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Invasion Percolation and Eden Growth: Geometry and Universality
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The mapping of optimal paths in the strong disorder limit to the strands of invasion percolation
clusters is shown to lead to a new universal property of these clusters. We suggest that the
corresponding strands arising in the annealed Eden growth process are in the same universality
class as directed polymers in weak quenched disorder with an upper critical dimension#6.
[S0031-9007(96)00188-3]
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The dynamics and the resulting geometries of noneq
librium growth phenomena have been a subject of m
recent study. It is now recognized that the simpl
nonlinear continuum growth equation that captures
physics of ballistic deposition, flux lines in superco
ductors, as well as Eden growth is that due to K
dar, Parisi, and Zhang (KPZ) [1,2]. The KPZ equati
in 1 1 1 dimensions has an exact solution. The exp
nent describing the power-law dependence of the sat
tion width of the rough interface on the lateral syste
sizeaKPZ 

1
2 , the exponent characterizing the tempo

growth of the roughnessbKPZ 
1
3 , and the dynamica

exponent of the saturation time as a function of the late
sizezKPZ  ayb  3y2 [2]. Strikingly, the KPZ equa-
tion with annealednoise (uncorrelated in space and tim
and random) can be mapped to the problem of a direc
polymer (DP) in a random medium [3] or equivalently,
two dimensionssD  2d, the pinned domain wall prob
lem in random exchange ferromagnets [4]. Both th
situations correspond toquenchedrandomness arising
from a fixed (in time) disordered environment. Yet th
DP has a self-affine geometry with the exponent char
terizing the end-to-end displacementaDP equal to1yzKPZ

[2,4]. The upper critical dimension of the KPZ equatio
is believed [5] to be 5 (i.e.,4 1 1).

The geometry of an undirected polymer (path) at z
temperature in a strongly disordered medium has b
recently considered [6] inD  2. As before, the bonds o
the medium are quenched random variables. All poss
configurations of the polymer are considered that s
and end at given sites (the length of the polymer is
fixed)—the optimal one is that with the lowest cost. T
cost of a particular configuration is assumed simply
be equal to the largest bond within it. In the case o
tie, the next largest bond is used as a tiebreaker an
on. Strikingly, a new universality class was found in th
case: The polymer is no longer self-affine but is se
similar with a fractal dimension,Df ø 1.2 in 2D [6].
0031-9007y96y76(20)y3754(4)$10.00
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We address several issues in this Letter. What
the geometries of the optimal polymer in a strong
disordered medium in higher dimensions? What
the upper critical dimensionality for this problem?
the geometry of the polymer in a strongly disorder
medium universal? Our study is carried out in th
context of a growing invasion percolation cluster.
this procedure, the bonds of the lattice are assig
strengths in a quenched random manner, and a clu
grows by invading the weakest interfacial bond. W
will show that both bond and site variants of percolati
lead to the same universality class. We then go
to study an analogous model withannealedinstead of
quencheddisorder. In this case all interfacial bond
have an equal probability of being invaded. We pres
arguments and numerical evidence that even tho
the randomness is annealed, the effects of quenc
disorder areself-generatedwithin the model leading to
geometries that are self-affine and characterized by
roughness exponentaDP . Thus, within the same proces
the interface of the Eden cluster is characterized by
dynamical exponentzKPZ, whereas the static wanderin
exponent of the strands of the cluster is given by1yzKPZ
(a strand is defined as the unique path that exclu
dead ends from an arbitrary site to a central se
site). Our results have a wide range of applicability
the strong disorder limit is relevant up to a correlatio
length in a variety of situations [7] including transport
amorphous semiconductors at low temperatures, elect
conduction and fluid flow in porous rocks, and th
magnetic properties of doped semiconductors. Furth
there are novel forms of percolation that are equival
to the problem of the optimal polymer in a strong
disordered environment [6]. Our prediction of the se
generated quenched randomness ought to be observ
in Eden growth and other random invasion processes.

We begin with an alternative way to view the geomet
of the polymer in a strongly disordered environment. W
© 1996 The American Physical Society
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FIG. 1. A cluster generated in a 2D invasion percolati
process on a square lattice with a central seed site, indic
by a larger circle. Here, the growth has been stopped w
the maximal horizontal distance reached is equal to 128 lat
constants. The bonds picked during the selection of gro
sites are indicated. They form a loopless network of stran
The circles indicate sites with a significant overlap of t
individual strands.

assume that random numbers are assigned in a quen
random manner to the bonds of a lattice. We n
describe an invasion percolation process [8] starting fr
a central seed site. We consider all possible bonds
the invasion can take place into and pick the bond w
say, the smallest random number assigned to it.
same procedure is used with the enlarged set of interfa
bonds with the invasion proceeding only to previous
uninvaded sites. This procedure avoids loops, and
resulting structure is a spanning tree that is the union o
the optimal polymer configurations from the central se
site to each of the other sites on the lattice [9]. Note t
when two polymers intersect they overlap the rest of
way to the central site (Fig. 1). Since the upper critic
dimension of invasion percolation is 6 [10], this mappi
allows us to deduce that the upper critical dimens
of our problem is also 6—aboveD  6, the optimal
polymer has a fractal dimension of 2 corresponding
that of an uncorrelated random walk.

We have carried out detailed numerical studies to
termineDf in two, three, and four dimensions on a hype
cubic lattice. Figure 2 shows a plot of the mean polym
length versus the distance spannedsLd for both bond and
site percolation. The bond and site percolation expone
are consistent with each other in accord with univers
ity, and we find the approximate resultDf  sD 1 4dy5
for the dimensions studied. The precise values of the
merically determined exponents are shown in Table I.
note that the geometry of the strands of an invasion p
colation cluster is a new universal attribute [11] of the
clusters and should be experimentally accessible.
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FIG. 2. Average lengthkIl of the optimal polymers (paths
in the strong disorder limit versus the spanning distan
L. The dimensionalities of the systems are indicated. T
solid and open symbols are for the bond and site disor
problems, respectively. The data points for the site probl
have been multiplied by 5/4 so that they almost coincide w
the corresponding data points for the bond problem. The slo
indicated correspond toDf shown in Table I. The number o
samples is as follows: (a) square lattice—20 000 forL up to 40
and at least 3000 for largerL’s; (b) cubic lattice—20 000 forL
up to 10 and at least 5000 for largerL’s; (c) 4D hypercubic—
between 2000 and 40 000. The slopes shown in Table I
averaged between the site and bond problems. The ave
transverse displacement scales linearly withL. The inset shows
a scaling plot of the distribution of the path lengths,PsId, for
the 2D bond problem for the values ofL indicated in the inset.

We now turn to the annealed version of the invasi
percolation problem. We proceed exactly as before exc
that all interfacial bonds have an equal probability
being invaded again leading to a spanning tree. T
procedure is the same as the Eden growth problem
has been well studied in the biological context of t
formation of cell colonies such as tissue cultures
bacterial growth. The scaling properties of the interfa
of the Eden cluster is described by the annealed K
equation. The growth process results in each occup
site having a unique path to the seed site with the wh
cluster being a union of such paths. A 2D example of
Eden network of paths is shown in Fig. 3.

We have carried out detailed studies of the geometry
the Eden cluster network. We have monitored the len
and transverse displacement of the strand that first rea

TABLE I. Summary of the numerical results obtained in th
work on hypercubic lattices.

D a—Eden strands Df—Invasion percolation strands

2 0.66 6 0.01 1.22 6 0.01
3 0.62 6 0.02 1.42 6 0.02
4 0.59 6 0.02 1.59 6 0.02
3755
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FIG. 3. Same as Fig. 1 but for an Eden growth proce
stopped when the maximal horizontal distance reached is eq
to 64 lattice constants.

a distanceL from the seed along, say, thex direction. The
results for the transverse displacement inD-dimensional
systems presented in Fig. 4 and summarized in Tab
show that the Eden paths areself-affine. In particular,
in the 2D case, for both thesquare and triangular
lattices, our results are consistent witha  aDP 

2
3 .

On increasingD, a decreases but apparently remains
the DP universality class [2]. This is a quite unexpect
and striking result, since the disorder is annealed and
quenched.

In addition to the spherical geometry, we have al
studied Eden growth on 1D and 2D substrates with ea
substrate site acting as a seed. Periodic boundary c
ditions are imposed in the directions parallel to the su
strate. We have determined the transverse displacem
away from a mother seed, forall sites in the Eden clus-
ter which are at a vertical distanceL from the substrate.
The results are then averaged over the sites and gro
processes. The resulting geometries are consistent w
those arising in spherical growth.

Physically the growing Eden cluster can be thoug
of as interacting random walks not only growing at th
tip, but sprouting out from possibly all of the previousl
occupied sites. The blocking of the possible new grow
sites from the already occupied sites effectively create
quenched random environment leading to the remarka
coincidence of the geometry with that of the directe
polymer in a quenched random environment [12].

Since the invasion percolation case corresponds
quenched disorder, one might expect that the transve
wandering of its strand must be greater than that for t
Eden strand of the same total length. (The interacti
between the strands is a complicating factor.) Likewis
the transverse wandering of the DP in a quenched rand
3756
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FIG. 4. The transverse end-to-center distance of the m
forward paths, generated in the Eden growth in a spher
geometry on L-dimensional lattices, as a function of th
longitudinal distance,L. The square, triangle, hexagon, an
circular symbols correspond to the square, triangular, cu
and 4D hypercubic lattices, respectively. The slopes indica
correspond to those shown in Table I. The number of sample
as follows: (a) square lattice—42 000 forL between 4 and 128
12 000 forL  192 and 256; (b) triangular lattice—27 000; (c
cubic lattice—more than 40 000 forL between 4 and 32, 5000
for L  40, and 3000 forL  64; (d) 4D hypercubic—more
than 25 000 forL between 4 and 12, and 11 000 forL  16.
The average length of the paths scales linearly withL.

medium ought to be larger than that of a random wa
with the same number of steps. These two observatio
along with the conjecture [12] that the Eden strand
in the same universality class as a DP in a quenc
random environment, lead to1yDf $ aDP $

1
2 . Since

Df becomes equal to 2 forD $ 6, we deduce that the
upper critical dimensionality of the DP problem [5] (an
hence the KPZ equation) is#6 s 5 1 1d.

We are indebted to Mehran Kardar and Michael Moo
for bringing Ref. [12] to our attention and for useful dis
cussions. This work was supported by grants from KB
(Poland), INFN (Italy), NASA, NATO, NSF, and the Pe
troleum Research Fund administered by the Americ
Chemical Society.
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