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Abstract

We address the procurement of new components for recyclable products in the

context of Kodak's single-use camera. The objective is to find an ordering policy

that minimizes the total expected procurement, inventory holding and lost sales cost.

Distinguishing characteristics of the system are the uncertainty and unobservability

associated with return flows of used cameras. We model the system as a closed queue-

ing network, develop a heuristic procedure for adaptive estimation and control, and

illustrate our methods with disguised data from Kodak. Using this framework, we in-

vestigate the effects of various system characteristics such as informational structure,

procurement delay, demand rate and length of the product's life cycle.

June 1997



1 Introduction

Remanufacturing is the process by which used products are recovered, processed and

sold as new products. It introduces a host of issues related to product design, produc-

tion planning, inventory control, logistics, information systems, marketing and quality

control, as discussed in Thierry et al. (1995). Remanufacturing complicates inventory

management by introducing return flows of used products, which are uncertain with

regards to their quantity, timing and quality.

This paper is motivated by the supply chain for Kodak's single-use flash camera.

This chain includes the procurement of circuit boards from the supplier, the produc-

tion or remanufacture of cameras at the Kodak facility, and their distribution, sales

and recovery. Each flash camera includes one circuit board, which is the primary cost

driver for this product. The circuit boards are manufactured overseas and shipped

to Kodak's production facility in Rochester, NY. The shipping delay is substantial

and necessitates large circuit board inventories. The production facility operates as

a flow line, using both old and new components to manufacture new cameras. Com-

pleted cameras are then transported through Kodak's distribution system to various

retail outlets. About 75% of sales are impulse buys (e.g., bought while on vacation,

Goldstein 1994), so that most unsatisfied demand is lost. Customers take the used

cameras to a photofinishing laboratory, where the film is taken out and processed.

The laboratories receive a rebate for each used camera they subsequently return to

Kodak. Despite this, Kodak receives only a portion of the cameras sold. The reusable

parts (the circuit board, plastic body and lens aperture) of the returned cameras are

put back into production after inspection.

When our project began, Kodak managers did not have a precise estimate of what

portion of sold cameras are returned, and had not attempted to estimate how long it

takes for a camera to return to Kodak. Even if these estimates were known, the inven-

tory management problem is complicated by the fact that the portion of the supply

chain from a sale to a return cannot be observed by the manufacturer. A literature

survey on production planning and inventory control in the context of remanufac-
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turing (van der Laan, Salomon and Dekker 1995) reveals that these key aspects of

remanufacturing systems have been, for the most part, overlooked by researchers.

An exception is Kelle and Silver (1989a,b), who model returns as a function of past

sales (via a known delay distribution) and estimate return flows from past sales and

returns. Otherwise, returns are assumed to be independent of past sales, and most

authors assume that the sales and return processes are independent. Regardless of

specific assumptions about the return flows, all existing models assume that the sta-

tistical characteristics of these flows or of their relationship to the sales process are

known (e.g., returns are Poisson with known rate).

We allow returns to depend on past sales, and assume that the parameters un-

derlying the statistical models describing this relationship are unknown. Then we

use evolving sales and returns data to dynamically estimate these statistical char-

acteristics and the return flows, and incorporate this information into our inventory

management decisions. More specifically, we construct a queueing network in §2 to

model the entire supply chain, which consists of procurement, shipping, production,

distribution, sales and returns. The process between sales and returns constitutes

the unobservable portion of this network. To model the return flows, we let returns

depend on sales through an unknown return probability and delay distribution. Our

objective is to develop a simple and effective procurement policy for new circuit

boards, which are the most costly component. To this end, we consider a class of

aggregate base stock policies, which controls the total number of circuit boards in the

supply chain (including the unobservable portion). This type of policy is similar in

spirit to the CONWIP policy (e.g., Solberg 1977, Whitt 1984, Spearman et al. 1990),

but is applied at the supply chain level rather than the factory floor level (Rubio

and Wein 1996). In §3.1 we use Bayesian statistics and survival analysis to dynami-

cally estimate probability distributions for the return probability and the return delay

based on past sales and returns. In §3.2 we use methods developed by Kelle and Silver

(1989a) to dynamically estimate the total number of circuit boards in the system as

a function of the estimated return flow parameters and historical information about

sales and returns. This analysis is combined with the fixed population mean method
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(Whitt 1984) to construct a heuristic dynamic aggregate base stock policy.

In §4 we use computer simulation to investigate the cost impact of different in-

formational structures and of the way in which available information is utilized, and

how these effects vary with demand rate, procurement delay and the length of the

product's life cycle. Concluding remarks are given in §5.

2 The Model

We model the supply chain as a queueing network in §2.1, and define the class of

circuit board procurement policies in §2.2.

2.1 The Queueing Network

The queueing network has six nodes and is depicted in Figure 1. The performance of

the system depends on the service time distributions only through their means, since

our queueing network is of product form (Baskett et al. 1975, Kelly 1979). We model

the vendor node as a single-server queue because Kodak's circuit boards comprise

most of the output at the circuit board supplier's production facility. Service times

at this node are exponential with rate ju~. Orders placed for circuit boards constitute

the arrivals to this node.

Completed circuit boards enter the shipping node, which is an infinite-server node

with general service times. The mean service time, or shipping delay, is 1/1u, and

all departures from this node go to the production node. We assume that whenever

new or used circuit boards are available at the production facility, cameras will be

manufactured; i.e., all other components required for camera production are readily

available. The production facility is modeled as a single-server queue with exponential

service times with rate ,p.

All manufactured cameras are transported to retailers via a vast distribution sys-

tem. The time the cameras spend in the distribution node is modeled as an infinite-

server queue, and the delay is generally distributed with mean 1//d. All departures

go to the retailer node, where the cameras reside until they are purchased. We model
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Control Policy

Vendor Shipping Production Distribution Retailer il-p

*/G

Figure 1: The queueing network model.

customer demand by a Poisson process with rate LUr. We assume that unsatisfied

demand is lost because most single-use cameras are bought while people are traveling

or on vacation. Hence, we can model this node as a single-server queue with expo-

nential service times with rate [Lr: The processing time at this node corresponds to

the time between demand epochs, and the idle time corresponds to the time when no

cameras are available (and lost sales are incurred). To incorporate the fact that there

are a number of locations where demand occurs, the retailer node could be modeled

as a set of parallel queues that receives cameras which are randomly routed from the

production facility. However, this would not change the nature of our results, and for

simplicity we employ a single-server node.

After a camera is purchased, the customer keeps it for a certain amount of time

and then takes it to a photofinishing lab to be processed. The lab is responsible

for returning the camera to the production facility. We model this customer/lab

node by an infinite-server queue with a general service time distribution with mean

1/jc2. We assume that a purchased camera is eventually returned to Kodak with

probability P, independently of all other cameras. Hence, purchased cameras exit

the system with probability 1 - . (These last two parameters are unknown to the

manufacturer, so we use 'tilde' to distinguish them from known parameters). Because

Kodak does not incur costs at the customer/lab node, for modeling purposes it makes

4
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no difference whether this random routing takes place after the retailer node or after

the customer/lab node. We assume that the routing occurs at the time of sale, so

that the customer/lab node includes only those cameras that have been sold but will

be returned. All departures from this node go to the production node.

2.2 The Control Policy

Even if all service time distributions in §2.1 were exponential, the derivation of an

optimal procurement policy for new circuit boards would require the solution to a

multi-dimensional partially-observable Markov decision process. The solution to this

problem would be extremely difficult to compute and rather complex for practical im-

plementation, so we confine our attention to a simple class of suboptimal policies. To

motivate our proposed policy, we suppose for now that a centralized controller knows

at the moment of a camera's purchase whether or not this camera will eventually

return to Kodak. Hence, the omniscient controller can observe the six-dimensional

queue length process in Figure 1. Now consider a one-for-one replenishment policy,

where a new circuit board is ordered from the supplier whenever a customer buys a

camera that is not eventually returned to the production facility. Under such a policy,

the total number of circuit boards populating the supply chain (i.e., the aggregate

base stock level) is constant and the system described in §3.1 and Figure 1 becomes

a closed queueing network.

Our problem deviates from this hypothetical scenario in two ways: The number

of customers at the customer/lab node is unobservable (i.e., we do not know whether

a camera will be returned until it is returned) and the queueing network parameters

P and ,c are unknown. We develop a heuristic three-step procedure for constructing

a dynamic circuit board procurement policy that adapts the one-for-one replenish-

ment scheme to this uncertain setting. We assume that information gathering and

procurement decisions are carried out periodically (e.g., weekly). Our procedure re-

quires the following notation, where the time index and the dependence on past sales

and returns are suppressed. Let Ni, i = 1,.. ., 6 denote the number of circuit boards

at the vendor, shipping, production, distribution, retailer and customer/lab nodes,

5



respectively, and let N = Ei6 1 Ni be the total number of boards in the system. Note

that the number of circuit boards at nodes 4, 5 and 6 is equal to the number of

cameras at these nodes, and N 1 ,..., N 5 are observable but N 6 is not. Let 0 be a

vector of return flow parameters that are to be estimated from historical sales and

returns data. As will be seen in §3.1, the vector essentially includes the queueing

network parameters P and f, but may include other parameters as well (e.g., the

unobservable inventory at the beginning of the data collection period). The vector

0 is random under a Bayesian approach, while it denotes the true state of nature in

a frequentist approach; the difference will be apparent from context. Let C(n; 0) be

the expected steady-state total cost incurred in the closed queueing network in §2.1

with n circuit boards, for a given value of 0, which we denote by 0. The cost function

is specified in §3.3.

Our procedure consists of three steps (described in detail in §3.1, §3.2 and §3.3)

that are carried out periodically. In the first step, we estimate the distribution f,(O)

of the return flow parameters using information about past sales and returns. In

the second step, we find fN6 I(nlO), which is the distribution of the number in the

unobservable portion of the system (the customer/lab node) for a given 0. Note

that the distribution for the total number of circuit boards in the system given 0

is fN1o(nI0) = fN6 (n - Z 1 Ni 0).

In the last step, we integrate the expected steady-state total cost over the dis-

tributions of the unobservable inventory and the return flow parameters, and then

procure the amount that minimizes the cost. Hence, the recommended procurement

quantity for new circuit boards is

Q =arg in / j C(n + x; )fNi(n0)f(0)dnd. (1)

This procedure does not result in an optimal aggregate base stock policy because

the queueing network does not immediately enter a new steady state after each pro-

curement decision; in effect we dynamically calculate the procurement quantity for a

transient system using the expected total cost incurred in its steady-state counterpart.
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3 Analysis

3.1 Parameter estimation

We consider two informational structures regarding the monitoring of cameras: The

trackable case, where cameras are time-stamped, and the untrackable case, where

cameras are not time-stamped.

Untrackable case. The single-use camera supply chain is an example of an un-

trackable system. Cameras are not time-stamped, so that when a camera is returned,

nothing can be inferred about its return delay. The only information available is the

number of sales and returns in each time period.

The incremental nature of information received in this problem makes Bayesian

estimation a natural choice. We assume that there is a discrete delay (lag) distrib-

ution, rD(d), governing the amount of time cameras spend with customers and at a

photofinishing lab. If the probability that a camera will ever come back is p, and a

camera was sold in period t, the probability it comes back in period t + k is rD(k)p.

Let nt and mt denote the number of cameras sold and returned in period t = 1, 2,...,

respectively, where ml = 0. Then the return process can be modeled by

mt = rD(l)pnt1 + rD(2)pnt-2 + ... rD(t - l)pnl + t 2,...

where et - N(O, a 2). This type of relation is referred to as a distributed lag model in

the literature (e.g., Zellner 1987). Usually, a specific form of distribution involving

one or two parameters is assumed for the lag, which reduces the number of parameters

to be estimated.

In the Appendix, we illustrate the Bayesian estimation procedure with a geomet-

rically distributed lag with parameter q (the probability a sold camera is returned in

the next period, given it will be returned). We then show how this extends to a Pascal

distribution, which allows more flexibility in the shape of the delay distribution. We

also show how to carry out hypothesis testing of different lag models.

The data available from Kodak consists of 22 months of sales and returns. We

used the above method on data with a geometric lag to find a posterior density for
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return flow parameters 0 - (, q). The point estimates P and q (derived from the joint

density function in the Appendix) obtained after 22 months were found to be 0.5 and

0.58, respectively. (The data has been disguised so that p = 0.5.) The hypotheses of

geometric, Pascal lag one and Pascal lag two were tested, taking prior odds ratios of

1 (i.e., all hypothesis are assumed to be equally likely). The posterior probabilities

thus obtained were rl1 = 0.977, 1r2 = 0.022 and r3 = 0.001, and hence a geometric

lag model seems justified. This conclusion is not surprising because many single-use

cameras are typically bought for some occasion, and are used and returned quickly

after the sale, which is consistent with a geometric distribution. Hereafter, we assume

that the delay is geometric; in this case, the unknown queueing network parameter

,UC corresponds to the geometric parameter .

One issue that arises with this set of data is that of initial conditions. The above

analysis assumes that all returned cameras were sold during the data collection pe-

riod, whereas the Kodak system had been in operation for some time when the data

collection began. Therefore, some of the returns in the initial months depend on sales

that occurred prior to data collection. To assess the impact of initial conditions, we

employ the maximum likelihood estimation method, which allows us to estimate the

number of unobserved cameras at the beginning of the period, and therefore avoids

the initialization problem. Let iio denote the number of cameras that have not been

returned at the time data collection begins. Using the same notation as above, for a

given return probability value p, a given geometric delay parameter value q, and an

outstanding number of cameras no, we model the returns as

mt = pqnt_1 + pq(l - q)nt-2 + ... + pq( - q)t-lno + ut, t = 2,...,

where ml = pqno + ul and ut N(0, u 2). Using a maximum likelihood estimation

method developed in Dhrymes (1985), we find estimates for 0 = (p, q, no, 5 2) for the

Kodak data. The resulting point estimates are p = 0.5 and q = 0.55, which are very

close to the estimates obtained from Bayesian estimation. As expected, q is lower with

this method, but the small difference suggests that the effect of initial conditions is

indeed minimal.
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Trackable Case. This situation arises when the manufacturer time-stamps the

product at the time of purchase, tsale. At any given time t, some of the cameras will

have been returned. For these cameras, we can record how much time was spent

outside the system. For others, we know that their delay is longer than t- tale.

In the survival analysis literature, this kind of data is referred to as right-censored

survival data. In the Appendix we use the expectation maximization (EM) algorithm

(Dempster, Laird and Rubin 1977) to estimate the return flow parameters 0 = (, q)

in the geometric delay case.

There are several problems associated with the trackable case. Products are more

apt to be time-stamped with the date of production, not the date of sale. In either

case, the data collection requirements are greater than in the untrackable case. In-

deed, this kind of data was not available from Kodak. In §4, we assess whether this

additional information is worth collecting. Finally, the EM algorithm only produces

a point estimate 0, not a distribution; hence, we let f(0O) have a unit impulse at 0 in

our three-step procedure.

3.2 Estimating the Unobservable Inventory

Untrackable Case. At time t, we know the number of sales ni and the number of

returns mi in periods i = 1, 2, ... , t. We also have an estimate of the return probability

and return delay distribution. Let Wi be the number of circuit boards that will be

returned in periods [t + 1,t + Hi from the sales in period i, i < t, for some time

horizon H. Kelle and Silver (1989a) show that (i=l 1 Wi, mt, mtj, ... , m2) can be ap-

proximated by a multivariate normal vector. Its mean and covariance matrix depend

on covariances between returns in different periods. Under this approximation, the

conditional distribution of (=l Wi I nt, mt-l,..., m2) is also normal and its mean

and variance are easily calculated.

We wish to calculate the distribution of N 6 (t), the number in the customer/lab

node in period t. If we let the time horizon H = oo, then N 6(t) = t Wi and

applying Kelle and Silver's method gives the desired distribution.

Trackable case. This method is also adapted (to the infinite horizon setting)
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from Kelle and Silver (1989). Let pi denote the probability that a sale in period

i, which has not been returned by period t, will eventually be returned. For a

given return probability value p and a given geometric delay parameter value q,

Pi = 1-q)t-+l Let ni denote the number of cameras sold in period i, and ri
Pi - 1-p+p(l-q)t-i+l.

denote the number of these cameras that have already been returned (by period t).

In period t, the conditional expectation and variance of the amount of unobservable

inventory due to sales in period i are (ni - ri)pi and (ni - ri)pi(1 - i), respectively.

Because the ni - ri's are mutually independent, the expectation and variance of the

total unobservable inventory at time t are computed by summing the above quantities

over i = 1,.. ., t. A normal distribution with this mean and variance is then used to

approximate the distribution of the unobservable inventory.

3.3 Calculating the Expected Steady-state Cost

The third step of our procedure requires the calculation of C(n; 0), which is the

expected steady-state total cost incurred by the closed queueing network in §2.1 with

n circuit boards, for a given value of 0 = 0. Recalling that specifies P and q, and

that = ic under our geometric delay assumption, we let 0 correspond to (p, /c).

Although the closed queueing network has a product-form stationary distribution, it

requires the calculation of a normalization constant, which is somewhat tedious in

the context of our three-step procedure. In order to derive a closed-form expression

for C(n; 0), we resort to the fixed population mean (FPM) approximation developed

by Whitt (1984). To use this method, we transform the closed network in Figure 1

into an open network by letting departures from a decoupling infinite-server node (the

customer/lab node, in our case) exit the system and creating external Poisson arrivals

(at an unspecified rate Ac) to the production node. The FPM method approximates

the throughput rate in the closed system with n circuit boards by the external arrival

rate to the open network which makes the expected number in that system equal to

n. The accuracy of the FPM approximation in our setting is investigated in §4.2.

Let n°(A,) be the expected steady-state number of circuit boards in this open
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network at node i = 1,..., 6 when the external arrival rate to the production node is

Ac, and let n°(Ac) = .i=l ni (A). Since our queueing network is of product form, we

have

n-(A)+ 1-p 1 1 1 1

P/v -(I -c p )s p p- pA PlOd PAr - A c

which is a fourth-order equation in AC. The FPM approximation requires us to find the

value of Ac such that n°(A,) = n. To obtain a closed-form solution to this equation,

we omit several of the terms in (2). In particular, the vendor node and the production

node in the Kodak system have very small queue lengths compared to the other four

nodes, so we approximate (2) by

nO(A,) Ac(1- p) + + A, + A(3)
P1s P1d P1'r - Ac [c

which is quadratic in AC. Using (3) to solve n°(Ac) = n gives

p ( C l n + LrC2 1- - /(Cln- rC2 + C 1)2 + 4rCIC 2 ) 

A,(n)= 2C2 (4)

where C1 = d/AC1s and C2 = Pd(ts - t) + /c (/As + d).

Now we calculate the expected steady-state total cost per unit time, which incor-

porates lost sales (cl per camera), procurement (c, per board) and holding inventory

at the retailer and distribution nodes (Ch per board per unit time). For an open

queueing network with arrival rate A, this cost is

(1- p) ( - + Ch( + (5)

P P/±r PAd p/ - Ac

By the FPM method, the expected steady-state cost C(n; 0) associated with a given

population level n is approximated in closed form by C°(Ac(n)) using (4) and (5).

4 Computational Study

This section contains a simulation experiment aimed at evaluating the effectiveness

of our policy, and determining the key controllable and uncontrollable factors that

affect system performance. We describe the design of the study in §4.1 and present

and discuss the results in §4.2.
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4.1 Experimental Design

In this subsection we describe the model parameters, the policies and the initialization

scheme.

Parameter Values. The parameter values in our simulation model are roughly

representative of the Kodak environment. We set the true return probability p = 0.5,

procurement cost c, = $5/unit, lost sales cost cl = $10/unit and inventory holding

cost Ch = $0.02/unit/week. The delays at the shipping and distribution nodes are

exponential with means of -1'=8 and 4d1=2, respectively. The customer/lab delay is

also exponential with true mean ,-I = 8 weeks. The service rates at the circuit board

vendor, production and retailer nodes are [v = 20, 000, ,p = 20, 000 and r = 18, 000

per week, respectively.

Policies. To put the performance of our proposed policy into perspective, we

simulate five different policies. These policies, as well as the informational structures

under which they operate, are summarized in Table 1. Recall that at the beginning

of each period, the following sequence is carried out using the data to date: Estimate

the return flow parameters, estimate the distribution of unobservable inventory and

determine the recommended procurement quantity.

Informational Structure/Parameter Estimation Recommended

Policy Return Flow Customer/Lab Data Procurement

Parameters Inventory Collection Quantity

CLAIRVOYANT Known Observable - Equation (7)

TRACKABLE EM Algorithm Kelle-Silver By Camera Equation (1)

UNTRACKABLE Distributed Lag Kelle-Silver Periodic Equation (1)

UNTRACKABLE(, c) Guess (, tc) Kelle-Silver Periodic Equation (1)

OBSERVABLE Distributed Lag Ignored Periodic Equation (9)

Table 1: Description of the simulated policies.

The first policy, referred to as CLAIRVOYANT in Table 1, assumes that the

true values of the parameters p and c and the current number of customers in the
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customer/lab node are known, and uses the optimal aggregate base stock level from

the FPM approximation. This base stock level is given by n°(Ac) in (3) (with P and

[c in place of p and pc), where

= PC --(1 - p)c- (6)

is the arrival rate that minimizes the cost (with P in place of p) in (5). Hence, the

recommended procurement quantity is

6

Q o(A) - Ni. (7)

i=l

The next two policies, TRACKABLE and UNTRACKABLE, are our proposed

policies in equation (1) corresponding to these two informational structures.

UNTRACKABLE(p, c) is identical to the UNTRACKABLE policy, except that

the joint distribution of the return probability p and the return delay parameter ,c

derived in §3.1 is replaced by a unit impulse at the point estimate 0 = (,,uc). In §4.2,

we assess the importance of estimating P and ic by varying the value of these two

estimates.

The last policy in Table 1, OBSERVABLE, allows us to isolate the importance of

estimating the unobservable inventory, N 6. This policy does not attempt to estimate

N 6 or the return delay parameter q, and uses a base stock policy based only on the

observable portion of the supply chain, 5=1 Ni. To derive this policy, we consider an

open queueing network that is identical to the first five nodes in Figure 1, except all

departures from node 5 (the retailer node) exit the system, and there are exogenous

Poisson arrivals to node 1 (the vendor) and node 3 (the production facility) with rates

Al and PAIr, respectively. The distribution f(p) of the random variable P is estimated

using the distributed lag model in §3.1. Using the same cost structure as in §3.2, we

find the cost-minimizing value of Al for a given return probability p to be

Al(p) = (1 -- Cp)

l -Cv -Ch//id

For a given return probability p, we use the FPM logic in reverse, and set the target

base stock level equal to the expected number of customers in the open queueing
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network with arrival rate A* (p):

A (p) (p) A* (p) + Pllr * (P) + ppr A* (p) + Ppir
+ + . (s)

bt~--4(p) As pI -- Ap)-P r d + - A(p)

We denote the quantity in (8) by N(A*(p)). Integrating this base stock level over the

density fp(p) yields the recommended procurement quantity for the OBSERVABLE

policy:
5

Q- =p N(A(p))f(p)dp- Ni. (9)

Implementation. For each of the five policies in Table 1, the system is started

empty and the review period is one week. Initially, the vendor node works at full

capacity and pushes items through the system. Finished goods inventory is collected

at the retailer node until it reaches the level , the expected demand for one week.

At this point, sales are allowed to start. This design allows a meaningful comparison

of systems with different shipping delays and sales rates.

Three periods after returns start, the parameter and unobservable inventory es-

timation procedures are carried out if necessary, and a control policy is used to de-

termine procurement decisions. The three-period restriction is necessary for cases

where estimation is required, and was enforced in all policies in Table 1 to ensure

consistency. For all policies, the actual procurement quantity Q* equals the smallest

integer greater than or equal to the recommended procurement quantity Q in Table 1,

[Q], if 0 < Q < 1.51 v,; otherwise, Q* = 0 if Q < 0 and Q* = 1.5,v if Q > 1.51 v,.

This upper bound is imposed so that overestimation of the procurement quantity in

a given period does not adversely affect performance over an extended period. The

factor 1.5 ensures that for all parameter values used in our simulations, this bound is

larger than four standard deviations above the mean quantity processed at the vendor

in one period.

Cost collection starts after the three-period restriction, and includes procurement

costs, lost sales costs, and inventory holding costs at the production, distribution

and retailer nodes. The system is simulated for 78 weeks (the product life cycle is

approximately 1.5 years) and 30 simulation runs are carried out for each scenario. For
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each run, the same initial random number seed is used across all policies to reduce

the variance in pairwise comparisons of policies.

4.2 Results

We first report the main simulation results, and then perform a sensitivity analysis

with respect to several key parameters.

Main Results. The costs for the simulated policies are presented in Table 2.

Observations 2 through 5 below can be extracted from this table.

Table 2: The simulated average cost (and 95% confidence intervals) for nine policies.

1. The accuracy of the FPM approximation. A simulation study (not appearing

in Table 2) was undertaken to assess the accuracy of the FPM approximation. For

the parameter values given in §4.1 (except that the mean shipping delay was two

weeks rather than eight weeks), the FPM-estimated cost at the FPM base stock level

(given by n°(A*) in (7)) was 0.12% higher than the simulated cost at the FPM base

stock level. Hence, the FPM approximation is very accurate in our setting.

2. The impact of estimatingp and ~fc. Comparing the five UNTRACKABLE(P, ,c)

policies in Table 2, we see that a 20% error in estimating the true return probability

leads to a cost increase of 3.3% ( = 0.4) and 21.2% ( = 0.6). Underestimating the

15

Policy Cost($1000/week)

CLAIRVOYANT 48.90(±0.04)

TRACKABLE 48.90(±0.04)

UNTRACKABLE 48.94 (0.03)

UNTRACKABLE(0.5,0.125) 48.93(i0.04)

UNTRACKABLE(0.4,0.125) 50.55(±0.09)

UNTRACKABLE(0.6,0.125) 59.30(40.17)

UNTRACKABLE(0.5,0.083) 49.07(10.09)

UNTRACKABLE(0.5,0.25) 53.11(10.17)

OBSERVABLE 59.50(10.14)



true mean delay by a factor of two causes a 8.5% cost increase and overestimating it

by 50% results in only a 0.3% cost increase. Overestimating ip or ftc results in lost

sales, while underestimating these quantities generates superfluous inventory. Thus,

overestimation, particularly of the return probability pi, is more costly. In summary,

the most costly error is to overestimate p.

3. The accuracy of estimating N 6. The only difference between the UNTRACK-

ABLE(0.5,0.125) policy and the CLAIRVOYANT policy is that the former estimates

N 6 and the latter observes N 6. The minute difference in performance between these

two policies shows that the Kelle-Silver method provides an accurate estimate for N 6

in the untrackable case.

4. The impact of estimating N 6. There are two differences between the UN-

TRACKABLE policy and the OBSERVABLE policy: The latter policy does not esti-

mate the return delay q or the unobservable inventory N 6. Observation 2 above shows

that the UNTRACKABLE policy is relatively insensitive to the estimate q. Hence,

the 21.6% cost difference between these two policies suggests that it is important to

estimate N 6 .

5. The accuracy and impact of tracking cameras. The proximity in cost of the

TRACKABLE and UNTRACKABLE policies suggests that the economic gains from

tracking cameras is small, and is probably outweighed by the cost of tracking. Both

of these policies perform nearly as well as the UNTRACKABLE(0.5, 0.125) policy,

which shows that the EM algorithm and the distributed lag method work well.

Sensitivity Analysis. A strategic issue facing Kodak is whether to reduce the

long shipping delay, by either using air shipments or switching to a domestic sup-

plier. We repeated all the simulations in Table 2, but with a shipping delay of two

weeks rather than eight weeks. Not surprisingly, the controllability of the system

improves when the shipping delay is shorter, and the costs (we do not consider the

cost required to reduce this shipping delay) decrease. The average cost reduction for

the nine policies in Table 2 is 5.3% per week, which is less than the cost reductions

gained by estimating the return probability P or the unobservable inventory N 6 in

an intelligent manner. However, the cost reductions for UNTRACKABLE(0.6,0.125)
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and UNTRACKABLE(0.5,0.25) are 10.9% and 9.9%, respectively. Therefore, in cases

where parameters are overestimated, a short shipping delay can significantly improve

system performance.

Our simulation model used a shipping delay, demand rate and time horizon (18

months) to reflect the scenario of Kodak's single-use camera. To assess the robustness

of our three main observations from Table 2 (it is important to estimate N6 and not

overestimate P, but it is not worthwhile tracking cameras), we compute in Table 3

the cost ratios of several policies for two values of the shipping delay (two and eight

weeks), three values of the vendor rate u-,, the production rate p, and the demand

rate /r (the base rates, 0.1 of these rates and 0.01 of these rates), and four values of

the product life-cycle length (i.e., the number of weeks that costs were collected).

The difference in performance between UNTRACKABLE and TRACKABLE ob-

served in Table 3 is primarily due to the difference in the rate of convergence of the

parameter estimates found using the distributed lags model and the EM algorithm,

respectively. In general, the EM algorithm converges more rapidly to the true un-

known parameter values and thus achieves better performance for small sample sizes

(low total demand volume over product life cycle). Therefore, tracking inventory pro-

vides significant relative benefits only if the system is in transience throughout the

product life cycle in the sense that the parameter estimates have not yet converged.

As the total demand volume over the product life cycle increases, the same system

performance can be achieved with less information (without tracking the cameras).

The UNTRACKABLE(0.6,0.125)/UNTRACKABLE(0.5,0.125) results illustrate

the impact of delays on system performance. Since lost sales lag behind procurement

decisions by several weeks, overestimating the return probability and ordering less

than necessary can lead to better initial performance. However, as the life cycle

increases, the importance of correct estimation becomes apparent, particularly in the

long shipping delay scenarios.

The results for OBSERVABLE/UNTRACKABLE show that the impact of esti-

mating the unobservable inventory is significant. In the low volume, short shipping

delay case, OBSERVABLE dominates UNTRACKABLE due to the lag between pro-
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curement and lost sales, as above. For all other cases, however, UNTRACKABLE

dominates OBSERVABLE, especially in the long shipping delay case.

A caveat of the above analysis is that it does not include end-of-life-cycle effects

(e.g., decreasing demand rate, cost of ending inventory).

nature of our conclusions should not be affected by this.

However, the qualitative

Table 3: Relative costs of policies under various scenarios.

18

Shipping Demand Policies Product Life Cycle (weeks)

Delay Rate Compared 16 32 48 64

UNTRACKABLE 151.3% 102.3% 101.0% 101.0%
TRACKABLE

Low UNTRACKABLE(O.6,0.125) 94.8% 96.1% 97.1% 97.7%
UNTRACKABLE(.5,0.125)

OBSERVABLE 58.8% 93.2% 95.6% 96.5%
UNTRACKABLE _ _ _

UNTRACKABLE 107.5% 100.8% 100.6% 100.4%
TRACKABLE

Short Medium UNTRACKABLE(0.6,0.125) 94.4% 98.2% 101.5% 103.2%
UNTRACKABLE(.5,.125)

OBSERVABLE 93.8% 104.9% 104.9% 104.5%
UNTRACKABLE

UNTRACKABLE 102.1% 100.7% 100.4% 100.3%
TRACKABLE

~ High UNTRACKABLE(.6,0.125) 94.1% 104.6% 109.2% 111.5%
High UNTRACKABLE(O.5,0.125)

OBSERVABLE 108.9% 118.6% 120.0% 120.3%
UNTRACKABLE

UNTRACKABLE 133.1% 100.8% 100.3% 100.4%
TRACKABLE

Low UNTRACKABLE(0.6,0.125) 90.4% 94.1% 96.6% 97.7%
UNTRACKABLE(O0.5,0.125)

OBSERVABLE 74.6% 105.0% 104.5% 103.3%
UNTRACKABLE

UNTRACKABLE 109.7% 100.5% 100.4% 100.3%
TRACKABLE

Long Medium UNTRACKABLE(0.6,0.125) 97.7% 106.8% 111.0% 113.5%
UNTRACKABLE(O0.5,0.125)

OBSERVABLE 105.9% 119.5% 116.2% 113.7%

UNTRACKABLE
TRACKABLE 100.8% 100.2% 100.1% 100.1%

High UNTRACKABLE(0.5,0.125)

OBSERVABLE 121.8% 127.1% 124.7% 122.2%
UNTRACKABLE



5 Conclusion

Environmental concerns, legislative actions and increasing product disposal costs have

led many firms to adopt "green manufacturing" practices, such as the recovery and

remanufacturing of used products. These practices lead to challenging reverse logis-

tics problems, where the return flows of used products need to be taken into account.

We develop and analyze a model of the supply chain for Kodak's single-use camera,

from the overseas production of circuit boards to the photofinishing lab's development

of the film and subsequent return of the camera to Kodak's production facility. The

model and analysis have two distinctive features: We use a queueing network model,

which allows for considerable flexibility in modeling production and distribution facil-

ities within the supply chain, and we focus on the statistical aspects of the problem,

by dynamically estimating the probability that sold cameras are returned, the delay

of returned cameras, and the number of cameras that have been sold and will be

returned at some future time. Although the paper is written in a problem-specific

manner, the model and methods used here are generic and can be adapted to other

remanufacturing settings.

Our framework allows us to understand the dominant characteristics of the system

and provide guidelines for managing it. The two most important operational levers

appear to be the accurate dynamic estimation (using historical sales and returns

data) of the number of cameras that have been sold and will be returned at a future

date and of the return probability of a camera. The former is important at all life

cycles we consider, while the latter becomes more important as the life cycle increases.

An important strategic lever is the use of a domestic versus overseas vendor, which

results in short or long shipping delays, respectively. A long shipping delay leads

to a less controllable system, and causes a relative deterioration in performance of

policies not making good use of the available information. Our analysis also allows

us to distinguish when it is important to use information-intensive monitoring of a

product. If the total demand volume for a product over its life cycle is low, significant

relative benefits can be gained from using the additional information obtained by time-
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stamping the product. As this quantity increases, the relative benefit of collecting

additional information diminishes and a less information-intensive method becomes

adequate.

Although our model possesses some features rarely found in inventory models,

it also lacks two characteristics that are common in inventory models: We ignore a

fixed ordering cost for new circuit boards, and assume a rather simple (one-parameter)

form of policy. Approximations for queueing networks with batch arrivals (e.g., Whitt

1994) might allow for the derivation of an aggregate (s, S) policy, but the analysis

of a policy that depends on a multi-dimensional state variable would likely be more

difficult.

Three other issues deserve further investigation. First, our model assumes that

unsatisfied demand is lost, and our analysis does not obviously extend to the backorder

case. Also, Kodak's demand has seasonal (sales for flash cameras are highest in the

winter holiday season) and life-cycle components that were ignored in our analysis.

Finally, customer demand represents the largest source of parameter uncertainty in

many systems, and statistical techniques for demand estimation in the lost sales

case (e.g., Nahmias 1994, Lariviere and Porteus 1995) can be incorporated into our

framework.
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Appendix

Bayesian Estimation for the Distributed Lag Model

Recall that in §3.1, we modeled the dependence of sales on returns by the relation

mt = pqnt-l + pq( - q)nt-2 + pq(l - q) 2 nt_3 +...+ Et for t = 2, 3,...,

where t N(O, a 2 ). Suppose that data is available for the first T periods. Subtract-

ing (1 - q)mt from both sides of the above relation, we get

mt = (1 - q)mtl + pqnt- + et -(1 - q)Et-1 t = 2, 3,..., T,

20

_11�1� _ I� �� I



which is the form to be used in the analysis. Let u = (u 2 , 3,... , UT) where ut =

Et - (1 - q)Et-1. The covariance matrix for the error term is E(uu') = a 2 G, where G

is the (T - 1) x (T - 1) matrix

1+ (1 - q)2 -( - q) 0 

G= -(1 -q) 1 +(1 -q) 2 -(1 -q) 0

0 0 0 -(l-q) 1+(1-q) 2

The joint density function for m = (m2, m 3 , ... , mT) is

pG1/2 1
f (m I p, q, o, ml) oc aT exp[- 2 (m- (1-q)m -pqn)'G-1 (m--(1-q)m_1 -pqn)].

If we take the prior density for the parameters of the model to be f (p, q, ar) C 1a,

which corresponds to a diffuse prior, then the posterior density becomes

f(p, q, a m, mi) oc [1 2(m-(1-q)m_l-pqn)'G-1(m-(1-q)m_l-pqn)].

Integrating with respect to a, we obtain

f(p,q m, ml) oc I G
[(m - (1 - q)m_1 - pqn)'G-1l(n - (1 - q)m 1 - pqn)]T/2 '

The normalizing constant can be calculated to determine the joint posterior density

function of and .

The estimation procedure for the Pascal distribution is identical except for changes

in the expression relating mt, mt_l and nt-1, and consequently the matrix G. For

Pascal of order two, we obtain

mt = 2(1 - q)mt - (1 - q) 2mt-2 + pq 2
nt-2 + ut t = 3, 4,...,T,

where ut = Et-2(1-q)et-l +(1-q)2 t_ 2 , and G is a symmetric (T-2) x (T-2) matrix

whose nonzero entries are of the form E(u2) =1 + 4(1 - q)2 + (1 - q)4 , E(ukuk+l) =

E(Uk+lUk) = -2(1 - q)(1 + (1 - q)2 ) and E(kuk+2) = E(uk+2Uk) = (1 - q) 2 .

It is also possible to compare different distributed lag models by assigning prior

odds ratios and determining posterior odds ratios, from which posterior probabilities
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associated with the models can be computed. For example, let us consider three

alternative models for the delays: Geometric (H1), Pascal of lag two (H 2 ) and Pascal

of lag three (H 3). If we assume prior odds ratios P(Hi)/P(Hj) =1 Vi, j, then the

posterior odds ratio relating Hi and Hj is given by

P(Hi) f S f f(m I p, q, aoi, ml, Hi)f(p, q, q, crHi)dcidpdq

=K P(Hj) f f f f(m I p, q,, ml, Hj)f(p, q, ajlHj)dcjdpdq'

The posterior probabilities 7ri, i = 1, 2, 3 are given by 7i = 1/(1 + ij Kji).

The EM algorithm

Recall that we have right-censored return data in our system. The EM algorithm is

an appropriate method to estimate the parameters of the return process under these

conditions. We first describe this algorithm (using notation from Cox and Oakes

1984) and then illustrate its application to our data. Let T = (T,..., T) be the iid

random variables that would be observed if there was no censoring, and let 0 denote

the parameters of the distribution of Ti. Let xi denote the actual (possibly censored)

observation for data point i, and let vi 1 if the data is uncensored and 0 otherwise.

Let x = (xi,. .. , xn) and v = (vI,..., v,).

For a given 0, define lo(0) = lo(0; ;T) to be the log-likelihood of 0 based on the

uncensored data (T,... ,T) and define (0) l(; x, v) to be the log-likelihood of

the observed data (x, v). Define Q(0', 0) = E(lo(0'; T x, v; 0)) to be the conditional

expectation of the log-likelihood of 0' based on T, given the observations (x, v). Here

the expectation is taken with respect to a distribution with parameter 0. Starting with

an initial value 0o, the two steps of the expectation maximization (EM) algorithm are:

Expectation step: Calculate Q(0', j). (Here 0' is a dummy variable and j is the

current estimate of 0.)

Maximization step: Find the value of 0' that maximizes Q(O', Oj). This is the new

estimate j+1.

This recursive procedure yields a sequence of estimates, j, j = 1,... that converges

to the maximum likelihood estimator of 0 based on the observations.

Let us illustrate this method for our problem. The uncensored data are si = sale

time of item i, i = 1,... n and ri = return time of item i, i ... m, where m < n. We
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set ri = oo for items that will not be returned, and index the items so that units i =

1... m have been returned. Let T = (T1, ... , T?) be iid random variables representing

the elapsed time from the sale to the return of the n cameras. We assume that the

delay for returned cameras is geometric with parameter , and denote the return

probability of a camera by p. Let t be the current time. Then, xi = min(ri - si, t - si)

and vi = Ir<t}.

The likelihood function if there was no censoring (i.e., the true values of ri,i =

m + 1,... , n were known) is

1 pq(l - q)rTi-si 1 (1 - p)n-kpkqk(l _ q){ilri<o(ri
- s

i)

{ilri<oo} {ilri=oo}

where k equals the number of items that eventually get recycled. The log-likelihood

is given by

lo(p, q; T) = klogp + (n-k)log(1 - p) + k logq + £ (ri - si)log(1-q),
{ilri<oo}

and its conditional expectation is

Q(p', q', p, q) E(k I x, v; p, q){logp' - log(1 -p') + logq'} + nlog(1 -p')
n

+E( Iri < oo}(ri - s) x, v; p, q)log(1 -q'),
i=l

where

in+1 1-p _ _-q)t-si+l

E(k x, v;p,q) =m+ p 1-p+p(- q)t-si+l

and

n1M I - q _p(_ - q)t-si

E(2I{ri < oo}(ri-si) I x,v;p,q) = E(ri-si)+ s (t-si+ q) P(l q)t-s+l

~i=1 i -m±i:~+l~ q 1- p+ p(1 - q)t-si+l

Setting the derivatives of Q(p', q', p, q) with respect to p' and q' equal to zero and

solving for p' and q' yields the following recursive relationship for the point estimates

of p and :

1 n pi( 1
- )t-si+l \

=- + Z )P+1 - +

n p'{ _
-
j
" t - si+l

m ± Zi=m+l 1-ipj+pj(l-qj)t-si+ l

j+ ml - + (- + ) p -
+ EiM= ri - i + (t - + 1 + 7L

qj 1-pjqPj(1-qj)
t - s i + l
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