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Abstract'

Background: For >100 years cattle production in the southern United States has been threatened by cattle fever.

It is caused by an invasive parasite-vector complex that includes the protozoan hemoparasites Babesia bovis and

B. bigemina, which are transmitted among domestic cattle via Rhipicephalus tick vectors of the subgenus Boophilus.

In 1906 an eradication effort was started and by 1943 Boophilus ticks had been confined to a narrow tick eradication

quarantine area (TEQA) along the Texas-Mexico border. However, a dramatic increase in tick infestations in areas

outside the TEQA over the last decade suggests these tick vectors may be poised to re-invade the southern United

States. We investigated historical and potential future distributions of climatic habitats of cattle fever ticks to assess

the potential for a range expansion.

Methods: We built robust spatial predictions of habitat suitability for the vector species Rhipicephalus (Boophilus)

microplus and R. (B.) annulatus across the southern United States for three time periods: 1906, present day (2012),

and 2050. We used analysis of molecular variance (AMOVA) to identify persistent tick occurrences and analysis of

bias in the climate proximate to these occurrences to identify key environmental parameters associated with

the ecology of both species. We then used ecological niche modeling algorithms GARP and Maxent to construct

models that related known occurrences of ticks in the TEQA during 2001–2011 with geospatial data layers that

summarized important climate parameters at all three time periods.

Results: We identified persistent tick infestations and specific climate parameters that appear to be drivers of

ecological niches of the two tick species. Spatial models projected onto climate data representative of climate in

1906 reproduced historical pre-eradication tick distributions. Present-day predictions, although constrained to areas

near the TEQA, extrapolated well onto climate projections for 2050.

Conclusions: Our models indicate the potential for range expansion of climate suitable for survival of R. microplus

and R. annulatus in the southern United States by mid-century, which increases the risk of reintroduction of these

ticks and cattle tick fever into major cattle producing areas.

Background

Rhipicephalus ticks and the pathogens they transmit

present significant threats to cattle populations world-

wide. The majority of the world’s estimated 1.2 billion

cattle are at risk of exposure to disease-causing patho-

gens, which lead to significant losses from fatalities and

decreased meat and milk production [1,2]. In particular,

bovine babesiosis (cattle fever) has been a persistent

challenge to domestic cattle production in the United

States for over 100 years. Originally described by Smith

& Kilborne [3], this disease system is driven by an efficient

host-vector-parasite complex that includes the protozoan

hemoparasites Babesia bovis and B. bigemina, which are

transmitted by Rhipicephalus (Boophilus) microplus and

R. annulatus among reservoir hosts (cattle). Babesiosis is

nearly always fatal in naïve adult cattle; young calves may

recover and remain asymptomatically infected throughout

their adult life. Disease is difficult to detect in these chron-

ically infected animals and they can serve as reservoirs for

further transmission via competent tick vectors [4].* Correspondence: dave.wagner@nau.edu
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Rhipicephalus microplus (the southern cattle tick) and

R. annulatus (the cattle tick) are successful ectoparasites

of ungulates in North America; however, both are non-

native to the region. The original range of R. microplus

is tropical and sub-tropical forests of India, whereas

R. annulatus is native to the Middle Eastern and Medi-

terranean regions. These species were among the first

major agricultural pests introduced to the Americas by

European colonists [5-7]. By the early 20th century these

tick species were broadly established, with R. annulatus

ubiquitous in North and Central America and R. micro-

plus in Central and South America [5,6]. They were re-

sponsible for widespread infestation and dispersal of

bovine babesiosis, which severely impeded development

of the cattle industry in the southern United States [8].

In 1906, the United States Department of Agriculture

(USDA) organized an eradication effort that effectively

eliminated R. annulatus and R. microplus ticks and the

Babesia parasites they transmit from the southern

United States by 1943, except for a few locations in

Florida and Texas. By 1960, cattle fever ticks and the

pathogens they transmit were restricted to an area along

the Texas-Mexico border. The tick eradication quaran-

tine area (TEQA) is ~800 km long (covering an area

>2,200 km2; Figure 1) and is rigorously monitored by the

USDA-Animal and Plant Health Inspection Service,

Veterinary Services (APHIS-VS). USDA-APHIS-VS em-

ploys horse mounted inspectors (sometimes known as

“tick riders”) that patrol all areas within the TEQA for

stray cattle and infestations of cattle fever ticks as part

of the Cattle Fever Tick Eradication Program (CFTEP).

The risk of a re-invasion of cattle fever ticks beyond

the TEQA remains a valid concern for the cattle indus-

try. Historically, R. microplus and R. annulatus ticks

were thought to be primarily ectoparasites of just cattle.

However, recent research indicates that other wild ungu-

lates, such as white-tailed deer (Odocoileus virginianus;

hereafter, deer), can also serve as hosts of cattle fever

ticks [9]. The use of these free-ranging hosts makes it

more likely for cattle fever ticks to be transported

Figure 1 Spatial distribution of R. microplus and R. annulatus samples utilized in this study. (A) Distribution of both R. microplus and

R. annulatus in the tick eradication quarantine area (TEQA) and the maximum extent of the temporary preventative quarantine areas (TPQAs)

from 2007–2012. (B) historical distribution of cattle fever ticks before the CFTEP, and (C) location of our study area. The blue triangles in panel

C mark three livestock feed lots where traceback ticks from Starr County were transported and later eradicated in April 2008.
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beyond the TEQA in southern Texas [10]. Each year, the

United States imports 1–2 million cattle from regions in

Mexico where R. microplus and R. annulatus are en-

demic; some of these imported cattle may carry ticks re-

sistant to standard control methods, such as acaricide

dipping [11-14]. Since these cattle may also be infected

with Babesia, all imported cattle must be transported

beyond the TEQA to avoid the risk of endemic transmis-

sion in areas where Rhipicephalus ticks occur. Despite

the formation of new temporary preventative quarantine

areas (TPQAs, or blanket quarantine zones; Figure 1) in

2007, cattle fever tick infestations continued to increase

both within the TEQA and TPQAs and beyond them in

areas that were previously tick-free. In 2008, cases of

R. microplus infestations in three feedlots were found in

central and eastern Texas, up to 400 km northeast of

the TEQA (Figure 1C). The alarming occurrence of cat-

tle fever ticks far beyond the TEQA indicates that the

threat of bovine babesiosis to cattle in the southern

United States persists. In the event of a broad re-

invasion, naive cattle would be highly susceptible to the

disease; some estimates of mortality are as high as 90%

[5,15]. Indeed, the consequences of re-establishment of

cattle fever ticks would be costly—USDA estimates

losses due to tick-vectored diseases could reach US $1

billion annually [16].

Control measures for tick-borne diseases have always

focused on the tick vectors, and a thorough understand-

ing of how the ticks interact with their environment is

vital to continued efficacy of control measures [17-20].

Previous research efforts investigated population dynam-

ics, parasite-host interactions, seasonal fluctuations, and

physiological response to climate factors [19-27]. These

studies added to a growing body of work that has eluci-

dated many important variables in this complex eco-

logical system. Attempts have been made to develop

models to understand spatial dynamics of habitat suit-

ability for cattle fever ticks, emphasizing ecological pref-

erences and sensitivity to abiotic conditions [22-24,28].

Even with such progress, regional-scale high-resolution

spatial models identifying environmental conditions con-

tributing to the establishment and spread of this costly

disease in cattle are lacking [24].

Global climate changes will certainly alter the spatial

arrangement of suitable habitat for these important vec-

tors [5,29,30]. Climate has emerged as a primary driver

for distributions of both R. microplus and R. annulatus;

a pattern common to many other vector-borne zoonotic

disease systems [20,22,23,27,28,31-33]. The Intergovern-

mental Panel on Climate Change (IPCC) forecasts a

1-3°C increase in ambient surface temperature for the

Gulf of Mexico region by mid-century see Additional

file 1; [34]. As arthropod parasites, cattle fever ticks

could respond to warming climates by expanding back

into the southern United States [5,30]. As Sutherst [35]

pointed out, each species responds differently in a chan-

ging environment, so an accurate understanding of cli-

mate change influences on this vector-disease system

requires individual species-level approaches [36].

The purpose of this study was to identify climate pa-

rameters associated with persistence of R. microplus

and R. annulatus and to develop high resolution spatial

models that predict suitable environments for each spe-

cies across the southern United States in past, present,

and future climate scenarios. We focus on each species

individually to identify areas at high risk of re-introduction

facilitated by climate change. To the best of our knowledge,

this study is the first to integrate tools from the fields of

population genetics, spatial statistics, and ecological niche

modeling to assess spatial and temporal trends in the cattle

fever tick disease system.

Methods
Spatial modeling of any biological phenomenon requires

careful planning before analyses are performed. Often,

data used in ecological niche models are not collected

specifically for spatial predictions, and commonly used

algorithms can be rendered null if fundamental assump-

tions are not met [36-42]. This study is no exception

in terms of dedicated data collection; however, our

methods aim to limit error introduced by distributional

disequilibrium, sampling bias, and spatial autocorrel-

ation. For the sake of brevity, many peripheral analyses

and preparatory methods are relegated to appendices.

Input data: occurrence data

We used a database of confirmed tick occurrences main-

tained by the joint CFTEP effort of the USDA-APHIS

and the USDA-Agricultural Research Service (ARS),

Cattle Fever Tick Research Laboratory in Edinburg,

Texas. Thorough survey efforts by CFTEP mounted pa-

trol inspectors from 1999–2011 provided a sample size

of 314 and 63 infestations for R. microplus and R. annu-

latus, respectively (Figure 1; see Additional file 2 for a

detailed list of occurrences). We sorted the occurrence

data into two datasets: one “ALL”, which contains all oc-

currences in the original dataset, and the other “PERS”

(persistent), which is intended to include tick collections

from populations that may be persisting in the environ-

ment and is composed of occurrences ≤3 km from any

infestation that had occurred ≥6 months before [see

Additional file 3]. We chose 3 km as a distance thresh-

old for defining persistence because our analysis of mo-

lecular variance (AMOVA) revealed little to no genetic

differentiation from one year to the next among collec-

tions separated by ≤3 km. These genetic data suggest

that at least some tick infestations are established eco-

logically, persisting long enough to be detected over
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multiple generations. An additional file offers more de-

tails on our use of genetic information see Additional

file 4; [43].

Spatial distributions of both species are highly clus-

tered within the TEQA, with many points occurring

within the same 1 km2 raster cell of climate data used

for spatial modeling. To avoid spurious results caused by

spatial autocorrelation and pseudo-replication, we exam-

ined climate parameters relevant to R. microplus and

R. annulatus individually (described below and in

Additional file 5) via variogram analysis of spatial princi-

pal component layers that characterize multi-dimen-

sional variation in the set of predictors selected for each

species within areas near the TEQA [36]. Variography

displays differences in raster layer values between pairs

of sampled locations as a function of the distances separ-

ating them. An exponential linear model is then fitted to

the variogram and important metrics, such as the nug-

get, range, and sill are calculated, which are then used to

identify at what distance a variable is no longer corre-

lated in space (spatial lag). We calculated spatial lag as

the range value observed when the variogram model

reaches 80% of the sill value. This method estimates the

spatial lag as 7 km and 4.5 km for R. microplus and

R. annulatus, respectively. Thus, we generated 10 repli-

cate randomized subsets of both occurrence data sets such

that each point is separated by ≥7 km for R. microplus

and ≥4.5 km for R. annulatus. A more detailed account

of this method can be found in additional material [see

Additional file 6]. Persistent R. annulatus occurrences

could not be included in our modeling exercises owing to

small sample size [see Additional file 6: Table S1].

Input data: environmental data

A variety of viewpoints have been expressed concerning

relevance of climate in prediction of disease distributions

[44-46]. However, when biological mechanisms that

vlink vector distributions to climate variables are known,

climate-based modeling becomes the best method for

predicting disease distributions in the present and future

[47,48]. As with many vector-borne disease systems, spe-

cific climate factors (e.g. ambient temperature, relative

humidity, etc.) have a strong influence on the ecological

success of ixodid ticks by altering vector generation time

and survival rate [19,22,23,25-27,31,32,49,50]. Hence,

our study focuses on identifying surrogate variables for

defining suitable habitats statistically for both R. micro-

plus and R. annulatus [51].

We developed geospatial data layers that summarize

biologically relevant climate parameters across our study

area for present, past, and future time scenarios. Data

for present-day climate consisted of the 19 bioclimatic

variables from the WorldClim database (spatial reso-

lution: ~1 km; http://www.worldclim.org/) [52,53]. For

climate parameters in the past, we obtained basic

monthly temperature and precipitation products from

the PRISM climate database (PRISM Climate Group,

Oregon State University, http://prism.oregonstate.edu,

created 4 Feb 2004) for the year 1906; the 19 bioclimatic

variables were calculated via the ‘dismo’ package in

R 2.15 [54]. Data layers representing future climate sur-

faces were obtained through the International Centre

for Tropical Agriculture (CIAT) downscaled Global

Climate Model (GCM) portal (http://www.ccafs-climate.

org/): bioclimatic variables were derived from spatially

disaggregated GCMs (four were chosen for this study:

BCCR-BCM 2.0, CSIRO-Mk 3.5, MIROC 3.2-HIRES,

NCAR-CCSM 3.0) under three future-carbon emissions

scenarios (A1B, A2, B1) [34,55-59]. In all, we compiled

12 separate datasets that represent predicted climate pa-

rameters in 2050 at a spatial resolution of 1 km2.

Selection of predictor variables is a crucial decision

that has significant impacts on spatial prediction [42,60].

Commonly, investigators choose specific biologically or

ecologically relevant variables when building models for

spatial prediction [36]. Although this method of variable

selection is straightforward and intuitive, it can poten-

tially introduce unwanted bias in model predictions

[36,39,61,62]. As MacNally [63] aptly states, selection of

independent predictor variables ought to be done using

prior knowledge as well as theory.

We sought to identify a subset of the 19 bioclimatic

variables that would serve as optimal predictors of the

preferred habitats of both R. microplus and R. annulatus

individually. Therefore, we performed an analysis of cli-

mate bias of the distributions of each tick species by

comparing locations of known presence to locations of

known absence within areas surrounding the TEQA; for

detailed methods see Additional file 5. This quantitative

approach to variable selection allowed us to extract

six climate variables for each tick species that exhibit

significant differences between presence and absence

locations. We then explored possible interrelationships

between climate parameters in each set of six variables

via principal components analysis [36,64-67], because

creation of uncorrelated orthogonal axes reduces poten-

tial effects of colinearity among predictor variables in

modeling algorithms [67,68]. Hence, we included princi-

pal components 1 and 2 in our analysis, which describe

>90% of the overall variation among the chosen climate

variables.

Model development

In the last decade diverse approaches have been ex-

plored in the ever-growing field of ecological niche mod-

eling [69]. We explored two commonly used algorithms

for spatial prediction, the Genetic Algorithm for Rule-

Set Production (GARP) and a maximum entropy-based
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method (Maxent) [70-72]. GARP is a random-walk

process that evolves a predictive rule (e.g. logistic regres-

sion, bioclimatic and range rules, etc.) with subsequent

iterations until minimal improvement in the prediction of

independent test data is achieved. Maxent forms model

predictions by maximizing the entropy between the prob-

ability distribution of environmental variables at locations

of presence to that of the user-selected study area.

Both algorithms use presence-only data coupled with

automated, random sampling of pseudo-absences from a

user-defined background area [37]. The use of presence-

only data has evoked extensive discussion on the assump-

tions that are made when using modeling algorithms that

create their own pseudo-absence data [41,69,70,73,74]. So,

definition of the background landscape in presence-only

modeling pursuits is of paramount importance, as shown

by Barve et al. [37].

Elith et al. [70] point out that the background area

(i.e. landscape of interest (L), as the referred document

states) sampled for pseudo-absences is “suggested by the

problem and defined by the ecologist”. The sampling

scheme set in place by the USDA and APHIS made

the definition of the background area a conveniently

straightforward one. CFTEP mounted inspectors system-

atically patrol the TEQA in search of stray livestock

infested with cattle fever ticks. So, locations within this

thoroughly surveyed region where R. microplus or

R. annulatus have not been observed would naturally

serve as an appropriate pseudo-absence, were GARP or

Maxent to sample one there. Therefore, we defined our

background as the area of the eradication quarantine

zone that is within 10 km of the US-Mexico border

(roughly equal to the TEQA surveyed by USDA-APHIS

inspectors).

A detailed account of algorithm parameters, model

calibration and summary, and model evaluation is avail-

able in Additional file 7. Final model predictions are

presented in terms of habitat suitability on a scale of

0–10, where 0 indicates that none of the random subset

models agree on suitability, and 10 indicates that all

models agree on suitability (Figures 2 and 3).

Results
Persistent occurrences

AMOVA of genotyped R. microplus samples from south-

ern Texas indicated that southern cattle tick gene pools

are highly admixed at distances ≤3 km, with stable gene

pools (FST < 0.05) from one generation to the next (3–6

months) [see Additional file 4]. The temporally-based

AMOVA technique was initially employed to identify

locations where cattle fever ticks may be ecologically

established, against a background of occurrences created

by human-aided dispersal events. In light of its success

with our data, we recommend this method as an effec-

tive tool to assess persistence locations for diverse spatial

modeling studies in other species.

When a subsample of “persistent” occurrences was

taken with the spatial and temporal constraints inferred

from the AMOVA, we identified a climatic signature

distinct from that derived from all points. Specifically,

six climate variables unique to persistent locations for

both R. microplus and R. annulatus had distributions

significantly different from non-persistent ones; these

variables summarize environmental conditions related to

interactions between temperature extremes and mois-

ture [see Additional file 5]. Coincidentally, the joint role

of temperature and ambient humidity has been noted

repeatedly as an important determinant of population

dynamics of cattle fever ticks. Particularly, desiccation in

larval stages appears to be a strong driver of success

from one generation to the next [20,31]. For R. micro-

plus, key climate variables were annual mean tempe-

rature (Bio 1), minimum temperature of coldest month

(Bio 6), mean temperature of wettest quarter (Bio 8),

mean temperature of driest quarter (Bio 9), mean

temperature of coldest quarter (Bio 11), and precipita-

tion seasonality (Bio 15). For R. annulatus, climate vari-

ables selected were annual mean temperature (Bio 1),

mean diurnal temperature range (Bio 2), temperature

seasonality (Bio 4), maximum temperature of warmest

month (Bio 5), mean temperature of coldest quarter

(Bio 11), and precipitation of wettest quarter (Bio 16).

Within the TEQA, distributions of the two cattle fever

tick species are segregated, with R. microplus found to

the southeast of Laredo, Texas, and R. annulatus to the

northeast [75]. Our climate bias analyses indicated that

the two species are also distinct with regards to climate

parameters (see Additional file 5, including temperature

seasonality (Bio 4), minimum temperature of coldest

month (Bio 6), temperature annual range (Bio 7), mean

temperature of driest quarter (Bio 9), mean temperature

of coldest quarter (Bio 11), and precipitation of wettest

month (Bio 13). Differences in climate preferences be-

tween R. microplus (in general – hot and humid) and

R. annulatus (drier and cooler) may explain why the two

species separate into distinct northern and southern dis-

tributions within the quarantine zone (Figure 1). Also it

suggests that R. annulatus, in view of its greater toler-

ance for seasonal extremes and temperature and precipi-

tation minima, is the species most likely to re-establish

in the greater United States.

Model predictions

Based on independent regional subsets of occurrence

points excluded from model calibration, Maxent out-

performed GARP with higher partial-AUC scores; there-

fore, only its results are presented here [see Additional

file 7: Table S1]. Figure 2 displays historical (1906) spatial
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predictions for R. microplus, wherein models built with

both ALL and PERS occurrences identified suitable areas

across southern Texas, Louisiana, and Florida, along with

southern California and parts of Arizona. Cattle fever ticks

were previously known throughout the southern United

States and parts of the Midwest; however, R. microplus is

thought to have been responsible for infestations in the

more humid southern regions, since it was originally from

the Tropics [22]. Although these models recreate only a

portion of the historical range for R. microplus, it is prom-

ising that they effectively extrapolate climate patterns

found in the TEQA into environments that previously

supported populations of this species. Figure 2 also shows

present-day models for R. microplus, where ALL and

PERS predictions show high suitability near the TEQA.

However, the ALL model identified suitable areas across

the southern United States and Florida; projecting these

same models onto future (2050) climate scenarios yielded

a similar spatial pattern, but with areas of highest suitabil-

ity shifted north and east.

The three cases of R. microplus that were found in

central and eastern Texas in 2008 occurred in areas that

are already predicted as moderately suitable by the ALL

present day model. Further, both ALL and PERS models

anticipated increased suitability at these same locations

by 2050 (Figure 2). The infested cattle in this instance

were intercepted within a few days of transport, prevent-

ing ecological establishment of the ticks that they car-

ried. However, if they had not been identified in a timely

manner, these ticks could have established populations

in these suitable areas; according to our projections, this

scenario becomes even more likely under future climate

conditions.

Models for R. annulatus (Figure 3) were built with

ALL occurrence data because the PERS classification of

occurrences returned too small a sample size for spatial

prediction [see Additional file 6: Table S1]. When the

R. annulatus model was projected onto 1906 climate

data, the resulting distribution closely resembles the out-

line of counties that historically reported infestations of

Figure 2 Model predictions for R. microplus. Models developed with ‘ALL’ and ‘PERS’ data used to predict climate suitability for R. microplus in

1906, present, and 2050 with three 2008 traceback samples shown as green filled circles.
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Figure 3 Model predictions for R. annulatus. Models developed with ‘ALL’ data identify areas of climate suitability for R. annulatus in 1906,

present, and 2050.
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cattle fever ticks (Figures 1B and 3). This is perhaps not

surprising because R. annulatus is thought to have been

responsible for most cattle fever tick infestations during

the height of the cattle fever era, possibly because it

is more tolerant of dryer and colder conditions than

R. microplus.

Model predictions for the present day conservatively

predicted highly suitable habitat for R. annulatus in

southern Texas and Arizona (Figure 3). When the same

model was projected onto future climate data (2050),

favourable environments demonstrated a sizeable expan-

sion in area, across all of Texas and the southern United

States, including Florida. Even a small increase (2-3°C)

in annual mean temperature as projected by the IPCC

greatly induces increased suitability for R. annulatus, far

beyond the TEQA and TPQAs [see Additional file 1].

Discussion

This paper presents the first large-scale and high-

resolution spatial models of suitability for cattle fever

ticks in the United States across multiple time scenarios,

and our results are congruent with the historical ranges

of both R. microplus and R. annulatus in the US. Bram

et al. [5] noted that R. microplus infestations on deer

were responsible for the prolonged persistence of cattle

fever in Florida during the height of the CFTEP. Coinci-

dentally, our R. microplus models for 1906 show suitabil-

ity in Florida, which suggests the persistence of tick

populations despite CFTEP efforts until the 1940’s may

have been aided by suitable climatic conditions in that

region (Figure 2). R. annulatus is considered the main

tick species responsible for the full extent of cattle fever

occurrence across the southern United States [8]. Our

models agree with this notion, as they predict environ-

mental suitability across broad areas of the south-eastern

United States and southern California, with range limits

that are similar to the counties reporting cattle fever ticks

in 1906 (Figures 1B and 3). The thorough efforts of

USDA-APHIS and the Texas Animal Health Commission

currently restrict occurrences of cattle fever ticks to south-

ern Texas. Our models for the present day indicate high

suitability in areas surrounding this zone, which suggests

that suitable tick habitat is limited climatically to areas

near the Rio Grande. However, this result likely stems

from spatially conservative predictions produced by the

nature of our occurrences used in our modeling efforts,

which were all clustered within the TEQA.

Based on our models, we anticipate potential for a dra-

matic range shift to the north and east of the TEQA for

both R. microplus and R. annulatus by midcentury. A re-

cent study by Pérez de León et al. [76] used wavelet ana-

lysis to identify a 30-yr cyclical pattern in historical

records (1959–2011) of cattle fever tick infestations in

southern Texas—a pattern potentially driven by broad-

scale climate phenomena, such as the El Niño Southern

Oscillation (ENSO) and the Accumulated Cyclone En-

ergy Index (ACE). Accordingly, the current increase in

cattle fever tick infestations along the quarantine zone is

part of a recurring cycle that may be currently decreas-

ing, with another upsurge in tick occurrence expected

around 2050, potentially in areas that our spatial models

predict as suitable far beyond the current TEQA.

Model projections onto likely 2050 conditions predict

increases in suitable areas for each species north and

east of the TEQA (Figures 2 and 3). The particular direc-

tion of the north-eastern range shift observed in this

study is congruent with broad expectations that dynamic

distribution changes will occur in vector-borne diseases

in temperate regions [44,45,76]. When compared with

the updated climate types presented in Peel et al. [77],

future models exhibit movement from arid/desert steppe

climate towards, what is currently classified as, a sea-

sonal temperate region that extends through the south-

ern United States. In a parallel vector-based disease

system with Theileria (the causative agent of theileriosis,

or East Coast Fever), Olwoch et al. [30] noted increases

in prevalence of the tick vector Rhipicephalus appendi-

culatus upon elevated minimum temperatures in sub-

Saharan Africa, and reduced prevalence with increased

temperatures in already-hot and/or arid regions [78,79].

Increases in temperature minima over the course of the

season can contribute to disease incidence by reducing

pathogen incubation period, expediting vector generation

time, larval survival rate, and overall population growth

rate [48,80]. Beyond temperature extremes, changes in

seasonal precipitation regimes impact tick life cycles via

changes in vegetation-based micro-climate that provide

stable seasonal and diurnal humidity at egg-laying and lar-

val development sites, in addition to host questing oppor-

tunities [78,79]. Consequently, changes in macro and

micro-climatic extremes as a result of climate changes can

directly impact range expansions and range shifts of tick-

borne disease systems [78,81]. Based on their individual

climatic tolerances, this suggests alternative outcomes for

R. microplus and R. annulatus in temperate regions of the

southern United States as a possible consequence of cli-

mate change [28,30,44,45,80,82].

An increase in total area of suitability in the future

does not guarantee the presence of the species in those

new areas [44,47,76,83,84]. The models we developed

here offer several unique insights into the natural

history, ecology, and potential distribution of both

R. microplus and R. annulatus. However, several caveats

must accompany interpretation of our models. First,

models are only as good as the input data [81]. Our

spatial predictions originate from occurrence data from

the TEQA only. Extrapolating such models across novel

environments can be perilous because these models
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were calibrated with a restricted set of environments

relative to the complete range of tolerance of the species

(i.e. across a considerably smaller area compared to its

natively accessible range). We regard the marginal set

of occurrences used for model training as the foremost

contributor to our conservative spatial predictions. Hence,

we made a thorough effort to remove bias in the data and

adjusted algorithm parameters to allow for extrapolation

outside the initial range of training values. Second, our

chosen predictor variables characterize habitat as suitable

based on climate only. The biogeography of disease sys-

tems is complex, and requires appropriate land cover, as

well as factors related to ungulate hosts for transmission

to occur.

In addition to potential climate change, other factors

also present potential challenges for future control of

the cattle fever tick and Babesia disease system. The

disease system currently exists in an ecologically imbal-

anced state as a result of habitat fragmentation, urbani-

zation, land-use changes, and human-imposed species

disequilibria, making it especially susceptible to the un-

certain effects of global change [76]. White-tailed deer

are known hosts for ixodid ticks, and were recently

found to be sero-positive for exposure to Babesia spp. in

Texas and northern Mexico [9,85,86]. Since formation of

the CFTEP, the population size of this free-ranging host

has increased dramatically in Texas (from ~10,000 to

~3-4 million), which significantly improves the dispersal

capabilities of both R. microplus and R. annulatus

[5,9,87]. Additionally, some Rhipicephalus tick popula-

tions in Mexico have now evolved resistance to organo-

phosphates and other acaricides owing to liberal use in

control efforts, which now confound future use of che-

micals in the CFTEP [13,14,88].

The tick infestations in east-central Texas in 2008

illustrate the substantial risk of the re-invasion of cattle

fever ticks. Although these instances of quarantine

breach were noted promptly, they transpired in areas

suitable for persistent populations. Given the conserva-

tive nature of our spatial predictions and the historical

distribution of cattle fever ticks, introductions could also

potentially occur further from the TEQA. If cattle fever

ticks were to reach their former distribution, large deer

populations, acaricide resistance, and increased habitat

suitability would pose considerable challenges to a re-

eradication effort [5]. These developments indicate that

other changes, in addition to climate change, may mod-

ify cattle fever tick distributions in the southern United

States [46,47].

Conclusions

Many factors may permit the prevalence of a disease to

increase over time. The biology and ecology of the host-

vector-pathogen system is complex, even without human

intervention. Based on our model results, we predict a

dramatic range shift and increase of suitable climate for

R. microplus and R. annulatus into temperate regions in

the southern United States by midcentury. The risk im-

posed by global change and the movement and/or control

of species integral to this system presents unique future

challenges that emphasize the increasing risk of a re-

invasion of cattle fever ticks. Should the CFTEP be com-

promised, climate-based spatial predictions of ecological

suitability for cattle fever ticks may be the best predictor

of cattle fever tick prevalence in a changing world.

The patterns discussed here are important not only for

the ongoing management of the cattle fever system.

They are also broadly applicable to global research con-

ducted on a vast array of zoonotic diseases, which often

manifest from a symphony of multi-dimensional vari-

ables resulting in disease occurrence, absence, and per-

sistence. Studies like the one presented here fill an

integral role in inter-disciplinary research that attempts to

triangulate central processes driving disease emergence

and occurrence which are vital for a comprehensive

understanding of the dynamics of infectious ecological

diseases.

Additional files

Additional file 1: Predicted temperature increases in the southern

United States. This figure displays annual mean temperature values that

are within the observed range of climate values at sites of cattle fever

tick presence used in this study (green pixels). Yellow, orange, and red

pixels represent where this temperature range would be observed under

the predicted IPCC temperature increases of 1, 2, and 3°C respectively.

Additional file 2: Comprehensive table of all tick occurrences

employed in this study for model calibration.

Additional file 3: An example of spatial selection of persistent

occurrences in Rhipicephalus microplus.

Additional file 4: Analysis of Molecular Variance (AMOVA).

Additional file 5: Climate bias analysis.

Additional file 6: Spatial autocorrelation & data rarefaction.

Additional file 7: Algorithm parameters and model summarization.

Competing interests

The authors report no competing interests.

Authors’ contributions

JRG, ATP, DMW conceived the studies. PUO, GAS, RBD, JMP, DMK, KHL

provided data and other information critical to the study. JRG carried

out most analyses and wrote the initial manuscript. JDB performed

the genotyping and AMOVA analysis. All authors contributed to the

development of the final manuscript and approved its final version.

Acknowledgements

We thank USDA-APHIS mounted patrol inspectors for collecting field samples

used in this study. This work was supported by USDA-NIFA Grant 2010-65104-

20386. Use of trade, product, or firm names does not imply endorsement by

the US Government. The USDA is an equal opportunity provider and employer.

Author details
1Center for Microbial Genetics and Genomics, Northern Arizona University,

PO Box 4073, Flagstaff, AZ 86011, USA. 2Biodiversity Institute, University of

Giles et al. Parasites & Vectors 2014, 7:189 Page 9 of 11

http://www.parasitesandvectors.com/content/7/1/189

http://www.biomedcentral.com/content/supplementary/1756-3305-7-189-S1.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-7-189-S2.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-7-189-S3.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-7-189-S4.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-7-189-S5.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-7-189-S6.pdf
http://www.biomedcentral.com/content/supplementary/1756-3305-7-189-S7.pdf


Kansas, Lawrence, KS 66045, USA. 3USDA,ARS, Knipling-Bushland United

States Livestock Insects Research Laboratory, 2700 Fredericksburg Rd

Kerrville, TX 78028, USA. 4USDA, ARS, Animal Diseases Research Unit,

Washington State University, Pullman, WA 99164, USA. 5USDA, ARS, Cattle

Fever Tick Research Laboratory, Moore Air Base, Building 6419, 22675 N

Moorefield Rd, Edinburg, TX 78541, USA.

Received: 11 December 2013 Accepted: 5 April 2014

Published: 17 April 2014

References

1. Bock R, Jackson L, Vos AD, Jorgensen W: Babesiosis of cattle. Parasitology

2004, 129:247–269.

2. McCosker PJ: The global importance of ticks. New York: Academic Press;

1981.

3. Smith T, Kilborne FL: Investigations into the nature, causation, and prevention

of Texas or southern cattle fever. Bulletin: US Department of Agriculture

Bureau of Animal Industry; 1893:1.

4. Howell JM, Ueti MW, Palmer GH, Scoles GA, Knowles DP: Persistently

infected calves as reservoirs for acquisition and transovarial transmission

of Babesia bovis by Rhipicephalus (Boophilus) microplus. J Clin Microbiol

2007, 45(10):3155–3159.

5. Bram RA, George JE, Reichard RE, Tabachnick WJ: Threat of foreign

arthropod-borne pathogens to livestock in the United States. J Med

Entomol 2002, 39(3):405–416.

6. George JE: Cattle fever tick eradication programme in the USA: history,

achievements, problems and implications for other countries. FAO Anim

Pr 1989, 75:1–7.

7. George JE: Present and future technologies for tick control. Ann NY Acad

Sci 2000, 916(1):583–588.

8. Graham OH, Hourrigan JL: Eradication programs for the arthropod

parasites of livestock. J Med Entomol 1977, 13:629–658.

9. Pound JM, George JE, Kammlah DM, Lohmeyer KH, Davey RB: Evidence

for role of white-tailed deer (Artiodactyla: Cervidae) in epizootiology of

cattle ticks and southern cattle ticks (Acari: Ixodidae) in reinfestations

along the Texas/Mexico border in south Texas: a review and update.

J Econ Entomol 2010, 103(2):211–218.

10. Webb SL, Demarais S, Zaiglin RE, Pollock MT, Whittaker DG: Size and fidelity

of home ranges of male white-tailed deer (Odocoileus virginianus) in

southern Texas. Southwest Nat 2010, 55(2):269–273.

11. Ellis D: Texas fever tick program update. In Annual meeting of the National

Institute for Animal Agriculture. Indianapolis, Indiana: National Institute for

Animal Agriculture; 2008.

12. Fernández-Salas A, Rodríguez-Vivas RI, Alonso-Díaz MA: First report of a

Rhipicephalus microplus tick population multi-resistant to acaricides and

ivermectin in the Mexican tropics. Vet Parasitol 2012, 183(3–4):338–342.

13. Miller RJ, Davey RB, George JE: First report of organophosphate-resistant

Boophilus microplus (Acari: Ixodidae) within the United States.

J Med Entomol 2005, 42(5):912–917.

14. Miller RJ, Davey RB, George JE: First report of permethrin-resistant

Boophilus microplus (Acari: Ixodidae) collected within the United States.

J Med Entomol 2007, 44(2):308–315.

15. Kuttler KL: World-wide impact of babesiosis. Boca Raton, Florida: CRC Press;

1988.

16. USDA-APHIS-VS: Controlling cattle fever ticks. Riverdale, Maryland: USDA;

2010.

17. Pegram RG, Wilson DD, Hansen JW: Past and present national tick control

programs: why they succeed or fail. Ann NY Acad Sci 2000, 916(1):546–554.

18. Sonenshine DE: Biology of ticks, Volume 2. New York: Oxford University

Press; 1991.

19. Wang H-H, Grant WE, Teel PD: Simulation of climate-host-parasite-land-

scape interactions: a spatially explicit model for ticks (Acari: Ixodidae).

Ecol Model 2012, 243:42–62.

20. Corson MS, Teel PD, Grant WE: Microclimate influence in a physiological

model of cattle-fever tick (Boophilus spp.) population dynamics.

Ecol Model 2004, 180(4):487–514.

21. Estrada-Peña A: Geostatistics and remote sensing using NOAA-AVHRR

satellite imagery as predictive tools in tick distribution and habitat

suitability estimations for Boophilus microplus (Acari: Ixodidae) in South

America. Vet Parasitol 1999, 81:73–82.

22. Estrada-Peña A, Bouattour A, Camicas JL, Guglielmone A, Horak I, Jongejan

F, Latif A, Pegram R, Walker AR: The known distribution and ecological

preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa

and Latin America. Exp Appl Acarol 2006, 38:219–235.

23. Estrada-Peña A, García Z, Sánchez HF: The distribution and ecological

preferences of Boophilus microplus (Acari: Ixodidae) in Mexico.

Exp Appl Acarol 2006, 38:307–316.

24. Estrada-Peña A, Venzal JM: High-resolution predictive mapping for

Boophilus annulatus and B. microplus (Acari: Ixodidae) in Mexico and

Southern Texas. Vet Parasitol 2006, 142:350–358.

25. Mount GA, Haile DG, Daniels E: Simulation of blacklegged tick (Acari:

Ixodidae) population dynamics and transmission of Borrelia burgdorferi.

J Med Entomol 1997, 34(4):461–484.

26. Mount GA, Haile DG, Davey RB, Cooksey LM: Computer simulation of

Boophilus cattle tick (Acari: Ixodidae) population dynamics. J Med

Entomol 1991, 28(2):223–240.

27. Teel PD: Effect of saturation deficit on eggs of Boophilus annulatus and

B. microplus (Acari: Ixodidae). Ann Entomol Soc Am 1984, 77(1):65–68.

28. Estrada-Peña A, Acedo CS, Quílez J, Del Cacho E: A retrospective study of

climatic suitability for the tick Rhipicephalus (Boophilus) microplus in the

Americas. Global Ecol Biogeogr 2005, 14(6):565–573.

29. Cumming GS, Van Vuuren DP: Will climate change affect ectoparasite

species ranges? Global Ecol Biogeogr 2006, 15(5):486–497.

30. Olwoch JM, Reyers B, Engelbrecht FA, Erasmus BFN: Climate change and

the tick-borne disease, theileriosis (East Coast fever) in sub-Saharan

Africa. J Arid Environ 2008, 72(2):108–120.

31. Davey RB, Cooksey LM, Despins JL: Survival of larvae of Boophilus

annulatus, Boophilus microplus, and Boophilus hybrids (Acari: Ixodidae)

in different temperature and humidity regimes in the laboratory.

Vet Parasitol 1991, 40(3–4):305–313.

32. Randolph S: Ticks and tickborne disease systems in space and from the

space. Adv Parasit 2000, 47:217–243.

33. Sutherst RW: Variation in the numbers of the cattle tick, Boophilus

microplus (Canestrini), in a moist habitat made marginal by low

temperatures. Aust J Entomol 1983, 22(1):1–5.

34. IPCC: Climate change 2007: the physical science basis. Contribution of

working group I to the fourth assessment report of the

intergovernmental panel on climate change. In Volume 11.5.3.1. Edited by

Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M,

Miller HL. Cambridge, United Kingdom and New York, NY, USA: Cambridge

University Press; 2007. http://www.ipcc.ch/publications_and_data/publica

tions_ipcc_fourth_assessment_report_wg1_report_the_physical_science_

basis.htm.

35. Sutherst RW: Implications of global change and climate variability for

vector-borne diseases: generic approaches to impact assessments.

Int J Parasitol 1998, 28(6):935–945.

36. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E,

Nakamura M, Araújo MB: Ecological niches and geographic distributions.

Princeton, New Jersey: Princeton University Press; 2011.

37. Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT,

Soberon J, Villalobos F: The crucial role of the accessible area in ecological

niche modeling and species distribution modeling. Ecol Model 2011,

222(11):1810–1819.

38. Elith J, Kearney M, Phillips S: The art of modelling range-shifting species.

Method Ecol Evol 2010, 1(4):330–342.

39. Elith J, Leathwick JR: Species distribution models: ecological explanation and

prediction across space and time. Annu Rev Ecol Evol S 2009, 40(1):677–697.

40. Jiménez-Valverde A, Lobo JM, Hortal J: Not as good as they seem: the

importance of concepts in species distribution modelling. Divers Distrib

2008, 14(6):885–890.

41. Lobo JM, Jiménez-Valverde A, Hortal J: The uncertain nature of absences

and their importance in species distribution modelling. Ecography 2010,

33(1):103–114.

42. Peterson AT, Nakazawa Y: Environmental data sets matter in ecological

niche modelling: an example with Solenopsis invicta and Solenopsis

richteri. Global Ecol Biogeogr 2008, 17(1):135–144.

43. Busch JD, Stone NE, Nera R, Araya-Anchetta A, Lewis J, Hochhalter C, Giles

JR, Freeman J, Johnson G, Bodine D, Duhaime R, Miller RJ, Davey RB, Olafson

PU, Scoles GA, Wagner DM: Widespread movement of invasive cattle

fever ticks (Rhipicephalus microplus) in southern Texas and shared local

infestations on cattle and deer. Parasit Vectors 2014, 7:188.

Giles et al. Parasites & Vectors 2014, 7:189 Page 10 of 11

http://www.parasitesandvectors.com/content/7/1/189

http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm
http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm
http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm


44. Lafferty K: The ecology of climate change and infectious diseases.

Ecology 2009, 90(4):888–900.

45. Perry BD, Grace D, Sones K: Current drivers and future directions of

global livestock disease dynamics. P Natl Acad Sci USA 2011,

110(52):20871–20877.

46. Randolph SE: To what extent has climate change contributed to

the recent epidemiology of tick-borne diseases? Vet Parasitol 2010,

167(2–4):92–94.

47. George JE: The effects of global change on the threat of exotic

arthropods and arthropod-borne pathogens to livestock in the United

States. Ann NY Acad Sci 2008, 1149(1):249–254.

48. Tabachnick WJ: Challenges in predicting climate and environmental

effects on vector-borne disease episystems in a changing world.

J Exp Biol 2010, 213(6):946–954.

49. Gaff H, Gross L: Modeling tick-borne disease: a metapopulation model.

B Math Biol 2007, 69(1):265–288.

50. Mount GA, Haile DG, Barnard DR, Daniels E: New version of LSTSIM for

computer simulation of Amblyomma americanum (Acari: Ixodidae)

population dynamics. J Med Entomol 1993, 30(5):843–857.

51. Austin MP: Spatial prediction of species distribution: an interface

between ecological theory and statistical modelling. Ecol Model 2002,

157(2–3):101–118.

52. Hijmans RJ, Cameron S, Parra J: WorldClim, version 1.3. Berkeley: University of

California; 2005.

53. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A: Very high resolution

interpolated climate surfaces for global land areas. Int J Climatol 2005,

25:1965–1978.

54. Team RC: R: a language and environment for statistical computing. R

Foundation for Statistical Computing: Vienna, Austria; 2012.

55. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA,

Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna

DS, Santer BD, Smith RD: The community climate system model: CCSM3.

J Clim 2006, 19:2122–2143.

56. Gordon H, O’Farrell S, Collier M, Dix M, Rotstayn L, Kowalczyk E, Hirst T,

Watterson I: The CSIRO Mk3.5 climate model. In Centre for Australian

weather and climate research technical report, Volume 21. Melbourne,

Australia: CSIRO and Australian Bureau of Meteorology; 2010.

57. Hasumi H, Emori S: K-1 coupled GCM (MIROC) description. Center for Climate

System Research: University of Tokyo; 2004.

58. Otterâ OH, Bentsen M, Bethke I, Kvamstø NG: Simulated pre-industrial

climate in bergen climate model (version 2): model description and

large-scale circulation features. Geosci Model Devel 2009, 2(2):197–212.

59. Ramirez J, Jarvis A: Disaggregation of global circulation model outputs

decision and policy analysis working paper no. 2. Cali, Colombia: International

Center for Tropical Agriculture (CIAT); 2010.

60. Peterson AT, Cohoon KP: Sensitivity of distributional prediction

algorithms to geographic data completeness. Ecol Model 1999,

117(1):159–164.

61. Barry S, Elith J: Error and uncertainty in habitat models. J Appl Ecol 2006,

43(3):413–423.

62. Peterson AT, Papes M, Carroll DS, Leirs H, Johnson KM: Mammal taxa

constituting potential coevolved reservoirs of filoviruses. J Mammal 2007,

88(6):1544–1554.

63. Mac Nally R: Regression and model-building in conservation biology,

biogeography and ecology: the distinction between – and reconciliation

of – ‘predictive’ and ‘explanatory’ models. Biodivers Conserv 2000,

9(5):655–671.

64. Hirzel AH, Hausser J, Chessel D, Perrin N: Ecological-niche factor analysis:

how to compute habitat-suitability maps without absence data?

Ecology 2002, 83(7):2027–2036.

65. Manel S, Williams HC, Ormerod SJ: Evaluating presence–absence models

in ecology: the need to account for prevalence. J Appl Ecol 2001,

38(5):921–931.

66. Peterson A, Papeş M, Eaton M: Transferability and model evaluation

in ecological niche modeling: a comparison of GARP and Maxent.

Ecography 2007, 30:550–560.

67. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG,

Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE,

Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S: Collinearity:

a review of methods to deal with it and a simulation study evaluating

their performance. Ecography 2012, 35:1–20.

68. Guisan A, Zimmermann NE: Predictive habitat distribution models in

ecology. Ecol Model 2000, 135(2–3):147–186.

69. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ,

Huettman F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA,

Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Peterson AT,

Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams

S, Wisz MS, Zimmermann NE: Novel methods improve prediction of

species’ distributions from occurrence data. Ecography 2006, 29:129–151.

70. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ: A statistical

explanation of MaxEnt for ecologists. Divers Distrib 2011, 17(1):43–57.

71. Phillips SJ, Dudík M, Schapire RE: A maximum entropy approach to species

distribution modeling. In Proceedings of the twenty-first international

conference on machine learning. Banff, Alberta, Canada: ACM; 2004.

72. Stockwell D, Peters D: The GARP modelling system: problems and solutions

to automated spatial prediction. Int J Geogr Inf Sci 1999, 13:143–158.

73. Lobo JM, Jiménez-Valverde A, Real R: AUC: a misleading measure of the

performance of predictive distribution models. Global Ecol Biogeogr 2008,

17(2):145–151.

74. Soberon J, Nakamura M: Niches and distributional areas: concepts, methods,

and assumptions. P Natl Acad Sci USA 2009, 106(Supplement 2):19644–19650.

75. Lohmeyer KH, Pound JM, May MA, Kammlah DM, Davey RB: Distribution of

Rhipicephalus (Boophilus) microplus and Rhipicephalus (Boophilus)

annulatus (Acari: Ixodidae) infestations detected in the United States

along the Texas/Mexico border. J Med Entomol 2011, 48(4):770–774.

76. de León AA P, Teel PD, Auclair AN, Messenger MT, Guerrero FD, Schuster G,

Miller RJ: Integrated strategy for sustainable cattle fever tick eradication

in USA is required to mitigate the impact of global change. Front Physiol

2012, 3:195.

77. Peel MC, Finlayson BL, Mcmahon TA: Updated world map of the

Köppen-Geiger climate classification. Hydrol Earth Syst Sc Disc 2007,

4(2):439–473.

78. Bertrand MR, Wilson ML: Microclimate-dependent survival of unfed adult

Ixodes scapularis (Acari: Ixodidae) in nature: life cycle and study design

implications. J Med Entomol 1996, 33(4):619–627.

79. Schulze TL, Jordan RA: Influence of meso-and microscale habitat structure

on focal distribution of sympatric Ixodes scapularis and Amblyomma

americanum (Acari: Ixodidae). J Med Entomol 2005, 42(3):285–294.

80. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel

MD: Climate warming and disease risks for terrestrial and marine biota.

Science 2002, 296(5576):2158–2162.

81. Woolhouse M: How to make predictions about future infectious disease

risks. Philos T R Roy Soc B 2011, 366(1573):2045–2054.

82. Pascual M, Bouma MJ: Do rising temperatures matter? Ecology 2009,

90(4):906–912.

83. Peterson A: Biogeography of diseases: a framework for analysis.

Naturwissenschaften 2008, 95:483–491.

84. Sutherst RW: Global change and human vulnerability to vector-borne

diseases. Clin Microbiol Rev 2004, 17(1):136–173.

85. Holman PJ, Carroll JE, Pugh R, Davis DS: Molecular detection of Babesia bovis

and Babesia bigemina in white-tailed deer (Odocoileus virginianus) from

Tom Green county in central Texas. Vet Parasitol 2011, 177(3–4):298–304.

86. Ramos CM, Cooper SM, Holman PJ: Molecular and serologic evidence for

Babesia bovis-like parasites in white-tailed deer (Odocoileus virginianus)

in south Texas. Vet Parasitol 2010, 172(3â€“4):214–220.

87. McDonald JS, Miller KV: White-tailed deer restocking in the United States 1878

to 2004. The Deer Management Association: Bogart, Georgia; 2004.

88. George JE, Pound JM, Davey RB: Chemical control of ticks on cattle and the

resistance of these parasites to acaricides. Parasitology 2004, 129:353–366.

doi:10.1186/1756-3305-7-189
Cite this article as: Giles et al.: Invasive potential of cattle fever ticks in
the southern United States. Parasites & Vectors 2014 7:189.

Giles et al. Parasites & Vectors 2014, 7:189 Page 11 of 11

http://www.parasitesandvectors.com/content/7/1/189


	Abstract'
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Input data: occurrence data
	Input data: environmental data
	Model development

	Results
	Persistent occurrences
	Model predictions

	Discussion
	Conclusions
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

