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INVENTORY ESTIMATION ON THE MASSIVELY 
PARALLEL PROCESSOR 

PETER D, ARGENTIERO, JAMES P, STRONG, 
DAVID W, KOCH 

NASA/Goddard Space Flight Center 

ABSTRACT 

This paper describes algorithms for efficiently computing inventory 
estimates from satellite based images. The algorithms incorporate a one 
dimensional feature extraction which optimizes the pairwise sum of Fisher 
distances. Biases are eliminated with a premultiplication by the inverse of 
the analytically derived error matrix. The technique is demonstrated with 
a numerical example using statistics obtained from an actual LANDSAT 
scene. 

Attention was given to implementation ofi the Massively Parallel proc· 
essor (MPP). A timing analysis demonstrates that the inventory estimation 
can be performed an order of magnitude faster on the MPP than on a con­
ventional serial machine. 

I. INTRODUCTION 

Satellite borne remote sensing instruments of the future will be char-
acterized by a substantially increased 

• data volume 
• data rate 
• number of spectral bands 
• spatial resolution 
To accommodate the 1980-1990 mission req uirements, a large increase 

in data processing efficiency is required. The NASA End-to-End Data Sys­
tems'{NEEDS)programlis an attempt to satisfy this need. Part of the 
NEEDS program is the development of specialized information extraction 
algorithms and matched computational architectures which can be used to 
reduce data to information as soon as pOSSIble in the end-to-end data proc­
essing operation. In support of this effort, attention was focused on appro­
priate inventory estimation procedures. The technique discussed in this 
paper relies on a one dimensional feature extraction and classification. Re­
sulting inventory estimates are corrected for bias by premultiplying by the 
inverse of the analytically derived error matrix. 

The procedure is highly parallel and attention is given to the problems 
and potential of implementation on a large scale parallel processing machine. 

Section 2 gives a mathematical deSCription of the inventory estimation 
technique. Section 3 provides a demonstration using class statistics obtained 
from an observed LANDSAT scene. Section 4 describes potential implemen­
tation on the Massively Para1lel Processor2,3 in development under NASA 
sponsorship and scheduled for delivery in 1982. Section 5 summarizes the 
results. Further details are given in appendices A aad B_ 

2. MAmEMATICAL DEVELOPMENT 

Assume that a decision rule With error matrix C has been implemented 
I on a K class classification problem. Let P be a K vector of correct proportions 
of the observation set accounted for by ea!;h of the K classes_ Let P be the 
K wmensional vector of proportions estimated by applying the decision rule 
and counting the number of samples allocated to each class. One can show 
that 

U.S. Governmentwor\< not protected by U.S. copyright. 

(I) 

One can also show that the diagonal terms of the covariance matrix P 
are bounded by I IN where N is the total number of samples. Hence, for the 
large sample size typical of satellite-based remote sensing scenes the variances 
of the individual terms ofP are negligible. It follows that if the error matrix 
C is invertible, a very accurate estimate ofP can be obtained by premultiply­
ingP by C-l. 

The above results imply that appropriate criteria for the selectio~ of 
decision rule for inventory estimation are 

(A) computational efficiency 
(B) the computability of the associated error matrix 
(C) the invertibility of the associated error matrix 

With regard to criterion B it is worth mentioning that there is no practical 
algorithm for computing the error matrix of a multidimensional Bayes clas­
sifier. For this reason, as well as for reasons of computational effiCiency, 
the conventional Bayes or maximum likelihood decision rule is not an opti­
mal choice for use in inventory estimation. However, it is possible to ana­
lytically compute the error matrix associated with a one dimensional Bayes 
decision rule. Details are in Appendix A. Hence, in order to satisfy criteria 
A and B, the search for an appropriate decision rule was limited to one di­
m~nsional feature extraction and Bayes classification procedures. With re­
gard to satisfying criterion C, there is no way of choosing a decision rule 
which insures that the associated error matrix is invertible. To enhance the 
likelihood that the associated error matrix be invertible, it is important to 
notice that there is a close connection between the accuracy of a decision 
rule and the conditioning of its error matrix. Hence, it is logical to choose 
the coefficients of our one dimensional feature extraction and Bayes classi­
fication which optimize a class separability measure. For instance, Guseman 
and Walton4 suggest that the global probability of correct classification be 
used as a class separability measure. We have found that a simpler and com­
putationally more tractable separability measure is adequate. 

Assume that our classification problem involves K classes and that the 
observation set is N dimensional. Let Y be the N dimensional vector which 
defines the transformation to one dimension. Each N dimensional sample 
X i~ mapped onto a scalar Y by 

(2) 

The classification problem can be defined as follows: Assume K one dimen­
sional normal random variables N(Uj ,oi)' i-I;2, ... K. The required and 
variances are de fined as 

Ui =y™
i
,i=I,2, ... K (3) 

o~ =VT1:i Y,i= 1,2, ... K 

Where Mi and 1:i are respectively the mean and covariance matrix associated 
with the i th multidimensional class. The task is to assign the scalars defined 
by the left side of eq. 2· to one of the populations whose a priori statistics 
are given by the left side of eq. 3. To obtain a class separability measure, 
defme the Fisher distanceS between one dimensional populations i and j as 
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(U. - U.)2 
f .. =~ 
lJ a~ + a~ 

1 J 

(4) 

The class separability measure for the set of one dimensional classes 
is the pairwise sum of Fisher distances given by 

k i-I 

f= L: L: fjj (5) 

i=2 j=1 

The left side of equation 5 is a homogeneous function (independent of 
scale) ofV. Hence, to perform a Newton-Raphson iteration procedure to 
locate a V which optimizes f, it is necessary to constrain the solution to the 
unit sphere by means of the usual Lagrangian multiplier technique. We also 
require first and second variations of f with respect to V. They can be ob­
tained by means of compact and easily computed matrix expressions. Hence, 
attention can be restricted to linear one dimensional feature extraction and 
Bayes classification procedures. This approach to inventory estimation can 
be outlined as follows: 

(A) Choose the coefficients of a one dimensional feature extraction 
transformation which maximizes the sum of pairwise Fisher distances and 
use the coefficients to linearly map each sample onto one dimension. 

(B) Obtain one dimensional a priori class statistics from training 
sample statistics by applying the usual laws for the behavior of first and 
second order moments under linear transformations. 

(C) Employ a normality assumption and allocate the one dimensional 
samples among classes using the conventional Bayes or maximum likelihood 
decision rule. 

(0) Construct a vector of inventory estimates by determining the pro­
portion of the total sample set allocated to each class. 

(E) Compute the error matrix of the one dimensional Bayes decision 
rule. 

(F) Premultiply the vector of inventory estimates by the inverse of 
the error matrix to ob tain unbiased estimates. 

3. A NUMERICAL SIMULATION 

To insure that the computational scheme described in the previous 
section is compatible with small computing machines, the procedure was 
incorporated into a computer program on the HP9852A programmable desk 
calculator. The program is in the HP basic language and occupies about . 
4000 bytes of the available memory. The input to the program consists of 
N dimensional mean vector and covariance matrices, and convergence con­
trol parameters for the constrained Newton-Raphson optimization procedure. 
The output of the program consists of an N dimensional vector V which de­
fines the one dimensional feature extraction, the means and variances of the 
resulting one dimensional classes, and the error matrix. 

For this numerical simulation class statistics were obtained from a 
Landsat 2 scene obtained over Finney County, Kansas during May of 1975.6 

The five classes consisted of two types of winter wheat and three confuser 
crops. The class statistics were obtained from well known sites in Finney 
County. The four channels are those of the Multispectral Scanner on board 
the Landsat 2. The sizes of the training sample sets range from about one 
hundred to about three hundred. The class statistics are shown in Table I. 
~ong the several factors which limit the accuracy of a Bayes decision rule 
m classifying remote sensing data are 

(A) Significant deviations of class populations from normality 
(B) Errors introduced by small sample sizes 

. (C) Training samples are not randomly selected from the populations 
m question and, thus, are not representative. 
... Because this simulation ignores such factors, misclassification proba­

bilities will be somewhat optimistic compared to what might be obtained in 
an actual application. To measure the quality of our feature extraction and 
classification procedure it was decided to compare its performance to that 
ofa Baye d " . s eClSlon rule operating on all four channels of the Multispectral 
~canner ~ata_ This deciSion rule is optimal in the sense that it minimizes 

obal rntsclassification probability _ The performance of the four dimensional 

Bayes classifier was determined by means of a monte carlo program written 
for the HP9852A programmable desk calculator. The assumptions of the 

monte carlo simulation were 
A. The five class populations are normally distributed 
B. The class statistics are those of Table 1 
C. A priori class probabilities are equal 
O. Monte carlo sample sizes are sufficiently large that sampling error 

is insignificant. 

Table I 
Statistics of LANOSAT-2 MSS Signatures Acquired May 1975 

Over Finney County, Kansas 

(i) 184 Pixels of Non-Wheat 

Covariance Matrix 

Channel Mean Std. Dev. I 2 3 

1 27.7 3.6 12.7 SYMM 
2 24-5 8.0 25.0 63.4 £ T R. Ie 

3 75.1 20.4 -51.4 -140.7 415.5 

4 

4 37.4 12.0 -30.8 -84.2 242.1 143.4 

(2) 333 Pixels of Non-Wheat 

1 34.7 3_6 12.7 

2 40.4 5.5 17.2 30_0 

3 47.0 5.2 8.8 9.9 27.3 

4 19.7 2.5 0.6 -1.2 10.4 6.0 

(3) 324 Pixels of Non-Wheat 

1 333 1.6 2.6 

2 38_5 2.7 2.6 7-2 

3 44.1 6.4 4.3 2-5 41.2 

4 18.7 33 1.9 03 19.9 11.1 

(4) 106 Pixels of Winter Wheat 

1 28-5 2.4 5.8 

2 27-5 4.0 7.4 16.2 

3 51.2 5.2 -6.0 -14.4 26.7 

4 24.0 3.0 -4.3 -8.9 14.1 9.0 

(5) 127 Pixels of Winter Wheat 

1 21.5 2_7 7.3 

2 16.7 42 103 18.0 

3 54.9 5.1 4.1 4.9 26.0 

4 29.1 2.8 -1.0 -2.8 11.4 8.1 

, , 

One thousand samples were obtained from each class and classified 
into one of the five classes according to a four dimensional Bayes decision 
rule. The element in the ith row and the ith column of the confusion matrix 
was estimated as the proportion of samples chosen from the jth class which 
were assigned to the ith class_ The estimated error matrix is shown in Table 
2. The table also shows the expected values of inventory estimates as ob­
tained from the four dimensional Bayes decision rule. In this case, expected 
values of inventory estimates can be obtained by averaging the rows of the 
error matrix. From Table 2 it is also seen that the combined misclassifica­
tion probability for classes 4 and 5 which are associated with winter wheat 

is 0.1. 
The statistics shown in Table 1 were used as input to the one dimen­

sional feature extraction and classification program. For this simulation, a 
priori class probabilities were assumed to be equal. Hence, the correct value 
for each class inventory estimate is 0.2. The resulting error matrix along 
with expected values of inventory estimates are shown in Table 3. The error 
matrix was computed analytically. The combined misclassification proba­
bility for classes 4 and 5 is 0.14_ However, expected values of inventory 
estimates for winter wheat classes 4 and 5 are seen to be considerably worse 
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Table 2 
Error Matrix for Four Dimensional Bayes Classifier 

Class I 2 3 4 5 

I 0.81 om om om 0.02 
2 0.02 0.58 0.12 0.03 0 
3 0.08 0.34 0.84 0.03 0 
4 0.07 0.07 0.03 0.88 0.06 
5 0.02 0 0 0.05 0.92 

Expected 
Values of 
Inventory 0.17 0.15 0.26 0.22 0.20 

Estimate 

Table 3 
Error Matrix for One Dimensional Feature Extraction and Bayes Classifier 

Class I 2 3 4 5 

I 0.22 0 0 0 0.04 
2 0.07 0.39 0.20 0.03 0 
3 0.04 0.54 0.78 0.04 0 
4 0.34 0.07 0.02 0.84 0.08 
5 0.34 0 0 0.09 0.88 

Expected 
Value of 
Inventory 0.05 0.14 0.28 0.27 0.26 

Estimate 

than corresponding estimates for the optimal four dimensional Bayes classi· 
fier. The primary reason is errors of commission introduced by misclassifi­
cation of samples from class I into classes 4 and 5. But the error matrix can 
be used to correct inventory estimates to yield unbiased estimates. Let P be 
a five dimensional vector representing inventory estimates for the five classes. 
An unbiased inventory estimate Po for these classes can be obtained as 

where C is the error matrix given in Table 3. 

An explicit form for C-1 is 

[" -0.01 0 
-1.02 4.00 -1.02 

C-l = 0.54 -2.75 1.99 
-1.73 -0.27 0.04 
-1.70 -0.03 0 

From Table 3 we have 

Also 

The above equations yield 

u'o~ 0.14 
E(P) = 0.28 

0.27 
0.26 

[0'2~ 0.2 
0.2 
0.2 
0.2 

0.Q2 
-0.10 
0.01 
1.20 

-1.13 

-O.22J 0.06 
-0.03 
-0.03 
1.23 

This result is a logical consequence of the unbiased property of Po as an 
estimator. But the results of this simulation serve as a useful numerical 
check on the validity of our development. 

4. IMPLEMENTATION ON THE MASSIVELY PARALLEL 
PROCESSOR 

The Massively Parallel Processor (MPP) as shown in figure 1 is a 128 
X 128 element array processor with its associated control unit, buffers, 
host computer, and disk storage. The array processor is of 16384 identical 
processing elements which perform identical operations simultaneously 
under control of the Array Control Unit. The processing elements have the 
following characteristics: 

(A) Each performs bit serial arithmetic 
(B) Each has 1024 bits of memory 
(C) Each is connected to its neighboring processing element to the 

left, right, above, and below_ 
Sixteen of the processing elements have data connections directly to the 
Array Control Unit, a feature which is used when summing the values in an 
array. While bit serial operation tends to slow prOCessing compared to byte 
or word parallel operation, the processing of 16384 elements in the array 
simultaneously gives a net increase in speed for arithmetic operations of 
over two orders of magnitude or more. The connections between each 
processing element and its neighbors makes the MPP ideal for processing 
image data where identical operations are performed at each picture ele­
ment. For image processing, each processing element in the array processor 
is assigned to a picture element. Several processing tasks of the algorithm 
descnbed in the previous section lend themselves easily to parallel process­
ing on the MPP. These tasks are: 

(A) Reducing the dimensionality of the data by performing the 
operation Y = VTX. 

(B) Evaluation of the maximum likelihood function. 
(C) Classification of the picture elements in the image based on the 

value of the maximum likelihood function. 
(D) Performing the inventory by summing the picture elements in 

each class. 
In the following subsections, an estimate is given of the processing time re­
quired by the MPP for each of these tasks. 

18 DATA 
LINES 

CONTROL 

HIGH SPJ:ED DATA SOURCE 
(DISK) 

PERIPHERALS 

Figure 1. Massively Parallel Processor 

t 
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4.1 Multiplication by the Reduction Vector 

If the reduction vector is defmed as V = v1' v2 ' v3 '" vn and the 
multiband image data is defmed as X = xl' ~, x3 ' .. xn ' where "I is the 
image in band i, then Y = VTX of the previous sections is given by: 

In the MPP, each xi is a 128 X 128 array of integer data. Each vi is to be a 
scalar constant. Based on bit serial arithmetic and the characteristics of the 
MPP processing element, the calculation of Y would require: 

n • s • t 
Ty = -- + 3n (s + t + log2n) X 1O-1Jlsec (6) 

2 

where n is the number of bands, s is the number of bits in the data of 
each band, and t is the number of bits in the scalar constant. This equa­
tion, as well as all other equations for processing times on the MPP, is de­
rived in Appendix B. Note that the bit serial nature of the MPP's arith­
metic operations makes all equations dependent on the bit length of the 
data involved. Letting n represent 4 bands of data and using typical val­
ues of s = 8 image bits, t = 20 scalar bits, the processing time required to 
perform the multiplication and summing on the MPP would be 68 micro­
seconds. This is the amount of time required for processing a 128 X 128 
array of data. Consider a satellite based image approximately 4000 X 4000 
picture elements. Performing the inventory on such an image would require 
processing about one thousand 128 X 128 arrays. Thus the total time re­
quired for the MPP to multiply the 4 bands oCa satellite based image by a 
reduction vector would be about 68 milliseconds. 

4.2 Evaluation of the Maximum likelihood Function 

The equation for the maximum likelihood function is 

_ 2 I 
G. - (Y - U.) X '2 + log c .. 

I 1 OJ 1 

In this equation, Gi and Yare 128 X 128 element integer arrays and U., 
I/ar, and log cj are all scalar constants. 1 

The time required for the MPP to evaluate the maximum likelihood 
function array Gj for K classes has been calculated as: 

TE = K [3S + s ~ s + 2s2' t + 3 X larger of 2s + t or m J X 10-1 fJsec (7) 

where s is the bit length of Y and Ui' and t and m are the bit lengths of I/ar 
and log ci respectively. For ten classes and typical data bit lengths of s = 8, 
t = 16, and m = 16, the calculation of 10 maximum likelihood function 
arrays would require 232 microseconds. Processing a 4000 X 4000 satellite 
based image would require 1000 X T E or 232 milliseconds. 

4.3 Classification of the Elements in the Array 

A parallel processor algorithm developed for maximum likelihood 
classification of images with the MPP generates a binary array correspond­
ing to each class. Such a binary array Bx will have a logical I in each ele­
ment that belongs to class k and a logical zero in all other elements. That is: 

'\ = 1 where Gk ;;' all other Gj , k"* j 

'\ = 0 where Gk < any other Gj , k"* j 

To generate each binary array, the MPP algorithm compares the maximum 
likelihood function array for each class to the maximum likelihood function 
array for all other classes. The above conditions are applied to form the 

binary arrays. The algorithm is described in more detail in Appendix B. 
The time required for the MPP to generate the binary 128 X 128 arrays for 
K classes is: 

x 
Tc = K(5s + I) + L 2(i - I) X 10-1 fJseconds (8) 

i=2 

where S is the bit length of the maximum likelihood function array. For 
typical values ofK = lO and s = 8, Tc = 50 fJseconds. To perform the classi­
fication procedure on a 4000 X 4000 satellite based image would reqUire 
1000 X TC = 50 milliseconds. 

4.4 Performing the Inventory 

A parallel algorithm which performs the inventory task uses a "partial 
sum" array Ps{i) for each class. 

As the binary arrays for each class are calculated for each 128 X 128 
sub array of the 4000 X 4000 image, they are added to the corresponding 
partial sum array. After n sub arrays have been processed, the partial sum 
for each class is given by 

n 

PS(i) =L B(i)j 

j=1 

where B(i)j is the binary array for class i evaluated at the jth 128 X 128 sub 
array. This operation on the MPP has been calculated to reqUire: 

TpS = [2n + 210g2 e X ((JoSe n) + I - n)] X 10-1 fJsec (9) 

where n is the number of 128 X 128 sub arrays. If n = 1000, T PS = 1905 
fJseconds or about 2 milliseconds for a 4000 X 4000 image. 

After all sub arrays of the 4000 X 4000 image have been classified, 
the partial arrays PS(i) for each class must be integrated or "summed over" 
in order to get the total number of picture elements in each class. In the 
MPP, this summing procedure makes use of the connection paths between 
the array processing elements. The time required for this summation is: 

5 

Ts = L s + 10 + (2s + 2i + 3) (3 + 2i-l) 1O-1fJseconds (10) 

j=1 

where s is the bit length of the partial sum array. The maximum value s can 
have for a 4000 X 4000 image is 10 assuming a particular picture element is 
in the same class in each of the 1000 sub-arrays. Using this value, the maxi­
mum value for T, is 138 JlS. Performing the summation for 10 classes could 
take 1.4 milliseconds. 

4.5 Timing Estimates 

The total amount of time required for the 4 tasks is approximately 
(68 + 232 + 50 + (2 + 1.4» ~ 353 milliseconds. Thus, excluding I/O time, 
a 4000 X 4000 satellite based image could be inventoried in less than one 
half second using the Massively Parallel Processor. 

This compares to a CPU time of 13 minutes for the same task using a 
360-95 serial machine programmed in Fortran. Assuming a 10 to 1 reduc­
tion in processing time for a serial machine by resorting to an efficient 
assembly language code, one half second is still two orders of magnitude 
less time than 1.3 minutes. However, I/O times must also be considered. 
At the time of delivery of the MPP, disk storage devices are expected to be 
available with on the order of 40 megabytes per second transfer rates. Mak­
ing this assumption, a 4 band 4000 X 4000 satellite image could be trans­
fered into the MPP in less than 4 seconds. Including I/O time one has a 
ratio of about 1.3 minutes to 4.4 seconds. The processing speed factor 
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between the MPP and a general purpose serial machine is still greater than 
10 to I. This ratio will have a significant impact on any operational inven­
tory estimation requirement. 

5. SUMMARY 

This paper has described special purpose algorithms and matching 
computational architectures for efficiently computing inventory estimates 
from satellite based images. The algorithms incorporate a one dimensional 
feature extraction which optimizes the pairwise sum of Fisher distances. 
Estimation biases are connected with a premultiplication by the inverse of 
the analytically derived error matrix. The technique is demonstrated with 
a numerical example using statistics obtained from an actual LANDSAT 
scene. 

Attention was given to implementation of the inventory estimation 
algorithms on the Massively Parallel Processor. Timing computations demo 
onstrate that a 4 band 4000 by 4000 image can be processed to estimate 
inventory for 10 classes in less than .5 sec when input output considerations 
are neglected. When input output time is included the speed of the MPP is 
still greater by an order of magnitude when compared to a conventional high 
speed serial machine. These results demonstrate the value of large scale par­
allel processing machines in the performance of standard image processing 
operations in an operational environment. 
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APPENDIX A 
AN ALGORITHM FOR COMPUTING THE ERROR MATRIX OF 

A ONE DIMENSIONAL BAYES DECISION RULE 

Assume K normal random variables 1!(Uj, OJ), i = 1,2, ... Keach 
of dimension one. Samples are chosen from these populations according 
to a probability law defined by a priori class probabilities Pj' i = 1, 2, ... 
K. The conventional classification problem is to classify each sample by 
assigning it to the class from which it was chosen. In this case the Bayes 
classifier can be obtained. by defining K functions, each with one dimen· 
sional argument 

(x -ui . 
--- + £no~ -HnP.,i= 1,2, ... K 

2 I I 

OJ 

(I) 

The scalar x is assigned to the class indexed by i if and only if 

(2) 

The decision rule defmed by equation 2 can be shown to minimize risk under 
a zero-one loss matrix. It also maximizes liklihood. Hence it minimizes the 

global probability of misclassification. 
With any decision rule one can associate an error matrix D defmed as 

D(ij).... conditional probability that a sample chosen 
from class i is assigned to class j under a given 
decision rule 

(3) 

Our task is to provide an algorithm for computing the error matrix 
associated with the Bayes decision rule. For simplicity of exposition we 
assume that lfi * j, OJ * OJ' It is not difficult to modify results to account 
for duplications. 

For each j, defme the set Tj as follows: 

Tj = {all x such that ~(x)';; fj(x), i = 1,2, ... K} (4) 

Then 

(5) 

It remains to provide an explicit description of the sets Tj , j = 1,2, ... K. 
For each i';; K andj "K defme the sets {jjj as 

(6) 

Then 

(7) 

From equations I and 2 it follows that the boundary points of {jjj are the 
quadratic equation 

(8) 

with 
I 1 

A=---

ol ~ 
(9a) 

2uj 2uj 
B=---

of of 
(9b) 

u~ u~ o~ 
I 1 I 

c=~--+£n- (9 c) 

o~ o~ o~ 
I I I 

Defme the boundary pOints of (jiJ as 

_ . [-B+JB2 -4AC -B-JB
2

_4AC] 
Tl .. - mm , ---,.----

,IJ 2A 2A 
(lOa) 

(lOb) 

Hence 

(11) 

It will be convenient to represent the set of boundary points of an arbitrary 
set S by the symbolism b(S). From equation II 

(12) 
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From equations 7 and II it follows that the set Tj can be represented as the 
disjoint union of a fmite set of intervals and that 

beT-) c u b(f3 .. ) 
J i lJ 

(13) 

When the elements ofb (Tj) are linearly ordered according to size, left sided 
and right sided boundary points must alternate. Hence, to reconstruct the 
set Tj it is sufficient to know which elements of Y b(f3i .) are elements of 
b(Tj) and the classification of the smallest element in b~j) as either a left 
sided or a right sided boundary point. For each element ZE If b(f3ij)' z is 
placed in b(Tj) if and only if for each i"; K 

TI,ij"; z"; T2,ij' if aj < ai 

z"; T I,ij or z;;' T2,ij' if aj > ai 

Order the elements ofb(Tj) by increasing size to create the indexed set 
{Sj,m} m' There exists an Q ..; 2 and an i"; K such that 

(14) 

(15) 

Classify Sj,l as either a left sided or right sided boundary point according to 
the following rule 

Q = I and aj < ai} 
-+ left sided 

Q = 2 and aj > 11; 

Q = I and ai < aJ} 
..,. right sided 

Q = 2 and ai > aj 

(16) 

In order to conveniently compute the integral on the right side of equation 
5, transform the indexed set {~;m}m into the indexed set {rj,m}m by the 
mappmg 

(17) 

Let q be the index of the largest element in {rj,m}m and let d(x) represent 
the distribution function of the standard normal random variable. Then 
D(ij) can be computed as follows when ~,I is a right sided boundary point 

q-2 

D(ij) = I - d(rj,q) + d(rj,l) + L [d(rj,HI) - d(rj,R») (18) 

R=2 

and when Sj,l is a left sided boundary point 

q-I 

D(ij) = L [d(rj,2+I)-d(rj ,Q») (19) 

R=I 

APPENDIX B 
DERN ATION OF MPP COMPUTING TIMES 

Development of the timing formula for Computing Y = yT x 

As indicated in the paper Y = Y T x is given by 

In the MPP the number of basic clock cycles required to perform mul­
tiplication of an s-bit integer array by a t-bit constant using bit serial opera­
tions is st/2_ To perform n of these products requires n. s '. tf2 cycles. Each 

of the n products has a maximum bit length of s + t bits. The summation 
of two integer arrays in the MPP requires 3 m cycles where m is the largest 
bit length in the two arrays. To calculate the number of cycles required to 
perform the n sums, we note that as several numbers oflength Q are summed, 
the result has a maximum bit length of Q + Log2i where i is the number of 
summations. Thus, for n sums of numbers s + t bits long, the maximum bit 
length of the resulting sum is s + t + Log2 n. To get an upper bound on the 
number of cycles required to perform we will assume each sum to be of 
lengths s + 2 + Log2n. Thus, n sums requires less than n X 3 X (s + t + Log2n) 
machine cycles. 

Thus the total number of cycles for computing Y = yT x is Ny = 
[n.s. t/2 + n X 3 (s + t + Log.,). In the MPP, a cycle requires 10-1 micro­
seconds. Thus Ty in the paper is given by: 

Ty = [n •. ~·.t + n X 3 (s + t + IOg2n~ X 10-1 J.lseconds 

Development of the Timing Formula for Computing 
the Maximum Likelihood Function 

The exponent Gi is given by: 

I 
G. =(Y - U.)2 X -+ Logc. 

1 1 2 1 
ai 

where Y is the array previously computed. The variable Ui is a constant. 
On the MPP the subtraction of Ui from Y is performed in 3 m cycles where 
m is the largest bit length among the elements of Y and the constant Ui. 
Squaring the difference array requires n2/2 cycles where n is the bit length 
of the difference array. The bit length of (Y - U i)2 will be twice the bit 
length ofY - Ui' The bit length ofY - Ui will be no more than the maxi­
mum for Y or Ui since both the array and the constant are positive. Using 
the number of cycles required for multiplying by a constant and for addi­
tion given in the previous section, the number of cycles NE required to 
compute the maximum likelihood function is given by: 

s·s 2s • t 
NE = 3s + - + -- + 3 X (Larger of 2s + tor m) 

2 2 

where S is the bit length of the array and Ui ' t is the bit length of I/a? and 
m is the bitlength of Log ci' The length of time required to calculate K 
maximum likelihood functions is therefore given by: 

T E = K~S + s~s + 2s~t + 3 X (Larger or 2s + t or m») X 10-1 J.lseconds. 

Development of the Timing Formula to Classify 
Elements in the Array 

An algorithm for use on an array processor has been developed for the 
classification of points in an image. This algorithm creates a binary array corre­
sponding to each class. The ith binary array will have the value I at the elements 
which belong to the ith class and zeros at all other elements. The algorithm 
assigns all elements of the image to class I initially. It then calculates each 
maximum likelihood function array in order starting from class I to class K. 

At step i where the maximum likelihood function G(i} for class i is 
evaluated, an array Max(i) which contains, at each element, the maximum 
value at that element calculated fo the i-I previous steps is compared 
to G(i). At the elements where G(i) is greater than Max(i} a "one" is as· 
signed to the binary array B(i> corresponding to the ith class. "Ones" as­
signed to these elements in binary arrays up to i-I are removed. Finally 
at the elements where G(i) is greater than Max(i) , the value in G(i) is trans­
fered to Max(i). At the end of K steps all elements of the image will have 
been classified. 

Table I A lists these operations and indicates the number of cycles re­
quired for the MPP to perform the operation. 

1980 Machine Processing Of Remotely Sensed Data SympOsium 
291 



Table lA 
Number of Cycles Required for Generating Classification Arrays 

Operation No. of MPP Cycles 

Compare G(i) to Max(i) , that is: 3s 

Calculate G(i) - Max(r» 

Assign "ones" to B(i) where I 
G(i) > Max(i) 

Remove "ones" from previous 2(i -1) 

B(j's) where G(i) > Max(i) 

Replace elements of Max(i) with 2s 
elements of G(i) where GO) > max(i) 

In this table, s is the number of bits in the arrays G(i) and Max(i). For K 
classes the total number of cycles is: 

K 

Nc = K(3s + 1 + 2s) + L 2(i - I) 

i=2 

At the MPP's clock frequency, this reduces to 

TC= lK(ss + I) + t 2(i - I~ X 10-1 microseconds 

L 1=2 J 
Development of the Timing Formula for 
Performing the Inven torying Task 

In performing the inventorying task, a partial sum array PS(i) for each 
class is updated as each 128 X 128 sub array of the large 4000 X 4000 
spacecraft image is classified. After the classification task is completed on 
each 128 X 128 sub array, the binary array for each class is added to the 
partial sum array for that class. After all the 128 X 128 sub arrays of the 
4000 X 4000 image have been processed, the elements of the partial sum 
arrays contain a subtotal of the inventory sums for each class. The elements 
in each partial sum array must then be summed to obtain the total inventory 
for each class. 

To calculate the number of cycles required to add a binary array to the 
partial sum array one must consider the way in which the number of bits in 
the sum increases as binary arrays are added. The maximum bit length of 
the sum of i one bit numbers is 1 + (first integer less than Log2i). The addi­
tion of a binary array to an m-bit array in the MPP requires 2 m cycles. Thus 
the number of cycles required for adding a binary array to the partial sum 
arrays n times is: 

n 

~SUM =L 2(1 + Llo~i) 
i= 1 

where Lis the symbol for "the first integer less than". Since n gets as large 
as 1000, we will ease our evaluation of it by approximating the above sum 
using the integral equation below as an upper bound. 

MBSUM ;;' In 2(1 + log2i) di 

1 
The integral is evaluated as: 

~SUM ;;. 2n + 121~e X «n I0Sen) + I - n)l 

Using the MPP's clock time, the time required for this operation is: 

TpS= [2n+ 1210~eX«nloSen)+I-n)}] X lO-lj.lsec. 

The summation of the elements in the 128 X 128 partial sum arrays 
is accomplished in the MPP by summing over sixteen 32 X 32 sub arrays 
simultaneously in the array processor portion of the MPP and outputing 
the 16 sums to an external adder for the final summation. This procedure 
makes use of the vertical and horizontal connections between each of the 
MPP's processing elements. It also makes use of the MPP's sixteen output 
connections from special processing elements at the comer of each of the 
32 X 32 sub arrays. The algorithm for performing the summation over the 
32 X 32 sub arrays performs two sets of operations each consisting of 5 

steps. In the first set the 32 columns of the sub arrays are summed. In the 
second set, the 32 rows of the resulting sub arrays from the first set are 
summed. When both sets of operations are completed, the processing ele­
ments, in the lower right hand comers of all sixteen 32 X 32 sub arrays con­
tain the sum of all elements in the sub arrays. 

Each of the 5 steps in the column summing and row summing follows 
the follOwing procedure: 

1. For the ith step, translate the resulting array from the previous 
step 2i- 1 elements ("columns to the right" when column summing; "rows 
down" when row summing). 

2. Add the translated version to the original version. 
For example: In the first step, the partial sum array is translated one 

element to be right and the translated version is added to the partial sum 
array. In this way, adjacent columns are added. In the second step, the re­
sulting sum is translated two columns to the right and added to the original 
version. After this step, 4 adjacent columns have been summed. Since the 
sum is potentially doubled in each step, the number of bit planes in the re­
sulting sum arrays increases by one in each of the 10 steps. Thus, at the ith 
step of column summing, s + i-I binary arrays (malting up the sum arrays) 
must be shifted 2i- 1 columns. In the row summing, s + i + 4 binary arrays 
must be shifted 2i-l rows. Translation of a binary array requires one MPP 
cycle. Thus the number of cycles required at the ith column summing step 
is: 

Nes. = (s + i-I) X 2i- 1 + 3(s + i-I) 
1 

where 3 cycles are required for each stage of addition. Similarly, 

NRS. =(s +i+4)X 2i-l +3(s +i+4) 
1 

cycles are required for the row summations. Therefore, the total number of 
cycles for the summation of all elements in the 32 X 32 sub arrays is: 

5 5 

= L(S +i-I)X 2 i- 1 +3 (s +i-I)+L (s +i+4)X 2;-1 + 3(s + i+ 4) 

~1 ~1 

This simplifys to: 

5 

NS=L (2s + 2i+ 3)(3+ 2i- 1) 

i=1 

The time required to perform the summing operation is therefore 

5 

Ts = L (2& + 2i + 3)(3+ 2i- 1) X 10-1 foISec 

;=1 
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The time required to output the 16 sums from the processing elements is 
(s + 10) X 10-1 pseconds where s + 10 is the bit length of the final sum. 
Thus the total time for performing the summation of the partial sum arrays 
is 
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