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Abstract— In this work, we use two different approaches for deviation of the permittivity,sd, the depth of the inclusion
processing GPR data by means of linear inverse scatteringnl and the inclusion radii. This problem was solved using the

order to identify the characteristics of the host medium and Particle Swarm Optimization, and is described next
its inclusions a Particle Swarm Optimization algorithm is used. ’ ’

Focusing is done using a Matched-Filter-Based Reverse-Tin

migration algorithm in order to decrease the dependence upo Il1. PARTICLE SWARM OPTIMIZATION

the personal expertise of the human operator. The Particle Swarm Optimization (PSO) is a stochastic
Index Terms—FDTD, Inverse Scattering, Migration algo- evolutionary technique dating to 1995 [1], [2]. The PSO

rithms, Particle Swarm Optimization. is similar to genetic algorithms (GAs) due to the random
initialization. The first difference is that each potensialution
. INTRODUCTION is called particles, instead of individuals, and they "flyfi o

ONDESTRUCTIVE inspection of concrete structureéhe s_earch space. _TO each particle of the swarm during the
using radar techniques is increasingly being recognis grations, the positions of the best solution found to agiv

as an effective way of gathering information. The numericgﬁrt'de’ calledpbest (particle best) is saved. The best value

simulation of this type of inspection may help to minimize th ound considering all the pa_mrtlcle_ Is also save(_j, and isedall
overall cost of an investigation and to increase the lilaith 92¢5" (global best). At each iteration, the PSO is based on the

of carrying out fully effective maintenance and repair. hist change in th? particle’s velocity in the direction of ’tbe‘gt
work, the finite-difference time-domain (FDTD) technique iandgb.est, We|ghted by a random term. The PSO, as originally
applied to simulate the radar assessment of concretelﬂtesctdescr'b?fj’ _'S as follows: _ ) N
with PVC ducts. The research aim of the numerical experi-1) Initialize the swarm of particles with random positions

ments is the location of voids inside concrete structurésgus and velocities. o _
linear inverse algorithms. 2) For each particle calculate the objective function.

3) Find pbest.
4) Find gbest.

o 5) Change the velocity and position of each particle ac-
An incident wave and a scattered wave can be used 10 ¢qrding to Egs. 2 and 3

characterize the scattering object. Usually in real worlabp

lems the incident and scattered waves are know and it is v = v+cixrands(pbest—z)+ca*rand+(ghest—x) (2)
desired to identify the scattering object. This is calleé th
inverse scattering problem. It can be written as an optititina
problem involving the scattered wave of the unknown object 6) Return to ste2 untill one stop criteria is achieved.
E(6y), the reference object, and the scattered wave of aThe velocity of each particle in each dimension is limited
test objectZ(0). Thus,¢*, the optimumé, is the argument py a maximum velocity} maz.

that minimizes the error of the reference object scatteredThe acceleration constantsandc, used in Eq. 2, represent
wave E(f) relative to the test object scattered wakig). the trade-off between the search in the directionpbést

Il. THE INVERSE SCATTERING PROBLEM

rT=x+v 3)

Mathematically: and gbest. Usual values toc; and ¢ are equal to2 and
ns Vmax between10% and20% of the variable range in each
0" = arg min f(9) = Z(E(@O) — E(6))? (1) dimension.
=1
wherens are the sample points where the scattered wave IV. MIGRATION ALGORITHM

is measured. Note thalE(6,) is known even thoughy, is To improve the interpretation of the GPR assessment a
unknown, it is the measure on the receiver antennas. Tiewerse-time migration technique [3] to find the exact lmrat
scatteredF (6) is then generated assuming one t#sand the of the targets in heterogeneous media was implemented. The
optimization procedure aims at minimizing the error betweealevelopment of this algorithm is based on the notion of a
E(6y) and E(6) in such a way as to identify the scattematched filter, which is used extensively in radar applarati
objectdy. This paper studies AD inverse scattering problemUsing this algorithm, an image can be perceived as a back
with non homogenous media trying to identify the standamtopagated wave-field reconstruction of the dielectrictiast
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. . . . TABLE Il
within the host medium [3]. The final migrated data for
. . X . R . PSORESULTS
a bistatic configuration can be obtained by the following
equation: lteration Depth  Radil Sd
1 8.7cm 3.2cm 0.297
N M 5 9.7cm  4.4cm 0.156
S (F) = E AR E; . () =0 . 4 10 9.7cm  4.7cm  0.149
) Z 2—1 mn.bp (7) @ Eine (7) |10 @) 50 10cm  4.44cm 015
n=lm= Ref. Object 10em  4.5em  0.15

where the subscripts1 andn denote the field due to theth
transmitter andnth receiver. The bistatic algorithm requirez35 iaration algorith

propagation of both the incident and back-propagated fiel Migration algorithm

The data were collected at 60 locations. The implementationThe FDTD scenario simulated consisted of four 12-cm
in FDTD is accomplished by propagating the incident field ifiameter PVC pipes buried in concrete that was modeled with

reverse while simultaneously propagating the back pragaga@ mean relative electrical permittivity value of 6, condvity
field forward. 1mS/m and standard deviation 0.25. Figure 2 shows the

final image obtained at = 0 that can be interpreted as the
intersection of the back propagated field with the incident
V. RESULTS field providing a more exact location of the hollow tubes. In

For the two approaches the problem geometry consistingQﬂ”CIUSion’ this process improves the final images provided

two half spaces depicted in Figure 1 is used. The antennas Qg€ radar inspection data. However, this algorithm agsum

placed in free space above an nonhomogeneous dielectrictNat the background medium is known. In addition, in this

simulation, line sources were used which can create a proble
when the objective is to find targets in close proximity.
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Fig. 1. Configuration consisting of a circular cylinder lae in nonhomo-
geneous dieletric.
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A. Particle Svarm Optimization

The unknown object was defined in our experiment with tHeg. 2. Bistatic reverse-time migration; final data
depth of the inclusion equal them, the radii equal tel.5cm
and the standard dewe_mon of the nonhomogenous me_d,l_a_, VI. CONCLUSION
equal t00.15. The considered target was water. The definition ) ] ) ]
of the reference object as well as the range of the variablesl "€ Problem of inverting GPR data has been investigated

for the optimization process are summarized in Table I.  USing two different approaches. The PSO provided a precise
answer characterizing the target and the degree of hetegege

TABLE | ity of the host medium. However to do that 50 iterations were
INVERSE SCATTERING PROBLEM DEFINITIONS necessary. The migration algorithm instead can be perfdrme
_ using only one iteration requiring only the permittivity of
Wi I?,ifrtlh 2%?‘:: o.ig the host mediur’r_\. In future work we plan t(_) mix these
Max 2%em 10em 0.30 two approaches in order to get more information about the
Ref. Object 10ecm  4.5em  0.15 assessment using as few iterations as possible.
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