Inverse and Crack Identification Problems in Engineering Mechanics

by

Georgios E. Stavroulakis

Institute of Applied Mathematics, Department of Civil Engineering, Technical University Carolo Wilhelmina, Braunschweig, Germany

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

Contents

Preface	•

xi

Part I Introduction. Problem Description

...

1.	DIRE	ECT AND INVERSE PROBLEMS	3
	1.1	Introduction	3
	1.2	Direct nonsmooth mechanics problems	3
	1.3	Inverse and identification problems	 4
	1.4	Recent results and future work	5
	Refer	ences	

Part II Theoretical and Computational Tools

2	COM		TONIAL M	ECHANICS	- 11
Ζ.	COM	PUIAI	IONAL M	ECHANICS	- 11
	2.1	Elastos	statics		11
		2.1.1	Small dis	placement smooth (classical) elastostatics.	12
		2.1.2	Unilatera	l contact problems.	15
			2.1.2.1	The unilateral contact conditions	19
		2.1.3	Friction p	problems with convex energy potential	21
			2.1.3.1	Combined frictional contact problem	23
		2.1.4	BEM for	mulation and implementation ⁷	24
			2.1.4.1	BEM formulation of unilateral problems	24
			2.1.4.2	LCP-BEM static unilateral-frictional contact	
				problems	26
			2.1.4.3	Multi-region BEM formulation for inequality	
				problems	27
			2.1.4.4	Unified LCP formulation of combined unilatera	.1
				frictional contact problems	29
	2.2	Solution algorithms			32
		2.2.1		nd nonsmooth optimization approach	32
				LCP solution schemes	34
		2.2.3		r equations for complementerity problems	34
			2.2.3.1	Nonlinear equation reformulation	36
				1	

			2.2.3.2	Examples of NCP functions	36
			2.2.3.3	Merit functions	37
			2.2.3.4	Solution technique	37
			2.2.3.5	Formulation of nonlinear equations with FEM	
				and BEM	38
			2.2.3.6	NCP functions proposed in the engineering	
				literature	40
	2.3	Elasto	lynamics		41
	2.0	2.3.1		ate, harmonic problems	41
		2.3.2		elastodynamics	43
			2.3.2.1	LCP-BEM dynamic unilateral-frictional contac	
				problems	45
	Refer	ences		r	
_					
3.	COM	PUTAT	IONAL A	ND STRUCTURAL OPTIMIZATION	55
	3.1			l optimality conditions	55
		3.1.1	Smooth,	inequality constrained, convex problems	58
			3.1.1.1	Lagrangians, saddle points, duality	59
			3.1.1.2	Concise form of optimality conditions	61
		3.1.2	Convex,	nonsmooth optimization	62
			3.1.2.1	Unconstrained	62
			3.1.2.2		62
		3.1.3		ptimization algorithms	63
			3.1.3.1		63
			3.1.3.2		64
			3.1.3.3	Nonsmooth Problems	67
	3.2	Optimi	ization und	ler equilibrium constraints (MPEC)	68
		3.2.1	Formulat	ion	69
		3.2.2	Example	s of structural optimization	71
			3.2.2.1	Optimal design for structures	71
			3.2.2.2	Optimal design for unilateral structures	71
			3.2.2.3	Optimal prestress of unilateral Structures	72
			3.2.2.4	Geometry design, inverse or identification	
				problem	73
			3.2.2.5	Nonsmoothness and nonconvexity in MPEC	74
		3.2.3	Solution		76
			3.2.3.1	Error minimization with regularization	76
			3.2.3.2	Error minimization - regularization - nonlinear	
				equation approach	77
			3.2.3.3	Error minimization - penalty formulation	77
			3.2.3.4	Error minimization - regularization - nonlinear	
				equation approach - penalty formulation	78
			3.2.3.5	Further numerical approaches	78
	Refer	ences			
4	SELF	ECTED	SOFT CO	MPUTING TOOLS	85
••	4.1			versus classical computing	85
	4.2		l networks	orsus enastical comparing	86
	4.2	4.2.1		pagation neural network model	86 86
		4.2.1	Dackproj	Paganon neural network mouel	00

	4.2.2	Neural network mappings, motivation and application			
		on inverse problems	89		
4.3	Genetic algorithms				
4.4	Fuzzy	Fuzzy and neuro-fuzzy inference			
4.5	Classical and extended Kalman filter and identification				
	4.5.1	Review	96		
	4.5.2	Description	97		
2 1		-			

References

Part III Applications to Inverse Problems

5.	STAT	IC PROBLEMS	107				
	5.1	Introduction and literature survey					
	5.2	Output error formulation of the inverse problem	110				
		5.2.1 Local optimization approach	112				
		5.2.2 Neural network solution method	112				
	5.3		114				
		5.3.1 Static unilateral crack analysis	118				
	5.4	Numerical examples of inverse problems	124				
		5.4.1 Flaw identification	124				
		5.4.2 Bilateral and unilateral crack identification through error	100				
		optimization 5.4.3 Classical and unilateral neural crack identification	133 135				
		5.4.4 Filter-driven iterative crack identification	135				
	Refere		1-77				
			157				
6.		EADY-STATE DYNAMICS					
	6.1	Introduction and literature survey	157				
	6.2	Output error formulation of the inverse problem 1					
	6.3	Neural network solution of the Inverse Problem 10					
	6.4						
		6.4.1 Flaw identification	161				
		6.4.2 Crack identification	168				
		6.4.2.1 Direct problem	168				
	Refer	6.4.2.2 Inverse problem	171				
	Refer	ences					
7.	TRANSIENT DYNAMICS						
	7.1	Introduction and literature survey	187				
	7.2	Numerical examples of direct problems					
	7.3	Numerical examples of inverse problems					
		7.3.1 Classical and unilateral impact-echo	202				
		7.3.1.1 Outline of the method	202				
		7.3.1.2 Numerical comparison	203				
	~ •	7.3.2 Impact-echo and neural identification	204				
	Refer	References					