
PHYSICAL REVIEW E MAY 2000VOLUME 61, NUMBER 5
Invasion percolation with long-range correlations: First-order phase transition
and nonuniversal scaling properties
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We present the results of extensive Monte Carlo simulations of the invasion percolation model with trapping
~TIP! with long-range correlations, a problem which is relevant to multiphase flow in field-scale porous media,
such as oil reservoirs and groundwater aquifers, as well as flow in rock fractures. The correlations are gener-
ated by a fractional Brownian motion characterized by a Hurst exponentH. We employ a highly efficient
algorithm for simulating TIP, and a novel method for identifying the backbone of TIP clusters. Both site and
bond TIP are studied. Our study indicates that the backbone of bond TIP is loopless and completely different
from that of site TIP. We obtain precise estimates for the fractal dimensions of the sample-spanning cluster
~SSC!, the minimal path, and the backbone of site and bond TIP, and analyze the size distribution of the
trapped clusters, in order to identify all the possible universality classes of TIP with long-range correlations.
For site TIP withH.1/2 the SSC and its backbone arecompact, indicating a first-order phase transition at the
percolation threshold, while the minimal paths are essentially straigth lines. ForH,1/2 the SSC, its backbone,
and the minimal paths are all fractal with fractal dimensions that depend on the Hurst exponentH. The fractal
dimension of the loopless backbone for bond TIP is much less than that of site TIP for anyH.

PACS number~s!: 64.60.Ak, 47.55.Mh
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I. INTRODUCTION

Multiphase flow phenomena in porous media are relev
to many problems of great scientific and industrial imp
tance, including extraction of oil, gas, and geothermal ene
from underground reservoirs, and transport of contamina
in soils and aquifers. To investigate these phenomena,
network models have been used to represent the porous
dia, and the concepts of percolation theory@1–3# have been
employed to model slow flow of fluids through the po
space. These models include both random bond or site
colation@4–9# and invasion percolation~IP! @10–12#. In par-
ticular, IP, which was introduced for describing the evoluti
of the interface between an invading and a defending fluid
a porous medium, has provided deep insight into such p
nomena. In addition, IP is relevant to a host of other pr
lems, including characterization of optimal paths and dom
walls in strongly disordered media@13,14#, and even simu-
lation of the Ising model at the critical temperature@15#.
Moreover, IP is one of the simplest parameter-free mod
which exhibits self-organized criticality@16#, another subject
of current interest.

Two different variants of IP, both motivated by the phy
ics of multiphase flow in porous media, have been studied
far. In one the defending fluid is infinitely compressible a
the invading fluid can potentially enter any region on t
interface that is occupied by the defending fluid. We refer
this as the nontrapping IP~NTIP!. In the second and mor
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common model, the defending fluid is incompressible a
can be trapped if a portion of it is surrounded by the invad
fluid. We call this the trapping IP~TIP!. The fluids’ com-
pressibility is, however, only one of several factors that
fect the evolution of the system as the invading fluid a
vances in the porous medium. In particular, one must a
take into account the ability of the fluids to wet the intern
surface of the medium@1#. The process by which a wettin
fluid is drawn spontaneously into a porous medium is cal
imbibition, while forcing of a nonwetting fluid into the por
space is called drainage. We model the porous medium
network of pores or sites connected by throats or bonds
have smaller radii than the pores. In IP, the potential d
placement events are ranked according to the capillary p
sure threshold that must be exceeded before a given e
takes place. During imbibition, the invading fluid is draw
first into the smallest constrictions, for which the capilla
pressure is large and negative, and it goes last into the wi
pores. Displacement events are therefore ranked in term
the largest opening that the invading fluid must trav
through, since it is from these larger capillaries that it is m
difficult to displace the defender. Imbibition is therefore
site IP and, by contrast, drainage in which the invader h
most difficulty with the smallest constrictions, is abond IP.

Important differences arise in the structure of the invad
fluids’ paths depending on whether one considers NTIP
TIP. Moreover, the question of the universality class of
has recently been studied extensively@14,17,18#. The scaling
properties of NTIP are believed to be consistent with tho
of random percolation~RP!. For TIP the fractal dimension
D f of the sample-spanning cluster~SSC! in two dimensions
~2D! is smaller than that of RP@10#. In 3D no significant
difference between the fractal dimensions of the SSC for
ic
4920 ©2000 The American Physical Society
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PRE 61 4921INVASION PERCOLATION WITH LONG-RANGE . . .
and RP has been reported. It was originally argued@10# that
the fractal properties of IP, e.g., the fractal dimension of
SSC at the breakthrough point~i.e., at the point where the
invading fluid first spans the network! do not depend on
whether one simulates a site or bond IP. Recently, howe
it was argued@14,18# that important differences arise in th
structure of the invading fluid’s paths when comparing s
and bond IP. Portoet al. @14# used a mapping from the mini
mal ~shortest! paths in TIP to the optimal paths in strong
disordered media, and presented numerical evidence tha
TIP the fractal dimensionDmin of the minimal path in all
dimensions is not the same as that of RP, and hence
argued that TIP and RP do not belong to the same unive
ity class. On the other hand, Baraba´si @19# argued that the
loopless bond TIP~see below! is in the universality class o
RP. It now appears that@20# in 2D IP is characterized bytwo
universality classes, one each for NTIP, and site and b
TIP, while in 3D site NTIP and TIP are in the universali
class of RP, and~similar to 2D! bond TIP is in the univer-
sality class of optimal paths in strongly disordered media

However, most of the IP processes that have been stu
so far deal with systems in which there is no correlation. T
nature of disorder in many important classes of disorde
porous media is not, however, completely random, and th
usually are correlations of a given extent. However, the s
ing properties of percolation models with finite-range cor
lations are the same as those of RP, if the length scal
interest is larger than the correlation length. Moreover, if
correlation function decays faster thanr 2d, where r is the
distance between two points andd is the dimensionality of
the system, then the critical properties of the systems
identical with those of RP@2,3#. In some other cases, e.g
field-scale porous media and aquifers, there are long-ra
correlations~see below! whose extent is the same as, or co
parable with, the linear size of the system.

In the past, several papers have dealt with percola
with long-range correlations@21–24#. For example, Weinrib
and Halperin@22# considered the case for which the corre
tion function C(r ) defined by C(r )5^u(r 8)u(r 1r 8)&,
whereu(r ) is a stochastic variable following a distributio
with long-range correlations, and^ & denotes an average ove
all values ofr 8, was given by

C~r !;r 2l, ~1!

wherel,d. They calculated the critical exponents of th
percolation model to linear order ine562d andd542l,
and found them to be nonuniversal and dependent onl.
Prakashet al. @24# considered a slightly different percolatio
model in which the correlation function in ad-dimensional
system was given by

C~r !;r 2(d2z), ~2!

where 22<z<2 is a parameter such that 0<z<2 repre-
sents positive correlations, while22<z<0 corresponds to
negative correlations. They studied this model in 2D a
argued that the fractal dimensionD f of the SSC is the sam
as that of RP, while other critical exponents of their mod
were nonuniversal and dependent onz.

Equations~1! and ~2! describe systems in which the co
relationsdecreasewith increrasingr. As discussed in Ref
e
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@25#, percolation with long-range correlations in whichC(r )
increaseswith increasing r is completely different from
those characterized by Eq.~1! or ~2!. One stochastic proces
with a correlation function that increases withr is the frac-
tional Brownian motionBH(r ) ~FBM! @26#, which has the
properties that̂BH(r )2BH(r0)&50, and

^@BH~r !2BH~r0!#2&;ur2r0u2H, ~3!

where r5(x,y,z) and r05(x0 ,y0 ,z0) are two arbitrary
points, andH is the Hurst exponent. A remarkable proper
of FBM is that it generates correlations whose extent isinfi-
nite, by which we mean the extent of the correlations is
large as the linear size of the system. Moreover, the type
correlations can be tuned by varyingH. If H.1/2, then FBM
displays persistence, i.e., a trend~for example, a high or low
value! at x is likely to be followed by a similar trend atx
1Dx. If H,1/2, then FBM generates antipersistence, i.e
trend atx is not likely to be followed by a similar trend a
x1Dx. For H51/2 the trace of FBM is similar to that of a
random walk, and its increments are uncorrelated. The po
spectrumS(v) of a d-dimensional FBM is given by

S~v!5
ad

S (
i 51

d

v i
2D H1d/2 , ~4!

wheread is a constant, andv5(v1 , . . . ,vd). This spectral
representation also allows us to introduce a cutoff len
scalel co51/Avco such that

S~v,vco!5
ad

S vco1(
i 51

d

v i
2D H1d/2 . ~5!

By tuning the cutoff length scale one can control the len
scale over which the spatial properties of a system are
related~or anticorrelated!. Hence, for length scalesl ,l co
they preserve their correlations~anticorrelations!, but for l
.l co they become random and uncorrelated. Note that
FBM

C~r !2C~0!;r 2H. ~6!

Since onlyH.0 are physically interesting, for FBMC(r )
increases asr does. The spectral representation also provi
a convenient method for generating ad-dimensional array of
numbers that follow the statistics of FBM. An alternativ
algorithm for simulating FBM, based on its integral repr
sentation, is described by Rambaldi and Pinazza@27#.

A percolation model in which the long-range correlatio
were generated by a FBM was first proposed by Sahimi@28#.
The motivation for his model was provided by the work
Hewett@29#, who analyzed the permeability distributions an
porosity logs of heterogeneous rock formations at la
length scales~of order of hundreds of meters!, and showed
that the porosity logs in the direction perpendicular to t
bedding follows the statistics of fractional Gaussian no
~FGN! which is, roughly speaking, the numerical derivati
of FBM, while those parallel to the bedding follow the FBM
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In addition, there is convincing evidence that the permea
ity distribution of many oil reservoirs@1,29# and aquifers
@30# can be described by FBM. In Sahimi’s model, one fi
generates ad-dimensional FBM array using a lattice and a
signs the resulting correlated numbers to the bonds or site
the lattice. To construct a percolation model and to prese
the correlations between the bonds~sites!, one removes those
bonds ~sites! that have been assigned thesmallestFBM-
generated numbers. We refer to this version of the perc
tion model with long-range correlations as the standard p
colation~SP! model. Over the past few years, these types
percolation models have been studied by a few rese
groups@28,31,32#. Mourzenkoet al. @33# used this type of
model to study conduction in network of fractures with lon
range correlations that were generated by a FBM, while,
ing a somewhat similar model, Wagneret al. @34# studied
invasion of a single fracture.

However, since IP is a more appropriate model than
SP for studying multiphase flow in porous media, and
cause field-scale porous media are typically characterize
FBM- or FGN-type of long-range correlations, in order
describe multiphase flow in such media one must study IP
which the correlations are generated by a FBM~or FGN!.
Knackstedtet al. @35# already used such a model to stu
mercury porosimetry in correlated porous media, an imp
tant process that is used for characterizing the pore struc
of a porous medium. The goal of this paper is to report
results of such an investigation. We are particularly int
ested in the fractal properties of the IP model with lon
range correlations, as they may shed light on the natur
multiphase flow phenomena in field-scale porous media.

The plan of this paper is as follows. In Sec. II we descr
the TIP model that we study in this paper. An importa
aspect of studying any IP model is an efficient simulat
algorithm, so that large lattices can be used. Thus, we
scribe in Sec. III the algorithms that we used in our study
Sec. IV we describe how the simulation results are analyz
while the results are presented and discussed in Sec. V
nally, Sec. VI summarizes the paper.

II. INVASION PERCOLATION WITH LONG-RANGE
CORRELATIONS

We now describe the TIP model with long-range corre
tions that are generated by the FBM. We first generat
d-dimensional FBM array and assign the resulting numb
to the sites~or bonds! of thed-dimensional lattice. The FBM
array can be generated either by the methods mentio
above, or by the successive random addition method of V
@36#; we used the latter method. The FBM-generated nu
bers are then taken as the effective radii~or permeabilities
that are proportional to the square of their radii! of the sites
or bonds. The simulation of IP in this lattice is then the sa
as in the standard TIP, namely, at each time step du
invasion, the invading fluid attempts to invade the interfa
site with the largest number. To investigate the effect o
finite correlation length on the results, we also introduce
cutoff length scalel co ~see above! and study its effect on the
fractal properties of TIP. In the discussions below the cut
length scalel co is measured in units of the lattice bonds.

We also studied a variant of TIP, namely, the bond T
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which is more appropriate for modelling invasion of a poro
medium by a nonwetting fluid. In essence, if the nonwett
fluid is about to enter a new site that has two neighbor
bonds, filled with the wetting fluid, with end sites that a
filled with the nonwetting fluid, then the invading flui
breaks through the larger of the two bonds. The smaller b
still contains the wetting fluid and is therefore effective
trapped by its two end sites filled with the nonwetting flui
To simulate the bond TIP, the FBM-generated numbers
assigned to the bonds of the lattice rather than its sites,
the invading fluid always invades the largest bond at
interface with the defending fluid. This version of TIP ge
erates clusters that are loopless@13,14,17,18#.

One of the most essential aspects of studying TIP is h
ing a highly efficient algorithm for simulation of the invasio
process. In this work we used the invasion algorithm recen
introduced by us@20,37#. Since we also study the backbon
of the invasion cluster, i.e., the multiply connected part of
we also used a novel and highly efficient algorithm for ide
tifying the backbone. In what follows we describe these
gorithms.

III. SIMULATION ALGORITHM

In the conventional simulation of IP@1,10–12# the search
for the trapped regions is done after every invasion ev
using a Hoshen-Kopelman algorithm@2,3#, which traverses
the entire lattice, labels all the connected regions, and t
only those sites~bonds! that are connected to the outlet fac
are considered as potential invasion sites~bonds!. A second
sweep of the lattice is then done to determine which of
potential sites~bonds! is to be invaded in the next time step
Thus, each invasion event demandsO(N2) calculations,
whereN is the number of sites~bonds! in the lattice. This is
highly inefficient for two reasons. First, after each invasi
event only a small local change is made in the interfa
implementing the global Hoshen-Kopelman search is unn
essary. Second, it is wasteful to traverse the entire lattic
each time step to find the most favorable site~bond! on the
interface since the interface is largely static. We tackle
first problem @20,37# by searching the neighbors of eac
newly invaded site~bond! to check for trapping. This is ruled
out in almost all instances. If trapping is possible, then s
eral simultaneous breadth first ‘‘forest-fire’’ searches a
used to update the cluster labelling as necessary@38#. This
restricts the changes to the most local region possible. S
each site~bond! can be invaded or trapped at most on
during an invasion, this part of the algorithm scales asO(N).
This cluster searching method has some similarities with
‘‘perimeter scouting’’ algorithm for 2D clusters. In this a
gorithm one checks whether the most recently invaded s
could have been trapped in the interior of the cluster. If
oriented walks are started on the just invaded site, poin
away from it to the neighboring sites, which are those t
neither belong to the cluster nor are candidates for invas
The walks continue until all but one of them have aga
reached the site of origin. The growth sites visited by the
walks are then eliminated from the list of active sites@39#.
This method is effective in 2D but not as efficient in 3D. O
method differs from it by searching cluster volumes rath
than perimeters, and incorporating local checking to mi
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mize cluster searching and is thus equally effective in 3D
The second problem is solved by storing the sites~bonds!

on the fluid-fluid interface in a list, sorted according to t
capillary pressure threshold~or size! needed to invade them
This list is implemented via a balanced binary search tree
that insertion and deletion operations on the list can be
formed in ln(n) time, wheren is the list size. The sites
~bonds! that are designated as trapped using the proced
described above are removed from the invasion list. E
site ~bond! is added and removed from the interface list
most once, limiting the cost of this part of the algorithm
O„N ln(n)…. Thus, the execution time forN sites ~bonds! is
dominated~for large N) by list manipulation and scales a
most asO„N ln(N)… @40#.

While the execution time is approximatelyO„N ln(n)…, in
practice the time and memory requirements depend on
total number of lattice sites~bonds! and those forming the
cluster boundary. For example, we find empirically that
3D TIP the execution time scales asL1.24, and the memory
use is 20 bytes for each lattice site plus 64 bytes for e
cluster site. On a 500 MHz 21164A Alpha microprocesso
trapping cluster of 23105 sites is grown on a 1813181
3181 lattice in 12.0 sec, using 120 Mbytes of memo
while in 2D a cluster of 53105 sites is grown on a 2000
32000 lattice in 12.0 sec, using only 52 Mbytes. We us
Ld2132L lattices ind dimensions with reflecting boundar
conditions on the edges. Cluster properties were meas
within the centralLd region.

We have also used a new optimized algorithm to iden
the minimal path length, the sites comprising both the ela
backbone@41#, i.e., the set of the sites that lie on the union
all the shortest paths between two widely separated po
and the usual transport backbone, so that the backb
search and computations do not affect the overall execu
time of the algorithm. In the past, numerous algorithms h
been proposed in the literature@41–44#, some of which are
either too slow or limited to 2D systems. For example
recent method@45# that uses a matching algorithm tak
longer to identify the backbone than the IP algorithm us
here takes to generate it.

An alternative method was recently presented by Ba
lievski @38#, based on depth-first searching out from the el
tic backbone@41# to identify loops of occupied sites. Thi
method works well for low-connectivity clusters but los
efficiency where the SSC is composed of large we
connected regions, as happens in IP with long-range corr
tions studied here~see below!. In the latter case, some site
need to be visited numerous times before their status is
cided. The method used here is an optimization of this
which the distance on the cluster from the inlet face to e
cluster site is used to guide the depth-first search. In
algorithm, there are three major steps that are as follows

~i! Using a breadth-first search algorithm, we label ea
site in the cluster with its ‘‘cluster distance’’ from the inle
face, and then use this information to burn backwards fr
the outlet face and identify the elastic backbone. At the sa
time, we construct the ‘‘branch points list’’–a list of all th
cluster sites that are adjacent to the elastic backbone bu
not part of it. The branch points list is ordered with the si
closest to the inlet face listed first. Note that the elastic ba
bone sites are part of the backbone.
so
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~ii ! We stop if the branch points list is empty. Otherwis
we perform a depth-first search from the last site in
branch points list, flagging all the sites that are visited. D
ing the search, unexplored branch points are added to
branch points list, while another list tracks the sites that h
been flagged as visited. We then perform an important o
mization during the depth-first search: If there are multip
branches from a single site, the site labeled as being clo
to the inlet face is always the first to be explored.

~iii ! The depth-first search terminates when one of t
conditions are satisfied:~1! the search contacts the backbo
again at a different site from whence it started, in which ca
the sites in the visited-sites list are flagged as backbone s
or ~2! it retreats back to its starting site, at which point the
will be no sites left in the visited-sites list.

~iv! The algorithm continues at step~ii !.
In this way the elastic backbone, the transport backbo

and the dangling ends of the SSC are all identified. Examp
of execution times for this algorithm running in 3D on a 53
MHz 21164A Alpha processor are 0.02 and 0.12 CPU
for 323 and 643 lattices, respectively. The cluster on whic
these calculations were performed was a SSC generated
NTIP. When compared with the timings reported in Ref.@45#
on an equivalent hardware, our algorithm is faster by a fac
of 7 for the 323 lattice and by a factor of 12 for a 1283 lattice,
and thus the larger the lattice size, the more efficient is
algorithm.

IV. ANALYSIS OF THE RESULTS

To estimate the various fractal dimensions, we employ
two different methods. One was based on the scaling of
clusters’ or paths’ mass with their linear size. For examp
for the SSC at the breakthrough point, i.e., when the inva
first percolates through the network, we must have

M}LD f , ~7!

whereM is the mass of the cluster, i.e., the number of
vaded sites~bonds! in the network,L is the linear size of the
sample, andD f is the fractal dimension of the SSC. For th
type of analysis, the largest lattice size that we used in
was L58192, with the results averaged over 104 realiza-
tions, while in 3D we usedL5512 and averaged the resul
over 5 000 realizations.

The second method of analyzing the data is based
studying thelocal fractal dimensions and their approach
their asymptotic value asM becomes very large. For ex
ample, for the SSC the local fractal dimensionD f(M ) is
defined as

D f~M ![
d ln M

d ln Rg
, ~8!

where Rg is the cluster’s radius of gyration. According t
finite-size scaling theory~FSST!, D f(M ) converges to its
asymptotic value for largeM according to

uD f2D f~M !u}M 2v, ~9!

wherev is a priori unknown correction-to-scaling exponen
and thus it must be estimated from the data. Moreoverv
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FIG. 1. Typical cluster configurations for site TIP in 2D. The results are for, from top to bottom,H50.2, 0.5, and 0.9. The figures on th
left show the results for a cutoff length scalel co50, while those on the right show the clusters forl co58. The light gray background is
the sample-spanning cluster, the dark gray is its backbone, and the black area shows the minimal paths.
w

lly
by

-

lso
may depend on the model that we study and the quantity
estimate. Combining Eqs.~8! and ~9! ~and takingRg}L)
gives a differential equation that can be solved analytica
The solution is given by

c11D fM
v5c2LvD f , ~10!

wherec1 andc2 are constants. Equation~10! is new and is
given here for the first time. We then fit the data to Eq.~10!
e

.

to estimateboth Df and v simultaneously. By so doing we
also avoid statistical pitfalls of the two-stage process used
Schwarzeret al. @17# in which the data are first divided into
various bins andD f(M ) are estimated by numerical differ
entiation, and thenv is varied until Eq.~9! provides the
‘‘best’’ straight line fit of the data whenD f(M ) is plotted vs
M 2v. Note that the choice ofv is very crucial to accurate
estimation of the fractal dimensions. In addition, we a
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obtain reliable estimates for the confidence intervals of
model parameters, as discussed below. For this type
analysis, the 2D results were averaged over 250 000 rea
tions, while in 3D the results were averaged over 105 real-
izations.

V. RESULTS AND DISCUSSION

We first discuss our results in 2D, after which the resu
in 3D are presented and discussed.

A. Results in two dimensions

Figure 1 shows the configurations of the SSC at the bre
through point in the site TIP model, its backbone, and
minimal path for three values of the Hurst exponentH. For
the sake of comparison, we present in Fig. 2 the configu
tion of the SSC for site TIP without any correlations~i.e.,
l co50). Figure 1 shows the results for two distinct cases
one a cutoff length scalel co58 has been introduced for th
extent of the correlations, while in the second casel co5`,
i.e., the extent of the correlations is as large as the linear
of the system. As can be seen in Fig. 1, asH increases, the
compactness of the SSC and its backbone also increases
H50.9 the SSC and its backbone are completely comp
with very small trapped clusters in their interior. Howeve
when the cutoff length scalel co is introduced in the system
the shapes of the clusters change drastically. While at len
scalel ,l co the clusters are still compact, forl .l co they
no longer have a compact structure. Instead, they are fra
objects with fractal dimensions that are strictly less than
~see below!. Interestingly, although the cutoff thickens th
invading front, local trapping still occurs while the fluid
advancing. Note that forH.1/2 the minimal path is no
unique: while one can fix its length, one finds many su
paths with the same length, which is why the set of all
minimal paths with a fixed length is a thick band@see Figs.
1~e! and 1~f!#.

FIG. 2. Typical cluster configurations for site TIP in 2D b
without any correlations. The colors are the same as in Fig. 1.
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Since the fractal dimensionsD f andDb of the SSC and its
backbone ind dimensions are given byD f5d2b/n and
Db5d2bb /n, where n is the correlation length exponen
andb andbb are the critical exponents that characterize
fraction of the invaded sites in the SSC and its backbone,
compactness of these clusters implies that eithern5` or b
5bb50 ~or both!, both of which imply that the percolation
transition at the breakthrough point, both in the SSC and
backbone, isfirst order, in contrast with RP, uncorrelated IP
and also the SP models with long-range correlations in wh
the correlation functionC(r ) decreases with increasingr
@22–24#, in all of which the transition at the percolatio
threshold is second order. Our results are similar to thos
Sahimi and Mukhopadhyay@32# who reported that the SSC
and its backbone for the SP model with FBM-generated c
relation are compact forH.1/2. Isichenko@46# presented an
analytical argument that indicated that, for SP andany 0
,H,1 in 2D, D f52.

For H50.5 the SSC and its backbone appear to ha
started taking on a noncompact shape, with the sizes of
trapped clusters becoming much larger than those for thH
50.9 case. If we introduce the cutoff length scalel co58,
then the trapped clusters become even larger, and fol
.l co the clusters are again fractal objects. ForH50.2 the
SSC and its backbone are fractal objects, with or without
cutoff length scalel co , although the fractal dimensionDmin
of the minimal path still deviates little from unity. Note tha
in all the cases values of the fractal dimensions for the S
and its backbone with and without the cutoff length scale
different. While for the case of no cutoffD f andDb ~for H
,1/2) depend onH, with the cutoff length scale these fract
dimensions are, at large length scales, the same as tho
2D site TIP without correlations. These are confirmed by o
numerical analysis described below. We note that, even
0,H,1/2 the fractal dimensionDmin of the minimal paths
appears to be only slightly larger than unity. For examp
even forH50.2 shown in Fig. 1, the path seems to be alm
a straight line.

Therefore, for site TIP, if there is no cutoff length sca
for the extent of the correlations, thenH51/2 appears to
signal a transition from a system with nonfractal cluste
(H.1/2) to one with fractal clusters (H,1/2). Moreover,
for H,1/2 all the fractal dimensions depend onH ~see be-
low!.

The results for bond TIP are different from those for s
TIP. Figure 3 presents the configurations of the SSC,
backbone, and the minimal paths for bond TIP for the sa
values of the Hurst exponentsH and the cutoff length scale
l co as those in Fig. 1, while Fig. 4 shows the same clust
for the same model but without any correlations~i.e., l co
50). It is clear that the configurations of the clusters in t
two models are completely different. In particular, the bac
bone of bond TIP does not contain any closed loops and i
the form of a long strand, which is in striking contrast wi
the backbone of site TIP that is compact forH.1/2, and
while it is a fractal object forH,1/2, its fractal dimension is
still quite large ~see below!. However, although the back
bone of bond TIP is loopless and looks like a long strand
our analysis discussed below indicates, its fractal dimens
D l b is always greater than one forany value ofH. A com-
parison of Figs. 2 and 4 also indicates that, even in the c
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FIG. 3. Same as in Fig. 1, but for bond TIP.
an
te

an
rs
s
ts

er

e

ch
of no correlations, the structures of the clusters for bond
site TIP are very different, which has also been repor
previously@13,14,18,20#.

We now present the analysis of our numerical results
the resulting fractal dimensions for the various cluste
Since forH.1/2 all the clusters are nonfractal, we discu
the results only forH,1/2. Figure 5 presents typical resul
for the mass of the clusters forH50.1 and their analysis
using Eq. ~7!. They exhibit precise scaling behavior ov
three orders of magnitude variations inL. The top two curves
in Fig. 5 present the results for the SSC and its backbon
site TIP. ForH50.1 Fig. 5 yieldsD f.1.85, while for the
backbone,Db.1.8, slightly smaller thanD f . The fractal di-
mensionD l b of the loopless backbone of bond TIP is mu
smaller thanD f andDb and forH50.1 shown in Fig. 5 we
find that D l b.1.16. Figure 5 also yieldsDmin.1.08, only
d
d

d
.

s

in

FIG. 4. Same as in Fig. 2, but for bond TIP.
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slightly larger thanDmin51.0 for a straight nonfractal line.
To obtain more precise estimates of the fractal dim

sions, we used Eq.~10! and reanalyzed the data. Figure
shows typical results for the SSC in site TIP forH50.1. The
top figure shows the results of fitting Eq.~10! to the simula-
tion data. The fit is effectively perfect and much more ac
rate than what can be attained with a simple power law,
~7!. In fact, one cannot distinguish the fitted results from
actual simulation results. This is perhaps not totally surp
ing since four parameters have been used to fit the data.
bottom figure shows the confidence region ellipse@47# of the
fitting parametersv ~the FSS exponent! andD f ~the fractal
dimension!. The solid ~dashed! line shows the 68%~99%!
confidence level. It can be seen that although the confide
level for the exponent is quite broad, this does not trans
into poor estimates forD f andv. The best fit of the data is
obtained withv.0.675 andD f.1.8599, slightly larger, but
much more accurate, thanD f.1.85 obtained from Fig. 5
For comparison we show in Fig. 7 the analysis of the d
using Eqs.~8! and ~9!, which calculates the localD f(M )
numerically and then fits the results to Eq.~9! to estimateD f
and v. This type of analysis yieldsD f.1.862 andv.0.5.
This estimate ofv is quite smaller than what we obtain from
Fig. 6.

Figure 8 presents the analysis of the simulation results
the backbone in site TIP andH50.1. In this case, the best fi
of the data is obtained withv.0.573 andDb.1.8193, dis-
tinctly lower thanD f.1.8599. Figure 9 depicts the resul
for the minimal path of site TIP forH50.1, from which we
estimate thatv.0.34 and Dmin.1.0379, not consisten
with, but more accurate than,Dmin.1.08 obtained from the
analysis of the path’s massL ~Fig. 5!. Of course, the highe
accuracy of the estimate obtained from Fig. 9 is due to tak
into account the effect of finite-size corrections. Note th
unlikeTIP without correlations@20#, and as a consequence
the correlations, strong differences exist between the ba
bone and the minimal path structures. While for site T
without correlationslocal trapping thwarts extensive growt
of the backbone off the minimal path, leading to a grea
diminished backbone whose fractal dimension~see Table I!
is close to that of the minimal path, for the present case

FIG. 5. Scaling of the massM of the clusters with the length
scaleL for 2D TIP with H50.1. The results are, from top to bo
tom, for the sample-spanning cluster of site TIP, the backbon
site TIP, the backbone of bond TIP, and the minimal paths for
TIP.
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backbone is much more compact and completely differ
from the minimal paths.

Figure 10 shows typical results for the backbone of bo
TIP andH50.1. Confirming the qualitative features of Fig

FIG. 6. Top: Fit of the simulation results for the mass of t
sample-spanning cluster of 2D site TIP to Eq.~10! for H50.1. The
data and the fit are indistinguishable. Bottom: Confidence ellipse
the finite-size scaling exponentv and the fractal dimension of the
cluster. The solid~dashed! curve shows 68%~90%! confidence
level.

FIG. 7. Numerical analysis of the simulation results for the m
M of the sample-spanning cluster of 2D site TIP forH50.1, using
Eqs.~8! and ~9!. Large symbols are the data, while the small on
are plus and minus one standard deviation in the data.
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3, the backbone of this model is completely different fro
that of site TIP. Indeed, as mentioned above, the backbon
bond TIP does not contain any closed loops of the inva
bonds and is somewhat similar to a long strand. From
figure we obtainD l b.1.16 andv.0.975. We emphasize
that, had we used Eqs.~8! and ~9!, the estimates of thes
fractal dimensions, and especially their corresponding va
of v, would have been quite different. For example, for t
backbone of TIP withH50.1, we would have obtainedv
.0.7, much lower thanv.0.975 that Fig. 10 yields.

To show that forH.0.5 the SSC~and its backbone! are
compact, we present in Fig. 11 the results forH50.9. As
before, we obtain an excellent fit of the data~top figure!, and
D f.1.991 andv.0.41, which confirm our assertion.

Summarizing the results in 2D, we find that foranyvalue
of H and a finite cutoff length scalel co for the extent of the
correlations, all the clusters of interest are fractal at len
scalesl .l co with fractal dimensions that are the same
those of the same clusters in the corresponding IP mo
without any correlations. For length scalesl ,l co the clus-
ters’ structures are similar to those forl co5`. In this case
we find that forH.1/2 the SSC and its backbone in site T
are compact, and that the minimal path is a straight~nonfrac-
tal! line. Moreover, we find that forany H,1/2 all the clus-
ters of interest are fractal, but with two major differenc
with the case of IP without any correlations. One is that
fractal dimensionDmin of the minimal path varies very little

FIG. 8. Same as in Fig. 6, but for the backbone.
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with H and is only slightly larger than one. The second d
ference is that values of all the fractal dimensions depend
H, whereas for the case of IP without correlations they
universal. Figure 12 summarizes the dependence on
Hurst exponentH of the fractal dimensions. For compariso
we compile in Table I the most recent estimates of the sa
fractal dimensions for NTIP and TIP without correlation
@20#. Finally, as was mentioned in Sec. IV, the correction-
scaling exponentv is a model-dependent quantity that d
pends on both the particular fractal dimension~or cluster! of

FIG. 9. Same as in Fig. 6, but for the minimum path.

TABLE I. The most accurate estimates of various fractal dime
sions for IP in 2D and 3D, and their comparison with those
random percolation~RP! @20#.

Model Dmin Db

2D

NTIP 1.129360.0010 1.642260.0040
Site TIP 1.20360.001 1.21760.020
Bond TIP 1.217060.0007 1.21760.0008
RP 1.130760.0004 1.643260.0008

3D
Site NTIP 1.369760.0005 1.86860.010
Site TIP 1.369760.0005 1.86160.005
Bond TIP 1.45860.008 1.45860.008
RP 1.37460.004 1.8760.03
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interest to be estimated and also on the Hurst exponenH.
Figure 13 presents the dependence ofv on H for the four
fractal dimensions.

B. Results in three dimensions

Similar to the 2D case, we find that in 3D all the cluste
are compact forH.1/2. Therefore, once againH51/2 rep-
resents a sort of transition point from compact~for H
.1/2) to fractal clusters~for H,1/2). However, we find tha
there are significant qualitative differences between
structure of the various clusters, which we now discuss.

We first consider the fractal structure of the clusters.
make a direct comparison with Figs. 5–10, we present
typical results forH50.1. Figure 14 presents the analysis
the clusters’ masses according to Eq.~7!. From the best fit of
the data we obtainD f.2.7260.01, practically identical with
Db.2.7160.01. We also find thatD l .1.2960.01 and
Dmin.1.0960.02. These results indicate that~1! the SSC
and its backbone are practically identical, which is a surp
ing result, and~2! similar to 2D, the fractal dimensionDmin
of the minimal path is very close to 1. Indeed, a closer
spection of the results indicates that Eq.~7! is not adequate
enough for yielding an accurate estimate of any of the fra
dimensions.

Therefore, similar to 2D, in order to obtain more prec
estimates of the fractal dimensions, we used the asymp
analysis of the fractal dimensions using Eq.~10!. Figures 15
and 16 show the results for the SSC and its backbone

FIG. 10. Same as in Fig. 6, but for the backbone of bond T
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spectively, from which we obtainD f.2.771 (v.0.52) and
Db.2.745 (v.0.255). These results indicate that in 3
and for H,1/2 the SSC and its backbone are fractal w
fractal dimensions that are nearly identical. The differen
between the two fractal dimensions issmaller than what we
found in 2D ~see above! which is surprising, because on

.
FIG. 11. Same as in Fig. 6, but forH50.9.

FIG. 12. Dependence of the various fractal dimensions onH for
2D TIP. The results are for the site sample-spanning cluster~tri-
angles!, site backbone~squares!, backbone of bond TIP~crosses!,
and site minimal paths~diamonds!.
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would intuitively think that the probability that some region
of the SSC to be deadends off the backbone is much hig
in 3D than in 2D. In their study of standard percolation w
long-range correlations that were generated by the FBM,
himi and Mukhopadhyay@32# also reported that the SSC an
its backbone are very similar, although due to the small
tice sizes that they used, they could not quantify the simi
ity between the SSC and its backbone.

Figure 17 presents the results for the minimal path. In t
case we obtainDmin.0.985 (v.0.21), indicating strongly
that, in 3D the minimal path isnot fractal for any H. Recall
that we found in 2D that the fractal dimensionDmin is only
slightly larger than 1. Therefore, it is possible that the sa
is true in 2D, namely, that the asymptotic~very largeL)
value of fractal dimensionDmin is 1, but one must use ver
large lattices in order to reach this asymptotic value.

Figure 18 shows the results for the backbone of bond T
which is loopless, from which we obtainDb.1.303 andv
.0.0. Note that, as the top figure indicates, in this case
asymptotic regime is reached forL.40, indicating very fast
convergence to the true value.

Since forH,1/2 the fractal dimensionsD f , Db , andD l

depend onH, we have calculated their values for a few va

FIG. 13. Dependence of the finite-size scaling exponentv on H
in 2D. Symbols are the same as in Fig. 12.

FIG. 14. Scaling of the massM of the clusters with the length
scaleL for 3D TIP with H50.1. The results are, from top to bo
tom, for site sample-spanning cluster, site backbone, backbon
bond TIP, and site minimal paths.
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ues ofH. The results are summarized in Fig. 19. Moreov
similar to 2D, the exponentv also depends on the cluste
studied and also onH. Thus, we present in Fig. 20 the de
pendence ofv on H for the three cluster structures studie

As discussed above, since we have introduced a cu
length scalel co , one should see a clear crossover from
value of the fractal dimension for length scalesl @l co that
corresponds to that of TIP without any correlations, to
compact cluster forH.0.5, or to anH-dependent fracta
dimension forH,0.5, for l ,l co . Figure 21 shows this
analysis for the 2D backbone of TIP withH50.9 andl co
5256. The crossover is clearly evident. The slope of the p
at short length scales isDb52, indicating a compact back
bone, while at large length scales there is a crossove
Db,2, confirming what we asserted above.

C. Size distribution of the trapped clusters

Another important topological property of percolatio
networks is the average number of clusters of sizes. In IP the
invader grows only in a single cluster along a path of le
resistance. Therefore, at the breakthrough the invader fo
no disconnected clusters. However, for IP with trapping, o
can continue the invasion process beyond the breakthro
point to a second percolation threshold at which the defe
ing phase consists only of isolated clusters and the inva
must cease. We consider the cluster size distribution for
trapped defender clusters on correlated lattice at this thr
of

FIG. 15. Same as in Fig. 6, but in 3D.
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old. Normally, one studiesns(s), the number of clusters o
size s ~where a cluster’s size is simply the total number
sites that it contains!. In general, one expects to have

ns~s!;s2t f ~s/^s&!, ~11!

wheref (x) is a scaling function, and̂s& is the mean cluste
size, defined by

^s&5

(
s

s2ns~s!

(
s

sns~s!

. ~12!

However, because of large variations of the clusters’ c
figurations among different realizations, a more accurate w
of studying the cluster size statistics is@48# by investigating
Ns(s)5(s.sns , the average total number of clusters with
size greater than a given sizes. In general one expects t
have

Ns~s!}s22t. ~13!

If there are no long-range correlations in the system, then
exponentt is universal. Since the 3D SSC for both site a
bond TIP with no long-range correlations has the same f
tal dimension as RP, then for this case,t5d/D f11.2.19,

FIG. 16. Same as in Fig. 8, but in 3D.
f
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so that in a logarithmic plot ofNs(s) vs s the slope of the
straight line would be 22t.20.19. For the present corre
lated cases, however, we have two distinct regimes.~1! For
H.1/2 the SSC is compact, and we do not expect to hav
scaling law similar to~11! or ~13!. ~2! For H,1/2 the SSC is
a fractal object, and therefore a scaling law similar to~11! or
~13! should hold except that, sinceD f is nonuniversal and
depends onH, we may expect to also have nonunivers
values oft that depend onH. Moreover, if we introduce a
cutoff length scalel co for the extent of the correlations, the
for length scalesL@l co we expect to recover the behavio
with no correlations, whereas forL!l co we should have
one of the above two cases, depending on the value ofH.

To check this, we have studied the scaling ofNs(s) for
various values ofH and the cutoff length scalel co . Shown
in Fig. 22 is the distribution of the trapped clusters forH
50.2 and various values of the cutoff length scalel co . As
can be seen for the case of no correlations~i.e., l co50) one
obtains good agreement with the expected behavior. H
ever, asl co increases, the cluster size distribution starts
deviate significantly from the random case. This behav
becomes even clearer when we study a system withH.1/2,
an example of which is shown in Fig. 23, where we show
results forH50.8 and various cutoff length scales. For lar
l co it is difficult to obtain any sort of scaling, which is
consistent with our discussion.

These results are corroborated if we study the size of

FIG. 17. Same as in Fig. 9, but in 3D.
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4932 PRE 61KNACKSTEDT, SAHIMI, AND SHEPPARD
individual trapped clusters as a function ofl co . Our simu-
lations indicate that for smalll co there is only a small effec
on the distribution of the trapped clusters; this is also evid
in Fig. 22. For intermediate values ofl co we observe a
higher proportion of the trapped sites lie in larger trapp
clusters. Asl co→`, one single cluster contains over 30%
the trapped sites. The trapping dynamics also depe

FIG. 18. Same as in Fig. 10, but in 3D.

FIG. 19. Same as in Fig. 12, but in 3D.
t
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ds

strongly on the presence of the correlations. In a rand
system, trapping occursonly near the end of the invasio
process, where over 80% of the total invading fluid is pres
and less than 5% of the defender is trapped. In contrast,
a cutoff length scales of, sayl co516, over 30% of the de-
fending fluid is trapped at 80% invader saturation.

VI. SUMMARY AND DISCUSSION

Using highly efficient algorithms for invasion percolatio
and its backbone, we have studied trapping IP with lon
range correlations. The correlations are generated by a f
tional Brownian motion. For Hurst exponentsH.1/2, i.e.,
when the correlations are positive, the sample-spanning c
ter and its backbone are compact, while forH,1/2, i.e.,
when the correlations are negative, they appear to be fra
Therefore,H51/2 signifies a sort of transition from a com
pact to a fractal system. Since compact clusters imply fi
order phase transitions,H51/2 can be interpreted as th
point at which one has a crossover from a first-order ph
transition ~for H.1/2) to a second-order phase transiti
~for H,1/2). In the latter case all the fractal dimensions
the model, as well as the exponent that characterizes

FIG. 20. Same as in Fig. 13, but in 3D.

FIG. 21. Crossover from a compact backbone at small len
scales ~diamonds! to a fractal backbone at large length scal
~crosses! for 2D site TIP withH50.9. The cutoff length scale fo
the correlations isl co5256.
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scaling properties of its cluster size distribution, depend
the Hurst exponentH.

Thus, unlike uncorrelated 2D IP, which is characteriz
by two universality classes~one for IP without trapping tha
is the same as that of RP, and another one for bond and
TIP! @20#, and the 3D model for which one has two distin
universality classes~one for site IP with or without trapping
that is the same as that of RP, and one for bond TIP! @20#,
the present TIP model is not characterized by a finite num
of universality classes, as the relevant fractal dimensions
exponents vary continuously withH,1/2.

FIG. 22. Cumulative trapped cluster size distributionNs vs the
cluster sizes for 3D site TIP withH50.2 andL5512. ‘‘Theory’’
refers to random percolation.
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Elsewhere@49# we have discussed the implications
these results for oil recovery operations and extraction of
trapped oil blobs in the reservoir.
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FIG. 23. Same as in Fig. 22, but forH50.8.
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