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The invariants of the velocity gradient (R and Q), rate-of-strain (Ry and Qy), and rate-of-rotation
(Qw) tensors are analyzed across the turbulent/nonturbulent (T/NT) interface by using a direct
numerical simulation (DNS) of a turbulent plane jet at Re, = 120. The invariants allow a detailed
characterization of the dynamics, geometry and topology of the flow during the entrainment. The
invariants Q and Qg are almost equal and negative outside the turbulent region close to the T/NT
interface, which shows the existence of high values of strain product (hence viscous dissipation of
Kkinetic energy) at that location. Right at the T/NT interface, the invariants Qy, and Qg show that
virtually all flow points there are characterized by irrotational dissipation, with no discernible sign
of the coherent structures which are known to exist deep inside the turbulent region. Moreover, the
invariants of the velocity gradient tensor (Q and R) show that the classical “teardrop” shape of their
associated phase map is not yet formed at the T/NT interface. All the invariants rapidly change after
the T/NT interface is crossed into the turbulent region. For instance, the enstrophy density,
proportional to Qyy, is zero in the irrotational flow region and high and more or less constant inside
the turbulent region, after it undergoes a sharp jump near the T/NT interface. Inside the turbulent
region, at a distance of only 1.77 from the T/NT interface, where 7 is the Kolmogorov microscale,
the invariants Qy and Qg suggest that large scale coherent vortices already exist in the flow.
Furthermore, the joint probability density function of Q and R already displays its well known
teardrop shape at that location. Moreover, the geometry of the straining (or deformation) of the fluid
elements during the turbulent entrainment process is preferentially characterized by biaxial
expansion with ag: Bg: ys=2:1:-3, where «g, B, and 7y are the eigenvalues of the rate-of-strain
tensor arranged in descending order. Based on an analysis of the invariants, many aspects of the flow
topology inside the turbulent region at a distance of only 1.77 from the T/NT interface are already
similar to those observed deep inside the turbulent region. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2912513]

I. INTRODUCTION

The study of the invariants of the velocity gradient, rate-
of-strain, and rate-of-rotation tensors in turbulent flows has
attracted much attention since the seminal papers by Chong
et al.,1 Cantwell,z’3 and Perry and Chong.4 The invariants are
scalar quantities whose values are independent of the orien-
tation of the coordinate system and contain information con-
cerning the rates of vortex stretching and rotation, and on the
topology and geometry of deformation of the infinitesimal
fluid elements. Furthermore, the analysis of the invariants
permits the understanding of these issues using a relatively
small number of variables, e.g., the second and third invari-
ants of the velocity gradient tensor combined (Q and R) al-
low to assess the topology of the flow (enstrophy dominated
versus strain dominated) or the enstrophy production (vortex
stretching versus vortex compression).

The invariants have been extensively used in several
flow configurations such as isotropic turbulence,” turbulent
mixing layers,8 and turbulent channel flows.” Important
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information is also obtained by analyzing the volume inte-
gral of the invariants, as shown by Soria et al.'’ In these
studies, several “universal” features of turbulent flows were
observed. An example of such a result is the well known
“teardrop” shape of the joint probability density function
(PDF) of R and Q.

An interesting line of research using the invariants con-
sists in writing transport equations for each one of the
invariants.” Cantwell® analyzed these equations for the in-
variants of the velocity gradient tensor by using the so-called
“restricted Euler model” proposed by Vieillefosse'' where
the pressure Hessian and viscous terms are neglected. The
solutions to these equations showed some of the flow fea-
tures observed in isotropic turbulence such as the preferred
alignment of the vorticity vector with the eigenvector corre-
sponding to the intermediate eigenvalue of the rate-of-strain
tensor, as well as the tendency for a state corresponding to
two positive and one negative eigenvalues of this tensor. >

Another line of active research involving the invariants
has been the identification of the coherent structures in tur-
bulent flows, either to visualize the flow regions associated
with the presence of vortex tubes'* ' or to identify the re-
gions responsible for the most important dissipation rates of
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kinetic energy.”’18 Recently, the invariants have been used
also in the context of subgrid-scale modeling.lg’20

The present work uses the invariants in the context of the
turbulent entrainment that exists in free shear flows such as
mixing layers, wakes, and jets. In these flows, the flow field
can be divided into two regions. In one region, the flow is
turbulent (T) and its vorticity content is high, while in the
other region, the flow consists of largely irrotational [nontur-
bulent (NT)] flow.?' The two flow regions are divided by the
turbulent/nonturbulent (T/NT) interface where the turbulent
entrainment mechanism takes place, by which a given fluid
element from the irrotational zone becomes turbulent. This
T/NT interface is very sharp and is continually deformed
over a wide range of scales. Its thickness is of the order of
the Taylor microscale.”

The mechanism of turbulent entrainment is still involved
in a great deal of mystery, despite the great number of works
devoted to it (see, e.g., Townsend?* for a review on the clas-
sical ideas of turbulent entrainment). Understanding of the
physical mechanisms taking place at the T/NT interface is
important in many natural and engineering flows since im-
portant exchanges of mass, momentum, and passive or active
scalar quantities take place across the T/NT interface.®* It
was assumed in the past that the turbulent entrainment
mechanism is mainly driven by “engulfing” motions caused
by the large scale flow vortices,” but recent experimental
and numerical works give more support to the original model
of Corrsin and Kistler”' where the entrainment is primarily
associated with small scale (“nibbling”) eddy motions.”>*®
Nevertheless, it is still argued that the entrainment and
mixing rates are largely determined by the large scales of
motion.

Recently, the study of the turbulent entrainment saw very
significant advances with the results from direct numerical,
simulations (DNSs) of plane wakes by Bisset ef al.,*”® the
DNSs of round jets by Mathew and Basu,” the experimental
measurements of round jets by Westerweel et al.”** and
with results from the flow generated by an oscillating grid by
Holzner et al.’*?' Many new and sometimes quite unex-
pected results were obtained in these works. One of the most
surprising results (see Mathew and Basu® and Westerweel
et al.26) consisted in the realization that the total amount of
fluid entrained due to the small scale motions near the T/NT
interface (i.e., nibbling) is more important than the amount
of fluid entrained by large scale motions (engulfing), as sug-
gested more than 50 years ago by Corrsin and Kistler.”!
Other interesting results are the existence of a finite jump in
the tangential velocity (hence also in the [€),| vorticity com-
ponent) at the T/NT interface®®®®  as anticipated by
Reynolds,32 the existence of a positive contribution to the
enstrophy by the viscous enstrophy diffusion term,”?! the
existence of a region of high strain product in the irrotational
flow region close to the T/NT interface,31 and the estimation
of the characteristic scales of motion at the T/NT interface as
being of the order of the Taylor scale.”

The goal of the present work is to analyze the evolution
of the invariants of the velocity gradient, rate-of-strain, and
rate-of-rotation tensors across the T/NT interface in turbulent
jets in order to clarify the kinematics, dynamics, and topol-
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FIG. 1. (Color online) Sketch of (a) a spatially developing jet as produced in
a laboratory setup and (b) a temporal jet simulation as the one adopted in the
present work. Notice the coordinate system used in the present work indi-
cating the streamwise (x), normal (y), and spanwise (z) directions.

ogy of the flow during the entrainment process. For this pur-
pose, a DNS of a turbulent plane jet will be used. The tur-
bulent plane jet is a well known canonical free shear flow
with many common features with other free shear flows such
as mixing layers, wakes, round, and coaxial jets. Namely, the
flow statistics are dominated by the presence of an inhomo-
geneous mean streamwise velocity profile and by the pres-
ence of quite similar long lived large scale flow vortices,
originated from well known instabilities (e.g., Kelvin—
Helmholtz instability), and whose “footprints” are still dis-
cernible at the far field fully developed turbulent state.
Therefore, it is expected that the results obtained in the
present study display some universal qualitative features re-
lated to the entrainment in free shear flows.

This article is organized as follows. In Sec. II, we de-
scribe the plane jet DNS used in the present work. Section III
describes the procedure used to detect the T/NT interface and
the data bank used in the subsequent analysis. The main
results are described in Sec. IV. In Sec. V, the work ends with
a review of the main results and conclusions.

Il. DNS OF TURBULENT PLANE JETS
A. Statement of the problem

In this work, we are interested in analyzing the invari-
ants of the velocity gradient, rate-of-strain, and rate-of-
rotation tensors in connection with the mechanism of turbu-
lent entrainment in jets. A typical spatially developing plane
jet issuing from a nozzle into a tank filled with the same
fluid, as obtained in a laboratory experiment, is sketched in
Fig. 1(a). Recent DNS of spatially evolving turbulent plane
jets include the works of Stanley et al*® and da Silva and
Meétais.**

It is well known that numerical simulations of spatially
developing flows, i.e., spatial simulations, can be very de-
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manding both in terms of computer time and memory due to
the need to simulate the flow inside a very large computa-
tional domain containing all the length scales of the flow.

In the present work, a temporal simulation of a plane jet,
as sketched in Fig. 1(b), was used in order to limit the com-
putational cost. The sketch also shows the coordinate system
used in the present work indicating the streamwise (x), nor-
mal (y), and spanwise (z) directions. DNSs of temporally
evolving turbulent plane jets were carried out by Akhavan
et al.*® and da Silva and Pereira.’® In these simulations, the
computational domain is periodic in the three spatial direc-
tions, which allows the use of very fast and accurate pseu-
dospectral methods. Thus, one studies the temporal evolution
of the flow generated by an initial plane jet velocity profile,
instead of the flow of a spatially developing jet. This fact
substantially limits the size of the computational domain re-
quired by the simulations, which reduces the computational
cost.

Because in temporal simulations periodic boundary con-
ditions are used in the streamwise direction, the feedback
effects caused by the pressure field that are known to influ-
ence the details of the transition to turbulence (e.g., see
Thomas and Chu’’) are absent from temporal simulations.
Another drawback of temporal simulations is that no rigor-
ous comparison with experimental results can be made.
However, since the flow field in the fully developed turbulent
state is to a great extent independent of the details of the
transition to turbulence (e.g., see Refs. 33-36), temporal
simulations are a useful tool to analyze the flow at the far
field of a turbulent jet. Also, the large scale flow structures
that are typical of jets and other free shear flows, such as the
Kelvin—Helmholtz and streamwise vortices, are well cap-
tured in temporal simulations. The use of temporal simula-
tions is also justified by the fact that despite their limitations,
they represent valid solutions to the Navier—Stokes equations
and are relevant since the goal of the present work is to
analyze those features of the entrainment mechanism that are
generally true in Navier—Stokes turbulence. Another justifi-
cation comes from the fact that turbulent entrainment is
mainly dominated by small scales, as shown by Mathew and
Basu® and Westerweel et al.”*% Temporal DNSs of turbu-
lent flows were previously used to analyze the mechanics of
the T/NT interface in plane wakes”"?® and in round jets.zs‘38

B. Numerical method

The numerical code used here is a standard pseudospec-
tral code (collocation meth0d39) in which the temporal ad-
vancement is made with an explicit third order Runge—Kutta
time stepping scheme.”” The simulation was fully dealiased
by using the % rule.”” This code was used recently by the
authors in DNSs of turbulent plane jets described in da Silva

and Pereira.*®

C. Physical and computational parameters

The DNS was started by using, as initial condition, an
hyperbolic-tangent velocity profile,
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where 6, is the initial momentum thickness, H is the inlet
nozzle of the jet, and we used U;=1 and U,=0. The mean
profile defined by Eq. (1) was also used as the inlet condition
in the spatial plane jet simulations of Stanley et al.> and
Silva and Métais>* and as the initial condition in the temporal
simulations of Akhavan et al.” and da Silva and Pereira.*®
Many spatial and temporal simulations of turbulent round
jets use similar (inlet or initial) mean velocity profiles (see,
e.g., da Silva and Métais*' and Mathew and Basuzs) since it
is recognized that it represents a very good approximation to
the inlet velocity profile found in measured experimental
jets.42

A three-component velocity fluctuating “spectral noise”
was superimposed to the mean velocity profile defined by
Eq. (1) through a proper convolution function that imposes
the velocity fluctuations in the initial shear layer region of
the jet. The spectral noise used here is very similar to the one
used in da Silva and Métais** and virtually equal to the one
used in da Silva and Pereira.*® This numerical noise is very
similar to the standard noise used to initialize simulations
of decaying isotropic turbulence (e.g., Lesieur et al.®). In
short, each velocity component of the noise is prescribed
in such a way that its energy spectrum is given by
E(k) ~ k* exp[—s/2(k/ky)*], where the exponent s is s=4 (as
in decaying isotropic turbulence). However, here, the peak
wave number k is chosen to give an energy input which is
dominant at small scales (high k) to allow the simulation to
evolve “naturally” by “selecting” its natural instability
modes.

As in Stanley et al.,33 da Silva and Métais,34 and da Silva
and Pereira,” a relatively high amplitude spectral noise was
added (8%) to the mean profile defined by Eq. (1) in order to
speed up the transition mechanism and allow the flow to
quickly reach a fully developed turbulent state. It is impor-
tant to stress that, as shown in previous works, the addition
of a high H/ @, ratio and initial amplitude noise, although
favoring a faster transition to turbulence, does not affect the
dynamics of the self-similar fully developed turbulent
state, 33:34:36.4

In the present work, we are interested in reaching a
slightly higher Reynolds number than in Ref. 36 and at the
same time in having a resolution closer to the one used in
isotropic turbulence, for which the optimal value is Ax/#
~2.1 (Pope™) and which corresponds to having k., 7=1.5,
where k,,, 1S the maximum resolved wave number and 7 is
the Kolmogorov microscale. For this purpose in the present
plane jet simulation, we use an initial Reynolds number
equal to Rey=(U,—U,)H/v=3200," where H is the plane
jet inlet slot width, and we reduce the extent of the compu-
tational box to (L,,L,,L,)=(4H,6H,4H). The grid size con-
sists now in (N, XNy X N,)=(256X384X256) grid points,
i.e., the number of grid points along the streamwise (x) and
normal (y) directions was retained from Ref. 36, while the
spanwise (z) resolution was doubled. This was done in order

Downloaded 02 May 2008 to 193.136.128.14. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



055101-4 C. B. da Silva and J. C. F. Pereira

to improve the degree of convergence of the statistics over
one single instantaneous field. Notice, however, that the grid
remains isotropic and we have Ax=Ay=Az=0.0156H in-
stead of 0.02H as in Ref. 36. Finally, in order to further
reduce the time spent during the transition phase, the initial
H/ 6, ratio was raised to H/ 6,=35.

It is important to ensure that the new computational box
size does not constrain the jet in its development and particu-
larly its spreading rate. Recall that the use of classical pseu-
dospectral schemes for spatial discretization implies that the
boundary conditions used here are periodic in the three spa-
tial directions. Concerning the box size in the streamwise
direction, it is important to ensure that the size of the com-
putational domain in this direction is big enough to allow for
the development of the primary (shear layer) Kelvin—
Helmholtz instability. Therefore, the box size has to be
greater than the Kelvin—Helmholtz instability length scale.
The Strouhal number of the primary Kelvin—-Helmholtz in-
stability is equal to Sg=f6y/ U-=0.033, where f;; is the fre-
quency of the shear layer mode and U-=0.5(U;+U,) is the
convection Velocity.47 Since the initial H/ 6, ratio used here
is H/ 6,=35, the associated instability length scale is equal to
Ng=0y/Sq=0.87H. Thus, the box size in the streamwise di-
rection L,=4H is more than four times bigger than the
Kelvin—Helmholtz instability length scale.

Concerning the normal direction, it is important to em-
phasize that numerous previous works have showed that
there is no particular problem with the use of periodic
boundary conditions provided that the box size is big enough
(see da Silva and Meétais®* and Mathew and Basu® and ref-
erences therein). The box size along the normal direction
used here is L,=6H. This is the same lateral size used in the
simulations of Mathew and Basu.”> As shown in numerous
visualizations, including the one shown below in Fig. 5, the
contours that delimit the T/NT interface are on average at a
distance of more than 1.5H from the normal box boundaries.
This is more than the distance used in previous numerical
simulations used to analyze the turbulent entrainment, e.g.,
Mathew and Basu® had less than 1D (D is the jet diameter),
and this still posed no problems. Moreover, all the one point
statistics obtained in the present simulation are in excellent
agreement with the results from previous experimental and
numerical works (see below). Thus, the lateral extent or
boundary conditions in the normal direction do not influence
the plane jet development. Finally, concerning the box size
in the spanwise direction, we now have L,=4H. This
is larger than any of the spanwise box sizes used in the
spatial or temporal simulations cited above, and since the
length scales, of the secondary (spanwise) instabilities are
smaller than the primary instabilities (estimated above as
Nq=0.87H), with L.=4H, the box size used in the present
simulation is indeed sufficient.

D. DNS assessment

The scenario of transition to turbulence is very similar to
the one described in previous numerical simulations, e.g.,
Stanley et al*® da Silva and Métais,34 and da Silva and
Pereira,”® and is characterized by the emergence of Kelvin—
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FIG. 2. (Color online) Temporal evolution of the mean enstrophy and its
components for the present turbulent plane jet DNS.

Helmholtz vortices, both at the upper and lower shear layers,
and is followed by the appearance of pairs of streamwise
vortices connecting each two consecutive pairs of Kelvin—
Helmbholtz rollers. Shortly after, the streamwise vortices
break up into smaller structures with no preferential direc-
tion, which is a sign of a fully developed turbulent stage.
Figure 2 shows the temporal evolution of the enstrophy
and its components averaged over the whole computational

domain. We denote these averages by (), e.g.,
Q) I G
= 222 T ya). (2)

2 [ NNNS S 2

As in Ref. 36, these curves show an increase until 777
=20, where T.=H/[2(U,-U,)], followed by a decrease at
a more or less constant rate.

The coherent structures of the flow were visualized by
using the “Q criteria”®'* and the pressure field. From
T/Ts= 15 onward these structures are qualitatively similar
to the ones shown in Figs. 2(a) and 2(b) from Ref. 36, i.e.,
the small scale structures, which are more easily visualized
through positive values of Q, do not show the existence of
any particular spatial orientation, whereas the low pressure
isosurfaces, which highlight the bigger structures, still show
remnants of the Kelvin—-Helmholtz rollers (as in Ref. 36,
there is, of course, some overlap between the structures from
the two visualization criteria—see Dubief and Delcayrels).
The self-similar regime is obtained at T/T,;=~20 (against
T/T.s=30 in Ref. 36), which corresponds to an equivalent
streamwise location of x/H=(U,-U,)(T/H)=T/ (2T, =10.
Recall that in the spatial simulations of Stanley ef al*® and
da Silva and Métais,>* x/ H=10 marked also the beginning of
the self-similar regime. Finally, at this station, the Reynolds
number based on the Taylor microscale N and on the root
mean square of the streamwise velocity u’ is equal to
Re,=u'N/v=120 across the shear layer.

Figures 3(a)-3(d) show one point statistics for the plane
jet DNS. The statistics were obtained with a single instanta-
neous field from the self-similar region where spatial aver-
aging in the two homogeneous directions (x and z) was fol-
lowed by “folding” of the mean profiles in relation to the jet
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FIG. 3. (Color online) Profiles of several one point statistics at the self-similar region from the present temporal plane jet direct numerical simulation (present
work) compared to the experimental results from Gutmark and Wygnansky (Ref. 50), Ramparian and Chandrasekhara (Ref. 51), and Thomas and Prakash
(Ref. 52) and with the DNSs of Stanley e al. (Ref. 33), da Silva and Métais (Ref. 34), and da Silva and Pereira (Ref. 36): (a) Mean streamwise velocity, (b)
streamwise Reynolds stresses, (c) normal Reynolds stresses, and (d) spanwise Reynolds stresses. U, is the streamwise mean centerline velocity and &, is the

half-width of the jet.

centerline (y=0) to take advantage of the symmetry of the
jet. We denote these averages by (),

N, N,
LSS uy.zn
—Lu\x,y,z,
NxNzi:l k=1 2

(u(y)) =uly.0) =

+u(x,— y,z,0)]. (3)

Due to the relatively small number of samples obtained for
each y coordinate (2N, XN,=131072), the mean profiles
show some wiggles. This limitation is a well known feature
of temporal simulations and similar wiggles can be found
also in the mean profiles from temporal simulations of
mixing layers,48 wakes,*’ and round jets.50 Although the de-
gree of convergence of the statistics is not perfect, they
nevertheless allow a comparison to results from experimental
and numerical works from the literature. In Figs. 3(a)-3(d),
the present results are compared to experimental results
from Gutmark and Wygnansky,so Ramparian  and
Chandrasekhara,51 and Thomas and Prakash,52 and the
DNSs, from Stanley et al.,33 da Silva and Métais,34 and

da Silva and Pereira.* Although the scatter between the ex-
periments and computations is high, the mean streamwise
velocity profile and Reynolds stress profiles from the present
DNS agree with the data available well.

Figures 4(a) and 4(b) show the spatial three-dimensional
kinetic energy and kinetic energy dissipation spectra, respec-
tively, at several instants. The kinetic energy spectrum has a
—5/3 region followed by a smooth decay at high wave num-
bers. Notice that the product of the maximum resolved wave
number to the Kolmogorov microscale is k., n=1.5. That
the dissipative scales are indeed being well resolved is at-
tested by the small upturns at the end of the wave number
range. The dissipation spectrum shown in Fig. 4(b) peaks at
kn=0.3, which marks the start of the dissipation region. The
shape and magnitudes of these spectra are very similar to the
ones obtained by Akhavan et al..” also in temporal simula-
tions of turbulent plane jets, with similar resolution and simi-
lar Reynolds number based on the Taylor microscale. Addi-
tional resolution tests are given in Appendix A.

These results show that the present DNS is both accu-
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FIG. 4. (Color online) Three-dimensional (spatial) kinetic energy and ki-
netic energy dissipation spectra from the plane jet DNS at several instants:
(a) Kinetic energy spectrum and (b) kinetic energy dissipation spectrum.

rate, at the large and small scales, and representative of a
fully developed turbulent plane jet. This completes the vali-
dation of the turbulent plane jet DNS.

lll. DATA BANK DESCRIPTION
A. Detection algorithm for the T/NT interface

The T/NT interface can be defined by using either the
vorticity norm Q=(€,Q,)"2, where (), is the vorticity field as
in Bisset et al.,”"* or using a passive scalar or concentration
field as in Westerweel et al.”** The vorticity norm was used
in the present work, where it was observed that the detection
threshold of Q=0.7U,;/H best delineated the vortical
regions. This is exactly the same value used by Bisset et al”®
and a similar level was used by Mathew and Basu.”
Figure 5 shows contours of vorticity modulus corresponding
to this detection threshold in an (x,y) plane of the jet at
T/T,s=27. As in previous works, it can be seen that the
T/NT interface is strongly contorted and some irrotational
fluid is engulfed.

In the present work, we analyze conditional statistics in
relation to the location of the interface envelope by using a
procedure similar to the one described in previous works,
e.g., Bisset et al.>”® and Westerweel et al.*®*

A detailed description of this procedure is given here
with the aid of a sketch shown in Fig. 6. The sketch repre-
sents the T/NT interface separating the T from the irrota-
tional or NT flow regions, at the upper shear layer of the
plane jet. The vorticity surface defined by the selected
threshold is indicated by a solid line, while the T/NT inter-
face envelope is represented by gray dashed lines. The sketch
depicts events of large scale engulfment and small scale nib-
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FIG. 5. (Color online) Contours of vorticity modulus corresponding to
0=0.7U,/H in the (x,y) plane of the jet at T/ T,,;=27.

bling and also the original coordinate system (x,y) used in
the numerical simulation of the turbulent plane jet.

Since the plane jet is homogeneous in the streamwise (x)
and spanwise (z) directions, each (x,y) plane is indepen-
dently treated. Consider the upper shear layer depicted in
Fig. 6. The procedure starts with the determination of the
T/NT interface envelope location Y,(x), for each one of the
N, grid points in the original coordinate system along the x
direction. Y,(x) is obtained through a linear interpolation
along the y direction, using the vorticity norm threshold in-
dicated above to detect the T/NT interface.

In order to make conditional statistics in relation to the
location of the interface envelope, we start by defining a new
local coordinate system (x;,y;) with the lines tangent (x;) and
normal (y;), respectively, to the interface envelope (see Fig.
6). In this new coordinate system, the T/NT interface is ex-
actly at (x;,y;)=(0,0).

After the determination of the interface envelope Y,(x),
one determines the coordinates of the axis line y;, from the
new (local) coordinate system (x;,y,), in the old coordinate
system (x,y). Notice that this line is normal to the envelope
for each one of the N, grid points along the x direction.
Along both sides of this y; axis line (for y,>0 and y;<0),
we define N;=80 points, starting at y,;=0 and equally spaced

Irrotational region (NT)
XI Small scale

nibbling
/ \'

Vorticity surface

FIG. 6. (Color online) Sketch of the T/NT interface for the plane jet indi-
cating the vorticity surface (solid line) and the interface envelope (gray
dashed lines). The sketch also shows the coordinate system used in the
computation of the plane jet (x,y) and the one used to analyze the T/NT
interface (x;,y;). In particular, the coordinate of the interface envelope is
denoted by Y;. The three holes represent regions of irrotational fluid inside
the turbulent region.
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with a distance equal to the mesh spacing Ax. For instance,
the coordinates of these points in the turbulent region are
given by (x;,y,)=[0,y,(1)]=[0,({-1)Ax] with [=1, N,. This
defines a total of 2 X N;—1=159 grid coordinates for the axis
v}, which will be used to describe the mean conditional sta-
tistical profiles. Then, for each coordinate y;, the mean con-
ditional profile of a given flow variable P(x,y,z,?), in the
upper shear layer, for the plane (x,y) corresponding to z=Z
and at time 7=T is obtained through

N

1 _
(P(y))i"= 172 P(x,y,z=2,t=T), (4)
Li=1

where P!(x,y,z=Z,t=T) is the value of P(x,y,z,1) interpo-
lated into the point (x;,y,)=(0,y,) in the plane (x,y,z=2)
and at time r=T7. A simple bilinear interpolation is used for
this purpose. N, is the total number of samples used to make
the conditional mean for a given coordinate y;. The maxi-
mum possible value for N; is Ny=N,; however, during the
computation of the mean conditional profile defined in Eq.
(4), all points inside “holes” of “ambient fluid” that appear in
the jet, such as the three holes represented in Fig. 6, are
removed from the statistical sample.

The procedure just described is also used for the lower
shear layer and the resulting profiles are averaged in the end.
Thus, the maximum number of samples used to make a con-
ditional mean for a given coordinate point y, in a given (x,y)
plane is then equal to 2 X N,. The same procedure is used
for each one of the (x,y) planes available and the final result
is once again averaged over all the existing N, planes. The
maximum possible number of samples corresponding to a
single instantaneous field is then equal to 2XN XN,
=131072.

Finally, to further improve the degree of convergence of
the conditional statistics, several instantaneous fields taken
from the fully developed turbulent regime were also used.
Although the plane jet evolves in time and thus each instan-
taneous field is, in its details, different from the others, se-
lecting fields separated by a very small time interval reduces
these differences. In particular, in the far field, self-similar,
fully developed turbulent regime, each instantaneous field is
statistically equivalent. Here, we used Ny=11 instantaneous
fields taken from 7/T,;=20.2 to T/ T,.;=27.0. As can be seen
in the kinetic energy and kinetic energy dissipation spectra
shown in Figs. 4(a) and 4(b), there are no appreciable differ-
ences concerning these statistics for all the instantaneous
fields from T/T,;=20.2 to T/T;=27.0, a fact confirmed by
comparing the visualization of the fields from 7/7,=20.2
and T/T,;=27.0. Thus, the use of these Ny instantaneous
fields from the self-similar regime allows us to increase the
total number of samples used in the conditional averages
without “mixing” different regimes of the plane jet develop-
ment.

Therefore, except for the data points which are removed
from the averaging procedure for being part of holes of irro-
tational fluid in the turbulent zone (and likewise for being
islands of turbulent fluid in the irrotational zone), the total
number of samples used to make a conditional mean in
relation to the distance from the T/NT interface is equal to
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FIG. 7. (Color online) PDF of the vertical distance of the T/NT interface Y,
for the lower shear layer.

=2 X Ny X N, X N,~1.4%10° This is more than enough to
obtain well converged statistics of the quantities in study in
this work.

With this procedure, conditional statistics of any flow
quantity can be made in relation to the distance from the
T/NT interface. We denote these conditional interface statis-
tics by (), to differentiate them from the spatial statistics
done along the homogeneous directions of the plane jet,
which are denoted by ( ), and from the spatial statistics done
in the whole computational box, which we denote by ( ).

Figure 7 shows the PDF of the interface distance from
the center of the jet Y, for the lower shear layer (nondimen-
sionalized by H). The mean, variance, skewness, and flatness
of the interface distance are (Y,/H)=-1.14, ((Y,/H)'?)
=0.12, ((Y,/H)'3)/{(Y,/H)'**?=0.09, and {((Y,/H)'*
1{(Y,/H)'*)?>=2.95, respectively. As can be seen by the shape
of the PDF and by these values, the PDF of Y;/H is near
Gaussian. The upper shear layer displays similar shapes and
values (the mean is, of course, positive (Y;/H)=+1.16). Bis-
set er al.”® and Westerweel et al.”® also observed near Gauss-
ian PDFs of the vertical distance of the T/NT interface.

B. Conditional mean vorticity in relation
to the distance from the interface position

Figure 8 shows conditional mean profiles of ({),
(D (Q0n Q) and (), (nondimensionalized by
U,/H) in relation to the distance from the T/NT interface Y/,
which is nondimensionalized by the value of the Kolmog-
orov microscale at the jet shear layer. The vorticity modulus
shows a sharp transition from the irrotational to the turbulent
zone, where it reaches a plateau with (Q),~4.5(U,/H), and
both (€),); and (|€)|); show a peak very close to the interface.
The shape and magnitudes of these profiles are in very good
agreement with the results of Bisset er al.*™ and Wester-
weel et al.**®

In the remainder of this work, the conditional mean pro-
file of (|€),|); will be used as a reference to indicate several
locations near the T/NT interface. Notice that in a plane jet,
this is the only nonzero mean vorticity component, i.e.,

(Q.(x,y,2))=(Q.(y)) #0, while (€Q,(x,y,2)=(Qy(x,y,2))
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FIG. 8. (Color online) Mean conditional profiles of (), <[]}, (|, [);,
{|Q.]);, and (Q.), (all normalized by U,/H).

=0. Moreover, as shown in Fig. 8, the gradient of this vor-
ticity component is slightly steeper than either (||}, or
(|Qy[), which is in agreement with the predictions by
Reynolds3 2 (experimentally ~confirmed by Werterweel
et al.26) since this component is connected with the existence
of a finite jump in the tangential velocity at the T/NT inter-
face. However, it must be stressed that any other vorticity
component might be used instead, particularly since, as re-
marked by a referee, there is almost no difference between
the conditional mean profiles of the three vorticity compo-
nents shown in Fig. 8. Finally, in the present work, three
particular locations in relation to the distance from the T/NT
interface will be frequently considered: y;/ 7=0.0, which is
exactly at the T/NT interface, y;/ #»=1.7, which is close to the
point of maximum (|2.|);, and y,/ 7=8.6, which is already
well inside the turbulent zone.

IV. INVARIANTS OF THE VELOCITY GRADIENT,
RATE-OF-STRAIN, AND RATE-OF-ROTATION
TENSORS ACROSS THE T/NT INTERFACE

In this section, the invariants of the velocity gradient,
rate-of-strain, and rate-of-rotation tensors are used to study
the dynamics, topology, and geometry of the flow during the
turbulent entrainment process. We start by recalling the defi-
nitions of the invariants, their relationships, and physical
meanings (Sec. IV A). The next sections successively ana-
lyze the geometry of the dissipation through the invariants
Oy and Qg (Sec. IV B), the geometry of the straining of the
fluid elements through the invariants Qg and Ry (Sec. IV C),
and, finally, the relation between the flow topology and the
production/dissipation of enstrophy by vortex stretching/
compression through the invariants Q and R (Sec. IV D). The
analysis uses conditional mean profiles of the invariants in
relation to the distance from the T/NT interface, “trajecto-
ries” of these conditional mean values in their associated
phase maps, and joint PDFs of the invariants at several dis-
tances from the T/NT interface.

Phys. Fluids 20, 055101 (2008)

A. Definitions of the invariants and associated
physical meanings

The goal of this section is to review some of the back-
ground material related to the invariants of the velocity gra-
dient, rate-of-strain, and rate-of-rotation tensors. Extensive
reviews of this material can be found in Chong et al.,
Cantwell,> Soria and Cantwell,'® Perry and Chong,4 Soria
et al.,8 Blackburn et al.,9 Ooi et al.,7 and Wang et al®

The velocity gradient tensor A;;=du;/ dx; can be split into
a symmetric and a skew-symmetric component,

where S,~J-=%(¢9u,~/c9xj+c9uj/&x,-) and Qij=%(&ui/&)gi—&uj/ﬂxi)
are the rate-of-strain and rate-of-rotation tensors, respec-
tively.

The velocity gradient tensor A;; has the following char-
acteristic equation:

A+ PN+ O\ +R=0, (6)

where A; are the eigenvalues of A;;. The first, second, and
third invariants of the velocity gradient tensor are

P=-A;=-S;, ™
Q=- %AijAji = zll(QiQi - 2SijSiJ')’ @®
and
1 1 3
R==3AiAudi == 3(SySSu+ 3S;). ®)

respectively, where ();=g;;du;/dx; is the vorticity field
(P=0 in incompressible flow).

Similarly, the invariants of the rate-of-strain tensor are
defined by its characteristic equation. The independent in-
variants of §;; are

Os=- %SijSij (10)
and

RS=_%SiiSijki' (11)

Finally, the only invariant of the rate-of-rotation tensor is
Ow= %Qijﬂij = iQiQi- (12)

Notice that the invariants of §;; are obtained by setting
) to zero in Egs. (8) and (9), while the only invariant of (),
is obtained by setting S;; to zero in Eq. (8). It is important to
recall the physical meaning of these invariants (see, e.g.,
Soria et al.,8 Blackburn et al.,9 Wang et al.,20 and also
Davidson®?).

Starting with Qw=,0);/4, note that this invariant is re-
lated to the second invariants of A;; and S;; through Qy=0
—Qg. Therefore, Qy is proportional to the enstrophy density
(Q%/2=0,Q,/2). Regions of intense enstrophy tend to be
concentrated in tubelike structures in many turbulent flows
such as isotropic turbulence,”* mixing layelrs,55 and jets.41

The second invariant of §;;, Qg=-S;;5;;/2, is propor-
tional to the local rate of viscous dissipation of kinetic en-
ergy since e=2vS*=—4vQg, where S2/2=S,-jS,-j/2 is the
strain product. In isotropic turbulence, intense values of vis-
cous dissipation tend to be concentrated in structures with
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the form of sheets or ribbons.’® On the other hand, the third
invariant of S;;, Rg==S;;SSy;/3, is proportional to the strain
skewness §;;5Sy;. This invariant has two important physical
meanings. It appears as part of the production term in the
strain product transport equation,53

D1

1
E(ESUSU> = _SiijkSki_ ZQ’QJSU_S

Ip
Y (9x,-(9xj

+ VSi'VZSl". (13)
] '

As can be seen, a positive value of Ry is associated with the
production of strain product (and thus of viscous dissipa-
tion), whereas R¢<<0 implies a destruction of strain product.
Moreover, in can be shown that R5=—(a§+ﬂg+ y?g)/3
=—agBsys, Where ag= Bs= ys are the three eigenvalues of
S;; arranged in descending order. Due to incompressibility
ag+ Bs+ys=0, therefore, R¢>0 implies that «ag,Bg>0,
vs<<0 and the associated flow structure is sheetlike. If
R¢<<0, then ay>0, Bg,7ys<0, which implies a tubelike
structure.

Finally, the physical meaning of the invariants of
A;; depends on the sign of Q. If 0>0, then the enstrophy
(Q2%/2=0,Q0,/2) dominates over strain product (S?/2
=8,;5,;/2), whereas if 0 <0, the opposite occurs. In a Bur-
gers vortex flow, for instance, the center of the vortex is
characterized by Q >0, while in the region around it, Q <0,
implying that the strain product (and hence viscous dissipa-
tion of kinetic energy) dominates. The meaning of R depends
on the sign of Q. If >0, then R~-,);S;;/4 and R<0
implies a predominance of vortex stretching over vortex
compression, and if R>0, vortex compression dominates.
On the other hand, if Q <0, then R~ =S5, S;;/3=—asBsvs
and, therefore, R>0 is associated with a sheetlike structure,
whereas R <0 is associated with a tubelike structure.

The invariants defined above are usually analyzed in
joint PDFs combining two invariants. The most common
combinations consist on the maps of (R,Q), (Rg,Qy), and
(Qw,—Qy). Figures 9(a)-9(c) show sketches of each one of
these maps with the physical meaning associated with each
particular location.

The (R,Q) map [Fig. 9(a)] allows us to infer about the
relation between the local flow topology (enstrophy or strain
dominated) and the enstrophy production term (vortex
stretching or vortex compression) and associated geometry
of the deformation of the fluid elements (contraction or ex-
pansion). The line defined by the discriminant D,=27/4R3
+Q3 divides the map into two regions. If D, >0, Eq. (6) has
one real and two complex-conjugate roots, while if D, <0,
the equation has two real distinct roots. In many turbulent
flows, the (R, Q) map displays a strong (anti)correlation be-
tween R and Q in the region R>0,0 <0 associated with
sheetlike structures and also (although not as strong) in the
region R<0,0 >0 associated with a predominance of vor-
tex stretching. This gives the (R,Q) map its characteristic
teardrop shape that has been observed in a great variety of
different turbulent flows such as isotropic turbulence,7 mix-
ing layers,8 and channel flows.”

The (Rg,Qs) map is particularly useful to analyze the
geometry of the local straining (or deformation) of the fluid

Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors
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FIG. 9. (Color online) Sketch of the invariant maps of (R,Q), (Rs,Qs), and
(Qw,—Qs) with the physical/topological features associated with each zone:
(a) (R,Q) map, (b) (Rs,Qs) map, and (c) (Qw,—~Qs) map.

elements since Rg=—agBsys and ag+ B+ ys=0 due to in-
compressibility. Defining the ratio of the second to the first
eigenvalue of the rate-of-strain tensor a= g/ ay, each value
of a represents a line in the (Rg, Qg) map defined by

Rg=(-09)*?a(l +a)(1 +a+a> 2, (14)

where each line is associated with a given flow geometry:
ag: Bs:ys=2:—1:—1 (axisymmetric contraction), 1:0:-1
(two-dimensional flow), 3:1:—4 (biaxial stretching), and
1:1:-2 (axisymmetric stretching). The discriminant for the
(Rg,Qs) map is defined by the line Dg=27/4R3+ Q3. Figure
9(b) shows a sketch of the (Rg, Q5) map with several lines of
constant a and their associated local flow geometry. More-
over, since Qg=—¢/4v, large negative values of Qg are asso-
ciated with regions of intense kinetic energy dissipation. In
many turbulent flows, the (Rg,Qg) map shows a strong pref-
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FIG. 10. (Color online) Conditional mean profiles in relation to the distance
from the T/NT interface for the invariants of the rate-of-strain tensor (Qg);
and (Rg); and rate-of-rotation tensor (Qy);. The conditional mean profile
{|€.]); is also shown and the symbols mark three particular locations: (O)
v,/ 7=0 (T/NT interface), (JJ) y,/ 7=1.7 (point of maximum (|€2.|),), and
(©) y;/ 7=8.6 (well inside the turbulent region).

erence for the zone R¢>0,0¢<0, indicating a predomi-
nance of sheet structures. The most probable geometry ob-
served in several turbulent flows corresponds to a geometry
of 3:1:=4 or 2:1:-3."%12

Finally, the (Qw,—Qs) map [Fig. 9(c)] is useful to ana-
lyze the topology associated with the dissipation of kinetic
energy. The horizontal line Qy=(,;();;/2 represents points
with high enstrophy but very small dissipation as in the solid
body rotation at the center of a vortex tube (“vortex tubes”).
On the other hand, the vertical line —Q¢=S5;;S,;/2 represents
points with high dissipation but little enstrophy density.
Thus, it represents points of strong dissipation outside and
away from the vortex tubes (“irrotational dissipation”). The
line making 45° with the vertical and horizontal lines, Qy
=-Qyg, represents points of both high dissipation and high
enstrophy density, as occurs in vortex sheet structures. In
compressible mixing layers, it has been shown that the
smallest scale motions associated with the highest local val-
ues of dissipation (but with relatively small amounts of the
total dissipation) tend to be aligned with the Qy=-Qg line.®
However, generally, the regions of high dissipation are not
correlated with regions of concentrated enstrophy.L9

B. Analysis of the invariants Q,, and Qg
across the T/NT interface

In this section, we investigate the second invariants of
the rate-of-strain and rate-of-rotation tensors Qy and Qg near
the T/NT interface in order to analyze the geometry of the
dissipation. Conditional mean profiles of the invariants in
relation to the distance from the T/NT interface are shown in
Fig. 10 (the invariant (Rg), is also shown). The conditional
mean profile of the vorticity component (|€),]); is also shown
and the symbols mark three particular locations: y;/ 7=0.0
(T/NT interface), y;/ 7=1.7 (point of maximum of (|Q_[),),
and y;/ 7=8.6 (deep inside the turbulent region).

As can be seen, all the invariants display quick changes
near the interface, as does (|(),|);. We start with the invariant
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of the rate-of-rotation tensor Qy,=(););;/2. As expected, the
mean profile of this invariant {(Qy); is similar to the evolu-
tion of the conditional mean profile of {({2); shown before in
Fig. 8, i.e., this invariant, like the vorticity modulus, is neg-
ligible in the irrotational flow region y;/ 7<<0 and steeply
rises once the T/NT interface has been crossed at y;/ 7=0. In
the turbulent region y;/ >0, {(Qy); like (1), is high and
more or less constant, in agreement with Corrsin and
Kistler,21 and with the recent numerical simulations of Bisset
et al.”® and the experimental results of Westerweel et al.**®
The first interesting observation comes from the condi-
tional mean profile of (Qg);. This invariant is negligible in
the irrotational flow region and far away from the T/NT
interface, y;/ 7<-8. However, (Qg); begins to increase
(in modulus) in the irrotational region from y,;/ 7>-8 on-
ward until very close to the T/NT interface, at y;/ n=-1.7,
the invariant (Qg); displays values of the order of
(0s)=-02(U,/H)*. Since (Qg);=—(S;S;)1/2 is propor-
tional to the dissipation rate, this means that non-negligible
viscous dissipation of kinetic energy occurs in the irrota-
tional flow region near the T/NT interface. At first sight, this
result seems surprising. How can it be that viscous dissipa-
tion of kinetic energy takes place in regions with almost no
vorticity? More work on this subject has to be done in order
to understand this mechanism. What can be said, however, is
that this result is consistent with the existence of irrotational
velocity fluctuations and Reynolds stresses outside the turbu-
lent region near the T/NT interface, as observed by Wester-
weel et al.”® The origin of this viscous dissipation in the
irrotational region is analyzed in Appendix B following a
remark made by a referee. Non-negligible values of the strain
product (and thus of Kinetic energy dissipation) have been
recently observed by Holzner et al.> outside the turbulent
region and close to the T/NT interface in experimental results
from a turbulent front generated by an oscillating grid.
Returning to Fig. 10, we notice that once the T/NT in-
terface is crossed, (Qg); increases (in modulus) at a faster
rate than it did before in —8 <y,;/ <0 and reaches a more or
less constant turbulent value of (Qg);~-7(U,/H)?> from
v;/ m>5 onward. It is interesting to see that the viscous dis-
sipation of kinetic energy, i.e., —41{Qs);, needs more time
than the enstrophy density, which is proportional to {Qy);, to
reach its turbulent value. Indeed, we see that after y,/ =0,
the transition into the fully developed turbulent state is faster
for (Qy); than for (Qg);: (Qs); needs the space between
0<y,;/ 7<35 to reach its turbulent value, while (Qy), reaches
its peak at about y;/ p=2.5. This suggests that the mecha-
nism of viscous dissipation needs more time to start working
to its fullest than other physical mechanisms driving the
growth of vorticity during the turbulent entrainment process.
Figures 11(a) and 11(b) show the “trajectory” of the
mean values of (Qy); and (—=Qg); in their associated phase
map. The mean values of the invariants taken from the irro-
tational region are represented by solid triangles, while solid
inverted triangles represent points from the turbulent region.
The trajectories connecting the mean values are represented
by a solid line (irrotational region) and a dashed line (turbu-
lent region). Again, the symbols mark three particular loca-
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FIG. 11. (Color online) Trajectories of the conditional mean values of the
second invariants of the rate-of-rotation tensor (Qy); and rate-of-strain ten-
sor (Qg); in their associated phase map for (a) 0<(Qy) <2 and
0<(-Q¢);<2 and (b) 0<(Qy);<9 and 0<(-Q);<9. The solid line and
solid triangles indicate points in the irrotational region y;/ 7=<0, while the
dashed line and solid inverted triangles indicate points in the turbulent re-
gion y;/7>0. The symbols mark (O) y,/5=0, () y,/n=1.7, and (<)
v/ 7=8.6.

tions: y;/7=0.0 (T/NT interface), y,/ n=1.7 ({|Q.|), maxi-
mum), and y,/ 7=8.6 (deep inside the turbulent region). In
the irrotational region, the mean values of the invariants are
near the vertical line defined by (Qy»;=0. This line marks
flow points with high dissipation but little enstrophy; thus,
the mean geometry of the dissipation at the T/NT interface is
characterized by irrotational dissipation. The interface region
is crossed at (Qy);~0.2 and (—Qg),;~ 1.4. After this, the flow
topology detaches from the vertical line (Qy);=0 and ap-
proaches the line (Qy);=(—Qs);, indicating a predominance
of vortex sheets in the flow inside the turbulent region. Its
interesting to see how the mean flow topology moves in the
(Ow,—Qy) phase map as the flows goes from the T/NT inter-
face into the point of maximum (|€1,|),. It starts to be roughly
at the middle of the lines {(Qy);=0 and (Qy);=(-Qy),, before
turning into the region between the lines (Qy);=(-Qy); and
(=0g);=0. This may imply a mixed tendency for irrotational
dissipation and vortex sheets, followed by a mixed tendency
for vortex sheets and vortex tubes. After the point of
maximum (|€),|); has been crossed, at (Qy,-Qs) = (7.5,5.0),
the mean flow topology falls suddenly into the line
<QW>1=<_QS>1-

Figures 12(a)—12(c) show joint PDFs of (Qy,—Qy) at the
three particular locations used before: y;/7=0.0, 1.7, and
8.6. Following common practice, the invariants were nondi-
mensionalized with (S;;S;;). At the T/NT interface y,/ 7=0.0,
the joint PDF of (Qy,—Qs) shows a marked tendency to be
aligned with the vertical line defined by Q=0, which attests
a strong predominance of dissipation (strain product) over
enstrophy, i.e., irrotational dissipation dominates at the T/NT
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FIG. 12. (Color online) Joint PDFs of Qy and —Qg at (a) y;/7=0, (b)
v,/ m=1.7, and (c) y,;/ p=8.6. The contour levels are 0.01, 0.03, 0.1, 0.3, 1, 3,
10, and 30.

interface, for all the scales of motion. Notice that the prob-
ability of having points with Qy/(S;;S;;)>0.14 is virtually
zero, i.e., virtually all the points from the T/NT interface are
associated with irrotational dissipation, a fact that was al-
ready observed for the “mean” values of this invariant map.
As described in the previous section, the large scale flow
vortices are characterized by near solid body rotation with
little dissipation. Thus, the shape of this joint PDF suggests
the total absence of large scale vortex tubes at the T/NT
interface. This result is not surprising considering that these
tube structures need some time to be generated and also
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some room to occupy. At the point of maximum (|Q.]),,
y;/ m=1.7 as in deep inside the turbulent zone y,;/ n=_8.6, the
shape of the joint PDFs is quite similar and resembles the
shape of the joint PDFs obtained in isotropic turbulence by
Ooi e al.” and in a turbulent channel flow by Blackburn
et al.’ Notice that here, for the contour lines associated with
the most frequent values (and with the scales responsible for
the bulk of the dissipation), there is still some tendency of
the lines to be aligned with the vertical line Qy,=0; however,
the most intense values, associated with rare events at the
smallest scales of motion (but with a relatively small amount
of dissipation) seem to be aligned with the horizontal line
—Q¢=0 associated with vortex tubes. Indeed, as in Ooi
et al.,’ the contour lines of intense values of Qy are slightly
skewed toward the axis —Q¢=0, which suggests that intense
values of Qy correspond to much smaller values of —Qy, i.e.,
the high Qy regions are associated with solid body rotation
with little energy dissipation. This suggests that at both
v/ m=1.7 and y;/ n=8.6, the flow already has some of its
characteristic large scale coherent vortices. However, since
Oy and —Qy are related to local (not global) features of the
flow, the examination of the coherent vortices in relation to
the distance from the T/NT interface should be addressed
carefully in a future study. Finally, notice that in contrast to
the mean values of these invariants shown before in Fig. 11,
there is here no discernible tendency for an alignment along
the line, Qy=-Q0g, associated with vortex sheet structures.
This implies that in this case, the mean result obtained before
in the (Qw,—Qs) phase map is just a consequence of the
averaging procedure, i.e., there is no clear tendency for the
flow to be dominated by vortex sheet structures. The results
point instead to a topology inside the turbulent region where
both vortex tubes, vortex sheets, and zones of irrotational
dissipation exist.

C. Analysis of the invariants Qg and Rg
across the T/NT interface

In this section, we investigate the second and third in-
variants of the rate-of-strain tensor Qg and Rg near the T/NT
interface in order to analyze the geometry of straining of the
fluid elements. Conditional mean profiles of these invariants
in relation to the distance from the T/NT interface were
shown before in Fig. 10 with the conditional mean profile of
the vorticity component (||}, and the symbols marking
three particular locations: y;/ 7=0.0, 1.7, and 8.6.

The evolution of the mean invariant (Qg); was already
analyzed in Sec. IV B. As for the invariant (Rg);, one can see
that it is negligible for y,;/ 7<<0, which implies that the ob-
served growth of viscous dissipation observed in that region
is not caused by the strain product production term —S;;S ;xSy;
[see Eq. (13)]. Indeed, {Ry), starts to grow only after the
T/NT interface has been crossed. Notice that like (Qg);, it
seems that (R); needs more time to reach its turbulent value
of (Rg);~6.5(U,/H)* than the enstrophy. Finally, note that
throughout the flow (including the irrotational region where
(Rg); is very small), we always have (Rg);>0, implying that
the mean flow structure is always sheetlike.
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FIG. 13. (Color online) Trajectories of the conditional mean values of the
invariants of the rate-of-strain tensors (Rg); and (Qg); in their associated
phase map for (a) 0 <(Rg);<1 and -2 <(Qs);<0 and (b) 0 <(Ry),;< 10 and
-8 <(Q4);<0. The solid line and solid triangles indicate points in the irro-
tational region y;/ 7=<0, while the dashed line and solid inverted triangles
indicate points in the turbulent region y;/7>0. The symbols mark three
particular locations: (O) y,/ =0 (T/NT interface), ((J) y,;/ 7=1.7 (point of
maximum (|€).|),), and (O) y,/ 7=8.6 (well inside the turbulent region).

Figures 13(a) and 13(b) show the trajectory of the mean
values of (Qg); and (Rg), in their associated phase map.
Again, the mean values of the invariants taken from the ir-
rotational region are represented by solid triangles, while
solid inverted triangles represent points from the turbulent
region. The trajectories connecting the mean values are rep-
resented by a solid line (irrotational region) and a dashed line
(turbulent region), and the symbols mark the T/NT interface,
the point of maximum {|€).|);, and a location placed deep
inside the turbulent region. In the entire flow region, we see
that the invariants are in the region (Rg);>0 and (Qg); <0,
i.e., the mean flow geometry is associated with the expansion
of the fluid elements. In the irrotational region, the mean
flow topology is 3:1:—4 and changes to 2:1:-3 between the
T/NT interface and the point of maximum {|().|);. Shortly
before the point of maximum (|€),|);, the flow geometry turns
again into 3:1:-4, where it stays some time. Finally, the
mean flow topology becomes somewhere in the middle of
these two lines, i.e., near %:l:—%. Recall that the most
probable eigenvalue ratios observed in several works are
3:1:=4 and 2:1:-3.

Figures 14(a)-14(c) show joint PDFs of (Rg,Qy) at the
three particular locations used before: y;/ =0.0, 1.7, and
8.6. The three joint PDFs are not fundamentally different,
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FIG. 14. (Color online) Joint PDFs of Ry and Qg at (a) y,/5=0, (b)
y;/ m=1.7, and (c) y;/ p=8.6. The contour levels are the same as in Fig. 12.

i.e., all show a clear preference for the region R¢>0 and
Q¢<<0 associated with extensive straining of the fluid ele-
ments, although contractive straining also exists at some
(much fewer) points. The alignments of the contour lines of
the joint PDF at the T/NT interface shows that the most
frequent values seem to show a tendency toward 2:1:-3
[see Fig. 14(a)], while intermediate values seem to be closer
to 1:1:-2, i.e., the smaller scales of motion at the T/NT
interface are associated with near axisymmetric extension. At
the point of maximum (| |); at y,/7=1.7 and deep inside
the turbulent region at y;/ 7=8.6, the joint PDFs are quite
similar [compare Figs. 14(b) and 14(c)]. Here, the contour
lines are aligned with 2:1:-3 for the most frequent, inter-
mediate, and less frequent values.

Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors
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FIG. 15. (Color online) Conditional mean profiles in relation to the distance
from the T/NT interface for the invariants of the velocity gradient tensor
(Q); and (R),. The conditional mean profile {|().|); is also shown and the
symbols mark (O) y,/ =0, () y,;/ 7=1.7, and (<) y,/ n=8.6.

D. Analysis of the invariants Q and R
across the T/NT interface

This section analyzes the second and third invariants of
the velocity gradient tensor Q and R near the T/NT interface
in order to analyze the relation between the flow topology
and dynamics. Conditional mean profiles of the invariants in
relation to the distance from the T/NT interface are shown
in Fig. 15. The conditional mean profile of the vorticity
component (|Q).[); is also shown and the symbols mark
v/ 17=0.0, 1.7, and 8.6.

The invariant Q=({2,Q};~25;;S;;)/4 shows that in the ir-
rotational flow region, (Q),;~(Qs);<0, as expected since in
this region there is virtually no vorticity and, therefore, the
evolution of (Q), is dominated by the increase of strain prod-
uct (and viscous dissipation) described before. (Q), reaches a
minimum of (Q),~-1.3(U,/H)?* at y,/ 9=0.5 shortly after
the T/NT interface (Q), begins to grow and becomes positive
at y;/ p=1.2, implying that from that point onward the en-
strophy density dominates over strain product. Recall that the
strain product (and thus viscous dissipation) increases at a
smaller rate than the vorticity (and enstrophy density) in the
region 0<y,/n<5. This invariant attains a maximum at
about y,;/ 7=2.5 (shortly after the maximum of (|(2.[},), be-
fore falling to (Q);~0 for y,/ 7>8. Notice that (Q)=0 in
isotropic turbulence and, as shown by da Silva and Pereira,*®
and also as confirmed in the present work, the plane jet is, in
many ways, close to isotropic at the center of the shear layer.
The evolution of (Q), just described underlines the interplay
between enstrophy and strain during the first stages of the
turbulent entrainment. Strain dominates over enstrophy in
the irrotational region near the T/NT interface (enstrophy is
virtually zero there), while enstrophy dominates over strain
at the start of the turbulent region, where, as discussed
above, strain product (and also strain skewness) do not in-
crease as fast as the enstrophy. Deep inside the turbulent
region, the enstrophy and strain product are comparable, as
in isotropic turbulence.

The conditional mean of the third invariant of the veloc-
ity gradient tensor R=—[S,;S;Sy;+(3/4)Q,);S;;]/3 is zero or
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FIG. 16. (Color online) Trajectories of the conditional mean values of the
invariants of the velocity gradient tensors (R); and (Q), in their associated
phase map for (a) —0.6<(R);<0.6 and —1.5<(Q0),;<1 and (b) -1 <(R),
<1 and -2 <(Q),;<3. The solid line and solid triangles indicate points in
the irrotational region y;/7<0, while the dashed line and solid inverted
triangles indicate points in the turbulent region y,;/ 7> 0. The symbols mark
(O) y,;/7=0 (T/NT interface), () y,/ n=1.7 (point of maximum (|(.|),),
and (Q) y;/ 7=8.6 (well inside the turbulent region).

negligible in the whole irrotational region, (R);~0, in y,/ 7
<0. Once the T/NT interface has been crossed, R grows
and reaches a positive maximum of (R),~0.5(U,/H)? at
y;/ 7=0.5. Since in this region (Q); is high and negative, this
implies that (R);~—(S;;SySk:)1/3=—(asBsys). Therefore,
the associated flow structure is sheetlike, consistent with
the discussion about (Rg); described above. (R); decreases
after this, reaching a minimum of (R),~-1.0(U,/H)* at
v;/ p=1.6. At this point, (Q), is large and positive and thus
(R);~—=(Q0;S,;),/14>0, i.e., (positive) enstrophy production
(vortex stretching) dominates the flow. Finally, for y,/ 7>8,
(R);=0, as expected since the flow is close to isotropic and
(R);=0 in isotropic turbulence.

Figure 16 shows the trajectory of the mean values of
(Q); and (R); in their associated phase map. The mean values
of the invariants taken from the irrotational region are repre-
sented by solid triangles, while solid inverted triangles rep-
resent points from the turbulent region, and the trajectories
connecting the mean values are represented by a solid line
(irrotational region) and a dashed line (turbulent region).
Again, the symbols mark y;/ =0.0, 1.7, and 8.6. In the irro-
tational flow region, far away from the T/NT interface, the
mean invariants are at the origin, i.e., (R);~0 and (Q);=~0.
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As the flow approaches the T/NT interface, the mean invari-
ants move away from the origin and become more and more
distant from the origin along the line, D,=0, for (R),>0 and
(0);<0, which is associated with straining of fluid elements.
Notice that the T/NT interface is very close to the point of
maximum (R); and to the point of minimum (Q),. After the
T/NT interface, the mean flow topology moves very quickly
into the region, (R);<0 and (Q),>0, associated with a pre-
dominance of vortex stretching. It is interesting to notice that
the point of maximum (|€),|); is located near the point that is
most distant from the origin in this quadrant, indicating that
the point of maximum (|(2.|); is connected with the maxi-
mum (mean) values of vortex stretching that occur during the
turbulent entrainment process. Finally, the mean invariants
fall into the region near the origin of the (R,Q) phase map,
as expected since the mean values of both (R); and (Q); in
the center of the jet shear layer are near zero, as in isotropic
turbulence.

Figures 17(a)-17(c) show joint PDFs of (R,Q) at the
three particular locations used before: y;/ 7=0.0 (T/NT inter-
face), y;/ 7=1.7 (point of maximum {|€).|),), and y,/ 7=8.6
(deep inside the turbulent zone). The first important observa-
tion concerns the general shape of the PDFs. At the T/NT
interface, the teardrop characteristic shape of the (R,Q)
phase map cannot be seen yet [see Fig. 17(a)]. The values of
R and Q exist only below the lines defined by the discrimi-
nant D,=0. This is consistent with the results described be-
fore, i.e., at the T/NT interface, strain product dominates
over enstrophy and thus Q <0 for virtually all the points of
the T/NT interface, and not only in the mean, as we saw
before. Notice, however, that even at the T/NT interface, the
contour lines of the joint PDFs for R>0 are already aligned
with the line, D,=0. At the points of maximum (|().|); and
deep inside the turbulent region, the joint PDFs of the (R, Q)
map already show the well known teardrop shape [see Figs.
17(b) and 17(c)], where Q and R are correlated in two par-
ticular regions: R >0 and Q <0 representing a predominance
of biaxial stretching of the fluid elements and R<<0 and
Q>0 associated with a predominance of enstrophy produc-

tion by vortex stretching. It is impressive to observe how
quickly and how so close to the T/NT interface this teardrop
shape appears: the flow needs a length of less than 1.77 to
form the classical teardrop shape. Also, note that the shape of
the joint PDFs in y;/»p=1.7 and y;/ 7=8.6 shown in Figs.
17(b) and 17(c) is very similar and is similar also to the joint
PDFs of these quantities in numerous works.>"120 The
only (small) difference between Figs. 17(b) and 17(c) is that
the alignment of the contours with the line D,=0 for R>0 is
stronger at y;,/7=8.6 than in y;,/n»=1.7 and also that the
intermediate contour lines are a bit more squeezed in the
horizontal direction near the origin for y;/n=1.7 than for
v/ n=8.6. This fact again suggests that there are still some
adjustments going on within the flow between y;/ n=1.7 and
v;/ 7=8.6, although the overall shape of the joint PDFs are
similar in both locations.
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FIG. 17. (Color online) Joint PDFs of R and Q at three particular locations:
(a) y;/ 7=0 (T/NT interface), (b) y,/ 7=1.7 (point of maximum ([€2|},), and
(c) y;/ 7=8.6 (well inside the turbulent region). The contour levels are the
same as in Fig. 12.

V. CONCLUSIONS

The invariants of the velocity gradient (R and Q), rate-
of-strain (Rg and Qy), and rate-of-rotation (Qy) tensors were
analyzed near the T/NT interface, which is present in many
flows such as mixing layers, wakes, and jets, using a DNS of
a turbulent plane jet at Re, = 120. The invariants were ana-
lyzed by using conditional mean values in relation to the
distance from the T/NT interface, their associated trajectories
in the classical phase maps, and joint PDFs at several dis-
tances from the T/NT interface.

The mean and instantaneous value of all the invariants is

Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors
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zero in the irrotational flow region far away from the T/NT
interface. As the T/NT interface is approached from the irro-
tational flow region, the mean and instantaneous value of
most of the invariants remains zero. However, we see that
(0);=(0¢);<0 and these invariants are seen to increase (in
modulus) rapidly. This implies the existence of viscous dis-
sipation of kinetic energy outside the turbulent region. A
similar result was recently obtained by Holzner et al.®' near
the turbulent front generated by an oscillating grid. More-
over, we observed also that not only the mean value of Q is
negative (Q);<0 but also that the same is true for all points
located at =5 <y,;/ n<<0, i.e., Q<0 everywhere, thereby im-
plying that strain product dominates over enstrophy in all
flow points from this region. The physical mechanism re-
sponsible for this irrotational dissipation still has to be ex-
plained; however, the analysis of the invariant Ry shows that
the strain product production term—see Eq. (13)—is negli-
gible outside the turbulent region and thus cannot explain the
high level of viscous dissipation found there. Either viscous
effects or nonlocal effects related to the pressure field are
responsible for this irrotational viscous dissipation. Prelimi-
nary results discussed in Appendix B seem to imply that this
irrotational dissipation is caused by instantaneous (local)
pure shear induced by the large scale entraining motions.
Finally, although (Rg),;=~0, its value is always positive,
which implies that the mean flow geometry is already char-
acterized by the straining (as opposed to the contraction) of
the fluid elements. In particular, the mean values of (Rg); and
(Qg); show a preference for a geometry characterized by
ag: Bs:ys=3:1:—4 in this region, where ay, B, and g are
the eigenvalues of the rate-of-strain tensor arranged in de-
scending order.

Right at the T/NT interface, the enstrophy density is still
negligible as attested by the local and mean values of the
invariant of the rate-of-rotation tensor Qu =0, but on the
other hand, the local and mean values of the strain product,
proportional to —(Qg);, are very high. The joint PDF of Qy,
and —Qy shows that at the T/NT interface, all the flow points
are characterized by irrotational dissipation, i.e., there is still
no sign of the coherent vortices that are known to exist in the
turbulent region. Moreover, the analysis of the invariants R
and Q show that the classical teardrop shape of the (R,Q)
phase map is not yet formed at the T/NT interface.

All the invariants display rapid changes shortly after the
T/NT interface. In particular, the invariants show that the
geometry and topology of the flow rapidly evolves from the
T/NT interface until the point of maximum (|().|), located at
y;/ m=1.7. The invariant {Qy),; rapidly grows and reaches
values which stay more or less constant afterward throughout
the whole turbulent region. The invariants {(Qg); and (Ry),,
proportional to the viscous dissipation rate and strain skew-
ness, respectively, also increase during this time, although at
a smaller rate. Indeed, these invariants only reach their tur-
bulent values long after the point of maximum (|().[),. No-
tice, however, that the geometry associated with the viscous
dissipation changes quite dramatically from the T/NT inter-
face to the point of maximum (|().|);, as can be appreciated
in the joint PDF of Qy, and —Qg. The contour lines of these
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curves at y;/ p=1.7 are already very similar to the ones ob-
served in isotropic turbulence by Ooi et al.” and also in a
turbulent channel flow by Blackburn et al’ There is still
some tendency for the contour lines associated with the most
frequent values to be aligned with the vertical line
—Q5=38;;5;;/2 associated with irrotational dissipation, but in
most of the contour lines, no correlation can be observed
between Qy and —Qs. The smaller values of the contour lines
seem to be tilted to the horizontal line —Q¢=0, which implies
that the highest values of Qy, representing points with very
high values of enstrophy, are associated with little viscous
dissipation, as in the case of a solid body rotation. This sug-
gests that at this point y;/ n=1.7, large scale coherent vorti-
ces already exist in the flow. Furthermore, the contour lines
of the joint PDF between Rg and Qg show that during the
initial entrainment phase i.e., for 0<y,/n<<1.7, the local
flow topology is characterized by ag:Bs:ys=2:1:-3. The
most interesting result observed at y;/ n=1.7 is related to the
analysis of the R and Q invariants and their phase map. The
joint PDF of these invariants already shows the classical
teardrop shape observed in experimental and numerical stud-
ies of many turbulent flows. It is remarkable that the flow
needs less than 1.7, since crossing of the T/NT interface, to
form the teardrop shape completely. Moreover, the mean val-
ues of these invariants show that the point of maximum
(|€Q.]); is very close to the point of maximum (Q), and the
point of minimum (R),. This implies that the maximum of
{|Q,]); is near the point of maximum (mean) vortex stretch-
ing.

Finally, from y;/ n=1.7 to y;/ n=8.6, few things seem to
change during the turbulent entrainment process. Indeed,
several invariants and joint PDFs at y,/n=1.7 and y;/ 7
=8.6 are very similar, e.g., the joint PDFs of (Qy,—Qy),
(Rg,Qy), and (R, Q). However, a closer look into the invari-
ants shows that this is not really the case. For instance, the
mean invariants (Qg); and (Ry), still increase to their turbu-
lent values after the point of maximum (|Q).|), has been
crossed at y;/ p=1.7. This suggests that between y,/ n=1.7
and y;/ 7=8.6, there are still some physical adjustment pro-
cesses going on within the flow. The nature of these pro-
cesses should be analyzed in future works.
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APPENDIX A: RESOLUTION TESTS

The present work analyzes quantities associated with ex-
tremely small and thus very intermittent scales of motion
such as the invariants of the velocity gradient tensor Q and
R. Therefore, it is useful to provide some additional reso-
lution checks to the original DNS data bank. This is the
purpose of this appendix. The kinetic energy and kinetic en-
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FIG. 18. (Color online) Conditional mean profiles of the invariants (Q); and
(R); in the region —6=<y,/ =<6, obtained after high pass filtering the DNS
data, using a cutoff filter at k7=0.8, 0.9, and 1.0. Results obtained without
filtering (no filter) are also shown and the statistics were obtained using one
single instantaneous field.

ergy dissipation spectra from the present DNS data were al-
ready discussed in Sec. II D with respect to Figs. 4(a) and
4(b), respectively. A referee suggested an additional test that
we carry out here.

We start by defining three filter sizes: k7=0.8, 0.9, and
1.0. Close inspection of Fig. 4(b) shows that these filters are
placed well after the peak in dissipation, which is located at
kn=0.3. Therefore, if the present simulation is well re-
solved, high pass filtering of the DNS fields at k7=0.8, 0.9,
and 1.0 will not cause any significant changes to the results.

Figure 18 shows the mean conditional profiles of the
invariants (Q); and (R); in the region —6<y,/ <6, where
the DNS data was high pass filtered before the invariants
were computed by using a cutoff filter at k%=0.8, 0.9, and
1.0, respectively. Results without the application of any filter
(“no filter”) are also shown for comparison. Here, in contrast
to Fig. 15, only one single instantaneous field was used to
compute the statistics. As can be seen, no significant differ-
ence can be observed between the four conditional mean
profiles.

Figures 19(a) and 19(b) show the PDFs of Q and R,
respectively, obtained without filtering the DNS data and by
high pass filtering the data at k%=0.8, 0.9, and 1.0 prior to
the computation of the invariants. The PDFs are nondimen-
sionalized by the root mean square of the respective variable,
e.g., Q'=(Q'*"? in order to highlight the tails of the PDFs.
The shape of the PDFs for the three cases are virtually equal
for almost all their values. The zoom of the tails of the PDFs
shows that only for PDF values below about 1 X 107® can we
start discerning some (small) differences between the four
cases, which shows that the differences between the results
obtained with and without filtering are indeed very small.
Thus, we conclude that the invariants are indeed well cap-
tured in the present simulation.

APPENDIX B: THE ORIGIN OF THE VISCOUS
DISSIPATION IN THE IRROTATIONAL REGION

In this appendix, we analyze a pertinent question raised
by a referee: Is the viscous dissipation found inside the irro-
tational (NT) flow region induced by instantaneous values of
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FIG. 19. (Color online) Joint PDFs of R and Q obtained after high pass
filtering the DNS data with a cutoff filter at k%=0.8, 0.9, and 1.0. Results
obtained without filtering (no filter) are also shown.

pure shear caused by nearby large scale engulfing/entraining
motions, or is it caused by incoherent irrotational velocity
fluctuations near the T/NT interface?

If the dissipation is caused by small velocity fluctua-
tions, then we expect them to be mainly associated with
small scale motions, maybe with velocity and length scales
characteristic of the nibbling motions associated with the en-
trainment mechanism. In this case, we expect them to be
near isotropic due to the well known tendency to isotropy of
small scale motions in turbulent flows. These small scale
motions could be, for instance, originated by nonlocal effects
caused by the fluctuating pressure field in the nearby turbu-
lent region.

However, if the dissipation is caused by nearby large
scale engulfing motions, we expect it to be associated with
anisotropic velocity fluctuations since it seems plausible for
the most frequent and the most intense of these entraining
motions to be caused by the larger scale flow vortices in the
jet, which are anisotropic and originate in the initial jet in-
stabilities arising from the inlet (or initial) highest mean
shear in the jet.

In order to investigate this problem, we decomposed the
strain product S;;S;; into its six components,

5.8, = 511 + 55, + S35+ 257, + 2875 + 2535 (B1)

In isotropic turbulence, we have

. 45
relations:

the following
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FIG. 20. (Color online) Conditional mean profiles of the six strain product
terms defined in Eq. (B1) nondimensionalized by (U,/H)? near the T/NT
interface. For simplicity, these conditional mean profiles were made using
(only) 20 coordinate points in —10<y,/ <5, while the other conditional
mean profiles used in this work (e.g., in Fig. 10) use about 60 points in the
same interval.

(B2)

(B3)

<(%><a_u£)> - _ l<(%)2> (no summation),
ox; )\ ox; 2\ \ dx;
(B4)

implying that (S7)=(5%,)=(53), (S3,)=(5?;)=(S3;), and
(251, :%<S%1>-

Figure 20(a) shows the conditional mean profiles of the
six terms defined in Eq. (B1) in the region —10=<y,/ =<5,
where i,j=1, 2, and 3 represent the x, y, and z direc-
tions, respectively. We start by analyzing the results
from the turbulent region at y,/ =4, where we have (S7,),
~(S5,01=(S33)=1.8(U\/H)* and (257,),=(287,),=(2533);
~2.8(U,/H)*. By using these conditional mean values, we
obtain (281,),/(S7,),=2.8/1.8~1.55, i.e., very close to the
isotropic value of 2 which again confirms that the plane jet
is (statistically) very nearly isotropic inside the turbulent
region.

On the other hand, in the irrotational region at
v/ m=—4, we have (S3),=(S3,),=(5%),=~0.05(U,/H)>?,
(281,),=0.1(U,/H)?, (2573),~0.06(U,/H)?, and (253,),
~0.075(U,/H)?>,  which  give  (25],),/(S;);=2.0,
(28T),/(S 1)~ 1.2, and (2833),/(S) 1)~ 1.5.

Although not very far from isotropic, these values are
inconsistent with isotropic velocity fluctuations inside the
NT region near the T/NT interface. Moreover, notice that the
terms with the highest conditional mean, i.e., <ZS%2>, and
(2S§3>,, are precisely the ones associated with d/dy, i.e., the
direction of the highest mean shear in a plane jet. Thus, the
present results seem to give support to the suggestion made
by an anonymous referee in that the existence of a non-
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negligible viscous dissipation outside the turbulent region is
caused by instantaneous (local) pure shear motions induced
by the large scale entraining motions.

However, in rigor, the present results do not really ex-
clude the other possibility, i.e., nothing in the present results
contradicts the possibility that both processes may exist, i.e.,
the irrotational dissipation may be caused both by instanta-
neous pure shear motions and by another small scale process.
Clearly, this issue needs further study and should be ad-
dressed in future works.
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