INVARIANTS UNDER MIXING WHICH GENERALIZE DE FINETTI’S
THEOREM!

By Davip A. FREEDMAN
Unaversity of California, Berkeley

1. Introduction. In 1931, de Finetti published a paper [3] characterizing all
stochastic processes which could be represented as mixtures of coin tossing proc-
esses—or more precisely, such that the probability measure their marginal
distributions induce in the space of sequences of 0’s and 1’s could be represented
as the weighted average of probabilities induced by coin tossing processes. He
subsequently [4] generalized this result so as to characterize mixtures of sequences
of independent, identically distributed random variables. A concise statement
and proof of this result will be found in [8], p. 365.

In 1955, Hewitt and Savage [5] (this paper has a complete bibliography on
the subject) made a comprehensive study of this theorem, and obtained results
for random variables taking values in quite abstract topological spaces. In the
present study, the topology of the range space will be very simple—only natural-
number valued random variables will be considered. But the restriction to
independence disappears, and with it the consideration of transformations of
the base space only which leave the probability fixed.

The basic tool, borrowed from ergodic theory, is the representation theorem
of Kriloff and Bogoliouboff [6]. A very elegant presentation of their results will
be found in [9]. The generalization is in terms of the “summarizing statistics”
of a process, to be defined below. From this point of view, de Finetti’s theorem
states that a process is a mixture of sequences of independent, identically dis-
tributed random variables if and only if it is summarized by the order statistics;
that is to say, if and only if any two finite sequences with the same order statistics
are assigned the same probability.

The principal generalization is a necessary and sufficient condition for a (sta-
tionary) process to be a mixture of (stationary) Markov chains. The condition
is that the process be summarized by the transition count; that is, any two finite
sequences with the same initial state and the same number of one-step transitions
between each pair of states are assigned the same probability. An urn model for
this type of process is given in Section 4.

Similar results for some univariate exponential distributions are obtained
in Section 5, and more general questions are posed in Section 6. An analysis of
the continuous-time case will be made in a future paper.

2. A general theorem. Let (&, B(&)) be a probability space, and let
{P) : A & A} be a family of probabilities on B(&). Take B(A) to be a o-algebra
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in A over which all the A-functions P\(E) are measurable, for all £ ¢ B(&) (in
this circumstance, P, is called a B(A)-measurable probability function). If u is
any probability on B(A), then

DEFINITION 1. The mizture of Py withrespect tothe probability u s the function on
B(©) defined by

PJ(E) = f P\(E) dy; EeB(®).

By standard integration theorems, Py is a probability on B(&). From a
Bayesian viewpoint, the probability u is an a prior: distribution of the unknown
parameter A—see section 1.6 of [7].

This paper is concerned with Py induced by the marginal distribution func-
tions of certain classes of stochastic processes, via the Kolmogoroff consistency
theorem ([8], p. 93). Hence in the balance of this section, and throughout Sec-
tions 3 and 4 the following identifications will be made (Z is the set of natural
numbers) : & is the space of sequences of natural numbers, B(®) is the o-field
generated by the cylinder sets. The results and proofs hold equally well for the
space of two-sided sequences. :

The stochastic process {X, : n ¢ Z} is defined as the coordinate process,

(1) X.(s) = s(n); nelZ,seS,
and the shift transformation 7' which maps & onto & is defined by
(Ts)(n) = s(n + 1); neZ,se®.

All probabilities P in & will be chosen so that the process (1) is stationary, or
what is the same, so that P is invariant under T':

P(T'E) = P(E); E&¢B(®).

By a slight variant of [6], there is a B(&)-measurable probability function P, on
& such that

@) P=LRM

and for a set of measure 1 under all stationary probabilities
(i) P, is metrically transitive ([1], p. 457) i.e., the process (1) is metrically
transitive (and the shift 7T is ergodic) on (&, B(&), P),

(ii) Ps(Ej = limpaen " ;-io fe(T’s)

simultaneously for all cylinder sets E, where fz(s) = 1,s & E; fz(s) = 0,s£/E.
These remarks paraphrase Sections 1 and 2 of [9]. Indeed, let & be the space
of sequences of natural numbers and «; where Z U {«} is the one-point com-
pactification of Z with the discrete topology. Then & with the product topology
is compact and metrizable, so that the Kriloff-Bogoliouboff theory applies to it.
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But & is a Borel measurable subset of &, and P,(&) = 1 on a Borel set of prob-
ability 1 for any invariant P with P(&) = 1. Further, fz is continuous on &.

In order to obtain Theorem 1, it is necessary to consider certain sequences of
statistics defined on the process X, . The conditions on these sequences are

stated as
DeFINTTION 2. Let U, be a function on Z™ for all n in Z. The sequence {U, :n ¢ Z}

has S-structure if and only if
Un(jl) ;]n) = Un(kl; ) kﬂ)
and

Um(rly 77'7") = Um(sl; 78m)
together tmply

Uﬂ+m(j17"')jn7rl)"'7rm) = Uﬂ+m(k17 "'»kn,sl7"'78m)7

for all n and m in Z and all sequences j. , k. , r. , and s. in Z.

For example, the order statistics clearly have S-structure. So does the se-
quence T, which will be used to analyze mixtures of Markov processes. The
statistic T, maps Z” into Z X Z“*”, in such a way that almost all coordinates
vanish. If 7. is a sequence in Z, then

Tu(Giy <o+ 5dn) = (1, i1, 86 2Z)

where ¢, is the number of one-step transitions from r to s among (ji, *** , ja)-
ThllS, tu(l, 1, 2, 1) = 1.
To demonstrate that T, has S-structure, note that
Tn(jl, ,Jn) = Tu(kr, -+, kn)

implies k; = j; . But then k, = j, , for the sequence ends with j; if and only if
Z brjy = ZS: tire 5
while it ends with j, # 7; if and only if

;t,jo =1+ Zsjtm.

The assertion is then immediate.
The concept of a summarizing statistic is made clear in the following definition.
DEFINITION 3. A probability P in & is summarized by {U, : n € Z} if and only if

Un(jl, tt yjn) = Un(kly Tty kn)
implies

P(Xl =j17 e )Xn =.77L) = P(Xl = kl, M ,Xn = kn)~
For convenience, a cylinder set of the form {s: X,,(s) = k;,1 = j < m} with
n < np < -+ < Ny will be called a pattern, with first state &, , and last state
km . For each j < m, it has an (n;;1— n;)-step transition from k; to kju. A



INVARIANTS GENERALIZING DE FINETTI'S THEOREM 919

sequence A is a pattern with n; = j; its length is m. The corresponding point in
Z™ {k;j, 1 £ j < m}, will be denoted by A.

In this terminology, the relationship between Definitions 2 and 3 may be
stated as follows. Suppose P is summarized by {U, : n ¢ Z}, which has S-struc-
ture. Let A and B be sequences of length n, C and D sequences of length m.
Then U,(d)= U.(B) and Un(C) = Un(D) imply P(AN T-"*¢) =
P(BN T "**D). When P is summarized by {T, : n ¢ Z}, a somewhat stronger
result holds. If 4 and B are two patterns which begin with the same state and
have the same j-step transitions between each pair of states, for all j, then
P(A) = P(B).

These two remarks are proved using the same argument. The required prob-
abilities may be computed by filling in the gaps in all possible ways and summing.
But the definitions then apply to each summand.

Using this machinery, it is possible to prove the following theorem.

TureorREM 1. A probability P is swmmarized by the sequence {U, : n & Z} which
has S-structure if and only if it may be represented as a mizture of metrically transi-
tiwe probabilities which are summarized by {U, : n ¢ Z}.

Proor. The “if”” part is clear, and has nothing to do with S-structure. The
“only if”” part will be proved using the representation (2).

Suppose A and B are two sequences of length m, with U, (4d) = U.(B).
Then P,(A) = P,(B) a.e. [P]. Indeed,

n—1

Py(4) = limpso ZOfA(Tjs) a.e. [P],

and

n—1

P.(B) = limy,on Z; fs(Ts) a.e. [P].

Since the quantities on the right lie in [0, 1], the convergence is L*, and

B(PL(4) = Pu(B)) = limewn™ 3 5 (BUL(T1(T'5)

+ E(fs(T%s)f3(T"s)) — E(fa(T’s)fs(T"s))
— E(fs(Ts)f4(T"s))}.
Ford = |j — k| = m, each summand vanishes since
P(AN TPA) = P(BN TB) = P(AN T°B) = P(BN T°4),

and these evaluate the four expectations. Moreover, the relative frequency of
summands with |j — k| < m goes to 0, and each lies in [—2, 2]. Hence E(P,(4) —
P,(B))? = 0, and P,(A) = P,(B) a.e. [P] as required.

Since there are only a countable number of pairs of finite subsets of Z, after
subtracting a countable number of null sets from &, {U, : n ¢ Z} will summarize
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all the probabilities P, with s in the remaining measure 1 set. This completes the
proof and the general discussion.

3. Mixtures of Markov chains. In order to apply this theory to the char-
acterization of mixtures of Markov chains, it is only necessary to investigate
metrically transitive probabilities which are summarized by {T, : n ¢ Z}. This
is done in

THEOREM 2. A metrically transitive probability P summarized by {T, : n ¢ Z}
18 Markov, i.e., with respect to it the process { Xy} 1s Markov.

Proor. An invariant probability P is metrically transitive if and only if

(3) lim,.., (1/7) >, P(AN T'B) = P(4)P(B)
j=1
for all sequences A and B (see [8], Theorem C of p. 435). In particular
(4) lim,.(1/n) Y, P(X; = k, X14; = k) = P(Xy = k)%
j=1

Next, let A be a sequence of length m whose last state is k, and B a sequence
whose first state is k. Thenifd =2 1,n = 1,
P{X; = KlN T[4 N T %™B}

=P{[X; = k, Xaqo = k] N T"H04 0 7B,

since the patterns inside braces on both sides of (5) have the same first state and
the same transition count. Now let n — « and apply (3) to obtain

(6) P[Xy=kKP(AN T"*™B) = P[X; = k, Xa42 = kIP(AN T B).
Then the Markov property follows in the form
PIX:=j:,1 £1 2 NIP[X; = jn, X2 = jrul
= PIX; = jylP[X; = ji,1 =4 = N + 1].
Indeed, if P[X; = j»] = 0, both sides of (7) vanish. Otherwise, by (6),ifn = N
P{X; =4, 1 =< = NN X, = jv, Xopa = Jrnl}
= P[X; = js] 'PIXi =ji, 1 £¢{ = N+ 1UPX; = jw, Xo-wt1= Jwul

Now let n — «. Using (3), the left side of (8) goes (C, 1) to the left side of
(7) ; while (4) implies that the right side of (8) converges (C, 1) to the right side
of (7). This completes the proof.

The last theorem of this section is an immediate consequence of Theorems
1 and 2.

TaEOREM 3. The necessary and sufficient condition for a probability to be a mix-
ture of Markov probabilities is that it be summarized by {T, : n & Z}.

(5)

)

(8)

4. An urn model. The following urn model for mixtures of Markov chains of
two states was developed in conversation with Professors Blackwell and Dubins.



INVARIANTS GENERALIZING DE FINETTI’S THEOREM 921

Start with two Pélya urns ([2], V. 2), U, and U, . Each contains some balls
marked 0, some marked 1. An urn U is selected according to some probability
distribution. Then a ball is selected at random from U. Define X; = 0 or 1 ac-
cording as the ball is marked 0 or 1. Replace the ball, together with another
marked the same, in U. Then select a ball at random from Uy, , to determine
X, , ete. The process {X,} is a mixture of (perhaps nonstationary) Markov
chains (with stationary transition probabilities). In this simple case, the as-
sumption of stationarity is dispensable. If the initial compositions of U, and U
differ, {X;} will not be a mixture of coin-tossing processes.

5. Exponential distributions. This section will characterize mixtures of se-
quences of independent random variables having a common distribution drawn
from an exponential family. The mixture will be over some specified parameter
of this family.

De Finetti’s theorem will be used in the following form. If a probability P
is summarized by the order statistics, then almost all [P] of the probabilities P,
in the representation (2) are power product measures; i.e., with respect to them,
the process X, is a sequence of independent, identically distributed random
variables. This follows easily by Theorem 1 and equation (3). This may be ex-
tended to random variables taking real values (or, e.g., values in a compact
metric space) by a trivial discretization argument and, say, Alaoglu’s theorem,
see section 9 of [8a).

Now suppose a probability P and a sequence {U, : n ¢ Z} with S-structure are
given. Suppose, moreover, that there exist functions k() and f(-, +) such that
P factors as
@ PXe=ie 156 S 0= [I14G0 ] ftn, U, o).

Then almost all [P] of the probabilities P, in (2) factor in the same way,
namely, as

(10) PlXi=ji,1=i=n]= [J:Il h(je):lfs(n, Un(drs =25 dn))-

Minor alterations in the proof of Theorem 1 produce this slight strengthening.

Finally, suppose that the sequence U, is additive. That is, U, is a function
from Z to R*, and U,(jy, -+, jn) = D i=1 Us(ji). Then {U, : ne Z} has S-
structure, and if the factorization (9) holds then the order statistics summarize
P, so that the preceding remark and de Finetti’s theorem both apply. That is to
say, P is a mixture of power product measures each of which factors as (10).
And this implies the following functional equation:

(an) fo(m 3 00 = 11, UG,

whenever [[i 2(j:) > O.



922 DAVID A. FREEDMAN

If the image under U, of the set {j: h(j) > 0} is a reasonable subset of R,
(11) may be solved to give -

o (m 5 00 ) = af o 3 e Ui,

where a, > 0 and ¢, ¢ R*. In particular

THEOREM 4. The necessary and sufficient condition that a probability P may be
represented as a mizture of probabilities for which the process {X,} is a sequence of
independent random variables with common distribution

(1) Poisson P(\) ; mix over \:
(ii) Binomial B(N, p) ; miz over p:
(iii) Inwerse Binomial IB(N, p); mix over p:

8

1) PX;=ji,1 =1

A
2,
It

@ =gt sisad =10 (1)]e(n54),

A

=1 3

Gi) PX:=ji,l1sisnl= ﬁ(N;ﬁfl)]h@Z”:ji).

| i=1 i=1

6. Further questions. The methods of this paper seem to give a fairly satis-
factory classification of the ergodic components of integer-valued processes. By
limiting arguments, they also give some information about real-valued processes.
There the situation is much more complicated. A possible generalization of
Theorem 1 to this case is outlined below. Even this deeper result, however, does
not lead to conditions for a process to be a mixture of stationary, real-valued
Markov processes.

Let & = R%, B(&) = [I¥ B(R), B(R) being the Borel sets of R, and define
X.(s) = s(n) for s in &. Only probabilities in & which are invariant under the
shift will be considered. In other words, the marginal distribution functions of
stationary processes (with time parameter in Z) are under consideration.

If Q is a measure in &, its restriction to R" will be denoted by Q™. Let P be a
probability, and consider its representation (2). Suppose there is a sequence
of totally o-finite measures in R", and a sequence B, of sub-fields, B,  B(R)",
such that [P] for almost all s

(1) P L,
(ii) B, is sufficient for s, so that ([7], pp. 47-50),

(12) dP,/dv, = hfs(n, *)

where h, is a nonnegative B(R)"-measurable function on R", and fi(n, -) is a
nonnegative B,-measurable function on R". It is possible to show that f.(n, -)
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isa B(&) X B,-measurable function; if f,(n, -) = f fe(n, ) dP(s), then
S

(13) dP/dvy = hafp(n, -),

and f,(n, -) is B,-measurable.

The basic question is: When is the converse true? That is, under what con-
ditions on the sequences v, , h, , and B, does the factorization (13) guarantee the
factorization (12) a.e. [P]?

From this point of view, Theorem 1 derives (12) from (13) provided

(1) va(E) is the number of n-tuplets of natural numbers in E,
(i) h, =1,
(iii) the fields B, are induced by a sequence of statistics having S-structure.

Moreover, even granting (i) and (ii), simple examples show that Theorem 1
fails, unless some condition like (iii) is imposed.
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