ̃(l + qk)‖

}
,

which is a contradiction. �

Proposition 3.3.  ⊂ Σ.

Proof. Let E ∈ Σc. We introduce the two-components Green’s function [5, 15]

⎛⎜⎜⎜⎜⎜⎝ G11
λ,θ,ρ(k, 1; E)

G21
λ,θ,ρ(k, 1; E)

⎞⎟⎟⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
δ1,k,
(
Dλ,θ,ρ(m, c) − EI

)−1
δ1,1

〉
〈
δ2,k,
(
Dλ,θ,ρ(m, c) − EI

)−1
δ1,1

〉
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

so that

(Dλ,θ,ρ(m, c) − E)

⎛⎜⎜⎜⎜⎜⎝ G11
λ,θ,ρ(k, 1; E)

G21
λ,θ,ρ(k, 1; E)

⎞⎟⎟⎟⎟⎟⎠ = δ1,1(k),

where {δ1,k, δ2,k}k∈Z is the canonical basis of �2(Z,C2). By Combes-Thomas estimate for
discrete Dirac operators (Proposition 1 in [23]), there exist constants Δ = dist(E,Σ) > 0 and
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b = b(m, c) > 0 such that for k ∈ Z and β ∈ {1, 2}, it holds that

|Gβ1
λ,θ,ρ(k, 1; E)| ≤ 2

Δ
e−b|k−1| .

This implies that the solution Ψ =
(
ψ1

ψ2

)
of the eigenvalue equation (7), with initial

conditions ψ1(1) = 0 and ψ2(0) = 1, grows exponentially with a rate r > 0 (that is,
‖Ψ̃(k + 1)‖ ≥ C̃erk for C̃ > 0 and large k), due to constancy (in k) of the Wronskian:

W

⎡⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎝ G11

λ,θ,ρ(k, 1; E)

G21
λ,θ,ρ(k, 1; E)

⎞⎟⎟⎟⎟⎟⎠ ,Ψ(k)

⎤⎥⎥⎥⎥⎥⎦ := G11
λ,θ,ρ(k + 1, 1; E)ψ2(k) −G21

λ,θ,ρ(k, 1; E)ψ1(k + 1).

It follows from (9) that∥∥∥M(m, E,Vλ,θ,ρ(1) · · ·Vλ,θ,ρ(k))
∥∥∥ ≥ ‖Ψ̃(k + 1)‖ ≥ C̃erk,

which implies

Γ(E) = lim
k→∞

1
k

ln
∥∥∥M(m, E,Vλ,θ,ρ(1) · · ·Vλ,θ,ρ(k))

∥∥∥ ≥ lim
k→∞

(
1
k

ln C̃ + r
)
= r > 0.

Therefore E ∈ c. �

Since the spectrum Σ = σ
(
Dλ,θ,ρ(m, c)

)
is compact and the bounds on the traces xk =

tr (Mk) for energies E ∈ Σ depend continuously on E (see definition of stable set ), we can
find a global bound for these traces. We conclude this section with a result that will be used
in Section 5.

Corollary 3.1. For each m ≥ 0 and λ ∈ R \ {0}, there exists a constant λ(m) ∈ (2,∞)
such that for all irrational θ ∈ (0, 1), E ∈ Σ and k ∈ Z+, we have

max{|xk|, |yk|, |zk|} ≤ λ(m) ,

where xk = tr M(m, E, S k), yk = xk−1 and zk = tr M(m, E, S kS k−1).

Proof. By Proposition 2.1(ii) the invariant


(D)
−1 = x2

k + y
2
k + z2

k − xkykzk(21)

is a polynomial function in E and is uniformly bounded on Σ (compact set) by a constant
1,λ(m) > 0. For every E ∈ Σ, there exists the constant 2,λ(m) := 2+

√
4 + 1,λ(m) such that

using the Proposition 3.1 and definition of the stable set , we obtain

|xk| ≤ 2,λ(m) and |yk| ≤ 2,λ(m) , ∀k ∈ Z+.
Now, solving the equation (21) in the variable zk and using the boundedness of xk and yk,
one obtains

|zk| ≤
|xk||yk| +

√
x2

ky
2
k + 4|(D)

−1 |
2

≤ λ(m) , ∀k ∈ Z+,

where λ(m) :=
2,λ(m)2 +

√
2,λ(m)4 + 41,λ(m)

2
. Therefore, the result follows. �
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4. Zero-Measure Spectrum

4. Zero-Measure Spectrum
In this section we establish zero Lebesgue measure spectrum for all Sturmian Dirac oper-

ators Dλ,θ,ρ(m, c), with m ≥ 0 (see Theorem 4.2). Consequently, these operators have empty
absolutely continuous spectrum.

Let (Ω, T, μ) be an ergodic dynamical system and f : Ω → R a measurable bounded
function. Define potentials

Vω(k) = f (T kω) , ω ∈ Ω, k ∈ Z,
and consider the ergodic family of Dirac operators {Dω(m, c)}ω∈Ω on �2(Z,C2), defined by

[
Dω(m, c)

(
ψ1

ψ2

)]
(k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
c (ψ2(k − 1) − ψ2(k)) +

(
mc2 + Vω(k)

)
ψ1(k)

c (ψ1(k + 1) − ψ1(k)) +
(
−mc2 + Vω(k)

)
ψ2(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .(22)

Similarly to the Sturmian case, due to subadditive ergodic theorem [3], for each fixed m ≥ 0
and E ∈ C there exists a number Γ(E) = Γ(m, E) ∈ [0,∞), called Lyapunov exponent,
defined by

Γ(E) = lim
k→∞

1
k

ln ‖M(m, E,Vω(1) · · ·Vω(k))‖
for μ-almost every ω ∈ Ω, where M(m, E,Vω(1) · · ·Vω(k)) are the transfer matrices associ-
ated with Dω(m, c). Let

 = {E ∈ R : Γ(E) = 0}.
The following theorem is a version of a result of the Kotani theory [19] adapted for the

Dirac operators (22). We omit the proof since this is very long and analogous to the case of
Schrödinger operators.

Theorem 4.1. Let {Dω(m, c)}ω∈Ω be a ergodic family of Dirac operators defined by (22)
with potentials Vω(k) = f (T kω) that are μ-almost surely not periodic and f : Ω → R is a
function that takes a finite number of values. Then �() = 0, where � denotes the Lebesgue
measure.

Remark. The hypothesis that the potentials Vω(k) = f (T kω) are μ-almost surely not
periodic implies that f is not constant. In fact, if f is constant then Vω is periodic for all
ω ∈ Ω and μ(Ω) = 1 � 0.

Since the family of Sturmian Dirac operators
{
Dλ,θ,ρ(m, c)

}
ρ∈[0,1)

is strictly ergodic (see
Introduction) with potentials Vλ,θ,ρ not periodic and taking two values 0 or λ � 0, then by
using Theorems 3.1 and 4.1, we get the following result:

Theorem 4.2. Let Dλ,θ,ρ(m, c) be the Dirac operators defined by (1)-(2). For any λ, θ, ρ
and m ≥ 0, the spectrum Σ = σ

(
Dλ,θ,ρ(m, c)

)
has zero Lebesgue measure and the absolutely

continuous spectrum of Dλ,θ,ρ(m, c) is empty.
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5. Absence of Point Spectrum

5. Absence of Point Spectrum
In this section we establish absence of point spectrum for all Sturmian Dirac operators

Dλ,θ,ρ(m, c) with m ≥ 0 (Theorem 5.1), and we present the proof of Theorem 1.1.
For studying the behavior of solutions of the eigenvalue equation (7), we consider the

norm ‖ · ‖L on a lattice interval of length L ∈ R, L ≥ 1, defined on functions Ψ : Z+ → C2,

Ψ(k) =
(
ψ1(k)
ψ2(k)

)
, by

‖Ψ‖L =
⎛⎜⎜⎜⎜⎜⎜⎝
�L∑
k=1

‖Ψ(k)‖2 + (L − �L)‖Ψ(�L + 1)‖2
⎞⎟⎟⎟⎟⎟⎟⎠

1/2

,

where ‖Ψ(k)‖2 = |ψ1(k)|2 + |ψ2(k)|2 and �L denotes the integer part of L. The behavior

of ‖Ψ‖L can be investigated through behavior of ‖Ψ̃‖L, where Ψ̃(k + 1) =
(
ψ1(k + 1)
ψ2(k)

)
for

k ≥ 1, since there exists constants D1,D2 > 0 such that

D1‖Ψ̃‖L ≤ ‖Ψ‖L ≤ D2‖Ψ̃‖L .
We will assume that a solution Ψ of (7) has normalized initial condition (N.I.C.) in the sense
that

‖Ψ̃(1)‖2 = |ψ1(1)|2 + |ψ2(0)|2 = 1.

Now, due to partition Lemma (see [10, 11]), every sequence Vλ,θ,ρ may be partitioned into
words S k or S k−1, defined by (6). Using this property, together with the uniform bounds on
traces given in Corollary 3.1, we obtain the following result, similar to Lemma 4.1 in [10],
for the Sturmian Dirac operators Dλ,θ,ρ(m, c) defined by (1)-(2).

Lemma 5.1. Fix m ≥ 0. Let λ, θ, ρ be arbitrary, E ∈ Σ, and let Ψ be a solution of (7) with
N.I.C.. Then, for every k ≥ 8, the following inequality holds

‖Ψ̃‖qk ≥ Bλ(m)‖Ψ̃‖qk−8

with Bλ(m) =
(
1 + 1

4λ(m)2

)1/2
, where λ(m) ∈ (2,∞) is the uniform constant given in Corol-

lary 3.1.

Lemma 5.1 will be used in the proof of Theorem 5.1 below and also in Proposition 7.1 to
obtain power-law lower bounds on solutions of (7) for certain rotation numbers.

Theorem 5.1. Fix m ≥ 0. For every λ, θ, ρ, the operator Dλ,θ,ρ(m, c) has empty point
spectrum.

Proof. Fix m ≥ 0. Let λ, θ, ρ be arbitrary, E ∈ Σ, and letΨ be a solution of (7) with N.I.C..
Then, by Lemma 5.1 we have

‖Ψ̃‖q8k ≥ Bλ(m)‖Ψ̃‖q8k−8 ≥ · · · ≥ Bλ(m)k‖Ψ̃‖q0 = Bλ(m)k,

for all k ≥ 1 and constant Bλ(m) > 1. This implies that∑
p∈Z
‖Ψ(p)‖2 ≥ ‖Ψ‖q8k

≥ D1‖Ψ̃‖q8k ≥ D1Bλ(m)k, ∀k ≥ 1.
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Thus Ψ � �2(Z,C2). Therefore, Dλ,θ,ρ(m, c) have no eigenvalues and its point spectrum is
empty. �

Now are ready to complete the proof of the first main result of this paper.

Proof of Theorem 1.1. It follows directly from Theorems 4.2 and 5.1.

6. m-Functions and Decomposition of Borel Measures

6. m-Functions and Decomposition of Borel Measures
Consider Dirac operators D(m, c) = D0(m, c) + VI2 on �2(Z,C2) defined as in (22), asso-

ciated with arbitrary potentials V : Z → R. The study of spectral properties of an operator
D(m, c) is related to the study of the Weyl m-function. In this section we introduce the m-
functions for D(m, c) and we present its relation with spectral measures and a version of
Jitomirskaya-Last inequality for the Dirac operators D(m, c); we also define α-singular and
α-continuous Borel measure. These definitions and results will be used in Section 7.

Let Z+ = {1, 2, 3, . . .} and Z− = {. . . ,−2,−1, 0}. To each whole-line operator D(m, c) we
associate two half-line operators

D+(m, c) = 
∗
+ D(m, c)+ and D−(m, c) = 

∗
− D(m, c)− ,

where ± denote the inclusions ± : �2(Z±,C2) ↪→ �2(Z,C2).
For each z ∈ C \ R, the equation

D(m, c)Ψ = zΨ(23)

has unique solutions Ψ±z =
⎛⎜⎜⎜⎜⎜⎝ ψ

±
1,z

ψ±2,z

⎞⎟⎟⎟⎟⎟⎠ with ψ±2,z(0) = 1 and
∞∑

k=0

∥∥∥Ψ±z (±k)
∥∥∥2 < ∞. Let

u±ϕ,z =
⎛⎜⎜⎜⎜⎜⎝ u±1,ϕ,z

u±2,ϕ,z

⎞⎟⎟⎟⎟⎟⎠ and v±ϕ,z =
⎛⎜⎜⎜⎜⎜⎝ v
±
1,ϕ,z

v±2,ϕ,z

⎞⎟⎟⎟⎟⎟⎠ solutions of (23), defined on Z±, satisfying the ini-

tial conditions

u±1,ϕ,z(1) = cosϕ v±1,ϕ,z(1) = sinϕ

u±2,ϕ,z(0) = − sinϕ v±2,ϕ,z(0) = cosϕ
, ϕ ∈ (−π/2, π/2] .(24)

Let Ψ±ϕ,z be Ψ±z normalized by ψ±2,ϕ,z(0) cosϕ + ψ±1,ϕ,z(1) sinϕ = 1. For z ∈ C with
Im(z) > 0, the right and left Weyl m-functions, m±ϕ(z), are uniquely defined by

Ψ±ϕ,z = v±ϕ,z ∓ m±ϕ(z)u±ϕ,z .

For ϕ = 0 we should use the notation m±(z) = m±0 (z). The functions m±(z) and m±ϕ(z) are
related of the following form:

m±(z) =
m±ϕ(z) cosϕ ∓ sinϕ

cosϕ ±m±ϕ(z) sinϕ
.(25)

Moreover, we have that (see [5])

m+(z) = 〈δ1,1, (D+(m, c) − zI)−1 δ1,1〉 = −ψ+1,z(1) ,

m−(z) = 〈δ2,0, (D−(m, c) − zI)−1 δ2,0〉 = ψ−1,z(1) ,
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where δ1,k and δ2,k denotes the vectors of the canonical basis of �2(· ,C2) supported at k with

δ1,k(k) =
(

1
0

)
and δ2,k(k) =

(
0
1

)
. Note that the pair of vectors {δ1,1, δ2,0} ⊂ �2(Z,C2) is

cyclic for D(m, c). For the whole-line problem, the m-function m(z) is defined, for z ∈ C
with Im(z) > 0, as the trace of the Weyl matrix M2×2(z):

[
a b
]

M(z)
[

a
b

]
=
〈
aδ2,0 + bδ1,1, (D(m, c) − zI)−1(aδ2,0 + bδ1,1)

〉
.

Developing this relation, one finds

M(z) =
1

ψ+1,z(1)ψ−2,z(0) − ψ+2,z(0)ψ−1,z(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψ−2,z(0)ψ+2,z(0) ψ−2,z(0)ψ+1,z(1)

ψ+1,z(1)ψ−2,z(0) ψ−1,z(1)ψ+1,z(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

−m+(z) −m−(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 −m+(z)

−m+(z) −m−(z)m+(z)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

m(z) = tr (M(z)) =
m+(z)m−(z) − 1
m+(z) +m−(z)

.(26)

Due to spectral theorem (see also [5]), the m-functions can be written as Borel transform of
spectral measures, that is,

m±(z) =
∫ ∞
−∞

dΛ±(t)
t − z

, m(z) =
∫ ∞
−∞

dΛ(t)
t − z

,(27)

where Λ+, Λ− are the spectral measures for the pairs (D+(m, c), δ1,1), (D−(m, c), δ2,0),
respectively, and Λ is the sum of the spectral measures for the pairs (D(m, c), δ1,1) and
(D(m, c), δ2,0). Using (27) one shows that for z ∈ C with Im(z) > 0 one has Im(m±(z)) > 0
and Im(m(z)) > 0.

Let u+ϕ,E =
⎛⎜⎜⎜⎜⎜⎝ u+1,ϕ,E

u+2,ϕ,E

⎞⎟⎟⎟⎟⎟⎠ and v+ϕ,E =
⎛⎜⎜⎜⎜⎜⎝ v
+
1,ϕ,E

v+2,ϕ,E

⎞⎟⎟⎟⎟⎟⎠ solutions of the eigenvalue equation

D(m, c)Ψ = EΨ(28)

defined on Z+, satisfying initial conditions as in (24) with z = E ∈ R. Given any ε > 0, we
define lengths L+ϕ(ε) ∈ [1,∞) by requiring the equality

‖u+ϕ,E‖L+ϕ (ε) · ‖v+ϕ,E‖L+ϕ (ε) =
c

2ε
.(29)

The following result is the version of Jitomirskaya-Last inequality (well known in the
context of Schrödinger operators [17]) for the discrete Dirac operators D+(m, c). This in-
equality was obtained in Theorem 4.3 in [5] for Dirichlet boundary condition (ϕ = 0) and
one adapts to any ϕ ∈

(−π
2 ,

π
2

]
.

Lemma 6.1. Let D+(m, c) be a Dirac operator on �2(Z+,C2) and let E ∈ R, ε > 0 be
given. Then the following inequality holds
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5 − √24∣∣∣m+ϕ(E + iε)
∣∣∣ <

‖u+ϕ,E‖L+ϕ (ε)

‖v+ϕ,E‖L+ϕ (ε)
<

5 +
√

24∣∣∣m+ϕ(E + iε)
∣∣∣ .

Now we recall some useful definitions and the decomposition of Borel measures with
respect to Hausdorff measure, which can be found in [17, 20, 26, 27]. Given a Borel set
S ⊂ R and α ∈ [0, 1], consider the number

Qα,δ(S ) = inf

⎧⎪⎪⎨⎪⎪⎩
∞∑
ν=1

|bν|α : |bν| < δ; S ⊂
∞⋃
ν=1

bν

⎫⎪⎪⎬⎪⎪⎭ ,
with the infimum taken over all covers by intervals bν of size at most δ. The limit

hα(S ) := lim
δ↓0

Qα,δ(S )

is called α-dimensional Hausdorff measure. Note that h0 is the counting measure and h1

coincides with the Lebesgue measure. For every non-empty Borel set S , there is a unique
number αS ∈ [0, 1], called the Hausdorff dimension of S , such that hα(S ) = 0 if α > αS and
hα(S ) = ∞ if α < αS .

We recall the notions of continuity and singularity of a measure with respect to Hausdorff
measure. Given α ∈ [0, 1], a measure μ is called α-continuous if μ(S ) = 0 for every Borel
set S with hα(S ) = 0; it is called α-singular if it is supported on some Borel set S with
hα(S ) = 0.

Given a finite Borel measure μ on R and α ∈ [0, 1], the upper α-derivative of μ at E is
defined by

Dα
μ(E) := lim sup

ε→0

μ ((E − ε, E + ε))
(2ε)α

.

Consider the sets

Tα
f = {E ∈ R : Dα

μ(E) < ∞} , Tα
∞ = {E ∈ R : Dα

μ(E) = ∞}.
The measure μ can be decomposed uniquely with respect to Hausdorff measure hα as

μ = μαc + μαs ,

being μαc(·) = μ(Tα
f ∩ ·) an α-continuous measure and μαs(·) = μ(Tα∞ ∩ ·) an α-singular

measure. Therefore, if Dα
μ(E) < ∞ a.e. then μ is α-continuous and if Dα

μ(E) = ∞ a.e. then μ
is α-singular.

Now, for each Dirac operatorD(m, c) and eachΦ ∈ �2(Z,C2) we denote by μm
Φ

the spectral
measure for the pair (D(m, c),Φ). The sets

�2(Z,C2)αc = {Φ : μm
Φ is α − continuous} , �2(Z,C2)αs = {Φ : μm

Φ is α − singular}
are closed subspaces of �2(Z,C2), mutually orthogonal, invariants by D(m, c) and

�2(Z,C2) = �2(Z,C2)αc ⊕ �2(Z,C2)αs .

The α-continuous spectrum σαc(D(m, c)) and α-singular spectrum σαs(D(m, c)) of the op-
erator D(m, c) are defined as the spectrum of the restriction of D(m, c) to corresponding
subspaces. We have that σ(D(m, c)) = σαc(D(m, c)) ∪ σαs(D(m, c)).
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7. α-Continuity of the Spectral Measures

7. α-Continuity of the Spectral Measures
In this section we extend to Dirac operators a criteria well known for discrete Schrödinger

operators (Theorem 1 in [10]), which allows us to obtain α-continuous spectrum for a Dirac
operator D(m, c) on �2(Z,C2). Such criterion (Theorem 7.1 below) establishes α-continuity
of the spectral measures of D(m, c) from power-law upper and lower bounds of the form

C1(E)Lγ1 ≤ ‖Ψ‖L ≤ C2(E)Lγ2(30)

for all solutions of (28) with N.I.C. and for L ≥ 1 sufficiently large, where α = 2γ1
γ1+γ2

. We will
show that the bounds (30) can be established for every Sturmian Dirac operators Dλ,θ,ρ(m, c)
with rotation numbers θ of bounded density, proving so the Theorem 1.2.

Theorem 7.1. Let Σ be a bounded set. Suppose that there are constants γ1, γ2 such
that for each E ∈ Σ, every solution of (28) with N.I.C. obeys the estimate (30) for L ≥
1 sufficiently large and suitable constants C1(E),C2(E) > 0. Then for each m ≥ 0, the
operator D(m, c) has purely α-continuous spectrum on Σ with α = 2γ1

γ1+γ2
∈ (0, 1), that is, for

any Φ ∈ �2(Z,C2) the spectral measure μm
Φ

for the pair (D(m, c),Φ) is purely α-continuous
on Σ.

Proof. The proof is based on ideas from [10] used in the context of discrete Schrödinger
operators. Let α = 2γ1

γ1+γ2
. Using (30) for the solutions u+ϕ,E and v+ϕ,E of (28), we have

‖u+ϕ,E‖L
‖v+ϕ,E‖

α
2−α
L

≥ C1(E)Lγ1

(C2(E)Lγ2 )
α

2−α
=

C1(E)
C2(E)

α
2−α

Lγ1−γ2
α

2−α =
C1(E)

C2(E)
α

2−α
> 0

for all ϕ ∈ (−π/2, π/2] and L ≥ 1 sufficiently large.
By (29) and Lemma 6.1 we obtain

(5 − √24)c1−α

(2ε)1−α|m+ϕ(E + iε)| <
⎛⎜⎜⎜⎜⎜⎜⎜⎝
‖u+ϕ,E‖L
‖v+ϕ,E‖

α
2−α
L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2−α

<
(5 +
√

24)c1−α

(2ε)1−α|m+ϕ(E + iε)| .

It follows from the two estimates above that

lim sup
ε→0

ε1−α|m+ϕ(E + iε)| < ∞, ∀ϕ ∈ (−π/2, π/2].

Thus, there exists 0 < C3(E) < ∞ such that

sup
ϕ
|m+ϕ(E + iε)| ≤ C3(E)εα−1.(31)

The next step is to transfer the estimate (31) for the m-function m(E + iε) given by (26).
Fix E ∈ Σ and ε > 0. Introducing variables ξ = e2iϕ and ν = m+−i

m++i , we have

1 + νξ
1 − νξ =

eiϕ
(
e−iϕ + ( m+−i

m++i )e
iϕ
)

eiϕ
(
e−iϕ −

(
m+−i
m++i

)
eiϕ
)

=
(cosϕ − i sinϕ)(m+ + i) + (m+ − i)(cosϕ + i sinϕ)
(cosϕ − i sinϕ)(m+ + i) − (m+ − i)(cosϕ + i sinϕ)

=
sinϕ + cosϕ m+

i(cosϕ − sinϕ m+)
= −im+ϕ,
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where in last step we use the relation (25). Thus, we may rewrite (31) as

sup
|ξ|=1

∣∣∣∣∣1 + νξ1 − νξ
∣∣∣∣∣ ≤ C3(E)εα−1.

Note that Im(m+) > 0 implies |ν| < 1 and so 1+νξ
1−νξ defines an analytic function on unit

disk D1(0) = {ζ : |ζ | ≤ 1}. The point ξ1 =
m−−i
m−+i ∈ D1(0) since Im(m−) > 0. By maximum

modulus principle we have

sup
|ξ|≤1

∣∣∣∣∣1 + νξ1 − νξ
∣∣∣∣∣ = sup

|ξ|=1

∣∣∣∣∣1 + νξ1 − νξ
∣∣∣∣∣ ≤ C3(E)εα−1.

Applying this inequality to the point ξ1 and using the expression (26), we obtain

|m(E + iε)| =
∣∣∣∣∣1 + νξ1

1 − νξ1

∣∣∣∣∣ ≤ C3(E)εα−1.

This estimate and the representation (27) implies that

Λ((E − ε, E + ε)) ≤ 2εIm(m(E + iε)) ≤ 2ε |m(E + iε)| ≤ 2C3(E)εα

for all E ∈ Σ and ε > 0. Therefore,

Dα
Λ(E) = lim sup

ε→0

Λ((E − ε, E + ε))
(2ε)α

≤ 21−αC3(E) < ∞,

from which Λ is α-continuous on Σ. Given any Φ ∈ �2(Z,C2), the spectral measure μm
Φ

is
absolutely continuous with respect to Λ and so must be α-continuous on Σ. This completes
the proof of the theorem. �

Now our goal is to apply Theorem 7.1 to Sturmian Dirac operators Dλ,θ,ρ(m, c). For this,
we will show the bounds (30) in Propositions 7.1 and 7.2 below. First, we establish a lower
bound for solutions of (7), similar to Proposition 5.1 in [10].

Proposition 7.1. Suppose that the sequence (qk) associated with rotation number θ satis-
fies qk ≤ Ck

θ , for some 1 < Cθ < ∞. For every λ and m ≥ 0, there exist γ1 = γ1(m, λ, θ) > 0,
0 < C1 < ∞ such that for every E ∈ Σλ,θ(m) and all ρ ∈ [0, 1), every solution Ψ of (7) with
N.I.C. obeys

‖Ψ‖L ≥ C1Lγ1

for L sufficiently large.

Proof. By hypothesis we have Ck
θ,1 ≤ q8k ≤ Ck

θ,2 for all k ≥ 1, where 1 < Cθ,1 < Cθ,2 < ∞,
and by Lemma 5.1,

‖Ψ̃‖q8k ≥ Bλ(m)k ∀k ≥ 1,

with a constant Bλ(m) > 1. Choosing γ = γ(m, λ, θ) > 0 such that Cγ
θ,2 ≤ Bλ(m), follows that

‖Ψ̃‖q8k ≥ qγ8k.

Take ε ∈ (aθγ, γ) where aθ =
ln Cθ,2 − ln Cθ,1

ln Cθ,2
, and let γ1 := γ − ε > 0. We have

Cγ1
θ,2

Cγ
θ,1

< 1.

Choose k ∈ N such that



Spectral Properties for Sturmian Dirac Operators 409

⎛⎜⎜⎜⎜⎜⎝C
γ1
θ,2

Cγ
θ,1

⎞⎟⎟⎟⎟⎟⎠
k

≤ 1
Cγ1
θ,2

and let L sufficiently large such that q8k ≤ L < q8(k+1). Thus, it follows that

‖Ψ̃‖L ≥ ‖Ψ̃‖q8k ≥ qγ8k ≥ Ckγ
θ,1 ≥ C(k+1)γ1

θ,2 ≥ qγ1
8(k+1) ≥ Lγ1 .

Therefore there exist a constant C1 = D1 > 0 such that

‖Ψ‖L ≥ C1‖Ψ̃‖L ≥ C1Lγ1

for every solution Ψ of (7) with N.I.C. and for L sufficiently large. �

The following result establishes a upper bound for solutions of (7), similar to Proposi-
tion 5.2 in [10].

Proposition 7.2. Let θ be a bounded density number. For every λ and m ≥ 0, there exist
γ2 = γ2(m, λ, θ) > 0, 0 < C2 < ∞ such that for every E ∈ Σλ,θ(m) and all ρ ∈ [0, 1), every
solution Ψ of (7) with N.I.C. obeys

‖Ψ‖L ≤ C2Lγ2

for all L ≥ 1.

The main point of the proof of Proposition 7.2 is the Lemma 7.1 below. Since the up-
per boundedness of the transfer matrices M(m, E,Vλ,θ,0(1) · · ·Vλ,θ,0(k)) depends only on the
structure of the Sturmian potentials, a direct adaptation of results of [16] in the Schrödinger
setting shows that

Lemma 7.1. Suppose that θ is a bounded density number. For every λ and m ≥ 0, there
is a constant 0 < C < ∞ such that for all E ∈ Σλ,θ(m),

‖M(m, E,Vλ,θ,0(1) · · ·Vλ,θ,0(k))‖ ≤ Ckγ ∀k ∈ Z+,

with γ = Bd(θ) log
⎛⎜⎜⎜⎜⎝2 +
√

4 + max
E∈Σλ,θ(m)


(D)
−1 (E)
⎞⎟⎟⎟⎟⎠ > 0, where B is some universal constant,

d(θ) is as in (5) and 
(D)
−1 is given by Proposition 2.1.

Proof of Proposition 7.2. If Ψ =
(
ψ1

ψ2

)
is solution of (7) with N.I.C., then follow from (9)

and Lemma 7.1 that

‖Ψ̃(k + 1)‖ ≤ ‖M(m, E,Vλ,θ,0(1) · · ·Vλ,θ,0(k))‖ ≤ Ckγ ∀k ≥ 1.

Hence, for all L ≥ 1,

‖Ψ̃‖L =
⎛⎜⎜⎜⎜⎜⎜⎝
�L∑
k=1

‖Ψ̃(k)‖2 + (L − �L)‖Ψ̃(�L + 1)‖2
⎞⎟⎟⎟⎟⎟⎟⎠

1/2

≤
(
1 +C2

)1/2
Lγ+1/2.

Therefore there exist constants C2 = (1 +C2)1/2D2 > 0 and γ2 = γ +
1
2 > 0 such that

‖Ψ‖L ≤ C2Lγ2 ∀L ≥ 1.

This shows the result for solutions of (7) corresponding to ρ = 0. Due to right continuity
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of the potential Vλ,θ,ρ in ρ, of the corresponding transfer matrices and the continuity of the
norm ‖·‖L, the result follows for all phase ρ ∈ [0, 1).

We are now ready to prove the second main result of this paper.

Proof of Theorem 1.2. By hypothesis θ is a number of bounded density, then by Lemma 2.3
in [6] there exists a constant 1 < Cθ < ∞ such that qk ≤ Ck

θ . Thus, it follows from Propo-
sitions 7.1 and 7.2 that for λ � 0 and m ≥ 0, there exist γ1, γ2 > 0 (depending on m, λ, θ),
0 < C1,C2 < ∞, such that for each E ∈ Σλ,θ(m) and ρ ∈ [0, 1), every solution Ψ of (7) with
N.I.C. obeys

C1Lγ1 ≤ ‖Ψ‖L ≤ C2Lγ2

for L ≥ 1 sufficiently large. Let α = α(m, λ, θ) := 2γ1
γ1+γ2

∈ (0, 1). Therefore, by Theorem 7.1,
for all ρ ∈ [0, 1) and Φ ∈ �2(Z,C2), the spectral measure for the pair (Dλ,θ,ρ(m, c),Φ) is
purely α-continuous, that is, Dλ,θ,ρ(m, c) has purely α-continuous spectrum. This completes
the proof.

8. Comparison of Invariants and of the Dimension Estimates

8. Comparison of Invariants and of the Dimension EstimatesThe goal of this section is to compare the numbers α(D) =
2γ(D)

1

γ(D)
1 +γ

(D)
2

, obtained for the Stur-

mian Dirac operators Dλ,θ,ρ(m, c) in Theorem 1.2, with the corresponding numbers α(S ) =
2γ(S )

1

γ(S )
1 +γ

(S )
2

obtained in Theorem 2 in [10] for the Schrödinger operators Hλ,θ,ρ given by (3).

We consider the two models with same mass m > 0 and generated by the same Sturmian
potentials. We also compare lower bounds for exponents of transport associated with these
models.

To obtain a comparison between α(D) and α(S ), the first step is to compare the Sturmian
Dirac invariants (obtained in Proposition 2.1(ii))


(D)
−1 (E) =

λ2

c6 E4 − 2λ3

c6 E3 +

(
λ4 − 2m2c4λ2

c6

)
E2 +

2m2c4λ3

c6 E − m2c4

c6 λ4

+
(
m4c2 + 4m2

)
λ2 + 4

with the Sturmian Schrödinger invariants (for mass m > 0):


(S )
−1 (E′) = [tr (M̃0)]2 + [tr (M̃−1)]2 + [tr (M̃−1M̃0)]2 − tr (M̃0) tr (M̃−1) tr (M̃−1M̃0)

=
(
2mE′ + 2

)2
+ 22 +

(
2m(E′ − λ) + 2

)2 − 2
(
2mE′ + 2

) (
2m(E′ − λ) + 2

)
= 4m2λ2 + 4

where M̃−1 =

(
1 −2mλ
0 1

)
and M̃0 =

(
2mE′ + 2 −1

1 0

)
, for all energies E ∈ Σ(D) and

E′ ∈ Σ(S ), where Σ(S ) and Σ(D) denote the spectra of the operators Hλ,θ,ρ and Dλ,θ,ρ(m, c),
respectively.

Since Σ(D) is singular continuous of zero Lebesgue measure (Theorem 1.1), it is not pos-
sible to calculate 

(D)
−1 (E) directly for each E ∈ Σ(D) (analogous for (S )

−1 (E′)); we will work
on a larger set X, defined as follows. In [5, 15] it is shown that the spectrum of the free Dirac
operator is given by
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σ(D0(m, c)) =
[
−
√

m2c4 + 4c2,−mc2
]
∪
[
mc2,
√

m2c4 + 4c2
]
.

Thus, we have that

Σ(D) = σ
(
Dλ,θ,ρ(m, c)

)
⊂ σ (D0(m, c)) + [− |λ| , |λ|] = X

where X :=
[
−√m2c4 + 4c2 − |λ| ,−mc2 + |λ|

]
∪
[
mc2 − |λ| ,√m2c4 + 4c2 + |λ|

]
. For simplic-

ity, we will consider λ > 0; a similar analysis can be made for λ < 0. Note that if
0 < λ < mc2 then the two intervals of X are disjoint and so X has four boundary points;
if λ ≥ mc2 then X has two boundary points. Fixed m > 0 and λ, the invariant (D)

−1 (E) is a
continuous (polynomial) function of the energy E, which assumes maximum and minimum
values on the compact sets Σ(D) and X.

Let us determine max
E∈X


(D)
−1 (E) and min

E∈X 
(D)
−1 (E). The critical points of (D)

−1 , which satisfies

d(D)
−1

dE
(E) =

4λ2

c6 E3 − 6λ3

c6 E2 + 2
(
λ4 − 2m2c4λ2

c6

)
E +

2m2c4λ3

c6 = 0 ,

are given by E ∈
⎧⎪⎪⎨⎪⎪⎩
λ

2
,
λ ± √λ2 + 4m2c4

2

⎫⎪⎪⎬⎪⎪⎭. We have that
λ

2
∈ X if λ >

2
3

mc2 and

λ ± √λ2 + 4m2c4

2
∈ X for all λ > 0. Calculating the value of 

(D)
−1 (E) for each critical

point, we obtain


(D)
−1

(
λ

2

)
=

1
16c6λ

6 − m2c4

2c6 λ
4 + m4c2λ2 + 4m2λ2 + 4

=
λ2

16c6

(
λ2 − 4m2c4

)2
+ 4m2λ2 + 4 ≥ 4m2λ2 + 4

and


(D)
−1

⎛⎜⎜⎜⎜⎜⎝λ ±
√
λ2 + 4m2c4

2

⎞⎟⎟⎟⎟⎟⎠ = −m2c4

c6 λ4 + 4m2λ2 + 4 < 4m2λ2 + 4.

Now, calculating the value of (D)
−1 (E) for each boundary point of the set X, we obtain for

λ > 0,


(D)
−1

(
−
√

m2c4 + 4c2 − λ
)
=

4
c6λ

6 +
12
√

m2c4 + 4c2

c6 λ5 +
(8m2c4 + 52c2)

c6 λ4

+
24
√

m2c4 + 4c2

c4 λ3 +

(
16
c2 + 4m2

)
λ2 + 4

> 4m2λ2 + 4 ,


(D)
−1

(√
m2c4 + 4c2 + λ

)
=

4
c4λ

4 +
8
√

m2c4 + 4c2

c4 λ3 +

(
16
c2 + 4m2

)
λ2 + 4

> 4m2λ2 + 4

and for 0 < λ < mc2,


(D)
−1

(
−mc2 + λ

)
= 4m2λ2 + 4
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and


(D)
−1

(
mc2 − λ

)
=

4
c6λ

6 − 12mc2

c6 λ5 +
8m2c4

c6 λ4 + 4m2λ2 + 4

=
4λ4

c6 (λ − mc2)(λ − 2mc2) + 4m2λ2 + 4 > 4m2λ2 + 4.

From the above calculations we conclude that for all λ > 0,

min
E∈X 

(D)
−1 (E) = 

(D)
−1

⎛⎜⎜⎜⎜⎜⎝λ ±
√
λ2 + 4m2c4

2

⎞⎟⎟⎟⎟⎟⎠ < 
(S )
−1 (E′) = 4m2λ2 + 4

and

max
E∈X


(D)
−1 (E) = 

(D)
−1

(
−
√

m2c4 + 4c2 − λ
)
> 

(S )
−1 (E′).

Moreover, we have the following informations about the function 
(D)
−1 (E):

1. E =
λ

2
is local maximum point because it satisfies

d2
(D)
−1

dE2

(
λ

2

)
= −λ

4

c6 −
4m2c4

c6 λ2 < 0 ;

2. E =
λ ± √λ2 + 4m2c4

2
are local (global) minimum points due to

d2
(D)
−1

dE2

⎛⎜⎜⎜⎜⎜⎝λ ±
√
λ2 + 4m2c4

2

⎞⎟⎟⎟⎟⎟⎠ = 2λ4

c6 +
8m2c4

c6 λ2 > 0 ;

3. (D)
−1 (E) is an decreasing function of E

⎛⎜⎜⎜⎜⎜⎝d
(D)
−1

dE
(E) < 0

⎞⎟⎟⎟⎟⎟⎠ in the energy intervals

⎛⎜⎜⎜⎜⎜⎝−√m2c4 + 4c2 − λ , λ −
√
λ2 + 4m2c4

2

⎞⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎝λ2 ,

λ +
√
λ2 + 4m2c4

2

⎞⎟⎟⎟⎟⎟⎠

and increasing

⎛⎜⎜⎜⎜⎜⎝d
(D)
−1

dE
(E) > 0

⎞⎟⎟⎟⎟⎟⎠ in the energy intervals

⎛⎜⎜⎜⎜⎜⎝λ −
√
λ2 + 4m2c4

2
,
λ

2

⎞⎟⎟⎟⎟⎟⎠ ∪
⎛⎜⎜⎜⎜⎜⎝λ +

√
λ2 + 4m2c4

2
,
√

m2c4 + 4c2 + λ

⎞⎟⎟⎟⎟⎟⎠ ;
4. (D)

−1 (E) = 
(S )
−1 (E′) = 4m2λ2 + 4 for energies E ∈ {−mc2,−mc2 + λ,mc2,mc2 + λ}.

Denoting for λ > 0

J =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
−mc2,−mc2 + λ

)
∪
(
mc2,mc2 + λ

)
if λ ≤ 2mc2,

(
−mc2,mc2

)
∪
(
−mc2 + λ,mc2 + λ

)
if λ > 2mc2,

we obtain from the above calculations the following comparison of the invariants


(D)
−1 (E) ≥ 

(S )
−1 (E′) ∀E ∈ (X \ J) ∩ Σ(D), ∀E′ ∈ Σ(S )(32)

and
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(D)
−1 (E) ≤ 

(S )
−1 (E′) ∀E ∈ J̄ ∩ Σ(D), ∀E′ ∈ Σ(S ).(33)

It follows from (32) that

K(D) := max
E∈(X\J)∩Σ(D)


(D)
−1 (E) ≥ max

E′∈Σ(S )


(S )
−1 (E′) = 4m2λ2 + 4.

Now, for all E ∈ (X \ J) ∩ Σ(D) we have the bounds:

|xk| ≤ 2 +
√

4 + (D)
−1 (E) ≤ 2 +

√
4 + K(D) := C(D)

0 ,

|yk| ≤ C(D)
0 ,

|zk| ≤
|xk||yk| +

√
x2

ky
2
k + 4(D)

−1 (E)

2
≤

(C(D)
0 )2 +

√
(C(D

0 )4 + 4K(D)

2
:= C(D),

where xk = tr M(m, E, S k), yk = xk−1 and zk = tr M(m, E, S kS k−1). This implies that

max{|xk|, |yk|, |zk|} ≤ C(D).

In an analogous way to the above bounds, it is possible to show, for all E′ ∈ Σ(S ), that

max{|x̃k|, |ỹk|, |z̃k|} ≤ C(S )

for some constant C(S ), where x̃k, ỹk and z̃k are the corresponding traces in the Schrödinger
case. Since K(D) ≥ 4m2λ2 + 4, we have that C(D) ≥ C(S ) and

B(D) :=
⎛⎜⎜⎜⎜⎝1 + 1(

2C(D))2
⎞⎟⎟⎟⎟⎠

1/2

≤ B(S ) :=
⎛⎜⎜⎜⎜⎝1 + 1(

2C(S ))2
⎞⎟⎟⎟⎟⎠

1/2

.

Analysing the proofs of Proposition 7.1 and Proposition 5.1 in [10] (in the Schrödinger
context) we have Ck

θ,1 ≤ q8k ≤ Ck
θ,2 for all k ≥ 1, where 1 < Cθ,1 < Cθ,2 < ∞. Let γ(S ) > 0

be such that Cγ(S )

θ,2 ≤ B(S ). Take γ(D) > 0 such that Cγ(D)

θ,2 ≤ B(D) and aθγ(S ) < γ(D) ≤ γ(S ),

where aθ =
ln Cθ,2 − ln Cθ,1

ln Cθ,2
. Now choose ε ∈

(
aθγ(S ), γ(D)

)
and let γ(S )

1 := γ(S ) − ε > 0,

γ(D)
1 := γ(D) − ε > 0. Thus, referring to the energy intervals (X \ J)∩Σ(D) and Σ(S ) we obtain

that

γ(D)
1 ≤ γ(S )

1 .(34)

Note that with the above choices follow the proofs of Proposition 7.1 (in the energy interval
(X \ J) ∩ Σ(D)) and Proposition 5.1 in [10].

On the other hand, the proofs of Proposition 7.2 and of Proposition 5.2 in [10] (in the
Schrödinger context) are valid with

γ(D)
2 = Bd(θ) log

⎛⎜⎜⎜⎜⎝2 +
√

4 + max
E∈(X\J)∩Σ(D)


(D)
−1 (E)
⎞⎟⎟⎟⎟⎠ + 1

2

and

γ(S )
2 = Bd(θ) log

(
2 +
√

4 + max
E′∈Σ(S )


(S )
−1 (E′)

)
+

1
2
,

respectively. The estimate (32) implies that
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γ(D)
2 ≥ γ(S )

2 ,(35)

referring to the energy intervals (X \ J) ∩ Σ(D) and Σ(S ).
By (34) and (35) we obtain, with respect to the energy intervals (X \ J) ∩ Σ(D) and

Σ(S ), the following comparison between the dimension estimates for the models Hλ,θ,ρ and
Dλ,θ,ρ(m, c):

α(D) =
2γ(D)

1

γ(D)
1 + γ

(D)
2

≤ 2γ(S )
1

γ(S )
1 + γ

(S )
2

= α(S ), for all λ > 0.(36)

Similarly, by reproducing the above calculations by now using the estimate (33) instead
of (32), we obtain with respect to the energy intervals J̄ ∩ Σ(D) and Σ(S ), the following
comparison

α̃(D) :=
2γ̃1

(D)

γ̃1
(D) + γ̃2

(D) ≥
2γ(S )

1

γ(S )
1 + γ

(S )
2

= α(S ), for all λ > 0,(37)

where γ̃1
(D) and γ̃2

(D) are constructed as above in a similar way to γ(D)
1 and γ(D)

2 .
Now we will apply (36) and (37) in the comparison of lower bounds for the exponents of

transport associated with Sturmian Dirac and Schrödinger models. The standard quantities
that are considered to measure the spreading of an initially localized wavepacket, under the
dynamics governed by a Schrödinger operator H, are the time-averaged moments of the
position operator

(p, T, δ1) :=
2
T

∫ ∞
0

e−2t/T
∑

k

|k|p
∣∣∣∣〈e−itHδ1, δk

〉∣∣∣∣2 dt

with p > 0, T > 0 and {δk} the canonical basis of �2(Z). The faster (p, T, δ1) grows, the
faster e−itHδ1 spreads out, at least averaged in time. It is also usual to consider the lower
transport exponents

β(S )(p, δ1) := lim inf
T→∞

log(p, T, δ1)
log T

.

By Theorem 2 in [10] the spectral measure for the Sturmian Schrödinger model Hλ,θ,ρ, asso-

ciated with δ1, is α(S )-continuous with α(S ) =
2γ(S )

1

γ(S )
1 +γ

(S )
2

. It follows from Theorem 6.1 in [20]

that

β(S )(p, δ1) ≥ pα(S ) ∀p > 0.(38)

Similarly, we define the lower transport exponents β(D)(p, δ1,1) associated with Sturmian
Dirac model Dλ,θ,ρ(m, c), where δ1,1 is the vector of the canonical basis of �2(Z,C2) sup-

ported at position k = 1 with δ1,1(1) =
(

1
0

)
. Theorem 6.1 in [20] is valid for Dirac

operators D(m, c); using this result together with Theorem 1.2 we obtain

β(D)(p, δ1,1) ≥ pα(D) ∀p > 0,(39)

where α(D) =
2γ(D)

1

γ(D)
1 +γ

(D)
2

is given by Theorem 1.2. By (36) and (37) we conclude, by method

above, that with respect to the energy intervals (X \ J) ∩ Σ(D) and Σ(S ) the lower bounds
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in (38) are greater than or equal to the corresponding lower bounds in (39), and with respect
to the energy intervals J̄ ∩Σ(D) and Σ(S ) the lower bounds in (39) are greater than or equal to
the corresponding lower bounds in (38).

Finally, the papers [13, 22] have worked only on upper boundedness of transfer matrices,
as in Lemma 7.1, and derived the following lower bounds

β(S )(p, δ1) ≥ p − 3γ(S )

1 + γ(S ) , β(D)(p, δ1,1) ≥ p − 3γ(D)

1 + γ(D) ,(40)

for all p > 0, where γ(D) = γ is given by Lemma 7.1 and γ(S ) by corresponding result in [16].
For large values of p, the bounds in (40) are better than in (38)-(39); for p small, the bounds
in (38)-(39) are better.

Using (32) we obtain that with respect to the energy intervals (X \ J) ∩ Σ(D) and Σ(S ),
γ(S ) ≤ γ(D) which implies p−3γ(S )

1+γ(S ) ≥ p−3γ(D)

1+γ(D) . On the other hand, using (33) follows that with

respect to the energy intervals J̄∩Σ(D) and Σ(S ), p−3γ(S )

1+γ(S ) ≤ p−3γ̃(D)

1+γ̃(D) . We conclude again, now by
this other method, that for the energy intervals (X \ J) ∩ Σ(D) and Σ(S ) the lower bounds for
transport exponents β(S )(p, δ1) are greater than or equal to the corresponding lower bounds
for β(D)(p, δ1,1), and for the energy intervals J̄∩Σ(D) and Σ(S ) the lower bounds for β(D)(p, δ1,1)
are greater than or equal to the corresponding lower bounds for β(S )(p, δ1).
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