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ABSTRACT

Aim Two core assumptions of species distribution models (SDMs) do not hold

when modelling invasive species. Invasives are not in equilibrium with their envi-

ronment and niche quantification and transferability in space and time are limited.

Here, we test whether combining global- and regional-scale data in a novel frame-

work can overcome these limitations. Beyond simply improving regional niche

modelling of non-native species, the framework also makes use of the violation of

regional equilibrium assumptions, and aims at estimating the stage of invasion,

range filling and risk of spread in the near future for 27 invasive species in the

French Alps.

Innovation For each invader we built three sets of SDMs using a committee

averaging method: one global model and two regional models (a conventional

model and one using the global model output to weight pseudo-absences). Model

performances were compared using the area under the receiver operating charac-

teristic curve, the true skill statistic, sensitivity and specificity scores. Then, we

extracted the predictions for observed presences and compared them to global and

regional models. This comparison made it possible to identify whether invasive

species were observed within or outside of their regional and global niches.

Main conclusions This study provides a novel methodological framework for

improving the regional modelling of invasive species, where the use of a global

model output to weight pseudo-absences in a regional model significantly

improved the predictive performance of regional SDMs. Additionally, the compari-

son of the global and regional model outputs revealed distinct patterns of niche

estimates and range filling among the species. These differences allowed us to draw

conclusions about the stage of invasion and the risk of spread in the near future,

which both correspond to experts’ expectations. This framework can be easily

applied to a large number of species and is therefore useful for control of biological

invasions and eradication planning.
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INTRODUCTION

Invasive plant species pose significant challenges with regard to

managing and maintaining indigenous biodiversity in natural

ecosystems (Olden et al., 2004). Given that once introduced

species become established they are often extremely difficult to

eradicate (Rejmánek et al., 2005), preventing their introduction

is by far the most cost-effective form of management. To this

end, a range of modelling tools have been developed in order to

understand the drivers of species invasions and project the

potential distribution of naturalized and invasive species (sensu

Richardson et al., 2000; to simplify, both naturalized and inva-

sive species will be referred to as invasives hereafter) in space or

time (Peterson, 2003; reviewed in Gallien et al., 2010). Among
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these tools, species distribution models (SDMs; Guisan &

Thuiller, 2005), i.e. phenomenological models that statistically

relate observed species occurrences to environmental variables,

have been used prolifically (see the review inGallien et al., 2010).

They rely on the ecological niche concept and use observed

occurrences and thereby model the realized niches of the focal

species in the region studied (Pulliam, 2000; Soberòn, 2007).

In the context of invasion ecology it is important to specify

that there are (at least) three possible views of an invasive

species’ niche (Gallien et al., 2010). Firstly, the global niche cor-

responds to the broad abiotic and, to a lesser extent, the biotic

conditions, under which the species persists. It is built from all

data collected across a species’ range (i.e. the sum of all its

realized niches) and is the most complete estimate of the entire

ecological niche without laboratory experimentation (Vetaas,

2002). Secondly, at the scale of the study region, the regional

niche at equilibrium is limited by both the small-scale abiotic

conditions and biotic interactions (e.g. competition, predation,

pathogens) in this region (but we often don’t have access to it).

Thirdly, the realized regional niche differs from the regional equi-

librium niche when the invader is not in quasi-equilibrium with

the regional environment, and is thus limited by abiotic condi-

tions, biotic interactions, invasion history and dispersal con-

straints (Wilson et al., 2007).

Following this differentiation between invasive species

niches, SDMs have been used to predict the potential distribu-

tions of invasives in adventive regions (using the realized

regional niche; e.g. Rouget et al., 2004), at the global scale

(using the global niche; e.g. Beaumont et al., 2009) and even

under environmental change scenarios (e.g. Roura-Pascual

et al., 2004). However, the suitability of SDMs for modelling

invasive species can be questioned on the grounds that two of

their critical assumptions are usually seriously flawed. First,

SDMs assume that the species’ ecological niche is stable in

space and time. In other words, the invasive species in its

adventive region occupies similar environmental conditions as

in the native range. Second, to ensure reliability, SDMs assume

that the species of interest is at quasi-equilibrium with the

environment in which it occurs. In other words, the invasive

species has already reached all suitable places and is absent

from all unsuitable sites (Guisan & Thuiller, 2005).

Concerning niche stability in space, realized regional niches

may differ significantly between the native and invaded ranges

(e.g. Broennimann et al., 2007; Gallagher et al., 2010). Com-

pared to a species’ global niche, the realized regional niche cor-

responding to a new adventive region can either: (1) occupy only

a reduced part of the global niche (e.g. due to local biotic limi-

tations such as competitors, predators or pathogens) similar to

the realized niche in the native range; (2) occupy only a reduced

part of the global niche, different from the realized niche in the

native range; or (3) partly occupy areas outside of the global

niche thanks to rapid genetic adaptations in the adventive range

(Fig. 1 in Gallien et al., 2010). In order to address this issue and

to project the potential distribution of an invasive species in an

adventive range, it has been recommended that all data available

throughout the world (for both native and invasive ranges) are

used in order to estimate its ecological niche or at least the

full-range biotic and abiotic niche requirements of the species

(i.e. the global niche; Beaumont et al., 2009; Ibáñez et al., 2009).

However, a global description of the niche does not account for

the specificities of local adventive ranges (local environment,

local biotic interactions and specific human uses). This explains

why, when predicting the potential distribution of the species of

interest in a specific invaded region, some researchers prefer to

use occurrence data from the invaded range only (e.g. Dullinger

et al., 2009). Therefore, using a combination of both global and

realized regional niches has the potential to produce improved

estimates of the potential distribution of a given invader in a

study region (e.g. Roura-Pascual et al., 2009).

In theory, the equilibrium between the invader and the envi-

ronment varies according to the stage of invasion: introduction,

colonization or establishment (Theoharides & Dukes, 2007).

These invasion stages are themselves strongly influenced by five

elements: (1) the introduction history (e.g. propagule pressure,

position of founder populations, time of residence; Wilson et al.,

2007); (2) the spatial distribution of suitable habitats (Alofs &

Fowler, 2010); (3) the invader’s characteristics (e.g. dispersal

capabilities; Aikio et al., 2010); (4) the invader’s potential for

rapid adaptation (Travis et al., 2009); and (5) interactions

between the invader and the native communities (Davies et al.,

2010). These factors make it difficult to infer the stage of

regional invasion by simply using distribution data, without

prior expert knowledge. Consequently, the observed distribu-

tion of the species does not always inform its potential distribu-

tion in the region.

Here, we take advantage of the difference between the realized

regional niche and the global niche and propose a novel frame-

work capable of producing more reliable predictions of the dis-

tribution of an invasive species in its adventive range of interest,

on the one hand, and an improved estimation of its invasion

stage and risk, on the other. This framework consists of two

development phases (Fig. 1).

Firstly, we develop a hierarchical approach to improve

regional SDM performance while simultaneously accounting

for both global and regional information (Fig. 1, steps 1–2).

When observed absences or pseudo-absence data are used to

build a SDM, it is generally assumed that they represent ‘true’

absences (i.e. sites where the species cannot survive). In the

case of invasive species, it is likely that some represent ‘false’

absences because the species is not at equilibrium (i.e. sites

where the species could survive but is currently absent due to

dispersal limitations; Le Maitre et al., 2008). This problem

can be partly overcome by exploiting the estimation of

the invader’s global niche to attribute a weight to each

(pseudo-)absence, i.e. if the pseudo-absence obtains a low

probability of suitability in the global model then it will have a

higher weighting in the regional model because it is more

likely to be a ‘true’ absence, and vice versa. This is a first step

towards closing the gap between the realized regional niche and

the regional niche at equilibrium.

Secondly, we compare the invader’s global (where the species

could spread) and realized regional (where the species is already
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observed) niches with the observed presences to take advantage

of both the disequilibrium and the global niche estimation.

Theoretically, this comparison allows us to infer both the stage

of invasion for each population in the ecological niche space and

the degree of regional range filling of the invading species in

geographical space (Fig. 1, step 3). In the niche space of an

adventive region (assuming the best set of explanatory variables

and no data bias), a species is at quasi-equilibrium when at the

same time its observed presences are located within both the

global and realized regional niches and they fully fill the regional

niche range. However, if the regional niche range is not filled

then populations are approaching but still away from stabiliza-

tion. When the species observations instead cover the global

niche but not the realized regional niche (i.e. the regional model

cannot predict some of the observed presences), then regional

quasi-equilibrium is not yet reached (e.g. colonization from

different sources in various environments). Alternatively, if

some populations within the realized regional niche are outside

the global niche, this indicates that these populations may have

adapted to new (abiotic and/or biotic) environments (e.g. rapid

local adaptations; Lavergne & Molofsky, 2007). Finally, if a

species occurs regionally outside of both the global and the

regional niches, then it is probable that the observed presences

belong to sink populations (e.g. those introduced into unsuit-

able areas that are unlikely to provide opportunities for stable

population development). Extending these comparisons from

niche space to geographical space allows us to infer the degree of

range filling for both a species’ global niche and realized regional

niche. Combining the information on species’ population stages

during invasion and range filling has the potential to provide
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Figure 1 Flowchart summarizing the three steps proposed in our analysis. Step 1 represents the global model calibration and step 2

represents the regional model calibration (integrating the output of the global model to weight the regional pseudo-absences); both steps

relate to the methodological innovation for modelling invasive species. Then, step 3 presents the theoretical framework developed to inform

about the stages of invasion of an invasive species’ population. If a species is observed (1) within its regional niche only, then it is

potentially a population that develops adaptation to novel environmental conditions. If however a species is observed (2) within both its

global and regional niches, then it is likely to be a stabilizing population. If a species is observed (3) only within in its global niche, then it

may represent a population that participates to the colonization process of various environmental conditions in the region. If finally a

species is observed (4) outside both niches, then it probably represents a ‘sink’ population.
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interesting insights into the invader’s future dynamics and

potential threat.

Here, we use 27 invasive plant species in the French Alps to

test and illustrate the overall development of the approach. The

results are then consolidated with the expert knowledge of

national botanists. Finally, we make suggestions regarding the

further use of the framework to generate testable hypotheses of

interest in invasion biology.

MATERIALS AND METHODS

The study system

Since 1980, 142 non-native plant species have been identified in

the French Alps (source: National Botanical Conservatory of the

Alps and Mediterranean, CBN). We used this list of species to

create a global and a regional occurrence database. At the global

scale, we extracted species occurrences from the Global Biodi-

versity Information Facility (GBIF; http://data.gbif.org) at a

minimum resolution of 2.5′ (c. 4.5 km). We post-processed the

data to remove all records from botanical gardens or those with

unrealistic coordinates. At a regional scale, we used the occur-

rence records from the CBN containing 30 years of botanical

surveys at a minimum resolution of 100 m (Boulangeat et al.,

2011). We only selected species with more than 200 records in

the French Alps to avoid biased estimations of species environ-

mental preferences and to remove casual species. This left us

with a dataset of 27 species.

Modelling framework

At both global and regional scales and for each species we built

a set of SDMs – with presence records and randomly generated

pseudo-absences – and applied a committee averaging method

(Box 1) to extract a single output.

The global model

The committee averaging method (Box 1) was used to construct

an estimation of the species’ global niche for each of 27 inva-

sives, using the both the GBIF and CBN presence data with two

datasets of 20,000 random pseudo-absences each and the

WorldClim climatic database (Hijmans et al., 2005; http://

www.worldclim.org/). The high number of pseudo-absences

artificially reduces the prevalence in the models, which in return

influences the probabilities of occurrence of the models (reduc-

ing the overall probability values). To avoid this problem here,

we did not use the raw probabilities from the models but instead

we transformed the probabilities into binary presence/absence

data via a threshold (see below). In order to restrict the choice of

pseudo-absences to realistically reachable locations, we created a

buffer zone of 20 km around any of the presence records used

and we randomly allocated absences inside these buffer zones. In

this way we avoid areas where invasive species have not been

inventoried. This strategy follows the one advocated by Phillips

et al. (2009) who recommended following the same sampling

design for selecting pseudo-absences as for selecting presences.

From the 19 available bioclimatic variables we selected the five

which had the lowest pair-wise correlations for our dataset

(Spearman rank-correlation < 0.6), i.e. (1) maximal tempera-

ture in the warmest month, (2) annual temperature range, (3)

mean temperature in the coldest quarter, (4) precipitation in the

wettest month, and (5) precipitation in the driest month. To

model species distributions, we used five algorithms available in

the BIOMOD library (version 1.1–6.3; Thuiller et al., 2009) in R

(R Development Core Team, 2010): (1) a regression method

[generalized additive model (GAM) with four degrees of

smoothing and a stepwise variable selection based on the Akaike

information criterion (AIC); Hastie & Tibshirani, 1990]; (2) a

classification method [classification tree analysis (CTA), with a

50-fold cross-validation; Breiman et al., 1984]; (3) a mix

Box 1

Committee averaging method. The committee averaging

method is an ensemble forecasting method (Araújo & New,

2007) based on the use of different model algorithms (e.g.

regressions, classification trees, machine learning). The

rationale of ensemble forecasting is that different algorithms

have different levels of accuracy under different circum-

stances and there is no single perfect algorithm (Elith et al.,

2006). In the committee averaging method, predicted prob-

ability maps of species presences from the different algo-

rithms are not averaged, but instead are transformed into

binary maps (using for each model the threshold that maxi-

mizes both sensitivity and specificity) which are then aver-

aged to obtain one single map of the final output. In other

words, each model ‘votes’ for each site whether it forecasts a

species’ presence or not. It is therefore not a probability

of occurrence that is measured but rather a percentage

of agreement on species presence between the various

algorithms. The main advantage of the committee averaging

method is the use of ‘comparable outputs’ (binary presence–

absences) instead of the raw algorithm outputs (continuous

probabilities) that do not necessarily have the same meaning

or the same range of variation. This method can easily incor-

porate the use of: (1) various model algorithms; (2) multiple

selections of pseudo-absence data (minimizing the bias due

to a specific set of selected pseudo-absences); and (3) several

repetitions of cross-validation procedures (calibration and

evaluation procedures are repeatedly carried out on different

subdatasets). It is also possible to keep only the best per-

forming models (i.e. reliable models only) for the final

output by setting a selection threshold based on predictive

accuracy metrics. In the end, the number of potential ‘voting

maps’ is: number of algorithms ¥ number of pseudo-absence

datasets ¥ number of cross-validation runs.

Beyond the equilibrium assumption of SDMs
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between regression and classification methods [multivariate

adaptive regression splines (MARS); Friedman, 1991]; (4) a

boosting algorithm [boosted regression trees (BRT) with the

optimal number of trees selected by cross-validation; Ridgeway,

1999]; and (5) a machine learning method [artificial neural

networks (ANN) with the best amount of weight decay and the

number of units in the hidden layer selected using five-fold

cross-validation; Ripley, 1996].

We implemented a split-sample cross-validation procedure to

avoid circular reasoning for evaluating the models (i.e. different

data portions are used to construct and to evaluate the model;

Araújo et al., 2005). Specifically, models were calibrated for each

species on 70% of the initial data and then evaluated on the

remaining 30% with the true skill statistic (TSS; Allouche et al.,

2006) and the area under the receiver operating characteristic

curve (AUC; Swets, 1988). The AUC scores vary from 0 for a

model whose predictions are systematically wrong, over 0.5 for a

random fit, to 1 for a model achieving perfect agreement with the

observed data. The TSS has a range of -1 to +1, with -1 and +1

representing systematically wrong predictions and systematically

right predictions, respectively, and 0 representing a random fit.

For each algorithm and for each species, two pseudo-absence

datasets were randomly selected, and four cross-validations per-

formed. Forty different models were therefore calculated in

total. Of these models, only those obtaining both a TSS and AUC

score above 0.6 and 0.8, respectively, were used to build the

committee averaging map. There are no specific guidelines for

both TSS and AUC scores as they depend on the extent and

(obviously) on the goal of the study. We chose 0.6 and 0.8,

respectively, based on visual inspections of the output and on

the proposed thresholds used in the literature (e.g. Araújo et al.,

2005; Engler et al., 2011).

The regional models

At the scale of the French Alps we used the committee averaging

method to model the regional distribution of each invasive

species using two different approaches: a conventional approach

which used only the data from the French Alps to construct the

models, and our proposed approach which additionally inte-

grates global niche information (from the global model built in

the section above). The single difference between the two

approaches concerns the weights attributed to the pseudo-

absences (‘true’ absence data are not available), after they had

been randomly generated.

For both procedures, models were built for the French Alps

region at a 100-m spatial resolution using the CBN occurrence

records and a set of five environmental variables (four pedocli-

matic and one land cover) known to be important for species

establishment and spread. Four climatic variables originated

from the meteorological model Aurelhy (Bénichou & Le Breton,

1987), based on interpolated measurements at a resolution of

100 m ¥ 100 m, summarizing climatic information over the last

30 years (here 1971–2000). These variables were: (1) mean

annual solar radiation; (2) maximum temperature of the

summer as an index of extreme temperatures (this variable was

highly correlated to minimum temperature in winter); (3) stan-

dard deviation of annual precipitation as an index of seasonal-

ity; and (4) soil water-holding capacity. Land-cover information

was extracted from the CORINE Land Cover Map for Europe (as

suggested in Polce et al., 2011). Six statistical algorithms (used to

attribute different weights to the data) were selected: GLM (gen-

eralized linear model), GAM, CTA, GBM, RF (random forest)

and ANN. As for the global-scale models, we also ran the

regional models with two random selections of pseudo-absence

data, followed by four cross-validation repetitions (70–30% as

for the global model), giving a total of 48 models per species for

each procedure. In order to remove inaccurate models, only

those which obtained TSS and AUC scores of over 0.6 and 0.8,

respectively, were used to build the committee averaging map.

For the conventional approach, models were constructed

using observed species presences and two sets of random

pseudo-absence data (10,000 absences per dataset). Tradition-

ally, pseudo-absence data have the same weight as presence data.

In other words, the algorithms attribute equal confidence to the

pseudo-absence data as to the observed presence data (i.e.

pseudo-absences are considered as ‘true’ absences).

In our proposed approach, models were built using the same

observed presences and pseudo-absence data as for the conven-

tional approach, but without assuming that all pseudo-absences

represent ‘true’ absences (i.e. we assume that some pseudo-

absences probably reflect environmental conditions where the

species cannot survive, while others reflect locations where the

species has not yet arrived due to dispersal limitations). We used

the global model projections applied to the region to weight

each pseudo-absence. Where the global model showed a high

level of agreement with the pseudo-absence (i.e. a low habitat

suitability) we attributed a high weight to the pseudo-absence

(i.e. it probably represents a ‘true’ absence), and vice versa. The

weight was given by means of an inverse logistic transformation

(equation 1) to obtain stronger discrimination between the pre-

dictions of absences and presences:

Weight
projG

projG

x
x

x

( ) =
+

( )

( ) −
⎛
⎝⎜

⎞
⎠⎟

1

1
1

2 (1)

where Weight(x) is the weight attributed to the pseudo-absence

x, which depends on projG(x) the global model prediction at the

location of x [if projG(x) = 1 then Weight(x) = 0].

Interpreting outputs

The global and regional prediction accuracy was estimated using

the two aforementioned indices (AUC and TSS). At the regional

scale, we also compared the regional model predictions with the

global model predictions both for the observed presences and

for the pseudo-absences separately. The comparison looked at

sensitivity (proportion of presences correctly predicted) and

specificity (proportion of absences correctly predicted), respec-

tively. Note that a threshold value had to be selected in order to

convert continuous model predictions into a discrete prediction

L. Gallien et al.
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of presences or absences. A threshold of 0.5 is not usually

optimal when model outputs are true probabilities (Santika,

2011), but given that the outputs were the agreements between

models, we selected this value in order to make sure that the

majority of model agreements were decided (i.e. at least half of

the models agree), because we wanted to create neither conser-

vative nor liberal predictions.

The estimation of a species’ stage of invasion was inferred

according to the theoretical framework displayed in Fig. 1 (step

3). It is based on a comparison of the predictions made by the

models at the global and at the regional scale for each observed

presence in the French Alps. Whether the observed presence is

predicted as a presence or an absence in one or both models can

theoretically relate to the stage of invasion for each invader’s

population. In addition, for each species we estimated its range

filling in the French Alps (regional scale). We compared three

pairs of data in the geographical space: (1) the observed pres-

ences against the regional model predictions (Svenning & Skov,

2004); (2) the observed presences against the global model pre-

dictions; and (3) the regional against the global model predic-

tions. We used these comparisons as proxies to assess: (1) how

well species currently fill their projected regional niche; (2) how

well species currently fill their projected global niche; and (3)

how (dis-)similar are the regional and the global niche projec-

tions. In order to have comparable inputs (occurrence, regional

and global projection resolutions), we used a grid at 2.5′ reso-

lution (i.e. the global model resolution) where the pixel occu-

pancy of the regional model at 100-m resolution and the

observations were scaled up: if at least one of the pixels at 100-m

resolution was occupied then the aggregated pixel was consid-

ered to be occupied.

RESULTS

Model performances

Global models showed good performances at the global scale

(AUC > 0.8 and TSS > 0.6 for all species), but low to moderate

performances at the regional scale (AUC between 0.15 and 0.8;

TSS between 0 and 0.5; Fig. 2a). In other words, an invader’s

observed presences at regional scale did not fill the ranges pre-

dicted by the global models (absences within and/or presences

outside of the projected niches). Global-scale information alone

was thus not sufficient to predict regional-scale distribution of

invaders.

The comparison of the performance of the two regional mod-

elling approaches (weighted versus unweighted) revealed that in

78% of the cases, weighting the pseudo-absences significantly

improved discrimination between areas where the species was

observed as being present and where it was not recorded (pseudo-

absences) (Fig. 2b). This difference was essentially due to the fact

that: (1) presences were generally equally predicted by the

unweighted model when they occurred outside of the global

niche, but (2) absences were better predicted by the weighted

model (Fig. 2c).

Stage of invasion

The comparison of the performance of the global and regional

models with the aim of inferring the stage of invasion was only

carried out using the regional model with weighted pseudo-

absences given that its performance was better (or equivalent) to

the unweighted model in all comparisons (Fig. 2b).

Using the proposed theoretical framework (Fig. 1) we com-

pared the invader’s (global and realized regional) niches with

observed presences and inferred the current stage of invasion for

our studied species from this comparison. In general, four situ-

ations were distinguished (Fig. 1): (1) species with stabilizing

populations in the region (e.g. Panicum capillare), for which the

observed presences were included in both observed regional and

global niches; (2) species that are probably undergoing rapid

local adaptation (e.g. Ailanthus altissima, Artemisia annua), for

which many observed presences were within the regional niche

but outside of the global niche; (3) species that are engaged in

the colonization process (e.g. Solidago gigantea, Buddleja

davidii), for which many observed presences were outside of the

regional niche but within the global niche; and (4) species with

populations at different stages of invasion (e.g. Sorghum

halepense), for which observed presences were both within and

outside of both the regional and global niches. None of the

species was found to only have sink populations in the region,

probably because we selected species with at least 200 occur-

rences (see Appendix S1 in Supporting Information for the

results on the 27 species).

Range filling and risk of invasion

The level of range filling in the French Alps complemented the

information on the stage of invasion for all species (Fig. 3,

Appendix S1). Four situations were distinguished: (1) species

at quasi-equilibrium with stabilizing populations widely dis-

tributed over the entire regional niche projection (e.g. P. cap-

illare), representing a low risk of invasion in the near future;

(2) species with stabilizing populations but not filling the

entire regional niche projection, representing species that

could be classified at risk of invasion in the future because not

all suitable environments have yet been occupied; (3) species in

disequilibrium due to local adaptations outside of their global

niche; (4) species in disequilibrium due to a colonization

process. In the specific case of species with populations under-

going local adaptations, if the regional niche projection was

filled by presences (e.g. Ailanthus altissima) these species could

be considered as having a higher risk of spread than if it was

not filled (e.g. Artemisia annua). The assumption behind it is

that a filled niche projection provides more opportunities for

gene flow between populations that could increase the spread

of the adaptations. In the case of species undergoing a coloni-

zation process, if the regional niche projection was filled by

presences (e.g. B. davidii), then these species could be consid-

ered as having a lower risk of spread than if the regional niche

projection was not filled (e.g. Solidago gigantea) because the

suitable but still unoccupied sites were rare.
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DISCUSSION

The conceptual and statistical improvement proposed herein

relies on the recognition and use of the multiple regional niches

the species exhibited in their global distribution (Gallien et al.,

2010). It makes it possible to obtain the most complete estimate

of a species’ ecological niche from observational data. The use of

the global niche allows us to simultaneously obtain a better

(a)

(b)

(c)

Figure 2 Comparison of model performance. (a) Global model performance (area under the receiver-operating characteristic curve, AUC)

for global versus regional data. (b) Regional model performance (AUC) for weighted versus unweighted pseudo-absences (PA), where filled

circles represent significant differences and open circles non-significant differences. (c) Sensitivity and specificity of the two regional models

within (G1) and outside (G0) of each species’ global niche. The diagonal lines show the values of identical performance between the

models compared.
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estimation of a species’ climatic limitations, and to realistically

remove potentially false absences in the regional pseudo-

absence datasets. Indeed, because both biotic and abiotic condi-

tions differ between regions and because species climatic

tolerances may change (e.g. local adaptation, genetic drift or

phenotypic plasticity) the observed niches estimated in different

regions (both native and invasive) may vary substantially. Using

only one estimate of realized regional niches (e.g. the native

range) may misrepresent the species’ environmental preferences

and result in incomplete predictions (Broennimann et al., 2007;

Fitzpatrick et al., 2007).

Weighting the pseudo-absences at a regional scale using infor-

mation from the global model increased the predictive accuracy

of the regional models by: (1) decreasing the influence of

(regional) false absences, (2) invariably accepting true (regional)

presences, and (3) letting the regional climate, soil and land use

refine the regional niche estimation. Other approaches have been

proposed to constrain pseudo-absence selection, for example

choosing only those found outside the species’ climatic tolerance

(e.g.Le Maitre et al., 2008),or selecting pseudo-absence data with

the same sampling bias as the one of the observed presence

datasets (e.g. Phillips et al., 2009). Although these approaches

have the advantage of considering the species’ global niche, or

diminishing the sampling bias, the former does not ensure the

model to matches observed regional distribution more closely

and the latter does not resolve the problem of false absences.

Our proposed framework is more than just a model improve-

ment as it has the potential to advance our understanding of

species invasion and associated risk. Based on theoretical expec-

tations, under the assumption that novel climatic conditions do

not largely exceed those present in the global distribution, and

when using adequate data, the framework provides insights into

characteristics of invader populations in a region, as to whether

they are: (1) at quasi-equilibrium, (2) potentially adapting to

new local conditions, (3) still in the colonization process, or (4)

represent sink populations (Fig. 3). These four different cases

can then be formally tested using observations or common-

garden experiments.

For instance, Panicum capillare L. (an annual tropical gram,

Poaceae family) is judged currently to be at low risk of expan-

sion in the French Alps. Most of the species’ populations are

‘stabilizing’ and fill the regional range (Fig. 3). This corroborates
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Figure 3 Invasion stages for five invasive species according to our novel methodological framework (Fig. 1). For each species’ observed

occurrence we plotted the values of the global and regional model predictions, and mapped their geographical representation. Global niches

are shown in blue, overlapping regional and global niches in orange, regional niches in red, areas outside of both niches in grey, and

observations of occurrences are represented with black dots.
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the history of the species, introduced 250 years ago together with

corn seeds. It does not spread a long way from the cornfields but

has large seed banks and long dormancy making the popula-

tions relatively stable.

Amongst the set of investigated invasive species, some are

well predicted by the regional model but also seem to occur

outside of their global niches, such as Ailanthus altissima

(Mill.) Swingle and Artemisia annua L. (Simaroubaceae and

Asteraceae family, respectively; Fig. 3). One basic explanation

for this pattern could be methodological. The estimated global

niche might not be sufficient for describing a more complex

niche (e.g. it may be missing important variables). Another

non-exclusive explanation is that individuals within these

populations have managed to modify their environmental

preferences. This could be due to increased genetic variation

from multiple introductions generating genetic novelties

through recombination (e.g. Lavergne & Molofsky, 2007),

genome characteristics for rapid adaptation (e.g. neopolyp-

loidy; Ramsey & Schemske, 2002) or hybridization with

adapted native congeneric species (cf. Dietz & Edwards, 2006).

These populations are of particular concern as their distribu-

tions are likely to continue to expand in the near future. Inter-

estingly, Ailanthus altissima fills a larger part of its regional

range than Artemisia annua, suggesting that populations of

Ailanthus altissima that rapidly adapted outside of the global

niche have more chance of subsisting and spreading along the

colonization front (e.g. via mutation surfing; Travis et al.,

2010). This fits with the characteristics of A. altissima, a tree

introduced 300 years ago for ornamental reasons, which has a

high potential of tilling for efficient short-distance dispersal. In

contrast, Artemisia annua is known to have sporadic popula-

tions that are less likely to adapt locally.

Similarly, the risk of future spread can be relatively different

for two colonising species such as S. gigantea Aiton (Asteraceae)

and B. davidii Franchet (Buddlejaceae). Solidago gigantea has a

wider projected regional niche but it has filled it regional niche

less than does B. davidii. This broad geographical scatter of the

former probably results from multiple independent introduc-

tion events.

Finally, individual populations of the same species may be at

various stages of invasion, like for example Sorghum halepense, a

subtropical graminoid species. This species harbours a combi-

nation of functional trait advantages (perennial, C4 metabolism

and vegetative reproduction) and is able to spread and colonize

away from cultivated fields, and eventually develop adaptations

to new environmental conditions (with the possibility of

hybridisation with Sorghum bicolor that is cultivated in the

region, Morrell et al., 2005).

There are obviously possible pitfalls associated with the pro-

posed framework that need to be carefully discussed. For

instance, the capacity of the framework to determine the degree

of range filling will ultimately depend on the heterogeneity of

the regional environment. In highly heterogeneous environ-

ments, a model calibrated at the coarse (global) resolution could

fail to fully capture the environmental variability that is observ-

able at the fine (regional) resolution. In our case study, we

up-scaled our projections from the regional model to the same

resolution as the global model. This ascertains that the number

of occupied pixels becomes comparable, and it gives a first

approximation of a species’ range filling. However, in a perfect

case, the global and regional models should be calibrated at the

same resolution with exactly the same variables (climate, land

cover, soil information). Having the species distribution and the

climate data available at a 100-m spatial resolution at the global

scale is currently too demanding. In addition, sampling bias at

both global and regional scales could also influence the species

niche estimations and thus affects the overall relevance of the

analysis. In the case of a strong sampling bias, we would advise

the collection of additional data in order to lessen the bias before

applying the proposed methodological framework.

In conclusion, we discuss how the proposed framework could

also be used to generate testable hypotheses that link the concept

of ecological niche to invasion ecology.

1. What makes a good invader? Identifying which functional

traits characterize invasive species has a long history in ecology,

and some key traits have been consistently reported as favouring

invasion (e.g. clonality, high seed production, hybridization

potential; Pyšek & Richardson, 2007). Our framework could

make it possible to identify, for a large number of species,

whether invaders suspected of having evolved their niches (e.g.

Beaumont et al., 2009) have certain specific characteristics (e.g.

mean functional traits, large intra-specific functional trait vari-

ability, phylogenetic position in a rapidly evolving clade, gener-

alist versus specialist species).

2. Could we retrieve the invasion history and dynamics? Being

able to re-create the invasion history of a particular species and

understand its dynamics is crucial. This is especially true for pest

species undergoing evolutionary adaptation in their adventive

range. Our framework is capable of identifying the populations

that are likely to undergo rapid adaptation, which could further

be sampled for trait measurements and genetic analyses (e.g.

Albert et al., 2010). In the case of a known invasion history,

our framework can help identify which factors contribute to

colonization and adaptation or understand whether stabilizing

populations are acting as source of gene flow toward non-

equilibrium populations.

3. The interactions between the invader and the recipient native

community. The reasons why some native communities are

more resistant to invasion than others have been under investi-

gation since Darwin’s time (Darwin 1859), but this area still

requires research (Thuiller et al., 2010). Our proposed frame-

work can be used here to test new hypotheses about the inter-

actions between the native and invasive species, such as whether

the types of interaction differ according to the population’s

stage of invasion.
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