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One of the important aspects of supply chain management is dealing with demand and supply
uncertainty. The uncertainty of future supply can be reduced, if a company is able to obtain
advance capacity information (ACI) on future supply/production capacity availability from
its supplier. We address a periodic-review inventory system under stochastic demand and
stochastic limited supply, for which ACI is available. We show that the optimal ordering
policy is a state-dependent base stock policy characterized by a base stock level that is a
function of ACI. We establish a link to inventory models using advance demand information
(ADI) by developing a capacitated inventory system with ADI, and showing that the model is
closely related to the proposed ACI model. Our numerical results reveal several managerial
insights. In particular, we show that ACI is most beneficial when there exists sufficient
flexibility to react to anticipated demand and supply capacity mismatches. Further, most of
the benefits can be reached with only limited future visibility. We also show that the system
parameters affecting the value of ACI interact in a complex way, and therefore need to be
considered in an integrated manner.

1. Introduction

Foreknowledge of future supply availability is useful in managing an inventory system. An-

ticipating possible future supply shortages is beneficial to make timely ordering decisions,

which results in either building up stock to prevent future stockouts, or reducing the stock

in the case the supply conditions in the future might be favorable. Thus, system costs can

be reduced by carrying less safety stock while still achieving the same level of performance.

These benefits should encourage supply chain parties to formalize their cooperation to enable

the necessary information exchange. One could argue that extra information is always bene-

ficial, but further thought has to be put into investigating in which situations the benefits of

information exchange are substantial and when it is only marginally useful. While in the first
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case it is likely that the benefits will outweigh the cost related to adopting the information

sharing system, in the latter these costs are not justified. The need to establish long-term

cooperation enabling information exchange is particularly strongly motivated by the recent

increasing move to outsource production and other activities to contract manufacturers. To

minimize the risk of contract manufacturing agreements failing to live up to expectations,

companies put effort into managing the relationship with their vendors. Their goal is that

a vendor tailors his services to each customer’s specific needs, and provides accurate lead

times and promises reliable delivery dates. To do so, he is willing to share lead time and

capacity information with his customers.

In this paper, we study the benefits of obtaining advance capacity information (ACI)

about future uncertain supply capacity. These benefits are assessed based on the comparison

between the case where a manufacturer is able to obtain ACI from her supplier, and a

base case without information. Our scope is on a manufacturer, who raises her inventory

position by placing orders to her supplier. The supplier could be a contract manufacturer

to whom the manufacturer has outsourced part of her production. Due to stochastic supply

conditions the manufacturer is uncertain about the actual order size that will be delivered.

This uncertainty can be due to, for instance, the allocation policy of the supplier, which

results in variable capacity allocations to his customers or to an overall capacity shortage at

certain times. This stochastic nature of capacity itself may be due to multiple causes, such

as variations in the workforce (e.g. holiday leaves), unavailability of machinery or multiple

products sharing the total capacity. Some of these variations can be foreseen. In the near

future, the supplier can be certain the capacity share that he can allocate to a particular

customer. Similarly, short-term production plans tend to be fixed and the uncertainty in the

size of the available workforce is lower in the near future. Since the supplier has insight into

future capacity availability, he can communicate ACI to his customer (Figure 1), and thus

help her to reduce the supply uncertainty and consequently lower the inventory cost.

We proceed with a brief review of the relevant literature. Although the uncapacitated

problems form a foundation in the stochastic inventory control research field, we are inter-

ested in inventory models that simultaneously tackle the capacity that may limit the order

size or the amount of products that can be produced. These models not only recognize that

the supply chain’s demand side is facing uncertain market conditions, but also look at the

risks of limited or even uncertain supply conditions. The researchers revisit the early sto-

chastic demand models and extend them to incorporate the uncertainty on the supply side.
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Figure 1: Supply chain (a) without and (b) with ACI sharing.

A base stock policy characterizes the optimal policy for several different capacitated prob-

lems. The sense of a base stock policy is different in the resource constrained case than in the

uncapacitated case. In the uncapacitated case, the base stock level has a clear interpretation,

it is the inventory position to order/produce-up-to. In the capacitated case, however, it only

represents a target that may or may not be achieved. If the capacity limit in a certain period

is known, there is no use in ordering/producing above that level, thus, we are talking about a

modified base stock policy. Federgruen and Zipkin (1986a,b) first address the fixed capacity

constraint for stationary inventory problem and prove the optimality of the modified base

stock policy. This result is extended by Kapuscinski and Tayur (1998) for the non-stationary

system assuming periodic demand, where they also show that a modified base-stock policy is

optimal. Later, a line of research extends the focus to capture the uncertainty in capacity, by

analyzing a limited stochastic production capacity models (Ciarallo et al. 1994, Güllü et al.

1997, Khang and Fujiwara 2000, Iida 2002). Here we point out the relevance of Ciarallo

et al. (1994) to our work. For the finite horizon stationary inventory model they show that

the optimal policy remains to be a base stock policy, where the optimal base stock level is

increased to account for the possible, however uncertain, capacity shortfalls in the future

periods. In the analysis of a single period problem, they show that stochastic capacity does

not affect the order policy. The myopic policy of newsvendor type is optimal, meaning that

the decision maker is not better off by asking for the quantity higher than that of the unca-

pacitated case. Our model builds on these models assuming both demand and capacity are

non-stationary and stochastic. The extension we are proposing is that by using ACI we can

lower the supply capacity uncertainty and better align the optimal policy parameters with
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revealed supply capacity realizations in near future periods. To our knowledge the proposed

way of modeling an inventory system with ACI has not yet received any attention in the

literature.

The complexity of a capacitated stochastic non-stationary inventory problem presents a

challenge in terms of obtaining analytical solution for the parameters of the optimal policy,

mainly optimal base stock levels. Researchers have resorted to developing applicable heuris-

tics (Bollapragada and Morton 1999, Metters 1997, 1998). In a capacitated non-stationary

stochastic setting Metters (1997) capture both the effect of deterministic anticipation (an-

ticipating mismatches in demand and capacity, and reacting by building up the inventory),

as well as the effect of uncertainty in demand. We note that there is a lack of literature on

approximate analysis of inventory systems that assume uncertain capacity as well.

We propose that an effective way of circumventing the uncertainty of supply capacity is

by obtaining ACI. This logic can also be targeted at the demand side, and is dealt by the

already well established advance demand information (ADI) research stream (Gallego and

Özer 2001, Karaesmen et al. 2003, Wijngaard 2004, Tan et al. 2007). Usually it is assumed

that the future uncertainty can be reduced due to some customers that place their orders

in advance of their needs. This forms the stream of early demand that does not have to

be satisfied immediately. Since this demand is revealed beforehand through ADI, we can

use ADI to make better ordering decisions. For the capacitated inventory model with ADI,

Özer and Wei (2004) show that the base stock policy is optimal, where the optimal base

stock level is an increasing function of the size of ADI. In terms of modeling, our approach

resembles ADI modeling approach, therefore our work also focuses on presenting the possible

similarities and the relevant distinctions between the two.

Our contributions in this study can be summarized as follows: (1) We develop a periodic

review inventory model with stochastic demand and limited stochastic supply capacity, which

enables the decision maker to improve the performance of the inventory control system

through the use of ACI. (2) We demonstrate structural properties of the optimal policy

by showing the optimality of a modified base stock policy with an ACI-dependent base

stock level and establishing the monotonicity of the base stock level. (3) We come up with

the corresponding capacitated ADI inventory model and comment on its characteristics in

relationship to the proposed ACI model. Only under the restrictive assumption of a constant

supply capacity that is always sufficient to cover the early orders recorded through ADI, we

show that the two models are equivalent in their optimal base stock level and optimal cost.

4



(4) Our computational results provide useful managerial insights into the conditions under

which ACI becomes most beneficial. In particular, we show that the biggest savings can

be achieved when one is facing high uncertainty in future supply, and can effectively reduce

this uncertainty through the use of ACI. However, we also emphasize that the benefits are

highly dependent on the successfulness of the anticipatory inventory build up, which can be

limited by the size of the available capacity. In addition, we demonstrate how the value of

ACI changes with respect to the length of the ACI horizon, cost parameters and demand

uncertainty.

The remainder of the paper is organized as follows. We present a model incorporating

ACI and its dynamic cost formulation in Section 2. The optimal policy and its properties

are discussed in Section 3, where we also look at the similarities between the ADI modeling

and the analysis of ACI model presented in this paper. In Section 5 we present the results of

a numerical study and point out additional managerial insights. Finally we summarize our

findings and suggest directions for future research in Section 6.

2. Model Formulation

In this section, we introduce the notation and our model. The model under consideration

assumes periodic-review, non-stationary stochastic demand, limited non-stationary stochas-

tic supply with zero supply lead time, finite planning horizon inventory control system. The

assumption of the zero lead time is not a restrictive assumption, as the model can be easily

generalized to the positive supply lead time case. The manager is able to obtain ACI on the

available supply capacity for the orders to be placed in the future and use it to make better

ordering decisions. We introduce a parameter n, which represents the length of the ACI

horizon, that is, how far in advance the available supply capacity information is revealed.

We assume ACI qt+n is revealed at the start of period t for the supply capacity that limits

the order zt+n, that will be placed in period t + n. The model assumes perfect ACI, which

means that in period t the exact supply capacities limiting the orders that will be placed

in the current and the following n periods are known. The supply capacities in the more

distant periods, from t+n+1 towards the end of planning horizon, remain uncertain (Figure

2). This means that when placing the order zt in period t, we know the capacity limit qt,

and ordering more than this limit is not rational.

Assuming that unmet demand is fully backlogged, the goal is to find an optimal policy
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Figure 2: Advance capacity information.

that minimizes the relevant costs, that is inventory holding costs and backorder costs. We

assume zero fixed cost inventory system. The model presented is general due to the fact that

no assumptions are made with regards to the nature of demand and supply process. Both

are assumed to be stochastic and with known independent distributions in each time period.

The major notation is summarized in Table 1 and some is introduced when needed.

Table 1: Summary of Notation

T : number of periods in the finite planning horizon
n : advance capacity information, n ≥ 0
h : inventory holding cost per unit per period
b : backorder cost per unit per period
α : discount factor (0 ≤ α ≤ 1)
xt : inventory position in period t before ordering
yt : inventory position in period t after ordering
x̂t : starting net inventory in period t

zt : order size in period t

Dt : random variable denoting the demand in period t

dt : actual demand in period t

gt : probability density function of demand in period t

Gt : cumulative distribution function of demand in period t

Qt : random variable denoting the available supply capacity at time t

qt : actual available supply capacity at time t, for which ACI was revealed at time t − n

rt : probability density function of supply capacity in period t

Rt : cumulative distribution function of supply capacity in period t

We assume the following sequence of events. (1) At the start of the period t, the decision

maker reviews the current inventory position xt and ACI on the supply capacity limit qt+n,

for the order zt+n that is to be given in period t + n, is revealed. (2) The ordering decision
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zt is made based on the available supply capacity qt, where zt ≤ qt, and correspondingly

the inventory position is raised to yt = xt + zt. Unused supply capacity is lost. (3) The

order placed at the start of the period t is received. (4) At the end of the period previously

backordered demand and demand dt are observed and satisfied from on-hand inventory;

unsatisfied demand is backordered. Inventory holding and backorder costs are incurred

based on the end-of-period net inventory.

To determine the optimal cost, we not only need to keep track of xt, but also the sup-

ply capacity available for the current order qt, and the supply capacities available for fu-

ture orders, which constitute ACI. At the start of the period t, when the available sup-

ply capacity qt+n is already revealed for period t + n, the vector of ACI consists of avail-

able supply capacities potentially limiting the size of the orders in the future n periods,

~qt = (qt+1, qt+2, . . . , qt+n−1, qt+n). The information on the current supply capacity qt obvi-

ously affects the cost, but need not be included in the ACI vector, since, as we show in

Section 3, only ACI for future orders affects the structure and the parameters of the optimal

policy. All together, the state space is represented by an n+2 -dimensional vector (xt, qt, ~qt),

where xt and ~qt are updated at the start of period t + 1 in the following manner

xt+1 = xt + zt − dt, (1)

~qt+1 = (qt+2, qt+3, . . . , qt+n+1).

Note also, that both, probability distributions of demand and supply capacity, affect the

optimal cost and optimal policy parameters.

Observe that in the case of n = 0, the supply capacity information affecting the current

order is revealed just prior to the moment when the order needs to be placed. In this specific

setting the state space is reduced to 2-dimensional, where we only need to track the changes

in xt, and place an order accordingly to the currently available supply capacity qt. Our

model excludes the situation where the order is placed not knowing to what extent it will be

fulfilled. This is the case of the capacitated stochastic supply model with no ACI (No-ACI

model), as has been introduced by Ciarallo et al. (1994). However, when assuming n = 0, we

show that under this specific setting optimal costs under both models are equivalent (Section

5).

The minimal discounted expected cost function, optimizing the cost over a finite planning
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horizon T from time t onward and starting in the initial state (xt, qt, ~qt), can be written as:

ft(xt, qt, ~qt) = min
xt≤yt≤xt+qt

{Ct(yt)+

+

{

αEDt
[ft+1(yt − Dt, qt+1, ~qt+1)]}, if T − n ≤ t ≤ T ,

αEDt,Qt+n+1
[ft+1(yt − Dt, qt+1, ~qt+1)]}, if 1 ≤ t ≤ T − n − 1,

(2)

where Ct(yt) = h
∫ yt

0
(yt − dt)gt(dt)ddt + b

∫ ∞

yt
(dt − yt)gt(dt)ddt is the regular loss function,

and the ending condition is defined as fT+1(·) ≡ 0.

3. Analysis of the Optimal Policy

In this section, we first characterize the optimal policy, as a solution of the dynamic program-

ming formulation given in (2). We prove the optimality of a state-dependent modified base

stock policy and provide some properties of the optimal policy. For proofs of the following

theorems, we refer to the Appendix.

Let Jt denote the cost-to-go function of period t defined as

Jt(yt, ~qt) =

{

Ct(yt) + αEDt
[ft+1(yt − Dt, qt+1, ~qt+1)], if T − n ≤ t ≤ T ,

Ct(yt) + αEDt,Qt+n+1
[ft+1(yt − Dt, qt+1, ~qt+1)], if 1 ≤ t ≤ T − n − 1,

and we rewrite the minimal expected cost function ft as

ft(xt, qt, ~qt) = minxt≤yt≤xt+qt
Jt(yt, ~qt), for 1 ≤ t ≤ T .

We first show the essential convexity results that allow us to establish the optimal policy.

Note that the single period cost function Ct(y) is convex in y, since it is the usual newsvendor

cost function (Porteus 2002).

Theorem 1 For any arbitrary value of the information horizon n and value of the ACI

vector ~q, the following holds for all t:

1. Jt(y, ~q) is convex in y,

2. ft(x, ~q) is convex in x.

Based on convexity results, minimizing Jt is a convex optimization problem for any

arbitrary ACI horizon parameter n.

Theorem 2 Let ŷt(~qt) be the smallest minimizer of the function Jt(yt, ~qt). For any ~qt, the

following holds for all t:
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1. The optimal ordering policy under ACI is a state-dependent modified base stock policy

with the optimal base stock level ŷt(~qt).

2. Under the optimal policy, the inventory position after ordering yt(xt, qt, ~qt) is given by

yt(xt, qt, ~qt) =







xt, ŷt(~qt) ≤ xt,

ŷt(~qt), ŷt(~qt) − qt ≤ xt < ŷt(~qt),
xt + qt, xt < ŷt(~qt) − qt.

This modified base stock policy is characterized by a state-dependent optimal base stock

level ŷt(~qt), which determines the optimal level of the inventory position after ordering. The

optimal base stock level depends on the future supply availability, that is supply capacities

qt+1, qt+2, . . . , qt+n, given by ACI vector.

It is important to note here that since the optimal base stock level is the smallest min-

imizer of the cost-to-go function Jt(yt, ~qt), it does not depend on the supply capacity qt, as

Jt is not a function of qt. However the actual realization of yt is restricted by the supply

capacity qt available in period t.

Remark 1 The optimal base stock level ŷt(~qt) is independent of the available supply capacity

qt in period t.

The optimal policy can thus be interpreted in the following way: In the case that the

inventory position in the beginning of the period exceeds the optimal base stock level, the

decision maker should not place an order. However, if the inventory position is lower, he

should raise the inventory position up to the base stock level if there is enough supply

capacity available; if not, he should take advantage of the full supply capacity available for

the current order.

In the following theorem we proceed with the characterization of the behavior of the base

stock level in relation to the size of ACI. Intuitively, we expect that when we are facing a

possible shortage in supply capacity in future periods, we tend towards increasing the base

stock level. With this we stimulate the inventory build-up to avoid possible backorders,

which would be the probable consequence of capacity shortage. Along the same line of

thought, the base stock level is decreasing with higher supply availability revealed by ACI.

We confirm these intuitive results in Part 3 of Theorem 3 and illustrate the optimal ordering

policy in Figure 3.
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Figure 3: Illustration of the optimal ordering policy.

We define the first derivative of a function f(x, q) with respect to x as f ′(x, q). Also,

observe that ~q2 ≤ ~q1 holds if and only if each element of ~q1 is greater than or equal to the

corresponding element of ~q2. Part 3 suggests that when ~q2 ≤ ~q1, the decision maker has to

raise the base stock level ŷt(~q2) over the one that was optimal in the initial setting, ŷt(~q1).

Theorem 3 For any ~q2 ≤ ~q1, the following holds for all t:

1. J ′
t(y, ~q2) ≤ J ′

t(y, ~q1) for all y,

2. f ′
t(x, ~q2) ≤ f ′

t(x, ~q+
1 ) for all x,

3. ŷt(~q2) ≥ ŷt(~q1).

We proceed by giving some additional insights into the monotonicity characteristics of

the optimal policy. We continue to focus on how the changes in ACI affect the optimal base

stock level. In the first case we want to assess whether the base stock level is affected more

by the change in supply capacity availability in one of the imminent periods, or is the change

in the available capacity in distant periods more significant. Let us define a unit vector ei

with dimensions equal to the dimensionality of the ACI vector (n-dimensional), where its

ith component is 1. With vector ei we can target a particular component of the ACI vector.

What we want to know, is see, how the optimal base stock level is affected by taking away

η units of supply capacity in period i from now, in comparison with doing the same thing,
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but one period further in the future. In Part 1 of Theorem 4 we show that taking away a

unit of supply capacity given by ACI in period i, affects the optimal base stock level more

than taking away a unit of supply capacity, which is available in later periods, i + 1 and

further. This again is in line with intuition. The closer the capacity restriction is to the

current period the more we need to take it into account when setting the appropriate base

stock level.

Theorem 4 The following holds for all t:

1. ŷt(~q − ηei) ≥ ŷt(~q − ηei+1) for i=t+1,. . . ,t+n-1.

2. ŷt(~q − ηei) − ŷt(~q) ≤ η for i=t+1,. . . ,t+n.

This observation leads us to think about what would be a sufficient response if we were

to face a capacity limit. What would be an appropriate change in the optimal base stock

level? We start with the base scenario in which the available supply capacity is given by the

initial ACI. Then we impose a tighter capacity restriction in period t + i, by lowering the

supply capacity ~qt+i by η units. We are interested in the sensitivity of the optimal base stock

level to the change in the capacity limit. In Part 2 of Theorem 4, we show that the change

in the base stock level should be lower than the change in the capacity limit, in absolute

terms. In other words, each unit decrease in available supply capacity revealed by ACI leads

to lower or at most equal increase in the optimal base stock level. There is a dampening

effect present, and together with the result of Part 1 this implies that the exact ACI for a

distant future period becomes irrelevant to current ordering decision. This is an important

result, suggesting there is no benefit in overextending the ACI horizon n. This is desirable

both in terms of having a reliable ACI in a practical setting, as well in terms of reducing the

complexity of determining the optimal parameters by operating with small n.

4. Relation between ACI and ADI

The use of advance demand information (ADI) has been widely studied in the literature. In

this section, we investigate the structural equivalence between ACI and ADI. An equivalence

would enable one to directly implement the solutions and algorithms already proposed in

the ADI literature. We complement the formal model construction with an explanation of

the conceptual differences between the two models.
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In our ADI model, we assume that we have two independent customer types, ones that

give their orders N periods ahead, and the customers that order in a usual way, giving their

orders for the current period. At the end of the period t, we record the unobserved part of

demand dt and the observed part of demand ot+N , for the future period t+N . Parameter N

represents the length of the information horizon over which ADI is available (perfect ADI is

assumed). Since ADI for period t + N gets collected through period t, it only gets revealed

at the end of the period. Also, we assume that there is a fixed supply capacity Qc limiting

the size of the order in each period. The idea behind the construction of the ADI model

is that the capacity Qc available in each period is used both to cover the observed part of

demand and the unobserved part of demand. Since the observed part of demand is modeled

as a realization of a random variable and it is met first, the remaining capacity to cover the

unobserved part is also a random variable. This suggest that we have a random capacity

available to satisfy the unobserved part of demand dt, which is conceptually similar to our

limited stochastic demand ACI inventory model.

To derive a formal ADI model description we start by writing xt in a modified form x̃t,

as

x̃t = x̂t + ot. (3)

Observe that x̃t already accounts for the observed part of the current period’s demand. By

ordering, we raise x̃t to the corresponding modified inventory position after ordering ỹt, given

as ỹt = x̃t + z̃t, where z̃t ≤ Qc. Due to the update of the inventory position with observed

demand, ỹt only needs to cover the remaining, unobserved part of demand. From (3), we

can show that at the start of period t + 1, x̃t is updated in the following manner

x̃t+1 = x̃t + z̃t − dt − ot+1.

We also need to track the demand observations, given through ADI, that will affect future

orders. These constitute the ADI vector ~ot = (ot+1, . . . , ot+N−1) that gets updated at the

start of period t + 1

~ot+1 = (ot+2, . . . , ot+N),

by including the new information ot+N collected through period t and purging the oldest data

point ot+1, with which we update x̃t+1. The state space is described by an N -dimensional

vector (x̃t, ~ot).
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The minimal discounted expected cost function of the proposed ADI model, optimizing

the cost over a finite planning horizon T from time t onward and starting in the initial state

(x̃t, ~ot), can be written as:

ft(x̃t, ~ot) = min
x̃t≤ỹt≤x̃t+Qc

{Ct(ỹt)+

+

{

αEDt
[ft+1(ỹt − Dt, ~ot+1)]}, if T − N − 1 ≤ t ≤ T ,

αEDt,Ot+N
[ft+1(ỹt − Dt, ~ot+1)]}, if 1 ≤ t ≤ T − N,

(4)

where fT+1(·) ≡ 0.

Now that we have established the ADI model, we can write the formulations, which

establish the relationships between the ACI and ADI model dynamics. For the models to be

equivalent in their base stock levels we need to assume that ỹt = yt holds. This is intuitively

clear, since both need to cover the same demand. Note that we assume the unobserved

part of demand in ADI model is modeled in the same way as ACI model’s demand given

Section 2. By substituting the relevant ACI dynamics formulations into the corresponding

ADI formulations, we show that ACI model’s xt and zt are related to their ADI model

counterparts x̃t and z̃t in a following way

xt = x̃t + ot,

zt = z̃t − ot.

By updating x̃t at the start of the period t, we already use some of the total capacity Qc

to cover the observed part of demand ot. Now we now only have the remaining capacity

Qc − ot to sufficiently raise yt to cover the unobserved part of demand. This directly relates

to having finite capacity qt, which limits the extent to which we can raise yt, in ACI model.

We can write the following relationship

qt = Qc − ot. (5)

By comparing the above ADI model with our ACI model, we first derive the relationship

between the two information horizon parameters. Observe that the at the start of period t

ADI vector ~ot gives observed demands for N − 1 future periods, which will affect the size of

the following N − 1 orders. This corresponds to having ACI for future n periods given by

the ACI vector ~qt. The ACI and ADI horizon parameters n and N are therefore related in

the following way

n = N − 1.
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A more important observation is made by substituting the ADI dynamics formulations

into (2). Comparing the constructed new ADI dynamic programming formulation with the

one proposed by (4), shows the inconsistency at the lower bound over which the minimiza-

tion is made. Instead of looking for the optimal ỹt by minimizing the cost function over

x̃t ≤ ỹt ≤ x̃t + Qc, minimization is made over x̃t + ot ≤ ỹt ≤ x̃t + Qc. For a direct equiva-

lence of the ACI model and the ADI model to hold, we always have to be able to raise ỹt

above x̃t + ot for all t. This means that the available capacity Qc should be sufficient to

cover at least the observed part of demand. This ”negativity issue” also stems directly from

(5), where for qt ≥ 0, Qc − ot ≥ 0 has to hold. The fixed capacity therefore has to exceed

all possible realizations of the observed part of demand, Qc ≥ ot. Obviously this unrealistic

assumption would only hold for large capacities, Qc → ∞, which due to (5) leads to qt → ∞,

and this suggests an uncapacitated system. In an uncapacitated system we would be always

able to raise the inventory position high enough to account for the relevant demand realiza-

tion. We are excluding the possibility that the available capacity is not sufficient to cover

the observed part of demand, which has to be allowed in a general ADI model.

Based on these findings we conclude that there are restrictive, even unrealistic, assump-

tions needed to guarantee a direct equivalence between the capacitated ADI model and the

proposed ACI model in terms of optimal base stock levels and optimal costs. However, many

of the structural properties of ADI optimal policy hold also in the case of our ACI model.

Additional similarities could be found in practical implications of the two lines of modeling

as well. An example of this is the fact that the ADI model given by (4) is a special case of

the model introduced by Özer and Wei (2004).

5. Value of ACI

In this section we present the results of the numerical analysis, which was carried out to

quantify the value of ACI, and to gain insights into how the value of ACI changes as some

of the system parameters change. Numerical calculations were done by solving the dynamic

programming formulation given in (2). We (1) introduce the value of ACI as the measure of

the relative cost decrease in case when using ACI, over the case when no ACI is available, (2)

construct the set of experiments with different demand and capacity patterns. This enables

us to describe the influence of average capacity utilization and period-to-period mismatch

between the demand and capacity pattern on the inventory cost. At the same time we
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evaluate the value of ACI and explore the extent of the benefits that can be gained by

increasing ACI horizon. (3) Based on a particular demand and capacity pattern we proceed

with a more detailed analysis of the influence of the uncertainty of period-to-period demand

and capacity, and the changes in the cost structure on the value of ACI.

To determine the value of ACI, the performance comparison between our ACI model

and the No-ACI is of interest to us. Our model assumes that for n = 0 the realization of

supply capacity qt, available for the current order, is known at the time the order is placed,

while only future supply capacity availability remains uncertain. However, when ACI is not

available, the decision maker is facing uncertain supply capacity for the order he is currently

placing. Due to zero lead time the updating of the inventory position happens before the

current period demand needs to be satisfied. Therefore it is intuitively clear that by knowing

the supply capacity information qt we cannot come up with a better ordering decision, thus

optimal base stock levels and the performance should be the same for both models. The

No-ACI model given by (A7) is a generalization of the model by Ciarallo et al. (1994), where

they assume stationarity of demand and capacity (although not stating explicitly that it

is required), to cover the settings with non-stationary demand and capacity also. In the

following remark we point out that that knowing only qt, representing currently available

supply capacity information, does not help in making better ordering decisions (see also

Remark 1).

Remark 2 The ACI model given by (2), in the case when n = 0, and the No-ACI model

given by (A7), are equivalent with respect to:

1. Optimal base stock level and

2. Optimal discounted expected cost.

We define the relative value of ACI for n > 0, %VACI , as the relative difference between

the optimal expected cost of managing the system where n = 0, and the system where we

have an insight into future supply availability n > 0:

%VACI(n > 0) =
fn=0 − fn>0

fn=0

. (6)

Based on Remark 2, we know that %VACI gives the full value of ACI. Thus, measuring the

full benefit of using ACI over the No-ACI scenario in which the decision maker is facing the

uncertain deliveries by his supplier.
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We also define the marginal change in the value of ACI, △VACI . With this we measure

the extra benefit gained by extending the length of ACI horizon by one time period, from n

to n + 1:

△VACI(n + 1) = fn − fn+1

We proceed with constructing a set of four experiments (experiments number 1-4) with

different demand and capacity patterns. The remaining parameters are set at the fixed value

of: T = 8, α = 0.99, h = 1, b = 20, Normal demand and capacity both with a coefficient

of variation (CV ) of 0.45. We give a graphical illustration of demand and supply capacity

patterns, by plotting the expected demand and expected supply capacity for each of the

periods in Figures 4 and 5. The optimal inventory costs and the optimal base stock levels

ŷ(n=0) for n = 0 setting are presented in Table 2, where also the value of ACI, %VACI , and

the marginal change in the value of ACI, △VACI , is given.

Figure 4: Expected demand and capacity pattern, and optimal base stock level ŷ(n=0) (a)
Exp. 1 (b) Exp. 2.

Let us first observe the differences in inventory cost between the proposed settings. In

general the inventory costs are higher if the supply capacity is highly utilized (experiment

number 1, 2 and 4). However, although the average utilization1 in all three cases is 100%,

there are still considerable cost differences. These are mainly due to period-to-period mis-

match between demand and supply capacity pattern. In experiment number 1 presented

in Figure 4 (a), which represents a kind of of the ”worst case” scenario, we are first faced

with multiple periods of high demand and inadequate capacity. Therefore the extent of the

backorders accumulated in these first periods is high, thus inventory costs are high. We see

that the optimal policy instructs that we raise the base stock levels in the beginning peri-

ods. By doing this, we aim to use as much of the available capacity as possible. However,
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Figure 5: Expected demand and capacity pattern, and optimal base stock level ŷ(n=0) (a)
Exp. 3 (b) Exp. 4.

the probability to achieve these target base stock levels is minor, thus we cannot avoid the

backorders. If we reverse this setting in experiment number 2 presented in Figure 4 (b),

we can use the early excess capacity to build up the necessary inventory to cope with the

subsequent capacity shortage. This in turn greatly reduces the cost. We gradually increase

the base stock levels as we approach the over-utilized periods. Towards the end of the plan-

ning horizon the base stock level is dropping and finally drops to the myopic optimal level

in the last period2. We can further confirm the inventory build up insight by inspecting the

experiment number 3 in Figure 5 (a), where we are faced with two demand peaks in periods

4 and 7. To avoid the probable backorders in the two critical and the following periods, the

rational thing to do is to pre-build the inventory.

We have recognized the potential settings, where anticipation of supply capacity to de-

mand mismatches, can bring considerable cost reductions. We summarize these conclusions

and can give the following conditions that should be fulfilled for anticipation to bring the

considerable benefits to a decision maker: (1) When there is a mismatch between the de-

mand and supply capacity, meaning that there are time periods when the supply capacity is

highly utilized or even over-utilized, but there are also periods when capacity utilization is

low. (2) When we can anticipate the possible mismatch in the future, for which we should

have some data on the demand and supply capacity probability distributions. (3) When

there is enough time and/or excess capacity to build up the inventory to a desired level to

avoid backorder accumulation during the capacity shortage.

The relevance of anticipating the future capacity shortages is well established already

in a deterministic analysis of the non-stationary capacitated inventory systems. Also in a
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Table 2: Optimal base stock level ŷ(n=0), optimal system cost, and the value of ACI

Exp. t 1 2 3 4 5 6 7 8 n Cost %VACI △VACI

1 E[Dt] 6 6 6 6 6 6 6 6 0 1108.0
E[Qt] 3 3 3 3 9 9 9 9 1 1107.6 0.04 0.43
ŷ(n=0) 25 21 17 14 13 13 11 10 2 1107.6 0.04 0.02

3 1107.6 0.04 0.00
4 1107.6 0.04 0.00

2 E[Dt] 6 6 6 6 6 6 6 6 0 279.1
E[Qt] 9 9 9 9 3 3 3 3 1 278.3 0.28 0.78
ŷ(n=0) 22 24 25 26 22 18 15 10 2 277.6 0.53 0.70

3 277.2 0.67 0.40
4 277.0 0.74 0.20

3 E[Dt] 3 3 3 12 3 3 12 3 0 78.8
E[Qt] 9 9 9 9 9 9 9 9 1 70.6 10.37 8.16
ŷ(n=0) 7 12 17 20 11 16 19 5 2 66.7 15.36 3.93

3 65.7 16.62 0.99
4 65.4 17.00 0.30

4 E[Dt] 6 6 6 6 6 6 6 6 0 477.4
E[Qt] 6 6 6 6 6 6 6 6 1 476.6 0.16 0.78
ŷ(n=0) 22 21 20 18 17 15 13 10 2 476.2 0.25 0.41

3 476.0 0.28 0.15
4 476.0 0.29 0.04

stochastic variant of this problem, that we are considering, some anticipation is possible

through knowing the probability distributions for demand and supply capacity in future

periods. In the case of experiment number 4 presented in Figure 5 (b) we are facing a

stationary situation, where there is no ”deterministic” anticipation. However, knowing that

future demand and supply capacity realizations may deviate from their expected values, we

raise the base stock levels to account for these uncertainties. In this paper we argue that we

can further improve on this anticipative build up by using ACI, and by this we can attain

the cost savings.

Looking at the results of Table 2, we now put attention on the cost reductions that can

be achieved by using ACI. We see that ACI makes the inventory cost reduction possible,

however only in certain cases, while in other the benefits are almost nonexistent. If there is

no pre-build opportunity (experiment number 1) we see that the value of ACI is close to 0, no

matter what the length of the ACI horizon is. In the case of experiment number 3 we see that

by having an insight into next period’s available capacity, we can lower the inventory cost

by 10.37%, while an additional period of ACI data gives an additional 4.99% cost reduction.
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However, prolonging the ACI horizon further does not improve the performance greatly.

Obviously additional information on future supply conditions can only help in making more

effective ordering decisions, therefore we see that %VACI increases with the length of the

information horizon n. Observe also that △VACI gets lower, when we increase n. This

makes sense intuitively, since knowing the realizations of supply capacity in the near future

periods has a higher effect on cost reduction then information on supply limitations in more

distant time periods.

We proceed by a close inspection of the influence of the cost structure and the un-

certainty of both the demand and supply capacity on the value of ACI. The base sce-

nario is characterized by the following parameters: T = 6, α = 0.99, h = 1, discrete

uniform distribution is used to model demand and supply capacity, where the expected

demand is given as E[D]1..8 = (3, 3, 3, 3, 3, 9, 3, 3) and the expected supply capacity as

E[Q]
1..8

= (6, 6, 6, 6, 6, 6, 6, 6). We vary: (1) The cost structure, by changing the backo-

rder cost b = (5, 20, 100) and keeping the inventory holding cost constant at h = 1, and

(2) the coefficient of variation of demand CVD = (0, 0.25, 0.45, 0.65) and supply capacity

CVQ = (0, 0.25, 0.45, 0.65), where the CVs do not change through time3. The expected de-

mand and supply capacity pattern is presented in Figure 6, and the optimum costs in Table

3.

Figure 6: Expected demand and capacity pattern for Exp. 5-13.
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Table 3: Optimal system cost and the value of ACI under varying ACI horizon n

b 5 20 100 5 20 100 5 20 100

Exp. CVD CVQ n Cost %VACI △VACI

5 0 0 all n 2.88 2.88 2.88 0.00 0.00 0.00 0.00 0.00 0.00

6 0 0.25 0 6.71 9.44 11.51
1 4.82 5.77 6.40 28.25 38.95 44.39 1.90 3.68 5.11
2 3.95 4.15 4.23 41.13 56.08 63.27 0.86 1.62 2.18
3 3.79 3.82 3.82 43.48 59.56 66.80 0.16 0.33 0.41
4 3.79 3.79 3.79 43.62 59.90 67.11 0.01 0.03 0.04

7 0 0.45 0 16.10 28.88 59.22
1 10.90 20.21 48.08 32.32 30.03 18.81 5.20 8.67 11.14
2 8.68 15.34 40.33 46.08 46.88 31.90 2.21 4.87 7.75
3 7.78 12.93 36.39 51.70 55.21 38.56 0.91 2.41 3.94
4 7.46 11.97 34.87 53.65 58.57 41.11 0.31 0.97 1.51

8 0 0.65 0 35.67 77.84 248.87
1 26.71 66.12 237.45 25.10 15.06 4.59 8.95 11.72 11.42
2 22.71 58.62 227.39 36.34 24.69 8.63 4.01 7.50 10.06
3 20.84 54.10 220.59 41.58 30.50 11.36 1.87 4.53 6.80
4 20.05 51.84 217.10 43.80 33.41 12.77 0.79 2.26 3.49

9 0.25 0.45 0 23.23 41.28 86.60
1 20.43 35.19 78.13 12.07 14.76 9.78 2.81 6.09 8.47
2 19.25 32.04 72.53 17.16 22.39 16.24 1.18 3.15 5.60
3 18.82 30.51 69.77 19.00 26.08 19.43 0.43 1.52 2.76
4 18.65 29.94 68.69 19.72 27.46 20.68 0.17 0.57 1.08

10 0.45 0.45 0 34.35 61.50 139.65
1 32.37 56.89 133.95 5.79 7.50 4.08 1.99 4.61 5.69
2 31.44 54.33 130.49 8.49 11.66 6.55 0.93 2.55 3.46
3 31.09 53.02 128.29 9.49 13.79 8.13 0.34 1.31 2.21
4 30.98 52.50 127.31 9.82 14.63 8.83 0.11 0.52 0.97

11 0.65 0.45 0 47.58 87.57 224.55
1 45.85 84.22 221.12 3.63 3.82 1.53 1.73 3.35 3.43
2 45.04 82.18 219.22 5.34 6.16 2.37 0.82 2.04 1.90
3 44.73 81.05 217.90 5.98 7.44 2.96 0.30 1.13 1.32
4 44.64 80.59 217.20 6.19 7.98 3.27 0.10 0.46 0.70

12 0.25 0.25 0 15.81 22.05 28.98
1 15.02 20.28 25.55 5.01 8.06 11.87 0.79 1.78 3.44
2 14.69 19.20 23.38 7.10 12.96 19.34 0.33 1.08 2.17
3 14.62 18.84 22.28 7.54 14.58 23.12 0.07 0.36 1.10
4 14.61 18.78 21.96 7.58 14.86 24.22 0.01 0.06 0.32

13 0.65 0.65 0 62.49 135.97 455.85
1 58.52 131.15 450.80 6.35 3.55 1.11 3.97 4.83 5.06
2 56.92 127.94 447.64 8.91 5.91 1.80 1.60 3.21 3.15
3 56.27 126.15 445.45 9.96 7.22 2.28 0.65 1.79 2.20
4 56.03 125.37 444.33 10.34 7.80 2.53 0.24 0.78 1.11
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We see that we have one demand peak in period 6 and five pre-build periods (periods 1-5)

we can use to accumulate inventory. Since system’s average utilization is 63%, and the peak

demand period only occurs after five periods of low demand, both primary conditions, which

allow us the build up of inventory, are met: pre-build time and excess capacity. Looking

first at the inventory cost, we clearly see that the more volatile the system is (the higher the

CVD and CVQ are), the worse is the system performance. Changing the cost structure by

increasing the backorder cost obviously also increases the inventory cost. When we look at

the effect of ACI on inventory costs, we see that the costs can be substantially decreased,

even up to almost 70% (experiment number 6). Note again that extending n leads to higher

cost savings, but △VACI is diminishing.

In the case of deterministic demand in experiments number 6, 7 and 8, we observe that

△VACI increases when either b or CVQ, or both, is increased. However, this is not the case

with %VACI , which we attribute to the following two reasons, substantial increase in total

costs and to the limited pre-build opportunity in periods before the peak demand period. For

high b preventing backorders from occurring is of most importance. To cope with periods

of inadequate capacity inventory has to be pre-build. Also in the case of high CVQ, we

account for higher probability of inventory stockouts by increasing the base stock levels.

This leads to too high inventory levels when actual supply capacity realizations are above

expected, and to stockouts in the opposite case. However, through ACI, the decision maker

is warned beforehand about the possible inadequate capacity in the future and he can align

the base stock level more precisely, depending on the future capacity availability. Having

access to ACI might not be sufficient for a successful inventory build up, as the size of the

inventory that can be accumulated in anticipation of the stockouts is limited. In this case

particularly, the need for early anticipation is increased, thus, we observe that also relatively

higher savings can be achieved by increasing n in experiment number 8 in comparison with

experiment number 6.

If we look solely at the effect of increasing demand uncertainty we observe just the

opposite. This is clearly seen when CVD increases both %VACI and △VACI are decreasing,

when looking through experiments number 7, 9, 10 and 11. The latter is intuitively clear,

since the benefits of a more precise alignment of the base stock level, possible due to revealed

ACI, are greatly diminished because the volatile demand causes the inventory position to

deviate from the planned level. However, when both, demand and supply uncertainty, are

increased, we observe non-monotone behavior of △VACI (experiments number 12, 10 and 13).
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The observed combined effect of CVD and CVQ can be attributed to a complex interaction

between the two, which suggests that they need to be considered in an integrated manner.

To summarize, we have noted that increase in both CVD and CVQ leads to higher inven-

tory costs. However, as we have shown, these cost can be significantly decreased by using

ACI. We remark in general that the more chaos there is in supply, the better it is to have

some partial (preferably exact) information about the future. The decision maker facing

low demand uncertainty on one side, while struggling with high capacity uncertainty on the

other, can therefore gain the most from using ACI.

6. Conclusions and future research

In this paper, we develop a model that incorporates ACI into inventory decision making and

explore its effect on making effective ordering decisions within a periodic review inventory

planning system facing limited stochastic supply. Based on the convexity of the relevant cost

functions, we are able to show the form of the optimal policy to be a modified base stock

policy with a single state-dependent base stock level. Essentially the base stock level depends

on realizations of future supply capacities revealed by ACI, and is a decreasing function of

the ACI size. We complement this result by showing additional monotonicity properties of

the optimal policy. Another contribution of this work is in establishing a link to advance

demand information modelling by derivation of the capacitated ADI model. We show that

under certain restrictive assumptions the models are equivalent in their structure. Through

this we suggest that there is an interesting overlap between the two research fields.

By means of numerical analysis we develop some additional managerial insights. In

particular, we give the following conditions when inventory costs can be decreased through

the use ACI: (1) when there is a mismatch between demand and supply capacity, which can

be anticipated through ACI, and there exists an opportunity to pre-build inventory in an

adequate manner, (2) when uncertainty in future supply capacity is high and ACI is used to

lower it effectively, and (3) in the case of high backorder costs, which further emphasizes the

importance of avoiding stock outs. Under such circumstances, the companies should pursue

establishing long-term contractual agreements, which would encourage ACI sharing. Such

relations would bring considerable operational cost savings.

There are multiple ways to extend the work presented in this paper. While the proposed

model assumes perfect ACI, the ACI model can be extended to describe the situation where
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the communicated supply limit might not be completely accurate. This information can

be denoted as imperfect ACI. The consequence of ACI not being exact is that there is

still some uncertainty in the actual supply capacity availability. This leads to a situation

where the inventory position does not reflect the actual realizations of the orders in the

pipeline and anticipating the future supply conditions is harder due to the remaining share

of the uncertainty. The present ACI model assumes that ACI reveals the supply capacity

availability for the current and n future orders, meaning that when placing the order exact

supply capacity realization is known. An interesting future research is assuming that supply

information is received only after the order has been placed, in case there is a positive

supply lead time. In this case the order has to be placed not knowing the available supply

capacity, however, we observe advance supply information for the order that is already given

and is currently still in the pipeline. Advance supply information indicates whether the

order will be filled fully or just partially before the actual delivery, and thus enables the

decision maker to react if necessary. Another possible extension is complementing ACI with

possibility of capacity reservations. The customer would assess whether the future supply

capacity availability is adequate based on the available ACI, if not, he could take advantage of

reserving a certain share of the supplier’s capacity in advance and incurring some additional

cost of reservation.

Appendix

Preliminaries for Theorem 1

Lemma 1 Let x ∈ R
n, b ∈ R

m, A ∈ R
m×n and e ∈ R

s. Assume that g(x, e) is convex in x

and e. Then the function f(b, e) := minAx≤b g(x, e) : R
n → R is also convex in b and e.

Proof: Let 0 ≤ θ ≤ 1. Then

θf(b, e) + (1 − θ)f(b̄, ē) = θ min
Ax≤b

g(x, e) + (1 − θ) min
Ax≤x

g(x, ē)

= θg(x∗
0, e) + (1 − θ)g(x∗

1, ē)

≥ g(θ(x∗
0, e) + (1 − θ)(x∗

1, ē)) (A1)

≥ min
Ax≤θb+(1−θ)b̄

g(x, θe + (1 − θ)ē) (A2)

= f(θ(b, e) + (1 − θ)(b̄, ē))
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(A1) is due to convexity of g and (A2) is because Ax∗
0 ≤ b and Ax∗

1 ≤ b̄ implies that

A(θx∗
0 + (1 − θ)x∗

1) ≤ θb + (1 − θ)b̄. �

Lemma 2 If J(y, e) is convex then f(x, q, e) = minx≤y≤x+q J(y, e) is also convex.

Proof: Let h(b, e) := minAy≤b J(y, e) where A = [−1, 1] and b = [−x, x + q]. By Lemma 1,

we conclude that h(b, e) is convex. Since h(b, e) = f(x, q, e), f is also convex. �

Proof of Theorem 1: The theorem can be proven by regular inductive arguments and

the results of Lemmas 1 and 2. �

Proof of Theorem 2: Convexity results of Theorem 1 directly imply the proposed

structure of the optimal policy. �

Lemma 3 Let f(x) and g(x) be convex, and xf and xg be their smallest minimizers. If

f ′(x) ≤ g′(x) for all x, then xf ≥ xg.

Proof: Assume for a contradiction that xf < xg, then f ′(xg − 1) ≥ 0. This is due to

xf < xg and is equal to 0 in the extreme case xg = xf + 1. Also from f ′(x) ≤ g′(x) we have

f ′(xg − 1) ≤ g′(xg − 1). We have g′(xg − 1) ≥ 0, which contradicts the definition of xg being

smallest minimizer of g(·). Hence xf ≥ xg (Özer and Wei 2003). �

Proof of Remark 1: The result directly follows from the results of Theorem 2. �

Proof of Theorem 3: Using the induction argument we first observe that J ′
t(y, ~q2) ≤

J ′
t(y, ~q1) holds for t = T since J ′

T (y, ~q) = C ′
T (yt). Assuming that it also holds for t we have

ŷt(~q2) ≥ ŷt(~q1) by using Lemma 3. To prove that this implies f ′
t(x, ~q2) ≤ f ′

t(x, ~q1) for t, we

first write the optimal cost function ft(x, ~q) using the definition given in (2) and following

the results of Theorem 2, as

ft(x, q, ~q) =







Jt(x, ~q), ŷt(~q) ≤ x,

Jt(ŷt(~q), ~q), ŷt(~q) − q ≤ x < ŷt(~q),
Jt(x + q, ~q), x < ŷt(~q) − q,

(A3)

where q denotes available supply capacity for the current order. Observe also that we later

use ft(x, ~q) = EQft(x, q, ~q), unless noted otherwise. From this, the definition of the first

difference and the convexity of Jt proven in Theorem 1, we can write f ′
t(x, ~q) in the following

manner

f ′
t(x, q, ~q) =







≥ 0, ŷt(~q) ≤ x,

= 0, ŷt(~q) − q ≤ x < ŷt(~q),
< 0, x < ŷt(~q) − q.

(A4)
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Further analysis considers all possible inventory positions before ordering xt with regards to

both optimal base stock levels ŷt(~q1) and ŷt(~q2); and available supply capacity for the current

order, denoted as q1 and q2. Out of the possible nine cases in total, we can eliminate four

cases due to the two conditions: ŷt(~q2) ≥ ŷt(~q1) and q1 ≤ q2. Thus we only need to closely

analyze the remaining five cases, showing that f ′
t(x, ~q2) ≤ f ′

t(x, ~q1) holds.

Case 1: If (x ≥ ŷt(~q2)) ∧ (x ≥ ŷt(~q1)), which holds on the interval x ≥ ŷt(~q2) for any

combination q1 ≤ q2, then f ′
t(x, ~q1) = J ′

t(x, ~q1) and f ′
t(x, ~q2) = J ′

t(x, ~q2) from (A3) and since

Part 1 states J ′
t(y, ~q2) ≤ J ′

t(y, ~q1), we have f ′
t(x, ~q2) ≤ f ′

t(x, ~q1).

Case 2: If (ŷt(~q2)− q2 ≤ x < ŷt(~q2))∧ (x ≥ ŷt(~q1)) or equivalently ŷt(~q2)− q2 ≤ x < ŷt(~q2)

for q1 ≤ q2 ≤ ŷt(~q2) − ŷt(~q1), then f ′
t(x, ~q1) ≥ 0 and f ′

t(x, ~q2) = 0 from (A4), thus f ′
t(x, ~q2) ≤

f ′
t(x, ~q1).

Case 3: If (x < ŷt(~q2)− q2)∧ (x ≥ ŷt(~q1)) or equivalently ŷt(~q1) ≤ x < ŷt(~q2)− q2 for q1 ≤

q2 ≤ ŷt(~q2)− ŷt(~q1), then f ′
t(x, ~q1) ≥ 0 and f ′

t(x, ~q2) < 0 from (A3), thus f ′
t(x, ~q2) ≤ f ′

t(x, ~q1).

Case 4: If (ŷt(~q2) − q2 ≤ x < ŷt(~q2)) ∧ (ŷt(~q1) − q1 ≤ x < ŷt(~q1)), which holds on

ŷt(~q2) − q2 ≤ x < ŷt(~q1) for q2 > ŷt(~q2) − ŷt(~q1) and any q1 ≤ q2, then f ′
t(x, ~q1) = 0 and

f ′
t(x, ~q2) = 0 from (A3), thus f ′

t(x, ~q2) ≤ f ′
t(x, ~q1).

Case 5: If (x < ŷt(~q2)− q2)∧ (ŷt(~q1)− q1 ≤ x < ŷt(~q1)), which holds on ŷt(~q1)− q1 ≤ x <

ŷt(~q2) − q2 for q2 > ŷt(~q2) − ŷt(~q1) and any q1 ≤ q2, then f ′
t(x, ~q1) = 0 and f ′

t(x, ~q2) < 0 from

(A3), thus f ′
t(x, ~q2) ≤ f ′

t(x, ~q1).

Going from t to t − 1 we conclude the induction argument by showing that f ′
t(x, ~q2) ≤

f ′
t(x, ~q1) implies J ′

t−1(y, ~q2) ≤ J ′
t−1(y, ~q1). Using the definition we write J ′

t−1(y, ~q2) = C ′
t−1(y)+

αEDt−1,Qt+n
ft(x2, q2, ~q2), where going backwards x2 is updated from y and order size zt

is limited by the available supply capacity given by q2. Taking into account that we

have condition ~q2 ≤ ~q1 at t − 1, this implies q2 ≤ q1 at t, and we can conclude that

x2 ≤ x1 has to hold. Thus, f ′
t(x2, ~q2) ≤ f ′

t(x1, ~q2) also holds directly from convexity and

we can write C ′
t−1(y) + αEDt−1,Qt+n

ft(x2, ~q2) ≤ C ′
t−1(y) + αEDt−1,Qt+n

ft(x1, ~q2) ≤ C ′
t−1(y) +

αEDt−1,Qt+n
ft(x1, ~q1) = J ′

t−1(y, ~q1), where the second inequality is due to induction argument

f ′
t(x, ~q2) ≤ f ′

t(x, ~q1). With this we have shown J ′
t−1(y, ~q2) ≤ J ′

t−1(y, ~q1) holds and the proof

is completed. �

Lemma 4 For any ~q and η > 0 and all t, we have:

1. J ′
t(x − η, ~q) ≤ J ′

t(x, ~q − ηe1),

2. ŷt(~q − ηe1) − ŷt(~q) ≤ η,
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3. f ′
t(x − η, ~q) ≤ f ′

t(x, ~q − ηe1).

Proof: For all x and t,

J ′
t(x − η, ~q) = C ′

t(x − η) + αEDt,Qt+n+1
f ′

t+1(x − η − Dt, qt+1, ~qt+1)

≤ C ′
t(x) + αEDt,Qt+n+1

f ′
t+1(x − η − Dt, qt+1, ~qt+1)

= J ′
t(x, ~q − ηe1). (A5)

Assuming f ′
t(x − η, ~q) ≤ f ′

t(x, ~q − ηe1) holds, Part 1 holds due to the fact that inequality is

due to convexity of Ct(x). The smallest minimizer of J ′
t(x− η, ~q) is ŷt(~q)+ η, which together

with Lemma 3 implies ŷt(~q − ηe1) ≤ ŷt(~q) + η, and this proves Part 2. We continue to prove

f ′
t(x − η, ~q) ≤ f ′

t(x, ~q − ηe1) for all x and t. We use (A6) and (A4), and consider 9 possible

cases:

Case 1: If ŷt(~q) ≤ x−η and ŷt(~q−ηe1) ≤ x then f ′
t(x−η, ~q) = J ′

t(x−η, ~q) ≤ J ′
t(x, ~q−ηe1) =

f ′
t(x, ~q − ηe1). The inequality follows from (A5).

Case 2: If ŷt(~q) ≤ x − η and ŷt(~q − ηe1) − q ≤ x < ŷt(~q − ηe1) is not possible since

x < ŷt(~q − ηe1) ≤ ŷt(~q) + η.

Case 3: If ŷt(~q) ≤ x−η and x < ŷt(~q−ηe1)− q is not possible since x < ŷt(~q−ηe1)− q ≤

ŷt(~q) + η − q.

Case 4: If ŷt(~q)−q ≤ x−η < ŷt(~q) and ŷt(~q−ηe1) ≤ x then f ′
t(x−η, ~q) = 0 ≤ f ′

t(x, ~q−ηe1).

Case 5: If ŷt(~q) − q ≤ x − η < ŷt(~q) and ŷt(~q − ηe1) − q ≤ x < ŷt(~q − ηe1) then

f ′
t(x − η, ~q) = 0 = f ′

t(x, ~q − ηe1).

Case 6: If ŷt(~q) − q ≤ x − η < ŷt(~q) and x < ŷt(~q − ηe1) − q is not possible since

x < ŷt(~q − ηe1) − q ≤ ŷt(~q) + η − q.

Case 7: If x − η < ŷt(~q) − q and ŷt(~q − ηe1) ≤ x then f ′
t(x − η, ~q) < 0 ≤ f ′

t(x, ~q − ηe1).

Case 8: If x− η < ŷt(~q)− q and ŷt(~q− ηe1)− q ≤ x < ŷt(~q− ηe1) then f ′
t(x− η, ~q) < 0 =

f ′
t(x, ~q − ηe1).

Case 9: If x− η < ŷt(~q)− q and x < ŷt(~q− ηe1)− q then f ′
t(x− η, ~q) = J ′

t(x− η + q, ~q) ≤

J ′
t(x + q, ~q − ηe1) = f ′

t(x, ~q − ηe1). The inequality follows from (A5). With this we conclude

the proof of Part 3. �

Proof of Theorem 4: Part 3 of Lemma 4 implies that J ′
t(y, ~q − ηe1) = C ′

t(y) +

αEDt,Qt+n+1
f ′

t+1(y − η − Dt, qt+1, ~qt+1) ≤ C ′
t(y) + αEDt,Qt+n+1

f ′
t+1(y − Dt, qt+1, ~qt+1 − ηe1) =

J ′
t(y, ~q − ηe2) for all t. Hence for all t,

J ′
t(y, ~q − ηei) ≤ J ′

t(y, ~q − ηei+1) (A6)
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is true for i = 1. Now assume for an induction argument that (A6) is true for i, then Part

1 for i follows from Lemma 3. Next, we show that Part 1 for i and the induction argument

imply f ′
t(x, ~q − ηei) ≤ f ′

t(x, ~q − ηei+1). To do so, we use (A3) and consider 3 cases:

Case 1: If x ≥ ŷt(~q − ηei+1), then f ′
t(x, ~q − ηei+1) = J ′

t(x, ~q − ηei+1) ≥ J ′
t(x, ~q − ηei) =

f ′
t(x, ~q − ηei), where the inequality is due to (A6).

Case 2: If ŷt(~q − ηei+1) − q ≤ x < ŷt(~q − ηei), then f ′
t(x, ~q − ηei+1) ≥ 0. This is the case

since on the interval ŷt(~q−ηei+1)−q ≤ x < ŷt(~q−ηei+1) it holds f ′
t(x, ~q−ηei+1) = 0, however

on ŷt(~q − ηei+1) < x ≤ ŷt(~q − ηei), f ′
t(x, ~q − ηei+1) ≥ 0. Here ŷt(~q − ηei+1) ≤ ŷt(~q − ηei)

holds from (A6) and Lemma 3. For f ′
t(x, ~q − ηei) ≤ 0, due to f ′

t(x, ~q − ηei) = 0 on interval

ŷt(~q − ηei) − q ≤ x < ŷt(~q − ηei) and f ′
t(x, ~q − ηei) ≤ 0 on interval ŷt(~q − ηei+1) − q ≤ x <

ŷt(~q − ηei) − q. ŷt(~q − ηei+1) − q ≤ ŷt(~q − ηei) − q also holds from (A6) and Lemma 3.

Case 3: If x < ŷt(~q − ηei+1) − q, then f ′
t(x, ~q − ηei+1) = J ′

t(x + q, ~q − ηei+1) ≥ J ′
t(x +

q, ~q − ηei) = f ′
t(x, ~q − ηei), where the inequality is due to (A6).

From (2) and the cases above, we have J ′
t(y, ~q − ηei+1) = C ′

t(y) + αEDt,Qt+n+1
f ′

t+1(y −

Dt, qt+1, ~qt+1−ηei) ≤ C ′
t(y)+αEDt,Qt+n+1

f ′
t+1(y−Dt, qt+1, ~qt+1−ηei+1) = J ′

t(y, ~q−ηei). This

completes the induction argument and the proof of (A6) and Part 1. �

The proof of Part 2 follows directly from Part 1 and Lemma 4 for i > 1 because ŷt(~q −

ηei) − ŷt(~q) ≤ ŷt(~q − ηei−1) − ŷt(~q) ≤ · · · ≤ ŷt(~q − ηe1) − ŷt(~q) ≤ η. This proof was inspired

by Özer and Wei (2003). �

Proof of Remark 2: We first rewrite the optimal cost function formulation given in

(2) for n = 0:

ft(xt, qt) = minxt≤yt≤xt+qt
{Ct(yt) + αEDt,Qt+1

ft+1(yt − Dt, qt+1)}, for 1 ≤ t ≤ T ,

where ft is now only a function of inventory position before ordering xt and the supply

capacity available for the current order qt.

In the No-ACI case, the decision maker has to decide for the order size without knowing

what the available supply capacity for the current period will be. Inventory position after

ordering yt only gets updated after the order is actually received, where it can happen that

the actual delivery size is less than the order size due to the limited supply capacity. We

can therefore write yt as yt = xt + min{zt, qt}, and the optimal cost function formulation for

the No-ACI model is given as

Ht(xt, zt) = min
xt≤yt

{EQt
Ct(yt − [zt − qt]

+) + αEDt,Qt
Ht+1(yt − [zt − qt]

+ −Dt)}, for 1 ≤ t ≤ T .

(A7)
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We provide the complete proof of the Remark 2 in the Technical Supplement. �

Notes

1Defined as the sum of average demands over the sum of average supply capacities over the whole planning
horizon.

2In period T, at the end of the planning horizon, the myopic and the optimal solution converge. Actually,
for the capacitated single period problem, Ciarallo et al. (1994) show that the myopic solution is not affected
by the last period’s capacity constraint.

3Since it is not possible to come up with the exact same CVs for discrete uniform distributions with
different means, we give the approximate average CVs for demand and supply capacity distributions with
means E[D]1..8 and E[Q]1..8.
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