
Invasive Ponto-Caspian Amphipods and Fish Increase the
Distribution Range of the Acanthocephalan
Pomphorhynchus tereticollis in the River Rhine

Sebastian Emde1, Sonja Rueckert2, Harry W. Palm3, Sven Klimpel1*

1 Biodiversity and Climate Research Centre (BiK-F), Medical Biodiversity and Parasitology, Senckenberg Gesellschaft für Naturforschung (SGN), Goethe-University (GO),

Institute for Ecology, Evolution and Diversity, Frankfurt am Main, Germany, 2 School of Life, Sport and Social Sciences, Edinburgh Napier University, Edinburgh, United

Kingdom, 3Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany

Abstract

Non-indigenous species that become invasive are one of the main drivers of biodiversity loss worldwide. In various
freshwater systems in Europe, populations of native amphipods and fish are progressively displaced by highly adaptive non-
indigenous species that can perform explosive range extensions. A total of 40 Ponto-Caspian round gobies Neogobius
melanostomus from the Rhine River near Düsseldorf, North Rhine-Westphalia, Germany, were examined for metazoan
parasites and feeding ecology. Three metazoan parasite species were found: two Nematoda and one Acanthocephala. The
two Nematoda, Raphidascaris acus and Paracuaria adunca, had a low prevalence of 2.5%. The Acanthocephala,
Pomphorhynchus tereticollis, was the predominant parasite species, reaching a level of 90.0% prevalence in the larval stage,
correlated with fish size. In addition, four invasive amphipod species, Corophium curvispinum (435 specimens),
Dikerogammarus villosus (5,454), Echinogammarus trichiatus (2,695) and Orchestia cavimana (1,448) were trapped at the
sampling site. Only D. villosus was infected with P. tereticollis at a prevalence of 0.04%. The invasive goby N. melanostomus
mainly preys on these non-indigenous amphipods, and may have replaced native amphipods in the transmission of P.
tereticollis into the vertebrate paratenic host. This study gives insight into a potential parasite-host system that consists
mainly of invasive species, such as the Ponto-Caspian fish and amphipods in the Rhine. We discuss prospective distribution
and migration pathways of non-indigenous vertebrate (round goby) and invertebrates (amphipods) under special
consideration of parasite dispersal.
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Introduction

Globalization, the transfer and invasion of non-indigenous

species, has caused widespread biotic homogenization and the

replacement of local species [1], resulting in a worldwide

biodiversity loss (e.g., [2]). Several mechanisms, such as different

environmental tolerance, higher reproduction rates, or different

aggression and mutual predation can be involved in the regulation

of the competitive interactions between native and non-indigenous

species [3–5]. Following the replacement of the native fauna, non-

indigenous species can transform habitats and even threaten entire

ecosystems. They can alter ecosystem processes, causing serious

problems to the environment and major economic losses (e.g.,

[6,7]).

The invasion of a new habitat by a host species infected with

parasites can have different effects on the local parasite fauna: 1)

loss of the original parasite burden of the invader (enemy release

hypothesis) [8,9], 2) introduction of new parasite species with the

invader (parasite spillover) [10], 3) invasive species can successfully

act as intermediate hosts or vectors for existing parasites or

diseases (parasite spillback) [10], 4) loss of local parasite species, if

the invader replaces local host species, but can not act as

intermediate or definitive host in the parasite life cycles (dilution

effect) [11,12].

Ballast water transport has been a main source of unintentional

species release in aquatic systems (e.g., [13]), therefore, the ports in

the Rhine delta are becoming important gateways for non-

indigenous species. More recently, the expansion of navigation

routes across river basin boundaries has led to the construction of

navigation canals that connect the river Rhine with previously

isolated catchments of the Caspian-, Azov-, Black-, Mediterra-

nean-, Baltic-, North-Sea and the Atlantic Ocean [14–16]. These

new waterways have opened long distance dispersal routes for

aquatic species from several bio-geographic areas, where they can

spread directly via natural migration or indirectly via ballast water

release [15,17–19]. In the period of 1850–2006, a total number of

141 aquatic invasive species were reported in German waters and

particularly in the last century the number has risen extensively in

freshwater systems [20]. More than two thirds of these non-

indigenous species were not only migratory, but were able to

establish themselves and to form self-sustaining populations [20].

Some amphipods (e.g. D. villosus) and gobiid fish species (e.g. N.
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melanostomus) are typical invaders into Central Europe including

Germany [20–22]. They originate in the Ponto-Caspian basin and

have spread very quickly to European countries via the so-called

‘‘central and southern corridor’’, the river Rhine (central) and the

Main-Danube Channel (southern) in Germany, respectively [17].

Freshwater fishes are known to harbour a variety of different

parasite species that often utilize amphipods as first intermediate

hosts within their life cycles (e.g., [23,24]). The parasite fauna of

the invasive round goby N. melanostomus from the Ponto-Caspian

region has been relatively well studied in its native habitats (e.g.,

[25]). In addition several studies have focused on the parasite

composition within invasive habitats, including the upper Danube

River basin, the Baltic Sea and the ‘‘Great Lakes’’ USA [25–27].

Studies from the Rhine and adjacent river systems are still missing.

Comparative studies have shown that non-indigenous gobies tend

to loose their native parasite fauna and acquire the generalist

parasites from the local fauna in the invaded area, e.g. in the Gulf

of Gdańsk, where twelve metazoan parasite species could be

detected, 50% of them were typical for the resident gobiids while

seven species of the fauna were also found in their native habitat.

At this site they were able to take over the roles as definitive,

second intermediate, and paratenic host for different parasite

species [25]. In the USA (St. Clair River, Lake St. Clair) complete

new host-parasite interactions could be described for N. melanosto-

mus, with only four out of ten detected parasite species known from

their native habitats [28].

Introduced fish species are able to modify native host-parasite

dynamics by either increasing or decreasing the parasite burden of

native hosts [12]. In the case of the acanthocephalan Acanthoce-

phalus galaxii, the introduced brown trout (Salmo trutta fario) reduces

the parasite burden of the native roundhead galaxias (Galaxias

anomalus). Even though this appears to be of less concern, it could

still have flow-on effects to native species dynamics [12].

Aquatic acanthocephalans use benthic crustaceans (e.g. amphi-

pods) as intermediate hosts, and several studies on the interactions

between acanthocephalan parasites and their intermediate hosts

exist [24,29]. However, the function of invasive species as

obligatory hosts for non-indigenous acanthocephalans has received

only little attention and existing studies report contradicting results

so far. Dunn and Dick (1998) [30] observed that the prevalence of

a bird acanthocephalan, Polymorphus minutus, was higher in the

native amphipod Gammarus duebeni celticus than in the invader

species Gammarus tigrinus in a freshwater environment in Ireland. In

the same country MacNeil et al. (2003) [31] demonstrated that the

fish acanthocephalan Echinorynchus truttae is more prevalent in the

invasive amphipod G. pulex than in the native G. duebeni celticus and

that acanthocephalan parasites mediate predation between their

intermediate macroinvertebrate hosts by lowering the intraguild

predation upon the non-infected native form. This leads to species

co-existence of the amphipods, or at least slows down species

replacement of G. duebeni celticus in this particular biological

invasion event [31].

The present study analyses the parasite fauna and feeding

ecology of one of the most abundant fish species in the river Rhine

near the port of Düsseldorf (Germany), the invasive N. melanostomus

(Figure 1). The local amphipod fauna, the main food source for N.

melanostomus, comprising the four invasive species C. curvispinum, D.

villosus, E. trichiatus and O. cavimana (Figure 2) were investigated as

potential first intermediate hosts for metazoan fish parasites. This

study sheds light on the potential role of invasive Ponto-Caspian

fish and amphipods on the distribution of the non-indigenous

acanthocephalan P. tereticollis in the Rhine.

Results

Fish Data
Biology. Neogobius melanostomus (n = 40) had a mean total

length of 9.0 cm (range 6.5–13.0 cm) and a mean total weight of

11.3 g (range 3.43–32.27 g). In four juveniles we could not

determine the sex, while the other 36 specimens had a balanced

sex ratio (50%).

Stomach contents. Food components were detected in 37 of

40 examined fish digestive tracts. Beside a small proportion of

plant material, we distinguished seven different prey organisms,

which belonged to Mollusca, Crustacea and Insecta (Table 1).

Crustacea were the main diet component (N= 60.05%,

IRI= 12,617), mainly consisting of amphipods (Amphipoda indet.

and D. villosus; N= 59.59%, IRI= 12,189). Amphipoda indet.

contains specimens that could not be confidently identified due to

a progressive degree of digestion or fragmentation. Amphipoda

indet. consists mainly of D. villosus, and to a much lesser extent of

E. trichiatus, which co-exists with D. villosus, but was not identified

among the non-digested specimens of the stomach content.

Because of the small body size of C. curvispinum, this species can

be excluded from the pool of species that could comprise

Amphipoda indet. Orchestia cavimana can also be excluded as it

lives away from the gobies feeding range, at and above the water

surface at the riverbank. The IRI’s of Insecta (IRI= 1,496) and

Mollusca (IRI = 1,723) were similar, but only about one tenth as

important as the IRI of the Crustacea. The insect suborder

Nematocera indet. (N= 23.11%, IRI= 853) and the mollusc

species Sphaerium corneum (N= 4.12%, IRI= 790) represented two

prey organisms with the highest relative importance within their

respective groups.

Parasite fauna. Three metazoan parasite species were found

(Table 2). Raphidascaris acus and P. adunca, both Nematoda, had a

low prevalence of 2.5%. The acanthocephalan P. tereticollis was the

predominant parasite species (in total P= 90.0%, mA=10.7). This

parasite occurred in the cystacanth stage only (75.0% encysted in

the mesenteries and liver and 25% free in the body cavity). The

data (n = 40) show a significant correlation between total length of

N. melanostomus and the respective intensity of infection (Spear-

man’s rank test; r = 0.70, p,0.0001; R2=0.29) (Figure 3).

Amphipod Data
Biology. No endemic amphipods were found at the sampling

locality. In total, 10,032 amphipods were collected; C. curvispinum

(4.34%), D. villosus (54.37%), E. trichiatus (26.86%) and O. cavimana

(14.43%) (Figure 2). Corophium curvispinum represented the smallest

species with an average total length of 4.3 mm (1.0–7.0 mm) and

an average total weight of 0.003 g (0.001–0.007 g). The other

three species had an average total length of 10.1 mm to 12.2 mm

with a range of 5.0–18.0 mm. Dikerogammarus villosus was the largest

species with an average total weight of 0.045 g (0.004–0.108 g).

Parasite fauna. Parasites were detected exclusively in

D. villosus. Two out of 5,454 amphipods were infected with

acanthocephalan larval stages (Figure 4), the Acanthella larvae

(P= 0.04%, I = 1, mI= 1.00, mA=0.0004). The isolated larvae

were both identified as P. tereticollis (Figure 5).

Discussion

Parasite Fauna of Neogobius Melanostomus
A wide variety of parasites have been recorded in this non-

indigenous fish species including 35 metazoan species in Europe

(e.g., [25–27,32]). In its native habitats N. melanostomus usually

carries more than 10 different parasite species. Machevsky et al.

Acanthocephalan Distribution Caused by Invaders
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(1990) [33] and Kvach (2005) [34] both reported 16 species for the

Black Sea. Only three parasites are present at this study site

(Table 2). Therefore, we can assume that the invasive fish has lost

the majority of its native parasite fauna, which would support the

enemy release hypothesis. Apart from the most abundant parasite

species P. tereticollis (Acanthocephala, P= 90.0%), the nematodes R.

acus and P. adunca were isolated at a low prevalence of 2.5%

respectively. Raphidascaris acus has been previously isolated at

higher prevalences from non-indigenous gobies from the Danube

and Rhine rivers (57% and 56% respectively) [26,35], while P.

adunca has been recorded at a similar prevalence (2.1%) from

gobies in the Baltic Sea (Kiel Canal) only [36]. The main final

hosts for R. acus are pike (Esox lucius) and brown trout (S. trutta fario)

[37], whose stocks are rather low in the Rhine River [38], which

may explain the low prevalence rates. Paracuaria adunca is

distributed worldwide and has a three-host life cycle [37]. The

first intermediate hosts are various species of amphipods, and the

Rhine could be an ideal habitat, with its rich amphipod fauna,

given that an appropriate host type is available [37,39]. Fishes

such as N. melanostomus, which apparently serve as second

intermediate hosts in the river Rhine, get infected by oral intake

of the first intermediate hosts. Specified final hosts are bird species

of the family Laridae [40]. The sporadic occurrence of gulls

explains the low prevalence (P= 2.5%) of P. adunca in N.

melanostomus. Due to their low infestation rates, both nematodes

do not play an important ecological role at this sampling site.

Figure 1. Neogobius melanostomus. The investigated goby Neogobius melanostomus. Scale bar = 2 cm.
doi:10.1371/journal.pone.0053218.g001

Figure 2. Invasive amphipod species. A) Orchestia cavimana. B) Corophium curvispinum. C) Echinogammarus trichiatus. D) Dikerogammarus
villosus. Scale bar = 2 mm.
doi:10.1371/journal.pone.0053218.g002
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While P. adunca was recorded only twice in previous goby studies,

R. acus is usually a common parasite with high prevalence [26,35].

In our study species, myxozoans, digeneans, monogeneans and

cestodes were absent. Some monogeneans (e.g. Dactylogyrus spp.),

digeneans (Diplostomum spathaceum, Rhipidocotyle spp., Tylodelphis

clavata) and cestode species (e.g. Proteocephalus spp.) were absent

from N. melanostomus, even though they have been reported from

this goby species in other locations [25,26,34,41] and were also

detected in sympatric roach (R. rutilus) and perch (P. fluviatilis) at

the same time [42]. The most likely reason is the recent invasion

history, but further research is needed to explain why the gobies

were not infected with parasite species that are present at this

sampling site and already known to infest N. melanostomus. Kvach &

Skora (2007) [25] give a nice example how the parasite fauna of

the invasive goby N. melanostomus in the Gulf of Gdansk increases

from 1–4 to 5–12 parasite species over a time period of two years.

With its recent invasion history, it is expected that the invasive

goby will acquire more parasites over time including the earlier

mentioned local species.

Fish Biological Data and Feeding Ecology
The maximum size of N. melanostomus in this study was 13.0 cm.

Size differs in various habitats and it seems that these gobies tend

to reach larger sizes in brackish than in fresh waters [43]. The diet

of the goby consists of various prey organisms at this sampling site,

but is dominated by crustaceans (IRI= 12,617), particularly

amphipods (IRI = 12,596; Table 1). The high abundance of

amphipods in the intestinal tract of N. melanostomus indicates a large

population size of amphipods in the Rhine River. Amphipods and

gobies are both benthic organisms, but the high biomass of

Table 1. Feeding ecology of Neogobius melanostomus.

Prey organism n F [%] W [%] N [%] IRI

Mollusca 47 56.76 19.64 10.73 1,723.68

Ancylus fluviatilis 29 29.73 4.28 6.64 324.47

Sphaerium corneum 18 40.54 15.39 4.12 790.96

Crustacea 263 91.89 77.26 60.05 12,616.98

Dikerogammarus villosus 72 21.62 25.89 16.48 915.97

Corophium curvispinum 1 2.70 0.09 0.12 0.56

Amphipoda indet. 189 67.57 51.31 43.25 6,389.29

Asellus aquaticus 1 2.70 0.02 0.23 0.68

Insecta 127 48.65 1.76 29.00 1,496.28

Nematocera indet. (Larve) 101 35.14 1.19 23.11 853.88

Trichoptera indet. (Larve) 26 16.22 0.57 5.95 105.78

Plantae 1 2.70 1.34 0.23 4.25

Plantae indet. 1 2.70 1.34 0.23 4.25

F = ’’frequency of occurrence‘‘, IRI = ’’index of relative importance‘‘,
N = ’’numerical percentage of prey‘‘, n = ’’number of prey organisms’’ and
W= ’’weight percentage of prey‘‘.
doi:10.1371/journal.pone.0053218.t001

Figure 3. Number of isolated Pomphorhynchus tereticollis in relation to the total length [TL] of Neogobius melanostomus. A significant
relation between the number of Pomphorhynchus tereticollis specimens and the total length of Neogobius melanostomus was detected. With
increasing size of the fish the intensity of parasites increases.
doi:10.1371/journal.pone.0053218.g003

Table 2. Parasitological calculations of the parasite fauna of
Neogobius melanostomus.

Parasite species Stage Organ P [%] I mI mA

Nematoda

Raphidascaris acus l BC 2.5 2 2.0 0.05

Paracuaria adunca l In 2.5 1 1.0 0.03

Acanthocephala

Pomphorhynchus

tereticollis

l L/Mes 90.0 1–55 11.9 10.70

In = intestine, I = Intensity, l = larvae, L = liver, BC = body cavity, mA=mean
abundance, Mes =mesentery, mI =mean intensity and P=prevalence.
doi:10.1371/journal.pone.0053218.t002
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amphipods at this sampling site is probably the main reason for the

preference of these prey items. This is supported by the study of

Rakauskas et al. (2008) [44], in which the more abundant Dreissena

polymorpha (Bivalvia) was fed on rather than amphipods. There is a

link between the parasite P. tereticollis and the amphipod D. villosus

that is used as first intermediate host. The acanthocephalan

occurred with a high prevalence of 90.0% and an average intensity

of 11.9 individuals per goby. Considering the low prevalence of P.

tereticollis in the amphipods (P= 0.04%), the high infection rate of

P. tereticollis in the gobies seems unusual. However, acanthoceph-

alans are known to manipulate their host’s behavior in order to

facilitate transmission to the final host. In contrast to non-infected

hiding amphipods, infected amphipods become photophilic, move

to the free water column and are more likely to be preyed upon

[24]. Additionally, the host’s condition is lowered indirectly by the

acanthocephalans, making infected amphipods more attractive for

predators. Therefore, N. melanostomus doesn’t need to consume vast

numbers of amphipods to acquire this parasite. Paterson et al.

(2011) [12] reported comparable data with a maximum of only

0.1% of collected amphipods being infected by the studied

acanthocephalan. This is also supported by Busch et al. (2012)

[45] who describe and discuss low infection rates of different

crustaceans, which predominantly act as first intermediate hosts

for aquatic parasites. Further sampling in different seasons as well

as laboratory experiments would be required to describe the

dietary preferences of the gobies in more detail in future.

Amphipoda Fauna
The presence of exclusively non-indigenous species at the

sampling site confirms the statement by Eggers and Martens

(2001) [46] that the amphipod fauna, especially in larger rivers like

the Rhine, is particularly affected by invasive species. While

O. cavimana originates from the eastern Mediterranean Sea,

C. curvispinum, D. villosus and E. trichiatus originate in the Ponto-

Caspian region (Black Sea, Caspian Sea). Parasite larvae were only

detected in D. villosus. Two out of 5,454 analyzed individuals were

infested with larval stages (Acanthella) of the acanthocephalan P.

tereticollis (P = 0.04%). It seems as if this parasite has successfully

integrated the non-indigenous intermediate host D. villosus in its life

cycle. Such a process is known as lateral incorporation [47]. This

adaptation demonstrates that P. tereticollis is a cosmopolitan

generalist. The common intermediate host Gammarus pulex [48]

was not detected in the stomach analyses of N. melanostomus or in

the macrozoobenthos samples. The high infection rate of N.

melanostomus with P. tereticollis suggests that the parasite must have

performed a host switch of the obligate first intermediate host from

G. pulex to D. villosus.

Pomphorhynchus tereticollis Distribution and Migration
Ways
In the present study, mainly the cystacanth larvae of the

Acanthocephala P. tereticollis were isolated from the mesenteries

and liver of N. melanostomus with a prevalence of 90.0%, and are

therefore of ecological importance in this system. As amphipods

usually act as obligate first intermediate hosts, N. melanostomus could

be used as paratenic host in the life cycle of P. tereticollis. Adult

parasites are most likely to be found in chub (Leuciscus cephalus) and

barbel (Barbus barbus), which still has to be proven in this area.

Although these final hosts are not known as primarily piscivorous,

we suppose that especially larger barbels feed on these gobies, as

they regularly feed on smaller fish species. Hine and Kennedy

(1974) [49] described that the closely related parasite Pomphor-

hynchus laevis occasionally matures in trout (Salmo trutta), and also

catfish (Silurus glanis) [50] harbors this parasite and should be

considered as a possible final host and re-examined in this regard.

Hence, we expect to find mature P. tereticollis in barbels, trout and

maybe in European catfish in this area. Alternatively, N.

melanostomus may act as a dead-end host for this acanthocephalan.

If a suitable final host for the parasite does not consume the

infected gobies, the life cycle gets interrupted, which would result

in a continued loss of infection within the system. This would

conform to the dilution effect, which has been described for

different parasite-host systems [11,51]. To reject or accept this

hypothesis, further investigations of prevalence and intensities of P.

tereticollis in different fish hosts (final as well as the paratenic hosts)

should be conducted. The data would have to show a decrease of

the parasite’s occurrence in order to confirm the dilution effect. As

N. melanostomus has reached an enormous population size in the

Rhine we would expect this to become apparent rather quickly.

So far, P. tereticollis was documented only in the fish host

flounder (Platichthys flesus) from the German Baltic Coast [52], but

in this study we were able to report its presence in N. melanostomus

for the first time in German inland waters. Pomphorhynchus tereticollis

was treated as a synonym for P. laevis for a long time [52–54].

Furthermore, morphological similarities and a similar host

spectrum of P. tereticollis and P. laevis may have led to incorrect

identifications in the past. Studies on the parasite fauna of N.

melanostomus were carried out across Europe, but only a few studies

Figure 4. Infected amphipod. Dikerogammarus villosus as intermediate host for Pomphorhynchus tereticollis. A) Larval stage (late Acanthella)
located in the body cavity. B) Isolated Acanthella larvae. Scale bar = 2 mm.
doi:10.1371/journal.pone.0053218.g004
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exist from Germany. Kvach and Winkler (2011) [29] studied the

parasite fauna of N. melanostomus in brackish waters from the

German coast of the Baltic Sea. Nachev et al. (2010) [35]

investigated N. melanostomus from the river Rhine in Germany (near

Grieth, Kalkar city at Rhine kilometer 844), which makes the

study the most suitable for comparison.

In previous studies, only the closely related species P. laevis was

identified in N. melanostomus (e.g., [25,32,55]). Molnár (2006) [56]

detected a similar prevalence for P. laevis in N. melanostomus

(P = 93.0%) in the Danube river. Nachev et al. (2010) [35] showed

almost undistinguishable data in terms of prevalence (91.2%),

mean intensity (11.1), intensity (1–44) and mean abundance

(10.15) although for P. laevis and not P. tereticollis (compare Table 2).

Due to its continued misidentification and synonymy of P. tereticollis

and P. laevis it is important to state here clearly that the isolated

acanthocephalans in this study were confidently identified as

P. tereticollis based on well-defined, but often overlooked morpho-

logical differences to P. laevis. Three morphological different

Figure 5. Larval stage (Cystacanth) of the fish parasite Pomphorhynchus tereticollis isolated from the paratenic host Neogobius
melanostomus. A+C) Habitus of Pomphorhynchus tereticollis, light- and scanning electron microscopy. B+D) Detail of proboscis. Number and species
specific structure details (arrows) of the proboscis hooks are clearly visible. Scale bar = 500 mm.
doi:10.1371/journal.pone.0053218.g005

Acanthocephalan Distribution Caused by Invaders
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proboscis hooks can be recognized in the present material, which

can be used to distinguish between both species. The hooks on the

posterior proboscis half of P. tereticollis have developed an anterior

extension of the base in contrast to P. laevis (Figure 5b). The final

hooks, located most posterior on the proboscis on the top of the

bulbus, are another typical character of P. tereticollis (Figure 5d).

The middle hooks of P. tereticollis compared to the surrounding

hooks are significantly thicker, while the hooks of P. laevis have

nearly the same size (Figure 5b) [52,56]. Our data and Nachev

et al. (2010) [35] demonstrate that all detected parasite species

occurred exclusively in the larval stage, indicating that N. melano-

stomus acts as an intermediate host in the river Rhine. Because N.

melanostomus has only a recent history of invasion, it appears that no

parasite species has yet been able to use it as a definitive host. This

supports the ‘‘enemy release hypothesis’’ and gives comparable

results to the study of Kvach and Stepien (2008) [27], who

documented only one adult parasite species and described a

consistent low parasite load for the great Lakes (USA) in the last

decade in comparison to their native habitats. The loss of native

parasites and acquiring only a few local generalist parasite species

result in a higher fitness and might be one of the main drivers of

the success of this invader.

Furthermore, a significant relation between the number of

P. tereticollis specimens and the total length of N. melanostomus was

seen. With increasing fish size the number of parasites increases

(Figure 3). There are different possible reasons for this correlation.

1) Larger/older gobies can accumulate more parasites over a

longer time period than smaller/younger gobies. 2) Larger/older

gobies can feed on larger amphipods, which could be important as

the development of P. tereticollis larvae might only take place in

amphipods above a certain minimum size. The fact that all four

parasite free fishes were small (6.5–8.1 cm) points in that direction.

3) A change of dietary preferences of the fish towards amphipods

after reaching a certain fish length. The third reason is the least

likely, because of the large number of smaller amphipods in the

stomach contents of the small gobies.

The North and Baltic Sea are described as the native habitats

and the fish families Acipenseridae, Gadidae and Salmonidae as

the final hosts of P. tereticollis [56]. Recently this parasite started to

occur in Europe in fish (e.g. L. cephalus) and amphipod (e.g. G. pulex)

hosts in France and Slovakia [52,54,57]. A possible explanation for

the introduction of P. tereticollis into German inland waters is the

invasion of D. villosus and N. melanostomus through the ‘‘southern

corridor’’ [20], including the Danube River, which passes Slovakia

where P. tereticollis occurs. It is possible that the invaders become

infected with P. tereticollis while passing through Slovakia, and

subsequently distribute the parasite towards Germany. Another

explanation is that P. tereticollis has been introduced to the German

river systems through the appropriate final hosts a long time ago,

establishing itself most recently after colonization of the rivers with

the suitable intermediate hosts such as the invasive D. villosus and

N. melanostomus. In this case P. tereticollis can be considered as an

invasive species of German inland waters. Some final hosts

described by Golvan (1969) [56] such as salmonids are anadro-

mous migratory fish. Therefore, an introduction of the parasite

through the tributaries of the North and Baltic Sea, such as the

Rhine delta, is a realistic scenario. Another alternative scenario

could be the continuous coexistence of P. tereticollis and P. laevis in

these habitats. Misidentification, caused by the morphological

similarity of these two Pomphorhynchus species, might have led to

incorrect distribution records for P. tereticollis.

Conclusion
Non-indigenous species represent new potential hosts for native

parasites or possibly introduced parasites and diseases. These

events often lead to an elimination of local species like in the

present study, as the native amphipods appear to be completely

displaced by non-indigenous species at the sampling site (Rhine

River near Düsseldorf, North Rhine-Westphalia, Germany). We

suspect that these invasive amphipod and gobiid fish species,

especially D. villosus and N. melanostomus, play a decisive role in the

life cycle biology and transmission strategy of a putatively

introduced parasite, the acanthocephalan P. tereticollis. We

identified a completely new limnic host-parasite interaction of

three non-indigenous organisms, which originated from entirely

different localities (marine, fresh and brackish water habitats). On

the one hand, the acanthocephalan parasite P. tereticollis from the

Baltic and North Sea, but also from fresh water habitats (France,

Slovakia), and on the other hand D. villosus and N. melanostomus, two
invasive species originating from the Ponto-Caspian region. Both

species act as intermediate hosts, the amphipods as a common first

obligatory intermediate host and the goby as a paratenic host,

which serves to further spread the parasite. We show here, that

two invasive species act as intermediate hosts for an almost

certainly non-indigenous parasite species, this could contribute to

its continuous range expansion, providing that their transmission

to the next host is successful. Suitable final hosts in the life cycle of

P. tereticollis such as barbel (B. barbus) and chub (L. cephalus) will most

likely have to struggle with increasing infections of P. tereticollis.

This can either lead to a co-existence or a displacement of the

previously dominating native acanthocephalan P. laevis. Respon-

sible is the change in amphipod fauna, first intermediate hosts for

P. laevis such as G. pulex were displaced by D. villosus, the suitable

intermediate host for P. tereticollis. The burden of the new parasite

could increasingly affect the fitness of the vertebrate and

invertebrate hosts and should be focused on in further studies.

Materials and Methods

Ethics Statement
An approval by a review board institution or ethics committee

was not necessary, because all the fish in the current study were

self-caught by fishing rod holding a valid local fishing license

(No. 900819), issued by the ‘‘Rheinfischereigenossenschaft’’,

53639 Königswinter, Germany. We confirm that no live fish were

used. In Germany, the fishing license permits the holder to capture

and sacrifice the fish, which can be used for research purposes. All

the fish were stunned by a blow on the head and expertly killed

immediately by cervical dislocation and a cardiac stab according

to the German Animal Protection Law (1 4) and the ordinance of

slaughter and killing of animals (Tierschlachtverordnung 1 13).

Because of public accessibility no permissions were required to

enter the sampling site.

Sampling
Fish samples of N. melanostomus (n = 40) were collected during

May and June 2009 by fishing rod at the Rhine River, North-

Rhine Westphalia, Germany (between the ports of Neuss and

Düsseldorf, river kilometer 742) and stored in a deep freezer at

220uC. Amphipods (n = 10,032) were sampled within 3 days in

June 2009 at the same site by using the ‘‘kick-sampling’’ method

after Storey et al. (1991) [58]. During sampling, the amphipods

were kept together with organic material and some stones in ten-

liter buckets. The entire samples were frozen at 220uC, and later

separated from sediment and identified to species in the

laboratory.
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Biological Data and Parasitological Examination
Each goby was measured for weight (g) and total length (cm). All

specimens were analyzed for their stomach content and metazoan

parasite fauna, using a stereomicroscope. Isolated food organisms

and parasites were preserved in an alcohol mixture (70% ethanol

and 4% glycerol). The amphipods were thawed in a refrigerator,

separated under a stereomicroscope from the sediment, identified

to species by using the key of Eggers & Martens (2001, 2004)

[46,59] and preserved in 70% ethanol. Fifty amphipods of each

species were measured in relation to body size and weight with an

ocular micrometer and an analytical balance. The amphipods

were measured under a stretched condition from the anterior

rostrum to the base of the telson [60]. For the parasitological

examination, amphipods were digested in a freshly prepared

pepsin hydrochloric acid solution (250 ml aqua dest., 1.75 g

pepsin, 1.5 g sodium chloride (NaCl), 1 ml hydrochloric acid

(HCl = 37%)) for about six to nine hours [61]. The amphipods

were dissected in pieces and carefully examined. The isolated

parasites were stored in 70% ethanol and 4% glycerol.

Morphological Identification
For parasite identification glycerin preparations were made

according to Riemann (1988) [62]. A microscope was used to

examine and document the parasites. Some specimens were

processed for scanning electron microscopy (SEM) [63]. Literature

used for parasite identification included original descriptions, as

well as descriptions of Golvan (1969) [56] and Ŝpakulovà et al.

(2011) [52] for the Acanthocephala, and Moravec (1994) [37] for

the nematode species.

Parasitological Data
The prevalence (P), mean abundance (mA), mean intensity (mI)

and intensity (I) were calculated for each parasite species according

to Bush et al. (1997) [64].

Fish Stomach Content Analyses
Since gobies have no clearly demarcated stomach, the entire

gastrointestinal tract was examined. Prey organisms were sorted

and identified to the lowest possible taxon and grouped into

taxonomic categories. The numerical percentage of prey (N%), the

weight percentage of prey (W%), and the frequency of occurrence

(F%) were determined [65,66]. On basis of these three indices, the

index of relative importance IRI of food items was calculated [67].

Increasing values of N, W, and F generally result in an increased

IRI and present a higher importance of a specific prey organism.
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