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Inventory pooling is at the root of many celebrated ideas in operations management. Postponement, component
commonality, and resource flexibility are some examples. Motivated by our experience in the aftermarket

services industry, we propose a model of inventory pooling to meet differentiated service levels for multiple
customers. Our central research question is the following: What are the minimum inventory level and optimal
allocation policy when a pool of inventory is used in a single period to satisfy individual service levels for
multiple customers? We measure service by the probability of fulfilling a customer’s entire demand immediately
from stock. We characterize the optimal solution in several allocation policy classes; provide some structural
results, formulas, and bounds; and also make detailed interpolicy comparisons. We show that the pooling benefit
is always strictly positive, even when there are an arbitrary number of customers with perfectly positively
correlated demands.
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1. Introduction
Inventory pooling, the practice of using a common
pool of inventory to satisfy two or more sources of
random demand, has been studied in the context of
many operationally challenging situations. For exam-
ple, large streams of literature explore how pool-
ing acts as an essential ingredient in containing the
operational costs of high product variety, in miti-
gating supply chain disruptions, and in striking the
right trade-off between operational benefits and fixed
costs of product-process flexibility in supply chains
(Lee 2004).

In this paper, we analyze a single-period model
that captures inventory pooling in an environment
where customers’ service expectations differ; hence,
the policy by which inventory is allocated becomes
critical, should one wish to reap the benefits of inven-
tory pooling. We pose a fundamental question: When
a pool of inventory is used to serve customers with varying
service-level requirements, what are the minimum inven-
tory level and optimal allocation policy? We measure ser-
vice by the probability of meeting a customer’s entire

demand immediately from stock (type 1 service mea-
sure; Silver et al. 1998, p. 245).

This is the essence of a problem that frequently
occurs in aftermarket service operations, an indus-
try sector estimated to make up 8% of the gross
domestic product in the United States (Cohen et al.
2006), when certain levels of service need to be main-
tained for a collection of current and relatively long-
term contracts at minimum cost. In such settings, the
total revenue from trade is fixed because demands
are eventually satisfied and prices are contractually
set, even though they may vary from one customer
to another. Often, service-level requirements of cus-
tomers differ. We frame the problem as follows: find
the combination of inventory level and allocation pol-
icy that maintains a set of current contracts most
efficiently.

Our model is highly stylized; it assumes a single
period in which the firm uses a type 1 service mea-
sure and batches demands from multiple customers
before attempting to fulfill them. We observed how
HOLT CAT, Caterpillar’s Texas dealership, manages
spare parts inventories. The most important measure
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of service it monitors for each store is called on time
in full (OTIF), the percentage of spare parts orders
fully satisfied on time, because its customers often
see no value in having only a portion of the parts
required to perform a repair (Barry 2006). Moreover,
HOLT CAT discourages urgent orders because nonur-
gent orders for such parts as air filters are typically
batch-processed overnight rather than immediately
upon order receipt, which is more costly. The totality
of HOLT CAT’s operation is, of course, much more
complicated than what is suggested by our stylized
model. For example, the time component of OTIF
is only crudely captured, and inventory replenish-
ment and demand batching may not always be syn-
chronized even for nonurgent items. Nevertheless,
we hope that our model might serve as a building
block for more complex and realistic models in this
area.

What piqued our interest the most in industry
practice is the decoupling of ordering and alloca-
tion decisions. In our model, we treat the ordering
decision, which sets the spare parts inventory level,
and the allocation decision, which rations the avail-
able inventory among customers via a prioritization
scheme of some sort, simultaneously. By optimiz-
ing jointly over allocation policies as well as inven-
tory levels, we demonstrate the benefits of integrating
these decisions.

Our main goal is to find analytical characterizations
of the optimal inventory level and allocation pol-
icy for customers with different service-level require-
ments. We define three classes of allocation policies,
and we obtain structural results and formulas that
optimize jointly over inventory level as well as allo-
cation policy. We find the optimal solution for two
customers with arbitrary demand distributions but
require independent and identically distributed (iid)
demands for three or more customers. We demon-
strate the advantages of interlinking inventory and
allocation decisions and give insights into when less
sophisticated allocation policies are almost as good
as the optimal policy. Finally, we have a result
that is in contrast with backorder-cost models, in
which the pooling benefit is zero when demands
are perfectly positively correlated (Eppen 1979). In
our service-level-constrained model, we show ana-
lytically that the pooling benefit is strictly positive
even if demands are perfectly positively correlated.
We relegate all proofs to Appendix A (see the online
companion, available at http://dx.doi.org/10.1287/
msom.1120.0399).

2. Literature Review
In positioning our paper, we find the broad framework
presented by Özer and Xiong (2008) useful. They iden-
tify four quadrants into which many inventory models

can be slotted. The dimensions underlying their matrix
are (1) backorder-cost or service-level models and
(2) single or multiple demand points. Our paper fits
into the fourth quadrant; for completeness we review
representative papers in the two quadrants most rel-
evant to our paper: backorder-cost and service-level
models with multiple demand points. Even within
a given quadrant, researchers make different model-
ing choices: continuous review versus periodic review,
optimizing the parameters of an assumed allocation
policy versus finding the form of the optimal alloca-
tion policy, and finite horizon versus infinite horizon.

We remark that the setting in the present paper
and the settings in the bulk of the literature reviewed
below are not directly comparable because they apply
to different distribution environments. For instance,
in many models, customers carry inventory; the ware-
house may (or may not) carry inventory at a central
location and allocates inventory to satisfy the replen-
ishment requests from downstream retailers (who sell
to end consumers). Further, the literature generally
does not assume allocation can be made after demand
is realized; that is, demands are not batched during
a period but are satisfied in real time. These mod-
els capture a context in which it would be too late
to wait for demand realizations before making alloca-
tion decisions given the positive shipment lead times
between the warehouse and the retailers.

Our paper is most closely related to Swaminathan
and Srinivasan (1999) and Zhang (2003). Swami-
nathan and Srinivasan (1999) develop an algorithm
to compute the optimal ordering and allocation poli-
cies for the same problem that we study. The com-
binatorial complexity of the problem, and hence the
difficulty of obtaining a practical solution efficiently,
is evident from their paper. Switching iteratively
between binary search and Monte Carlo simulation,
their approach is necessarily computational and expo-
nential time, because they pose the problem in its
most general form without structuring either the
space of policies or the demand distributions. In con-
trast, we emphasize policies that are intuitive and
easy to implement, and to that end we provide some
structural results, formulas, and bounds. We also
make detailed interpolicy comparisons. Zhang (2003)
studies a specific class of allocation policies again in
a single period, considering the special case when
demand distributions and service levels are such that
at most one customer’s demand can go unsatisfied.

Eppen and Schrage (1981) study a supplier-depot-
multiple-warehouse system in which the warehouses
face mutually independent normally distributed
demands. At the end of every period, an aggre-
gate replenishment order y is placed with the sup-
plier. Replenishment stock is routed through the
depot, where an allocation rule has to be framed for
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distributing stock to the warehouses. The following
allocation rule is assumed: stock is distributed so as
to equalize type 1 service levels at the warehouses.
This allocation rule is feasible when demands are sta-
ble but may otherwise be infeasible. Assuming that
the rule is feasible, the authors develop an expression
for the value of y that minimizes the sum of expected
holding and backorder costs.

Schwarz et al. (1985) study a one-warehouse
multiple-retailer system in which all the entities hold
stock and follow continuous-review 4Q1R5 policies.
Each retailer faces independent Poisson demand and
receives replenishments from the warehouse, which is
replenished by an uncapacitated source. If the retail-
ers run out of stock, they place backorders with
the warehouse. The backorders are filled on a first-
come, first-serve (FCFS) basis from the warehouse.
The problem is to determine lot sizes and reorder
points so as to maximize the fill rate at the warehouse
subject to an upper bound on the system inventory.

Hopp et al. (1999) model a spare parts distribution
system wherein a distribution center (DC) supports
a number of customer facilities that generate Poisson
demands. The DC as well as the facilities hold stock;
the facilities follow a one-for-one replenishment strat-
egy, and the DC follows a continuous-review replen-
ishment strategy. The problem is to determine the
parameters of the ordering policies at the DC and
the facilities so as to minimize expected inventory-
related costs across the system subject to service-level
constraints that place upper bounds on the order fre-
quency at the DC and the average delay experienced
by each facility.

Caglar et al. (2004) study a distribution system with
a similar topology to that in Hopp et al. (1999), but
for repairable parts. A fixed number of depots serves
customers, each of whom owns a machine with multi-
ple parts subject to failure. Each depot sees a Poisson
arrival process of failed parts. Each failed part is
replaced by a spare part from stock or backordered.
All failed parts are transported to a central ware-
house, where they are repaired. Repair times at the
warehouse and transportation times between the cen-
tral warehouse and depots are modeled. The prob-
lem is to determine basestock levels at the central
warehouse and depots so as to minimize the total
systemwide inventory holding cost subject to service-
level constraints in the form of bounds on average
response time. A computationally efficient heuristic is
presented to solve the problem.

Deshpande et al. (2003) study service-level differ-
entiation for two demand classes, each following a
Poisson process with different rates. They assume a
continuous-review 4Q1R5 policy for inventory replen-
ishment and a threshold policy for inventory alloca-
tion, which stipulates that lower-priority customers

(those with lower shortage cost) are not served at all if
inventory on hand falls below a threshold level. They
study optimal policy parameters and backlog clearing
mechanisms.

Arslan et al. (2007) study a problem that is quite
close to ours, but they model it differently. They aim
to find the optimal parameters of a continuous-review
4Q1R5 inventory policy for a single stocking point and
an allocation policy for a number of customers with
differentiated service-level requirements. The alloca-
tion policy is a natural adaptation of threshold pol-
icy to multiple customers. Customer demands are
Poisson with different rates. The problem is to find
threshold levels and an optimal value of R (for a
given Q) such that the probability of a strictly positive
inventory level exceeds a certain minimum accept-
able level, which varies from customer to customer.
The authors present an efficient heuristic to solve the
problem.

Özer and Xiong (2008) study a distribution sys-
tem comprising a warehouse replenishing multiple
retailers, each of which operates a continuous-review
basestock (one-for-one replenishment) policy. All loca-
tions carry inventory. The demand process at each
retailer is Poisson; unsatisfied demand is backordered.
The warehouse fills requests from the retailers on an
FCFS basis. The problem is to determine basestock
levels that minimize the system inventory holding
cost subject to the following service-level constraint:
the probability that a demand at each retailer can
be filled from existing stock must exceed a threshold
level. Bounds and heuristics are developed to deter-
mine optimal basestock levels at each location and the
ensuing average cost.

Gallego et al. (2007) study allocation mechanisms
whereby a central control point (a manager who
has access to systemwide inventory levels and costs)
makes stock placement decisions for a set of down-
stream demand points facing Poisson demand with
the objective of minimizing expected cost. The same
theme of central-versus-local control is explored in
Chen (1998), which studies optimal inventory place-
ment in a serial N -stage system and compares echelon
stock (central) and installation stock (local) policies.

In closing, we review a few inventory-pooling
models. Eppen (1979) shows that there is bene-
fit to inventory pooling in the face of iid normal
demands and studies how this benefit varies as a
function of demand correlation and the number of
demand points. Erkip et al. (1990) extend the Eppen-
Schrage model to the case of correlated demands,
both across locations and across time at a given
location. Özer (2003) explores the interplay between
advance demand information and inventory pooling.
Alptekinoğlu and Tang (2005) consider arbitrary num-
bers of depots and demand locations facing multivari-
ate normal demand.
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More broadly, two prominent methods of contain-
ing operational costs due to high variety are based
on pooling: postponement, also known as delayed
product differentiation (Lee and Tang 1997, Aviv
and Federgruen 2001), and component commonality
(Mirchandani and Mishra 2002, Van Mieghem 2004).
Many models of assemble-to-order systems (Akçay
and Xu 2004) and resource flexibility (Van Mieghem
1998) have some form of pooling at the core.

3. Problem Formulation
A firm supplies a single product to N customers
from a centralized pool of inventory over the duration
of a single period. Customer i has a random demand
Xi and requires a minimum service level of �i ∈ 40115;
the probability that Xi is fully satisfied must be �i

or more. The Xi’s are continuous positive-valued ran-
dom variables with distribution functions Fi4 · 5, and
their sum has a distribution function G4 · 5.

Events unfold as follows: (1) the firm orders S units
of the product in advance so as to receive them at the
beginning of the period; (2) actual customer demands,
denoted by xi, realize throughout the period; (3) at the
end of the period, the firm allocates the available pool
of inventory (S units) among N customers accord-
ing to an allocation policy and makes the appropriate
shipments. Any leftover inventory is discarded.

An allocation policy in general is a mapping
A2 �N+1

+
→ �N

+
from inventory level and demand

realizations 4S1x11x21 0 0 0 1 xN 5 to inventory allocations
4y11y21 0 0 0 1 yN 5 resulting in yi = Ai4S1x11x21 0 0 0 1 xN 5
such that yi ≤ xi (no customer receives more inven-
tory than needed) and

∑N
i=1 yi = min8S1

∑N
i=1 xi9 (the

firm either depletes its inventory or satisfies all cus-
tomers), where �+ denotes the set of nonnegative real
numbers. Let ì be the set of all such mappings.

The firm wants to find the minimum inventory
S coupled with an allocation policy A that together
meet the service-level requirements. Both of these
decisions are made at the beginning of the period, at
which point the outcome of A in terms of allocating
actual quantities to the customers is a priori uncer-
tain. That is, at the time of selecting S and A, demands
X = 4X11X21 0 0 0 1XN 5 as well as inventory allocations
Y = 4Y11Y21 0 0 0 1YN 5 that result from applying A are
uncertain; Yi = Ai4S1X5, the amount of inventory to be
allocated to customer i is a random variable, and cus-
tomer i’s demand is fully satisfied if and only if (iff)
the event Yi = Xi occurs. Service-level requirements
are therefore in the form of chance constraints.

The firm’s problem can be formally stated as fol-
lows (let P8 · 9 denote probability):

minimize
S∈�+1A∈ì

S

subject to P8Ai4S1X5=Xi9≥�i for all i=11210001N ,

where ì ≡ 8A2 �N+1
+

→ �N
+

� yi = Ai4S1x11x21 0 0 0 1 xN 5
and yi ≤ xi for i = 11 0 0 0 1N , and

∑N
i=1 yi =

min8S1
∑N

i=1 xi99 is the set of mappings that each spec-
ify an allocation of available inventory to customers
up to their demands. Note that the mapping A has
to be derived at the beginning, before observing
demands, because the firm cannot evaluate the feasi-
bility of S without specifying A.

4. Allocation Policies
We first define a class of allocation policies and
show that an optimal policy belongs to this class.
A priority policy is an allocation policy that leaves,
at most, one customer partially satisfied; i.e., the set
8i ∈ 811 0 0 0 1N 92 0 <yi < xi9 is either empty or a single-
ton for all demand realizations.

Theorem 1. An optimal allocation policy is a priority
policy.

We now offer an alternative definition of a pri-
ority policy that is more convenient to work with
than the definition based on inventory allocations
(y variables). An allocation policy belongs to the
class of priority policies if it operates as follows.
First, customers are ordered in a priority list—
the sequence by which inventory is “doled out”—
before or after demand realizations are observed. Let
�2 811 0 0 0 1N 9→ 811 0 0 0 1N 9 be a one-to-one correspon-
dence between priority list positions and customers.
Each priority list ç= 4�4151 0 0 0 1�4N55 is defined by
one such correspondence �, with �4j5 represent-
ing the customer in the jth position of the priority
list. Second, customer demands are filled from the
available inventory in decreasing order of priority;
demand from customer �415 is filled first, customer
�425 second, and so on. This sequential allocation pro-
cess stops when all demands are filled or when the
available inventory is exhausted, whichever occurs
first.

In this paper, we define and analyze two main
classes of allocation policies that are differentiated by
whether or not they make use of actual demand infor-
mation when forming the priority list.

4.1. Responsive Priority Policies
The priority list ç is constructed using the demand
realization information; e.g., smaller demand is filled
first (say customer A’s), and then larger demand (cus-
tomer B’s) is filled if there is any stock left over.
Because actual demand information is used to deter-
mine the priority list, such allocation policies are said
to be responsive. The set of rules involved in map-
ping the demand information to a priority list can be
quite general. Intuitively, it seems more efficient to fill
smaller demands first. At the same time, one needs
to recognize that customer demand distributions and
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service-level requirements may differ, so a simple rank
ordering based on magnitude of demand is in general
unlikely to work. This basic tension between efficient
use of inventory and ability to differentiate service lev-
els is a recurring theme of our paper.

4.2. Anticipative Priority Policies
The priority list ç is constructed without using the
demand realization information. We study two partic-
ular variations of anticipative policies. The first has a
deterministic priority list, fixed a priori independently
of demand realizations; e.g., customer A always has
higher priority than customer B. Because the priorities
are assigned on the basis of a fixed list, we call such a
policy a fixed list policy. The second uses a randomized
priority list, again independently of demands. One
of the N ! possible permutations, which corresponds
to a unique one-to-one correspondence �, is chosen
according to a discrete probability distribution over
the set of all possible priority lists; e.g., a coin is tossed
before the demands are realized, and if it falls heads
(tails), customer A’s (B’s) demand is filled first. In con-
trast to a fixed list policy, the priority list is decided
randomly, so we call such a policy a randomized list
policy.

The optimal inventory levels within each pol-
icy class (indicated with subscripts) are ordered as
follows.

Theorem 2. S∗
responsive ≤ S∗

r-list ≤ S∗
f-list

In practice it is surely simpler to implement a fixed
list policy rather than a randomized list or a respon-
sive policy, and it is cleaner and less information-
intensive to operate a randomized list policy rather
than a responsive policy. Further, there may be exoge-
nous reasons (such as building long-term relation-
ships with customers) that dictate the adoption of
a fixed list policy. For these reasons, we conduct a
detailed study of each of these classes of allocation
policies, beginning with responsive policies.

5. Responsive Priority Policies
Using a responsive priority policy amounts to allow-
ing the priority list to freely depend on demand
realizations. One responsive policy that is intu-
itively appealing, and straightforward to compute
and implement, is to serve the customers in ascending
order of demand realizations. We call this allocation
policy the greedy policy (GP). Given a fixed inven-
tory level and any set of demand realizations, there is
no allocation rule that completely satisfies more cus-
tomers than GP does.

Based on GP, we first develop a lower bound on the
optimal inventory level for the general problem with
an arbitrary set of customer demand distributions
and service-level requirements. Let the order statistics

corresponding to demands (ordered from smallest to
largest) be X6171 0 0 0 1X6N 7. We define partial convolu-
tions of the order statistics as follows: Zn =

∑n
i=1 X6i7

for n ∈ 811 0 0 0 1N 9. Thus, Zn represents the sum of the
n smallest demands; we denote its distribution func-
tion by Hn4 · 5.

Theorem 3. The unique solution S of the equation
∑N

n=1 Hn4S5 =
∑N

i=1 �i is a lower bound on the optimal
inventory level; i.e., S∗ ≥ S.

If it is not already optimal, this bound represents
a good starting point for solving the general prob-
lem. The proof uses GP, which is the most effi-
cient policy in using the limited inventory, but GP
ignores how service-level requirements of customers
are dispersed. Therefore, GP may overserve some cus-
tomers (the ones who tend to have low demand val-
ues) and underserve others (high-demand customers).
Intuitively speaking, and based on our experience
with numerical examples, S is either optimal or near
optimal for problem instances where demand distri-
butions and service-level requirements do not differ
drastically among customers.

In principle, Hn4 · 5 can be computed analytically by
using known facts about the distribution functions of
order statistics and their convolutions. But in practice,
it is easier to use Monte Carlo simulation to com-
pute it, which is what we did to obtain the lower
bound S.

Without imposing some structure on the demand
distributions or a limit on the number of customers,
the general problem is difficult because of combina-
torics of inventory allocation. In order to glean some
structural insights into the problem and obtain ana-
lytical characterizations of the optimal solution, we
first assume that the demands are iid but otherwise
arbitrary. We then analyze the two-customer problem
with arbitrary (possibly non-iid) demands.

5.1. Independent and Identically
Distributed Demands

We first take the simpler case of undifferentiated ser-
vice levels.

Theorem 4. If the demands X11 0 0 0 1XN are iid ran-
dom variables and service levels are undifferentiated so that
�1 = · · · = �N = �, then GP is an optimal allocation pol-
icy, and the optimal inventory level is the unique solution
SGP4�5 to the equation

∑N
n=1 Hn4S5=N�.

Next we analyze the case of customers with
iid demands requiring differentiated service levels.
We shall see that GP plays an important role in this
case also. Suppose �1 ≥ �2 ≥ · · · ≥ �N with at least
one strict inequality, and let SGP4�̄n5 be the stock level
required by GP to deliver a service level of exactly
�̄n ≡ 4�1 +· · ·+�n5/n to customers 11 0 0 0 1n for all n=

11 0 0 0 1N . Theorem 3 implies that, with iid demands,
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SGP4�̄N 5 is a lower bound for the stock level required
by the optimal responsive policy. We shall show that,
barring a theoretical degenerate case to be spelled
out in the next paragraph, the lower bound is in fact
attained; the optimal stock level is SGP4�̄N 5. Further,
the optimal allocation policy involves applying GP to
demand realizations after first scaling each demand
realization xi by a fixed scale factor Ki.

We assume that the stock level needed to serve
a set of customers is a strictly increasing function
of the number of customers. A degeneracy arises
when this assumption fails to hold—some customers
have service levels so low that they can free ride on
the remaining stock after all the other customers are
served and still have their service-level requirements
fulfilled. These free riders are of no practical interest
in our model, because we are concerned with cus-
tomers with contractually committed service levels.

We call an allocation policy a cardinal greedy pol-
icy (CGP) if, with a given stock level, it satisfies the
demands of exactly as many customers as GP would
satisfy for every set of demand realizations.

Theorem 5. Suppose customer demands are iid, service
levels need to be differentiated, and there exist no free rid-
ers; i.e., SGP4�̄n+15 > SGP4�̄n5 for n = 11 0 0 0 1N − 1. Then,
(a) a CGP is an optimal allocation policy and the opti-
mal inventory level is SGP4�̄N 5, and (b) there exists an
N -vector 4K11 0 0 0 1KN 5 such that an optimal allocation pol-
icy for each demand realization 4x11 0 0 0 1 xN 5 is to prioritize
customers either in increasing order of Kixi or in increas-
ing order of xi.

This result implies that service-level differentia-
tion does not impose an additional inventory burden
when demands are iid; servicing a set of customers
with distinct service levels �11 0 0 0 1�N and servicing
the same set of customers with a service level of �̄ for
every customer requires an identical inventory level.

In more detail, the following allocation policy
is optimal: (i) observe the demand realizations
4x11 0 0 0 1 xN 5; (ii) allocate stock to customer i in increas-
ing order of Kixi (i = 11 0 0 0 1N ) while passing on to
the next customer in the list if the current customer
has a demand realization that exceeds the remain-
ing stock; (iii) count the number of customers NK

whose demands are completely satisfied with this
allocation policy and compare it with the number of
customers NG whose demands would be completely
satisfied by GP; and (iv) if NK = NG, use the alloca-
tion policy in (ii) above; otherwise, allocate accord-
ing to GP.

This allocation policy is in the class of CGP policies,
is feasible for inventory level SGP4�̄N 5 and a given set
of service levels, and is therefore optimal. We note,
however, that Theorem 5(b) is an existence result; it
asserts that there is an optimal scaling but does not
give us a recipe for finding the optimal scale factors.

5.2. The Two-Customer Case
In this subsection, we show that a particular subclass
of responsive policies contains the optimal solution
in the two-customer case for any set of service-level
requirements and demand distributions (possibly
non-iid). We treat the special case of bivariate normal
demands in Appendix B (see the online companion),
focusing on how the optimal inventory level (S∗) and
magnitude of the pooling benefit (S1 + S2 − S∗) behave
as a function of demand correlation and demand
variability.

When N = 2, the firm’s allocation policy just needs
to pick for each demand realization the customer that
has the first priority (recall from Theorem 1 and the
following discussion that it is sufficient to work with
priority lists). Let Â2 �3

+
→ 81129 be a mapping from

inventory level and demand realizations 4S1x11x25 to
a customer identity, with Â4S1x11x25 specifying the
customer who gets the first priority. As in the general
formulation (§3), Â has to be decided before demand
realizations are known; hence the customer with the
first priority Â4S1X11X25 is a priori uncertain.

There are five possibilities for demand realizations:
(i) if x1 +x2 ≤ S, who gets priority makes no difference
because both customers can be fully satisfied; (ii) if
x1 ≤ S and x2 > S, only customer 1 can be fully sat-
isfied; (iii) if x1 > S and x2 ≤ S, only customer 2 can
be fully satisfied; (iv) if x1 ≤ S, x2 ≤ S and x1 + x2 > S,
inventory level is high enough to satisfy either cus-
tomer individually but not both; and (v) if x1 > S and
x2 > S, neither customer can be fully satisfied. We
assume without loss of optimality that Â4S1x11x25= 1
when (ii) happens and Â4S1x11x25= 2 when (iii) hap-
pens (any allocation policy that fails to satisfy these
properties for some S can be improved, in the sense
of increasing the service level that it delivers to either
customer or both using the same inventory). Let ì̂
be the set of all such mappings. Considering who
gets fully satisfied in each of these possibilities, the
firm’s problem with two customers can be formally
stated as

minimize
S∈�+1 Â∈ì̂

S

subject to P8X1 +X2 ≤ S9+ P8X1 ≤ S1X2 > S9

+ P8�4S51 Â4S1X11X25= 19≥ �11 (SL1)

P8X1 +X2 ≤ S9+ P8X1 > S1X2 ≤ S9

+ P8�4S51 Â4S1X11X25= 29≥ �21 (SL2)

where �4S5 represents the event that the firm can fully
satisfy one of the customers but not both; i.e., X1 ≤ S,
X2 ≤ S, and X1 +X2 > S. It is only when �4S5 occurs
that the firm’s choice of allocation policy matters.

We define a linear knapsack policy with parameters
4k11 k25 and 4t11 t25, where ki ≥ 0 and ti are scalars,
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to be the following procedure for allocating inventory
between two customers: (1) apply the linear transfor-
mation x̃i = kixi + ti to each of the demand realizations
and (2) prioritize customers in increasing order of x̃i
and allocate S accordingly. The x’s can be interpreted
as the volume and x̃’s as the cost (linear in volume)
of a set of items that could potentially be packed in a
knapsack with a total volume S; hence the name lin-
ear knapsack. Note that the capacity of the knapsack
is also a decision variable here.

To assign the first priority to customer 1 (2) if x1 ≤ S
and x2 > S (x2 ≤ S and x1 > S), a linear knapsack pol-
icy must have a tie for x1 = x2 = S; i.e., k1S+ t1 = k2S+

t2. This requires the intercepts be linked in a certain
fashion: t2 − t1 = S4k1 − k25. Without loss of general-
ity, we set k1 = 1, t1 = 0, and t2 = S41 − k25. A linear
knapsack policy can thus be specified more parsimo-
niously by one scalar, k2, and the linear transforma-
tions x̃1 = x1 and x̃2 = k2x2 + S41 − k25. In particular,
it gives priority to customer 1 over customer 2 iff
x1 < k2x2 + S41 − k25; i.e., Â4S1x11x25= 1 iff x1 < k2x2 +

S41 − k25.
We are now ready to state our main result concern-

ing the two-customer problem.

Theorem 6. With two customers, the optimal inven-
tory level is S∗, and the linear knapsack policy with k1 = 1
and k2 = k∗ is an optimal allocation policy. The optimal
policy parameters are the following:

S∗ k∗

Case 1: �1 >�1 and �2 >�2 S0 k0
Case 2: �1 >�1 and �2 ≤ �2 F −1

1 4�15 0
Case 3: �1 ≤ �1 and �2 >�2 F −1

2 4�25 �

with S0 and k0 uniquely determined by two implicit
expressions:

P8X1 +X2 ≤S09=�1 +�2 −1+P8X1>S01X2>S091

P8�4S051X1<k0X2 +S041−k059

=�1 −P8X1 +X2 ≤S09−P8X1 ≤S01X2>S091

(1)

and the threshold service levels, �1 and �2, defined as

�1 ≡ P8X1 +X2 ≤ S09+ P8X1 ≤ S01X2 > S091

�2 ≡ P8X1 +X2 ≤ S09+ P8X1 > S01X2 ≤ S09

Case 1 represents the mainstream situation without
free riders, whereas in Cases 2 and 3, one of the cus-
tomers (customers 2 and 1, respectively) is able to
free ride in the sense that he is satisfied even if he
never gets priority in the event of �4S05. These two are
extreme cases, where setting the inventory level as if
there were only one customer is optimal. The thresh-
old service levels �i, the probability that customer i

faces no contest from the other customer at inventory
level S0, let us precisely specify when a customer’s
required service level is low enough to qualify him as
a free rider. Note that the customers cannot both be
free riders.

Cases 1–3 are mutually exclusive and also exhaus-
tive for all practical purposes. There remain two other
possibilities: {�1 ≤ �1 and �2 ≤ �2 with at least one
inequality strict} cannot happen because �1 + �2 =

�1 +�2 +P8�4S059 by definition; {�1 = �1 and �2 = �2}
is a pathological case with P8�4S059= 0, which makes
all three solutions equivalent and optimal. (We ignore
the latter for ease of exposition.)

Building on Theorem 6, we now establish for the
general problem with any number of customers that
there is always some benefit to pooling. Let Si =

F −1
i 4�i5 be dedicated inventory levels in the absence

of pooling.

Theorem 7. The pooling benefit is always strictly pos-
itive; i.e., S∗ < S1 + S2 + · · · + SN .

The proof first uses Theorem 6 to show that the
pooling benefit is always strictly positive in the two-
customer case. It then rests on the following obser-
vation: Theorem 6 can be used to develop upper
bounds for the general problem. Suppose that the firm
pairs customers and solves the ordering and alloca-
tion problems for each pair in isolation. The sum of
inventory levels obtained for pairs, plus dedicated
inventories for nonpaired customers (if any), would
be an upper bound on the globally optimal inventory
level.

Although it is commonly known that the pool-
ing benefit vanishes as correlation approaches +1
in newsvendor models (Eppen 1979), Theorem 7
holds for perfectly positive correlation also. The intu-
itive reason is that the responsive policy is able to
respond to variations in demands efficiently. To see
this in a concrete example, take two customers, let
demands be perfectly positively correlated P8X1 =

X29 = 1, and assume symmetric service-level require-
ments �1 = �2 = �. When demand is moderately high
(S/2 <X1 ≤ S), the responsive policy can satisfy one
of the customers fully, whereas the comparable no-
pooling policy with the total inventory S divided into
two dedicated piles of size S/2 would not be able to
fully satisfy any of the customers. So with the same
amount of inventory, no-pooling always achieves less
in terms of service. This symmetric two-customer
example makes the argument especially transparent,
but a similar dynamic drives the result in the asym-
metric case also. In fact, the pooling benefit is gen-
erally larger in problem instances with asymmetry
in demand distributions and/or service-level require-
ments. In closing, we note that there are resource flex-
ibility and component commonality models that show
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pooling benefit under perfectly positive correlation
(Van Mieghem 1998, 2004). Their rationale is distinct
from ours because it rests on some form of asymme-
try, e.g., differences in profitability between products.

6. Anticipative Priority Policies
Anticipative priority policies ignore demand realiza-
tions when making up the priority list. This opera-
tional simplicity may come at the expense of carrying
higher inventory. Anticipative policies are still worth-
while to analyze because they are often observed in
industry, especially the fixed list policies.

6.1. Fixed List Policies
A fixed list policy is the simplest allocation policy to
design and operate. Customers are put in a fixed pri-
ority list, and their demands are filled from the pool
of inventory one after the other in the order dictated
by the list until there is no more stock left or until all
the demands are completely filled.

For a given set of demand distributions and service
levels, each of the N ! distinct priority lists is asso-
ciated with a distinct inventory level. The following
result identifies those inventory levels and finds the
optimal inventory level with its corresponding opti-
mal fixed list policy.

Theorem 8. The optimal fixed list policy ranks the
customers in decreasing order of their required service
levels. Relabel customers such that �1 ≥ · · · ≥ �N . Set
�4k5= k for all k ∈ 811 0 0 0 1N 9. The optimal priority list is
ç∗

f-list = 411 0 0 0 1N 5. The optimal inventory level is S∗
f-list =

max8G−1
1 4�151 0 0 0 1G

−1
N 4�N 59, where Gk is the distribution

function of X1 + · · · +Xk for k ∈ 811 0 0 0 1N 9.

It is surprising that the highest-service-level-first
rule is optimal without any conditions on demand
distributions. For instance, whether the highest-
service-level customer has a low or high demand on
average compared with the other customers, it is opti-
mal to give that customer top priority in allocation.
This is true even when customer demands are cor-
related. Hence, a fixed list policy may be the policy
of choice in practice, especially when distributional
information about customer demands is lacking.

Despite their popularity in practice, fixed list poli-
cies do not necessarily guarantee a positive pooling
benefit. We show this by counterexample in §7; the
pooling benefit can be strictly negative for optimal
fixed list policies. For customer demands with mul-
tivariate normal distribution, however, the optimal
fixed list policy does ensure a nonnegative pooling
benefit. Recall that Si = F −1

i 4�i5.

Theorem 9. The optimal fixed list policy yields a pos-
itive pooling benefit, i.e., S∗

f-list ≤ S1 + · · · + SN , if the
demands 4X11 0 0 0 1XN 5 follow an arbitrary multivariate

normal distribution with means 4�11 0 0 0 1�N 5, standard
deviations 4�11 0 0 0 1�N 5, and correlation coefficients �ij ∈

60117 between the demands of customers i and j .

6.2. Randomized List Policies
A randomized list policy involves a randomization
step to generate the priority list, which can be speci-
fied by a set of N ! positive fractional weights placed
on all possible priority lists (N ! permutations of N
customers) that sum to unity. In this section, we show
how to compute the optimal randomized list policy.
The case of iid demands is easier to solve, so we ana-
lyze it first and then move on to arbitrary demand
distributions.

Consider iid demand random variables X11 0 0 0 1XN .
Let the distribution function of the sum of any n of
these random variables be Gn4 · 5. Let the column vec-
tors 4G14S51 0 0 0 1GN 4S55

T and 4�11 0 0 0 1�N 5
T be denoted

by C4S5 and B, respectively. Let wij be the probability
that customer i is assigned priority position j , and let
W be the N ×N matrix with wij in row i and column j .
Note that W is a doubly stochastic matrix, and by
Birkhoff’s theorem it can be written as a convex com-
bination of N ×N permutation matrices (Marshall and
Olkin 1979, p. 19). Hence, W constitutes a randomized
list policy; the permutation matrices and the positive
fractional weights summing to 1, which make up the
convex combination, determine the priority list.

Theorem 10. Suppose the demands are iid random
variables. (a) The optimal randomized list policy can be
found by solving the following problem: minimize S subject
to W · C4S5≥ B, where S and the elements of the matrix W
are the decision variables. (b) The unique solution Sc of the
equation

∑N
n=1 Gn4S5 =

∑N
i=1 �i is a lower bound for the

optimal stock. (c) All the service levels are exactly satisfied
if and only if C4Sc5 majorizes B. The optimal inventory in
this case is precisely Sc.

Solving the optimization problem in (a) and the
equation in (b) are both easy because Gn4S5 are mono-
tone increasing in S. Further, for a fixed value of S, the
mathematical program in (a) is a linear program. Also
note that the solution to an equation like

∑N
n=1 Gn4S5=

∑N
i=1 �i can be estimated using Monte Carlo simula-

tion software. We have found that problem instances
with service levels upward of 70% almost invariably
have exact solutions. Once the optimal stock has been
found, finding the optimal doubly stochastic matrix,
and hence the optimal allocation policy parameters,
is a matter of solving linear equations.

When demands are not iid, the problem is signifi-
cantly more complex. We outline a solution procedure
to handle this case. Let P4�k5 denote a discrete
probability distribution over all N ! priority lists
çk = 4�k4151 0 0 0 1�k4N 55 for k = 11 0 0 0 1N !, such that
∑N !

k=1 P4�k5= 1.
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Step 1. Compute the optimal fixed-list inventory
level (from Theorem 8), which serves as an upper
bound on the optimal randomized-list inventory level
(by Theorem 2): S∗

f-list = max8G−1
1 4�151 0 0 0 1G

−1
N 4�N 59.

A lower bound is max8F −1
1 4�151 0 0 0 1 F

−1
N 4�N 59.

Step 2. Set S = S∗
f-list and attempt to find a proba-

bility distribution P4 · 5 over all possible priority lists
so that the following inequality is satisfied for all
customers i = 11 0 0 0 1N (let I8 · 9 denote the indicator
function):

N
∑

j=1

N !
∑

k=1

I8�k4j5= i9P4�k5G8�k41510001�k4j59
4S5≥ �i1

where GM is the distribution of the sum of demands
for customers who belong to set M ⊆ 811 0 0 0 1N 9.

Table 1 Optimal Inventory Level and Pooling Benefit (% Reduction in Inventory Due to Pooling) in Problem Instances with N = 3, iid Normal
Demands, and Differentiated Service Levels

Optimal inventory Pooling benefit (%)

Demand No Fixed Randomized Fixed Randomized
distribution �1 (%) �2 (%) �3 (%) Sum (%) pooling list list Responsive list list Responsive

N 410125 7500 7500 7500 225 34005 32035 27069 27066 4098 18067 18075
7205 7500 7705 225 34006 32010 27069 27066 5074 18069 18077
7000 7500 8000 225 34008 31082 27069 27066 6063 18075 18083
6705 7500 8205 225 34013 31060 27069 27066 7040 18086 18093
6500 7500 8500 225 34019 31035 27069 27066 8031 19002 19009

8000 8000 8000 240 35005 32092 29013 29013 6008 16089 16089
7705 8000 8205 240 35006 32060 29013 29013 7003 16092 16092
7500 8000 8500 240 35011 32035 29013 29013 7085 17002 17002
7205 8000 8705 240 35018 32010 29013 29013 8075 17020 17020
7000 8000 9000 240 35030 31082 29013 29013 9085 17047 17047

8500 8500 8500 255 36022 33059 30043 30043 7026 15098 15098
8205 8500 8705 255 36024 33025 30043 30043 8026 16004 16004
8000 8500 9000 255 36032 32092 30043 30043 9036 16022 16022

9000 9000 9000 270 37069 34043 31082 31082 8065 15057 15057
8705 9000 9205 270 37074 34000 31082 31082 9092 15069 15069
8500 9000 9500 270 37093 33059 31082 31082 11043 16010 16010

9500 9500 9500 285 39087 35070 33059 33059 10046 15074 15074
9205 9500 9705 285 40009 35000 33059 33059 12069 16020 16020

N 410135 7500 7500 7500 225 36007 33050 27021 26062 7013 24056 26021
7205 7500 7705 225 36008 33010 27021 26062 8027 24059 26023
7000 7500 8000 225 36012 32071 27021 26062 9044 24067 26031
6705 7500 8205 225 36019 32036 27021 26062 10058 24081 26045
6500 7500 8500 225 36029 32001 27021 26062 11079 25002 26065

8000 8000 8000 240 37057 34040 28093 28071 8045 23001 23059
7705 8000 8205 240 37059 33095 28093 28071 9070 23005 23063
7500 8000 8500 240 37066 33050 28093 28071 11004 23018 23076
7205 8000 8705 240 37077 33010 28093 28071 12036 23040 23098
7000 8000 9000 240 37094 32071 28093 28071 13079 23075 24033

8500 8500 8500 255 39033 35040 30073 30066 9099 21086 22003
8205 8500 8705 255 39036 34085 30073 30066 11047 21093 22010
8000 8500 9000 255 39048 34040 30073 30066 12086 22016 22033

9000 9000 9000 270 41053 36065 32075 32073 11076 21015 21019
8705 9000 9205 270 41061 36000 32075 32073 13049 21030 21034
8500 9000 9500 270 41089 35040 32075 32073 15049 21082 21085

9500 9500 9500 285 44080 38055 35039 35039 13096 21001 21001
9205 9500 9705 285 45013 37050 35039 35039 16091 21059 21059

Step 3. Perform a binary search for the smallest fea-
sible S between the upper and lower bounds com-
puted in Step 1, repeating Step 2 as many times as
needed and stopping when we reach an S for which
the system of linear inequalities has no solution. The
last feasible inventory level is optimal.

The procedure converges because we employ
binary search, or interval bisection, between finite
upper and lower bounds to find the optimal
stock level. The bisection is guaranteed to converge
because

∑N
j=1

∑N !

k=1 I8�k4j5 = i9P4�k5G8�k4151 0001�k4j59
4S5 is

a continuous and monotone function of S. Although
the binary search itself is logarithmic, the algorithm is
exponential time—O4cN 5—because we need to solve
for N ! variables in Step 2 of the algorithm.
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Table 2 Optimal Inventory Level and Pooling Benefit (% Reduction in Inventory Due to Pooling) in Problem Instances with N = 3, iid Lognormal
Demands, and Differentiated Service Levels

Optimal inventory Pooling benefit (%)

Demand No Fixed Randomized Fixed Randomized
distribution �1 (%) �2 (%) �3 (%) Sum (%) pooling list list Responsive list list Responsive

Log N (10, 5) 7500 7500 7500 225 36090 34085 26096 24075 5056 26094 32093
7205 7500 7705 225 36094 34010 26096 24075 7069 27002 33000
7000 7500 8000 225 37007 33040 26096 24075 9090 27027 33023
6705 7500 8205 225 37029 32070 26096 24075 12031 27070 33063
6500 7500 8500 225 37062 32010 26096 24075 14068 28034 34022

8000 8000 8000 240 39093 36050 29000 27023 8060 27038 31082
7705 8000 8205 240 40000 35065 29000 27023 10087 27050 31093
7500 8000 8500 240 40021 34085 29000 27023 13032 27087 32028
7205 8000 8705 240 40057 34010 29000 27023 15096 28053 32090
7000 8000 9000 240 41015 33040 29000 27023 18084 29053 33084

8500 8500 8500 255 43078 38060 31042 30002 11084 28023 31044
8205 8500 8705 255 43090 37050 31042 30002 14058 28043 31063
8000 8500 9000 255 44029 36050 31042 30002 17059 29006 32023

9000 9000 9000 270 49016 41040 34055 33045 15078 29071 31095
8705 9000 9205 270 49044 39090 34055 33045 19030 30012 32034
8500 9000 9500 270 50043 38060 34055 33045 23046 31049 33067

9500 9500 9500 285 58036 45090 39042 38063 21035 32045 33082
9205 9500 9705 285 59068 43030 39042 38063 27045 33095 35028

Log N (10, 10) 7500 7500 7500 225 37019 36086 26068 21028 0090 28027 42078
7205 7500 7705 225 37029 35040 26068 21028 5007 28046 42093
7000 7500 8000 225 37059 34005 26068 21028 9042 29002 43039
6705 7500 8205 225 38011 32085 26068 21028 13081 29099 44016
6500 7500 8500 225 38090 31070 26068 21028 18051 31042 45030

8000 8000 8000 240 42075 40025 29091 24059 5084 30003 42047
7705 8000 8205 240 42091 38050 29091 24059 10027 30029 42068
7500 8000 8500 240 43041 36086 29091 24059 15008 31009 43034
7205 8000 8705 240 44031 35040 29091 24059 20010 32049 44049
7000 8000 9000 240 45074 34005 29091 24059 25056 34061 46024

8500 8500 8500 255 50028 44065 34006 28081 11019 32025 42069
8205 8500 8705 255 50058 42030 34006 28081 16037 32066 43004
8000 8500 9000 255 51056 40025 34006 28081 21094 33094 44012

9000 9000 9000 270 61066 50095 39096 34072 17037 35019 43069
8705 9000 9205 270 62042 47050 39096 34072 23090 35098 44038
8500 9000 9500 270 65012 44065 39096 34072 31044 38064 46069

9500 9500 9500 285 83043 62010 50038 44094 25057 39062 46014
9205 9500 9705 285 87041 55050 50038 44094 36050 42036 48059

7. Numerical Comparisons of
Allocation Policies

In this section, we present numerical examples with
the express purpose of making comparisons between
the allocation policy classes analyzed in §§5 and 6.
Tables 1 and 2 report the optimal inventory levels
that correspond to the no pooling, fixed list, random-
ized list, and responsive policies when there are three
customers with iid demands and differentiated ser-
vice levels. The underlying demand distributions are
normal with a CV (coefficient of variation = standard
deviation/mean) of 002 and 003, and lognormal with
a CV of 005 and 1. We vary �̄ from 75% to 95% in
increments of 5% and introduce higher service-level
differentiation by starting with a uniform set of �’s

and simultaneously reducing �1 and increasing �3 by
2.5% at a time.

Both tables reveal an interesting insight. When
demands are relatively stable with CV 003 or lower,
there is virtually no difference between the inven-
tory levels prescribed by the optimal responsive pol-
icy and the optimal randomized list policy. When
demands are highly variable, however, the differ-
ences widen significantly, and the gulf is particu-
larly marked for lower service levels. These observa-
tions suggest that when demands are modeled with
stable distributions such as normal, it is sufficient
to restrict the search to fixed and randomized list
policies. However, in the case of highly unstable or
long-tailed distributions, responsive policies may reap
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significant inventory savings over fixed and random-
ized list policies.

We also observe that higher service differentiation
consistently leads to a higher pooling benefit for all
three policy classes. This is driven by the fact that
the no-pooling inventory level is more sensitive to the
maximum of the required service levels than the opti-
mal pooling solution in any policy class. The optimal
fixed list policy solution is driven by the minimum,
whereas the optimal randomized list and responsive
policy solutions are driven by the average of the
required service levels. Especially within the latter
two policy classes, the use of a single pool of inven-
tory better absorbs the stochastic highs and lows in
customer demands and allows for a response to typ-
ical rather than extreme events. Note that the no-
pooling solution requires more inventory with higher
differentiation; when inventory is pooled, the opti-
mal fixed list policy requires less, whereas the optimal
randomized list and responsive policies require the
same amount. A caveat is in order: non-iid demands
can alter these observations because in that case, how
demands differ (e.g., which customer’s mean demand
is higher) may interact with the nature of service dif-
ferentiation in unpredictable ways. Contrary to our
basic finding, Deshpande et al. (2003, Table 2, p. 696)
observe that higher service-level differentiation leads
to a smaller inventory-pooling benefit.

Finally, note that an optimal fixed list policy can
suffer from a strictly negative pooling benefit; it can
require more inventory than no pooling. Our numer-
ical experiments (not reported here) suggest that this
happens for highly variable demands and relatively
low service levels. For example, if three customers
had iid lognormal demands with mean 10 and stan-
dard deviation 15, and �1 = �2 = �3 = 75%, the pool-
ing benefit from the optimal fixed list policy would
be −6033%.

8. Concluding Remarks
This paper was motivated by our observations of
industry practice in the field of supply chain plan-
ning for aftermarket service operations. Firms often
have agreements with their clients containing explicit
service-level clauses for delivering parts to support
products. In this paper, we develop solutions that
simultaneously determine the replenishment quantity
and the priority rule for optimally allocating inven-
tory to customers demanding different service levels.

We earmark three fundamental classes of allocation
policies: fixed list, randomized list, and responsive.
We obtain complete solutions for fixed and random-
ized list policies and partial solutions for responsive
policies in the form of bounds and solutions for spe-
cial cases. We uncover a subclass of responsive poli-
cies, called linear knapsack, that is optimal generally

for the two-customer case. We show for any number
of customers that the pooling benefit is always strictly
positive even when demands are perfectly positively
correlated. We find that when demands are indepen-
dent random variables with low to moderate coef-
ficients of variation, there is virtually no difference
between the inventory levels prescribed by the opti-
mal responsive policy and the optimal randomized
list policy. However, if demands are highly variable,
the differences between the optimal prescriptions of
the three policy classes become significant, which is
when responsive policies are most helpful.

It is immediate that our single-period solutions
extend to a periodic-review infinite-horizon model
with service defined as the long-run fraction of periods
in which a customer’s demand is fully satisfied from
stock, provided lead time is zero. In that simple mul-
tiperiod scenario, each period is effectively decoupled
from the next, and the optimal one-period solution
can be implemented in every period without any loss
of optimality. An extension to a multiperiod model
appears to be much more challenging if any of the
following features are incorporated into the model:
significant supply or demand lead time, different fre-
quencies for inventory replenishment and demand
batching, finite planning horizon, and nonstationary
allocation policies. We mark out such extensions as
worthy problems for future research.
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