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Abstract

We construct a domain-theoretic calculus for Lipschitz
and differentiable functions, which includes addition, sub-
traction and composition. We then develop a domain-
theoretic version of the inverse function theorem for a Lip-
schitz function, in which the inverse function is obtained
as a fixed point of a Scott continuous functional and is ap-
proximated by step functions. In the case of aC1 function,
the inverse and its derivative are obtained as the least fixed
point of a single Scott continuous functional on the domain
of differentiable functions and are approximated by two se-
quences of step functions, which are effectively computed
from two increasing sequences of step functions respectively
converging to the original function and its derivative. In
this case, we also effectively obtain an increasing sequence
of polynomial step functions whose lower and upper bounds
converge in theC1 norm to the inverse function. A similar
result holds for implicit functions, which combined with the
domain-theoretic model for computational geometry, pro-
vides a robust technique for construction of curves and sur-
faces.

1. Introduction

The earliest systematic method of computing increas-
ingly better lower and upper bounds toπ is credited to
Archimedes, who obtained his approximation by circum-
scribing and inscribing the circle with regular polygons
having 96 sides. In the 15th century, Jamshid Kashani,
the Iranian mathematician, further developed this recursive
method by using regular polygons with 805306368 sides,
obtaining 16 decimal digits ofπ with a correct estima-
tion of the error [1]. In today’s mathematical language,
we say that the two sequences of refiningn-sided regu-
lar polygons circumscribing and inscribing the unit circle
for n = 3, 4, 5, . . ., as in Figure 1, converge in theC1

norm respectively from outside and inside to the circle, a
1-dimensional closed manifold given by the implicit curve

Figure 1. Approximations of the unit circle

x2 + y2 − 1 = 0. This well-known and ancient technique
describes the essence of our work in a simple and accessi-
ble way. The present paper aims to develop a systematic
and recursive method of approximating an implicitly given
surface with two sequences of piecewise linear or piecewise
polynomial surfaces, which converge locally in theC1 norm
from inside and outside to the implicit surface. A main ap-
plication of this method is in geometric modelling and com-
puter aided design, where curves and surfaces are usually
defined implicitly [2]. Currently, there are no robust meth-
ods to approximate an implicit surface and the most reliable
technique provided by interval analysis [12] is only able to
approximate the implicit surface without approximating its
derivative. The paper thus presents a framework for a robust
CAD system, where implicitly given surfaces can be effec-
tively obtained up to theC1 precision required by the user.
In more mathematical language, we will use domain the-
ory to provide a recursion-theoretic account of the inverse
function and the implicit function theorems, which are the
main fundamental tools in multi-variable differential calcu-
lus and the theory of manifolds. In [7], a domain-theoretic
framework for differential calculus of one variable was de-
veloped which in particular provides an effectively given
domain for Lipschitz or differentiable functions. Later on,
domain-theoretic techniques for solving initial value prob-
lems were obtained in [5, 9], which enable us to approxi-
mate the unique solution of an initial value problem given
by a Lipschitz vector field up to the precision required by
the user. In [8], the domain-theoretic model was extended
to multi-variable differential calculus, resulting in theno-



tion of a domain-theoretic derivative, which for Lipschitz
functions gives the smallest hyper-rectangle containing the
Clark gradient [3], as well as a domain for multi-variable
differentiable functions. In this paper, we will illustrate the
first main application of the domain of multi-variable dif-
ferentiable functions, by using it to obtain the inverse and
implicit functions of classical analysis as the fixed point of a
functional that we construct on the domain of Lipschitz and
differentiable functions. We first obtain, as a fixed point, the
inverse of a function which differs from the identity map by
a contraction. Then, based on the domain-theoretic deriva-
tive, we introduce the notion of mean differential and use it
to solve the problem of inverse function for Lipschitz in a
more general setting. The domain-theoretic inverse and im-
plicit function theorems forC1 functions have the following
distinguished features compared to other approaches:

(i) The inverse and implicit functions are obtained as fixed
points of Scott continuous functionals.

(ii) From two increasing sequences of linear step functions
converging to the function and its derivative, we can ef-
fectively obtain two increasing sequences of linear and
polynomial step functions converging to the inverse of
the function and its derivative. Similarly for the im-
plicit function.

(iii) From two increasing sequences of linear step functions
converging to the function and its derivative, we can ef-
fectively obtain an increasing sequences of polynomial
step functions converging in theC1 norm to the inverse
of the function. Similarly, for the implicit function.

1.1 Related work

We have already mentioned the work on interval analy-
sis regarding implicit surfaces; it gives approximations to
the surface by voxel sets but there is no approximation of
the derivative of the surface [12]. We here state the classi-
cal theorem on inverse functions for Lipschitz maps of Eu-
clidean spaces [11, p. 108], which has an elementary but
non-constructive proof, in the version of [10, Theorem 3.1].

For x ∈ R
n and any norm‖ · ‖ on R

n, we writeBr =
{y ∈ R

n | ‖y‖ < r} for the open ball around the origin
with radiusr and denote the closed ball byBr = {y ∈
R

n | ‖y‖ ≤ r}.

Theorem 1.1 Inverse Function Theorem for Lipschitz
maps [10] Let Br be a closed ball containing the origin
in R

n and letf : Br → R
n with f(0) = 0, so that for some

invertible linear mapL : R
n → R

n and someρ < 1

‖L−1f(x2) − L−1f(x1) − (x2 − x1)‖ ≤ ρ‖x2 − x1‖

holds for allx1, x2 ∈ Br. Then, for allx1, x2 ∈ Br

1 − ρ

‖L−1‖
‖x2 − x1‖ ≤ ‖f(x2) − f(x1)‖

≤ ‖L‖(1 + ρ)‖x2 − x1‖,

i.e. f is injective onBr. The restrictionf |Br
: Br → R

n

of f to the open ballBr is an open map so thatV := f [Br]
is open. Thusf |Br

: Br → R
n is Lipschitz with Lipschitz

inverse andV contains the open ballBs wheres = ρ(1−ρ)
‖L−1‖ .

Note that the theorem requires the existence of a linear map
satisfying the above inequalities. We will actually see in the
domain-theoretic Inverse Function Theorem 5.2 that, using
the mean differential of the domain-theoretic derivative,we
are able to compute a linear mapL with the above prop-
erty. A more general, but still non-constructive result, for
the existence of an inverse of a Lipschitz function follows
by using the Clarke gradient [3, p. 253], which is non-
elementary. In Bishop’s framework of constructive analysis,
a constructive proof of the existence of the inverse function
(or the implicit function) for aC1 function is obtained by
approximation but no approximations to the derivative of
the inverse in provided [4]. In none of these approaches, the
inverse or the implicit function is obtained as a fixed point
of a functional.

2. Preliminaries

We briefly recall the essential notions of the domain-
theoretic framework for multi-variable calculus from [8].
We writeIR for the interval domain{[a, a] | a ≤ a, a, a ∈
R} ∪ {R}, ordered by reverse inclusion; we write⊥= R

for the least element ofIR. Then-fold product ofIR with
itself is denoted byIRn, and we writeIRn

s for then-fold
smash product ofIR. The same convention applies ton×k
interval matrices. ForA ∈ IR

n, we have the sub-domain
IA = {a ∈ IR

n | A ⊑ a} with inherited ordering. We de-
note by(A→ IB) (resp.(A→ IR

n
s )) the set of Scott con-

tinuous functions of typeA→ IB (resp.A→ IR
n
s ), where

A,B ∈ IR
n. For brevity, we putD0(A) = (A → IR) and

D0 = D0([0, 1]n).
We identify a real numberx ∈ R with the maximal el-

ement{x} ∈ IR and a classical functionf : A → R with
the functionx 7→ {f(x)} : A→ IR, forA ∈ IR

n.
The Scott continuous functionf : [0, 1]n → IR hasan

interval Lipschitz constantb ∈ (IR)1×n
s in a ∈ (I[0, 1])n

if for all x, y ∈ a◦ we have: b(x − y) ⊑ f(x) − f(y),
where we use the canonical extension of basic arithmetic
operations from real numbers to real intervals. Thesingle-
step tieδ(a, b) ⊆ D0([0, 1]n) of a with b is the collec-
tion of all functions inD0([0, 1]n) which have an interval



Lipschitz constantb in a. If b 6= ⊥, then δ(a, b) con-
sists only of functions which in the interiora◦ are clas-
sical Lipschitz functions. The Scott continuousprimitive
map

∫

: ([0, 1]n → (IR)1×n
s ) → (P(D0),⊇) is given by

∫

(
⊔

i∈I ai ց bi) =
⋂

i∈I δ(ai, bi), whereP is the power
set functor. Thedomain-theoretic derivativeof a continuous
functionf : [0, 1]n → IR is the well-defined and Scott con-
tinuous mapdf

dx
=

⊔

f∈δ(a,b) aց b : [0, 1]n → (IR)1×n
s .

For a classicalC1 function f , we have df
dx

= f ′, where
f ′ is the classical derivative off , a notation which is used
throughout the paper. For a classical Lipschitz mapf ,
the domain-theoretic derivativedf

dx
(x0) at x0 is the small-

est hyper-rectangle containing the Clarke gradient [3] atx0,
which is a non-empty compact and convex set. The domain
for Lipschitz functions is the continuous Scott subdomain

D1([0, 1]n → IR) ⊂ ([0, 1]n → IR) × ([0, 1]n → IR
n
s )

of consistent pairsdefined by(f, g) ∈ D1([0, 1]n → IR)
iff ↑f ∩

∫

g 6= ∅, which is equivalent to the existence of
a classical continuous functionh : dom(g) → R with
g ⊑ dh

dx
and f ⊑ h. For f ∈ D0, we have(f, df

dx
) ∈

D1([0, 1]n → IR), where df
dx

is, as always in this paper,
the domain-theoretic derivative off . In [8], it is shown that
consistency is decidable on the rational step functions of
([0, 1]n → IR) × ([0, 1]n → IR

n
s ) and thusD1([0, 1]n →

IR) can be given an effective structure.
The same results hold, if we replace[0, 1]n with an ar-

bitraryA ∈ IR
n. GivenB ∈ IR

n andC ∈ IR
n×n
s , we

write D1(A → IB,A → IC) (resp.D1(A → IB,A →
IR

n×n
s )) for the sub-domain of consistent pairs in(A →

IB) × (A → IC) (resp. (A → IB) × (A → IR
n×n
s ).

For brevity, we writeD1(A → IB) = D1(A → IB,A →
IR

n×n
s ) andD1 = D1([0, 1]n). The space of classicalC1

functions of typeA→ B is denoted byC1(A→ B).
The framework can be extended in a straightforward way

to functions of typeI[0, 1]n → IR and of typeI[0, 1]n →
IR

m: for a ∈ I[0, 1]n and b ∈ IR
n
s , we say thatf :

I[0, 1]n → IR has interval Lipschitz constantb in a, if
b(x− y) ⊑ f(x)− f(y) for all x, y << a. The collection of
all f : I[0, 1]n → IR with interval Lipschitz constantb in a
is denoted byδi(a, b).

If X is a set andf : X → IR
n, we define the

width of f asw(f) := max1≤i≤m supx∈Xw(fi(x)) where
w([c, d]) = d− c is the width of an interval.

If we write D0
i

for the space of Scott continuous func-
tions of typeI[0, 1]n → IR, we have the Scott continuous
mapE : D0 → D0

i
with E(f)(x) = ⊓{f(y) | y ∈ x},

which sends any map inD0 to its maximal extension in
D0

i
. For convenience, we sometimes writeIf := E(f). For

functionsf : A → IB andg : B → IC we writeg ◦ f for
Ig ◦ f . We also recall the notion of a piecewise polynomial
step function [7]. Letr ∈ I[−1, 1]n and letp, q : r → R be
piecewise polynomial functions (i.e. each given by a finite

number of polynomials) satisfyingp(x) ≤ q(x) for x ∈ r◦.
Note thatp andq can be discontinuous inr◦. The piecewise
polynomial single-step functionsr ց [p, q] : [0, 1]n → IR

andr ցi [p, q] : I[0, 1]n → IR are, respectively, given by

(r ց [p, q])(x) =

{

[p, q](x) if x ∈ r◦

⊥ otherwise.

(r ցi [p, q])(x) =

{

I[p, q](x) if r ≪ x
⊥ otherwise.

A piecewise polynomial step function is the lub
⊔

i∈I ri ց [pi, qi] (or
⊔

i∈I ri ցi [pi, qi]) of a con-
sistent finite set of piecewise polynomial single-step
functions. Ifri, pi andqi are defined over rationals, then
we say that the polynomial step function is rational. From
now on we will be dealing with step functions of type
A → IB or IA → IB whereA,B ∈ IR

n. A polynomial
step function, say, of type[0, 1]n → IR

n will be given by a
vector polynomial step function of type:

(r ց [p, q])(x) =

{

[p, q](x) if x ∈ r◦

⊥ otherwise.
,

where[p, q] is now a vector ofn interval-valued functions
given by polynomialspj ≤ qj for j = 1, · · · , n. The
compositionf ◦ g of two piecewise linear step functions
f ∈ IR

n → IR
n andg ∈ [0, 1]n → IR

n is a piecewise
linear step function of type[0, 1]n → IR

n. The collection
of rational piecewise linear (or polynomial) step functions
gives a basis of(D0)n

s and(D0
i
)n
s .

The following gives an algorithm to evaluateE on a
piecewise polynomial step function, which extends the al-
gorithm in [7, Section 2]:

E(
⊔

i∈I

ri ց [pi, qi]) =

⊔

{(⊓
j∈J

rj) ցi [pJ , qJ ] | J ⊆ I,
⋃

j∈J

r◦j connected}, (1)

where, for eachJ ⊂ I, the piecewise polynomialspJ , qJ :
(⊓

j∈J
rj) → R are defined forx ∈ (⊓

j∈J
rj) by:

pJ(x) = max{pj(x) | j ∈ J, x ∈ dom(pj)}

qJ(x) = min{qj(x) | j ∈ J, x ∈ dom(qj)}.

Lemma 2.1 If
⊔

i∈I ri ց [pi, qi] is a piecewise linear step
function, then so isE(

⊔

i∈I ri ց [pi, qi]).

Lemma 2.2 If u ∈ D0 and u =
⊔

i≥0 si, wheresi are
piecewise linear step functions, thenE(u) =

⊔

i≥0 E(si) is
the supremum of piecewise linear step functions.



We will also need to use step functions made up of single-
step functions of the formcց [p, q] andc ցi [p, q] where
c ⊆ R

n is a parallelogram. This class of step functions, say,
of type R

n → IR
n is closed under pre-composition and

post-composition with invertible linear maps:

(cց [p, q]) ◦ L = (L−1c) ց [p, q],

L ◦ (c ց [p, q]) = cց [L ◦ p, L ◦ q],

and similarly:

(cցi [p, q]) ◦ L = (L−1c) ցi [p, q]

L ◦ (cցi [p, q]) = cցi [L ◦ p, L ◦ q].

We will use the max norm for vectors and matrices in
R

n, so in particular classical Lipschitz constant are always
meant to be with respect to the max norm. The max norm
is extended to interval valued vectors and matrices as fol-
lows. Forb ∈ IR

m×n, we define its maximum norm by
‖b‖ = max1≤i≤m

∑n
j=1 max{|bij

−|, |b+ij |}, wherebij =

[b−ij , b
+
ij ]. We write the maximum norm of a vectors ∈ R

n

by ‖s‖ := max1≤i≤n |si|.

Definition 2.3 We sayf : IA → IR
m is interval Lipschitz

in the open setO ⊂ A, if there existsℓ ≥ 0 such that
w(f(x)) ≤ ℓw(x) for all x ∈ IA with x ⊂ O. We say that
f is interval contractingif it is interval Lipschitz with an
interval Lipschitz constant less than one.

Proposition 2.4 If A ∈ IR
n andf : A → R has Lipschitz

constantc ≥ 0, thenIf has interval Lipschitz constantc.

Proof As in [9, Proposition 6].

Lemma 2.5 SupposeA ∈ IR
n and f : A → R satisfies

c ⊑ df
dx

onA wherec = (c1, . . . , cn) ∈ IR
n. Thenf has

Lipschitz constant
∑n

i=1 ‖ci‖.

Proposition 2.6 (i) For h ∈ ([0, 1]n → IR) and g ∈
([0, 1]n → IR

n
s ) we haveh ∈

∫

g iff, for all x, y ∈
[0, 1]n we haveIg(x ⊓ y)(x− y) ⊑ h(x) − h(y).

(ii) For h ∈ (I[0, 1]n → IR) andg ∈ (I[0, 1]n → IR
n
s )

we haveh ∈
∫

g iff, for all x, y ∈ I[0, 1]n we have
g(x ⊓ y)(x− y) ⊑ h(x) − h(y).

Proof Similar to [7, Proposition 7.7].

Corollary 2.7 Leth ∈ ([0, 1]n → IR) andg ∈ ([0, 1]n →
IR

n
s ). Thenh ∈

∫

g iff Ih ∈
∫

Ig.

Proof The “only if” part is trivial. For the “if part”, let
X,Y ∈ I[0, 1]n, For x ∈ X andy ∈ Y we have by as-
sumption:

Ig(x ⊓ y)(x− y) ⊑ Ih(x) − Ih(y).

By taking glb overx ∈ X , we get:

Ig(X ⊓ y)(X − y) ⊑ Ih(X) − Ih(y).

The result follows by taking glb overy ∈ Y . �

3. Domain-theoretic calculus of functions

We note thatf ∈ D1([0, 1]n → IR
m) iff fi ∈

D1([0, 1]n → IR) for i = 1, · · · ,m, wheref =







f1
...
fm






.

For ease of presentation, we take the following notation:
A vector (x1, . . . , xn) ∈ R

n is denoted by(xi)i a short-
hand for(xi)1≤i≤n, i.e. a repeated index always runs from
1 to n,wheren is the dimension of the Euclidean spaceR

n,
and describes the components of a vector, and similarly for
a vector function. Thus,f ∈ D1(Rn → IR) is represented
as(f0, (fi)i) wheref0 is the function part off and(fi)i its
derivative part. This notation is also used forn × n matri-
ces, i.e.(aij)ij denotes ann × n matrix with ij entryaij .
Thus, a vector functionf ∈ D1([0, 1]n → IR

n) is denoted
by f = ((fi0)i, (fij)ij), wherefi0 is theith function part
component of thef and(fij)j for j = 1, . . . , n denotes the
n derivative components offi0. The following statement is
the extension of the classical chain rule to the domainD1.

Theorem 3.1 Suppose(f0, (fi)i) ∈ D1(Rn → IR) and
(gi0, gi1, · · · , gim) ∈ D1([0, 1]m → IR) for i = 1, · · ·n. If

h0 = If0((gi0)i) hj = (

n
∑

k=1

Ifk((gi0)i)) · gkj

for 1 ≤ j ≤ m, then(h0, (hj)j) ∈ D1([0, 1]m → IR).

Proof Let hi ∈ ↑gi0 ∩
∫

gi1, k ∈ ↑f0 ∩
∫

(f1, · · · , fn)
and putt = k(h1, · · · , hn). By Corollary 2.7, we have:
Ik ∈

∫

(If1, · · · Ifn). We show, by using Proposition 2.6(i)
thatt ∈

∫ ∑n
i=1 fi(g10, · · · , gn0) · gi1. For elementsx, y ∈

[0, 1]m we have:

t(x) − t(y)

=k(hj(x)j) − k(hj(y)j)

⊒
n

∑

i=1

fi((hj(x) ⊓ hj(y))j) · (hi(x) − hi(y))

⊒
n

∑

i=1

fi((hj(x) ⊓ hj(y))j) · gi1(x ⊓ y)(x− y)

⊒
n

∑

i=1

fi((hj(x ⊓ y))j)) · gi1(x ⊓ y)(x− y)

⊒
n

∑

i=1

fi(gj0(x ⊓ y)j) · gi1(x ⊓ y)(x− y),

which completes the proof.

As the basic arithmetic operations are differentiable, we
can use their canonical extensions, together with composi-
tion, to obtain versions of the arithmetical operations inD1.



Composition(· ◦ ·):

D1(Rn → IR
n) ×D1([0, 1]n → IR

n) → D1([0, 1]n → IR
n)

where,f ◦ g = ((hi0)i, (hij)ij) with

hi0 = Ifi0((gm0)m) hij =
n

∑

k=1

Ifik((gm0)m) · gkj

for 1 ≤ i, j ≤ n.

Addition (· + ·):

D1(Rn → IR
m) ×D1(Rn → IR

m) → D1(Rn → IR
m)

where(f + g)j = (fj0 + gj0, fj1 + gj1, · · · fjn + gjn).

Negation(−·):

D1(Rn → IR
n) → D1(Rn → IR

n)

where(−f)j = (−fj0,−fj1, . . . ,−fjn).

Multiplication (·):

D1(Rn → IR) ×D1(Rn → IR) → D1(R → IR)

wheref · g = (f0 · g0, (fi)i · g0 + (gi)i · f0).

Inversion (1
· ):

D1(Rn → IR) → D1(Rn → IR)

where 1
f

= ( 1
f0

, −f1

f2

0

, . . . , −fn

f2

0

) and, as usual, for intervals

a andb, we puta/b =⊥ if 0 ∈ b.

Corollary 3.2 The arithmetic operations are well-defined:

(i) If f ∈ D1(Rn → IR
n) andg ∈ D1([0, 1]n → IR

n),
thenf ◦ g ∈ D1([0, 1]n → IR

n).

(ii) If f ∈ D1(Rn → IR
n) andg ∈ D1(Rn → IR

n), then
f + g ∈ D1(Rn → IR

n).

(iii) If f ∈ D1(Rn → IR
n), then−f ∈ D1(Rn → IR

n).

(iv) If f ∈ D1(Rn → IR) andg ∈ D1(Rn → IR), then
f · g ∈ D1(Rn → IR).

(v) If f ∈ D1(Rn → IR), then 1
f
∈ D1(Rn → IR).

Moreover these operations are Scott continuous.

Lemma 3.3 Chain Rule. For any two functionsf, g ∈
(Rn → IR

n):

d(f ◦ g)

dx
⊒ (

df

dx
◦ g) ·

dg

dx
.

Proof Fix x0 ∈ R
n. Let b1 ≪ dg

dx
(x0) and b2 ≪

( df
dx

(g(x0)). Then for somea1, a2 ∈ IR
n with x0 ∈ a1

andg(x0) ∈ a2 we have:f ∈ δ(a1, b1) andg ∈ δ(a2, b2).
Sinceg is Scott continuous,g−1(↑↑a2) is open inR

n. Let
a ∈ IR

n, with a ⊆ a1 ∩ g−1(↑↑a2) andg(x0) ∈ a◦. Then,
for all x, y ∈ a◦:

f(g(x)) − f(g(y)) ⊒ b1(g(x) − g(y)) ⊒ b1b2(x − y).

Thereforef ◦ g ∈ δ(a, b1b2) and thusd(f◦g)
dx

(x0) ⊒ b1b2.

Note that equality may fail in the chain rule. For example
let f : R → R be the absolute value functionx 7→ |x|
and g : R → R defined byx 7→ x if x ≤ 0 and 0 if
x > 0. Thendf◦g

dx
(0) = [−1, 0] whereasdf

dx
(g(0))· dg

dx
(0) =

df
dx

(0) · dg
dx

(0) = [−1, 1][0, 1] = [−1, 1].

Lemma 3.4 Let (g0, g1, · · · , gn) ∈ D1([0, 1]n → IR)
with g0 real valued. If gi(x) is a real number for all
i = 1, · · · , n for somex ∈ [0, 1]n, theng′0(x) exists and
g′0(x) = (g1(x), · · · , gn(x)).

Proof By assumption, there existst ∈ ↑g0∩
∫

(g1, · · · , gn),
but then t = g0 as g0 is maximal. Hence
dg0

dx
⊒ (g1, · · · , gn), which implies dg0

dx
(x) =

(g1(x), · · · , gn(x))). By [7, Proposition 4.3(ii)], the result
follows.

4. Inverse constructing functional

In many areas of mathematics a construction is first ob-
tained for functions close to the identity map and then ex-
tended to more general maps. In this section, we show first
that the inverse of a function close to the identity can be ob-
tained as the fixed point of a functional that we introduce
here. Later in the paper, we show how this functional can
be used to obtain the inverse of a Lipschitz function. For
a > 0 and0 < c < 1, we fix then-dimensional rectangles

A = [−a, a]n B = [−ca, ca]n C = [−(1−c)a, (1−c)a]n

and consider the functional

T : D1(A→ IB) ×D1(C → IB) → D1(C → IB)

defined by
T (f, g) = −If ◦ (I + g)

whereI : C → IC is the identity functionλx.x. We also
put Tf = T (f, ·). By Corollary 3.2,T is well-defined.
Later, we construct the inverse function off as the least
fixpoint of Tf . The function part ofT is given by the func-
tional

R : (A→ IB) × (C → IB) → (C → IB)
(f, g) 7→ −If ◦ (I + g)



Let Rf = R(f, ·). For the derivative part, we have the
functionalS of type

(A→ IR
n2

s )×(C → IB)×(C → IR
n2

s ) → (C → IR
n2

s )

defined by

S(h, g0, g1) = −Ih ◦ (I + g0) · (λx.Id + g1)

whereId = dI
dx

. Thus,

T (f, g) = (R((fi0)i, (gi0)i), S((fij)ij , (gi0)i, (gij)ij)

if f = ((fi0)i, (fij)ij) ∈ D1(A → IB) and g =
((gi0)i, (gij)ij) ∈ D1(C → IB). We also putS(h,g0) =
S(h, g0, ·).

Proposition 4.1 Supposef : A → B. ThenRf : (C →
IB) → (C → IB) is well defined. If moreoverf has Lip-
schitz constantc < 1 with respect to the max norm and
f(0) = 0, we have:

(i) The functionalRf has a unique fixed point(gi0)i with
w((gi0)i) = 0 which is thus a classicalC0 function.

(ii) I+f : [−a, a]n → R
n has inverseI+(gi0)i : Im(I+

f) → [−a, a]n.

(iii) (gi0)i(0) = 0.

Proof It is easily checked thatRf is well-defined. Asf ,
and hence everyfi, has Lipschitz constantc < 1, it fol-
lows from Proposition 2.4, thatIf , and hence everyIfi, is
interval contracting with contractivity factorc.

Let x ∈ C. Then we have

w(gi0(x)) = w(Ifi((xk + gk0(x)))k)

≤ c max
1≤i≤n

w(xi + gi0(x)))

= c max
1≤i≤n

w(gi0(x)).

hencemax1≤i≤n w(gi0(x)) = 0. Thus, the least fixed point
g is maximal and hence the unique fixed point.

(ii) We have(I + f) ◦ (I+ g) = I + g+ f ◦ (I + g) = I
and thusI + g is a right inverse ofI + f . SinceI + f is
Lipschitz with‖f(x)−f(y)‖ ≤ c‖x−y‖ it follows by [10,
Theorem 3.1] thatI + f has an inverse. Thus,I + g, being
a right inverse, is the inverse ofI + f .

(iii) We have(I + f)(0) = 0 and (I + f)(g(0)) = (I +
f)(0 + g(0)) = (I + f) ◦ (I + g)(0) = I(0) = 0, asI + g
is the inverse ofI + f . It follows from injectivity of I + f
thatg(0) = 0.

Now we can obtain a fixed point ofT(f,
df
dx

) and examine
its properties.

Lemma 4.2 The partial order(D0([0, 1] → IR),⊒) of
Scott continuous functions ordered by reverse pointwise or-
dering is a dcpo with Scott continuous operations for addi-
tion · + ·, multiplication· × · and negation−·.

Proof Note that any bounded complete dcpo is a dcpo with
respect to its opposite order. It is routine to check the Scott
continuity of addition and multiplication.

Lemma 4.3 For x, y ∈ IR, we havew(xy) ≤ w(x)‖y‖ +
‖x‖w(y).

Proposition 4.4 Supposef : A→ B satisfies‖ df
dx
‖ ≤ c <

1 onA andf(0) = 0. If H = [− c
1−c

, c
1−c

]n×n, we have:

(i) The functional

T(f,
df
dx

) : D1(X0, X1) → D1(X0, X1),

whereX0 = (C → IB) and X1 = (C → IH)
is well-defined and has a unique fixed pointg =
((gi0)i, (gij)ij), such that(gi0)i is the unique fixed
point of Rf and (gij)ij is the unique fixed point
of S( df

dx
,(gi0)i)

: X1 → X1; moreover (gij)ij =

⊓l≥0S
l

( df
dx

,(gi0)i)
(d(gi0)i

dx
) ⊑ d(gi0)i

dx
.

(ii) The fixed point g of T(f,
df
dx

) will satisfy

w((gij(x))ij) ≤ n(1+d)
1−c

w( df
dx

(xk + gk0(x))k)

for anyx ∈ C and thus,w((gij)ij) ≤
n(1+d)

1−c
w( df

dx
).

(iii) If w( df
dx

((xk + gk0(x))k)) = 0 for somex ∈ C,
then w(gij(x)) = 0, for i, j = 1, · · · , n, and
(gi1(x), · · · , gin(x)) = g′i0(x) for i = 1, · · · , n.

(iv) If w( df
dx

) = 0, thenw(gi0) = 0 for i = 1, · · ·n, and
(gi1, · · · , gin) = g′i0 for i = 1, · · ·n.

(v) If df
dx

(0) = 0 thengij(0) = 0 for i, j = 1, · · · , n.

Proof Supposeg = ((gi0)i, (gij)ij) ∈ D1(X0, X1). Then
by Proposition 4.1 we haveRf ((gi0)i) ∈ (C → IB) = X0,
hence it suffices to show thatS( df

dx
,(gi0)i)

((gij)ij) ∈ X1.

As f satisfies‖ df
dx
‖ ≤ c on A, we have, by definition of

matrix norm, that the row sum
∑n

j=1 ‖(
df
dx

)ij‖ ≤ c for all
i = 1, . . . , n. Let d = c

1−c
. Then, for anyx ∈ C, we

havegij(x) ∈ [−d, d], hence(gij)ij(x) + Id ∈ I[−d +

1, d + 1]n×n. Letting (hij)ij = −I
df
dx

(I + (gi0)i(x)) ·
(Id + (gij)ij(x)), we obtain for theij-entryhij of (hij)ij

thathij ⊒
∑n

k=1((
df
dx

)ik · [−d + 1, d + 1] ⊒ [−d, d], as
∑k

i=1 ‖(
df
dx

)ik‖ ≤ c. Therefore also the derivative part of
T(f,

df
dx

) is well defined. Consistency of function and deriva-
tive part follow from Corollary 3.2. By continuity,T(f, df

dx
)

therefore has a least fixpoint(gi0)i, gmin).



For any fixed point((gi0)i, (gij)ij) we have(gij)ij ⊑
d(gi0)i

dx
since ((gi0)i, (gij)ij) is consistent and(gi0)i has

zero width. Now for anyh ∈ X1 with gmin ⊑ h ⊑ d(gi0)i

dx
,

we have, by the Chain rule 3.3:

gmin ⊑ S( df
dx

,(gi0)i)
(h) ⊑ S( df

dx
,(gi0)i)

(
d(gi0)i

dx
) ⊑

d(gi0)i

dx
.

It follows by Lemma 4.2 that, in the lattice of functions in
X1 with ⊒ as the ordering,gmin as the top element and
d(gi0)i

dx
as the least element, the Scott continuous function

S(f,(gi0)i) : X1 → X1 has a least fixed point

gmax = ⊓l≥0S
l

( df
dx

,(gi0)i)
(
d(gi0)i

dx
),

which is the greatest fixed point ofS(f,(gi0)i) : X1 → X1

and thus induces the greatest fixed point((gi0)i, gmax) of
T(f,

df
dx

). It remains to show the uniqueness of the fixed point
of S(f,(gi0)i) : X1 → X1. The fixed point equation

gij =

n
∑

m=1

−I(
df

dx
)im((πk + gk0)k) · (λx.δmj + gmj) (2)

evaluated atx ∈ C yields:

gij(x) =

n
∑

m=1

−I(
df

dx
)im(xk + gk0(x))k · (δmj + gmj(x)),

or equivalently,

[g−ij(x), g
+
ij(x)] =

n
∑

m=1

([cim(x), dim(x)]·

[δmj + g−mj(x), δmj + g+
mj(x)]), (3)

wheregkl = [g−kl, g
+
kl] and

[cim(x), dim(x)] := −I(
df

dx
)im(xk + gk0(x))k ,

for 1 ≤ i,m ≤ n. For any fixedx ∈ C, consider the system
of 2n2 equations represented by:

[yij , zij ] =

n
∑

m=1

[cim(x), dim(x)] · [δmj + yij , δmj + zij ],

(4)
for the unknown valuesyij andzij (i, j = 1, · · · , n). This
is a linear system, which can be written in the form:

A(x)u = b(x) (5)

whereA(x) ∈ R
2n2×2n2

andu, b(x) ∈ R
2n2

, with u0ij =
yij andu1ij = zij , in which the subscripts ofu are num-
bers written in basen, i.e.,kij = kn2 + in+ j. We already

know that this linear system has at least one solution since
S(f,(gi0)i) : X1 → X1 has at least one fixed point. Sup-
pose, for a contradiction, that the fixed point is not unique.
Then(gmin)i0j0(x0) 6= (gmax)i0j0(x0) for somex0 ∈ C
and somei0, j0 with 1 ≤ i0, j0 ≤ n. And thus, forx = x0,
the linear system (5) will have infinitely many solutions of
the form:

u0ij(k) = (gmin)
−
ij(x0) +

p
∑

t=1

ktθ
t
0ij

u1ij(k) = (gmin)
+
ij(x0) +

p
∑

t=1

ktθ
t
1ij ,

whereθt ∈ R
2n2

(t = 1, · · · p) is a basis for the null-set
of A(x0), k ∈ R

p andp is the dimension of the null-set
of A(x0). But (gmin)ij(x0) ⊇ (gmax)ij(x0) and for some
k ∈ R

p, we have:

u0i0j0(k) = (gmax)
−
i0j0

(x0), u1i0j0(k) = (gmax)
+
i0j0

(x0).

Now, using this value ofk, we defineh : C → IH by

hij(x) =







(gmin)i0j0(x0) −
∑p

t=1 kt[θ
t
0i0j0

, θt
1i0j0

]
if i = i0, j = j0, x = x0

(gmin)ij(x) otherwise.

Then, h is Scott continuous and is a fixed point of
S(f,(gi0)i) : X1 → X1 with h ⊑ gmin andh 6= gmin, which
is the required contradiction.

(ii) We let d = c
1−c

. Using Lemma 4.3, we have

w(gij(x))

=w(

n
∑

m=1

(−I(
df

dx
)im(xk + gk0(x))k) · (δmj + gmj(x)))

≤
n

∑

m=1

w(
df

dx
)im((xk + gk0(x))k)(1 + d)+

‖(
df

dx
)im‖ · w(gmj(x))

≤n(1 + d)w(
df

dx
)i((xk + gk0(x))k)+

n
∑

m=1

‖(
df

dx
)im‖ · w((gmj)j(x))

≤n(1 + d)w(
df

dx
((xk + gk0(x))k)) + cw((gmj)mj(x))

as‖ df
dx
‖ ≤ c. Thus,w((gij)ij(x)) ≤ n(1 + d)w( df

dx
((xk +

gk0(x))k))+cw((gij)ij(x)), which gives:w((gij)ij(x)) ≤
n(1+d)

1−c
w( df

dx
((xk + gk0(x))k)).

(iii) From (ii), w(gij) = 0 for i, j = 1, · · · , n.
Lemma 3.4, gives(gi1(x), · · · , gin(x)) = g′i0(x) for i =
1, · · · , n.



(iv) Follows from (iii).
(iv) Since I

df
dx

(0) = 0, from Equation (2) we get:
gij(0) = 0 for i, j = 1, · · · , n.

Corollary 4.5 Supposef ∈ C1([−a, a]n → [−ca, ca]n)
with ‖f ′(x)‖ < 1 for all x ∈ [−a, a]n and assume
f(0) = f ′(0) = 0. Then, there is a unique fixed
point ((gi0)i), (gij)ij) of T(f,f ′). It will satisfyw(gi0) =
w(gij) = 0 andgi0(0) = gij(0) = 0 for 1 ≤ i ≤ n, 0 ≤
j ≤ n, and(gij)ij = (gi0)

′
i.

In particular, this shows that the least fixpointg is the
classical inverse function.

5. Inverse functions

In this section we prove the following theorem, which
gives a constructive version of the classical result on the
inverse of Lipschitz functions as in Theorem 1.1.

Definition 5.1 For an interval matrixb = ([bij , bij ])ij ∈

IR
n×n the mid-point matrixof b is given by(

bij+bij

2 )ij .
If f : [−1, 1]n → R

n is locally Lipschitz, then themean
differentialof f at x0 ∈ [−1, 1]n is the midpoint matrix of
df
dx

(x0).

Note that for a locally Lipschitz function, every compo-
nent of the domain theoretic derivative is6=⊥. With this
terminology, we can replace the linear map in the statement
of Theorem 1.1 by the mean differential and obtain the fol-
lowing result.

Theorem 5.2 Inverse Function Theorem. Let u :
[−1, 1]n → R

n be locally Lipschitz withu(0) = 0. Sup-
pose the mean differential at the point0 (i.e., the linear map
represented by the mid-point matrix ofdu

dx
(0)), denoted by

M , is invertible. Let‖M−1 du
dx

(0)− I‖ < 1. Then we have:

(i) The mapu has a Lipschitz inverse in a neighbourhood
of the origin.

(ii) If two increasing sequences of linear rational step
functions, respectively of type[−1, 1]n → IR

n and
[−1, 1]n → IR

n×n
s , converging respectively tou and

du
dx

are given, then we can effectively obtain an increas-
ing sequence of piecewise linear step functions con-
verging to the inverse ofu.

(iii) If u is C1 and two increasing sequences of linear ra-
tional step functions, respectively of type[−1, 1]n →
IR

n and [−1, 1]n → IR
n×n
s , converging respectively

to u andu′ are given, then we can also effectively ob-
tain an increasing sequence of polynomial step func-
tions converging to the derivative of the inverse ofu.

(iv) With the assumptions in (iii), we can also effectively
obtain an increasing sequence of polynomial step func-
tions, whose lower and upper parts are continuous and
piecewise polynomial, such that the two sequences of
lower and upper parts converge in theC1 norm, re-
spectively from below and above, to the inverse ofu.

Proof (i) SupposeN ∈ du
dx

is invertible with‖N−1 du
dx

−
I‖ < 1, e.g. this holds forN = M . Let f = N−1u −
I. Then df

dx
= N−1 du

dx
− Id, whereId = dI

dx
. Since

‖N−1 du
dx

(0) − I‖ < 1, we have:‖ df
dx

(0)‖ < 1. It follows
that for anyc satisfying‖N−1 du

dx
(0) − I‖ < c < 1, there

existsa > 0 such that:‖ df
dx

(x0)‖ ≤ c for all x0 ∈ [−a, a]n.
It follows from Lemma 2.5 thatf has Lipschitz constant
c < 1. Thus, by Proposition 4.1, if(gi0)i is the unique fixed
point of Rf , thenI + (gi0)i : Im(I + f) → [−a, a]n is
the local inverse ofI + f . Hence,(I + (gi0)i) ◦ N

−1 :
Im(u) → [−a, a]n is the local inverse ofu in [−a, a]n. It
follows from Proposition 4.4 that the local inverse ofu is
locally Lipschitz.

(ii) Supposeu =
⊔

i≥0 si where si =
⊔

j∈Ji
rj ց

[pj , qj ] is a piecewise linear step function for disjoint finite
indexing setsJi (i ≥ 0) anddu

dx
=

⊔

i≥0 βi for an increasing
sequence(βi) of linear rational step functions. We denote
the midpoint matrix ofβi byMi. As‖M−1 du

dx
−I‖ < 1, we

can find, by Scott continuity, the smallestk > 0 such that
Mk is invertible and‖M−1

k βk(0) − I‖ < 1, from which
we obtain‖M−1

k
du
dx

(0) − I‖ < 1. We writeN := Mk in
accordance with item (i) above.

We obtainN−1u =
⊔

i≥0N
−1si whereN−1si =

⊔

j∈Ji
rj ց N−1[pj , qj ] and

f = N−1u− I =
⊔

i≥0

N−1(si − I) =
⊔

i≥0

ti,

whereti := N−1si − I =
⊔

j∈Ji
rj ց (N−1[pj , qj ] −

λx.x) is a piecewise linear step function for eachi ≥ 0.
FromIf =

⊔

i≥0 E(ti) we obtain for⊥0 = λx.B, that

Rf (⊥0) = −If ◦ (I + ⊥0) = −
⊔

i≥0

E(ti) ◦ (I + ⊥0)

=
⊔

i≥0

Rti
(⊥0),

and hence,

(gi0)i =
⊔

n≥0

Rn
f (⊥0) =

⊔

n≥0

⊔

i≥0

Rn
ti

(⊥0)

=
⊔

n≥0

Rn
tn

(⊥0).

For each piecewise linear step functionst ∈ A → IB and
s ∈ C → IB, the mapRt(s) = −It ◦ (I + s) is the



composition of two piecewise linear step functions and is
thus a piecewise linear step function. It follows by a simple
induction that for eachn ≥ 0, the mapαn := Rn

tn
(⊥0) is a

piecewise linear step function. Finally, we have

u−1 = (I + g0) ◦N
−1 =

⊔

n≥0

(I + αn) ◦N−1,

where eachAl := (I +αl) ◦N−1 is a piecewise linear step
function, made up of single-step functions with parallelo-
grams as their domains.

(iii) With N as above, by Proposition 4.1,(gi0)i is
C1 and thus fromu−1 = (I + (gi0)i) ◦ N−1 we ob-
tain: (u−1)′ = (I + (gi0)

′
i) ◦ N−1, where(gi0)

′
i is the

unique fixed point ofS( df
dx

,(gi0)i)
. Hence, it is sufficient to

show that an increasing sequence of polynomial step func-
tions with lub (gi0)

′
i can be effectively obtained. Letαl

(l ≥ 0) be the piecewise linear step function as in (ii) with
(gi0)i =

⊔

l≥0 αl. Letβl (l ≥ 0) be an increasing sequence
of piecewise linear step functions withu′ =

⊔

l≥0 βl. From

f = I − N−1u we obtain: df
dx

= f ′ = I − N−1u′. Thus,
f ′ =

⊔

l≥0(I−N
−1βl), whereγl := I−N−1βl is a piece-

wise linear step function for eachl ≥ 0. It follows that
If ′ =

⊔

l≥0 E(γl), whereE(γl) is a piecewise linear step
function for eachl ≥ 0. From the Scott continuity of the
functionalS we get for anyh ∈ X1 → X1, whereId = dI

dx
:

S(f ′,(gi0)i)(h) = S(f ′, (gi0)i, h)

= −If ′ ◦ (I + (gi0)i) · (Id + h)

=
⊔

l≥0

−E(γl) ◦ (I + αl) · (Id + h)

=
⊔

l≥0

S(γl, αl, h)

=
⊔

l≥0

S(γl,αl)(h).

Hence,Sj

(f ′,(gi0)i)
=

⊔

l≥0 S
j

(γl,αl)
for anyj ≥ 0.

If ⊥1 = λx.H , then the uniqueness of the fixed point
S(f ′,(gi0)i) gives:

(gi0)
′
i = gmin =

⊔

j≥0

Sj

(f ′,(gi0)i)
(⊥1)

=
⊔

j≥0

⊔

l≥0

Sj

(γl,αl)
(⊥1)

=
⊔

l≥0

Sl
(γl,αl)

(⊥1).

Since, for eachl ≥ 0, αl andγl are piecewise linear step
functions, it follows from a simple induction that, for each
l, j ≥ 0, Sj

(γl,αl)
(⊥1) is a polynomial step function. In par-

ticular,Bl := Sl
(γl,αl)

(⊥1) is a polynomial step function.

(iv) Consider the two sequencesAl andBl converging
to u−1 and (u−1)′ respectively as constructed in (ii) and
(iii). For eachl ≥ 0, we have(Al, Bl) ∈ D1(Im(u) →
[−a, a]n) and the update [7, 8] Up(Al, Bl) is a polynomial
step function whose lower and upper parts are respectively
the least and the greatest functions consistent with bothAl

andBl. It follows thatu−1 =
⊔

i≥0 Up(Al, Bl) and that the
lower and upper parts give an increasing and a decreasing
sequence of continuous piecewise polynomials converging
in theC1 norm tou−1 from below and above respectively.

6. Implicit functions

As in classical theory, the implicit function theorem in
the domain-theoretic setting can be deduced from the in-
verse function theorem.

Theorem 6.1 Implicit Function Theorem.
Let f : O → R

n, whereO ⊆ R
n+k, be C1 with

f(0, 0) = 0 where(0, 0) ∈ R
n × R

k. Assume

det(
∂(f1, . . . , fn)

∂(x1, . . . , xn)
)(0, 0) 6= 0.

Then, there exists ak-dimensional open setW ⊆ R
k with

0 ∈ W , and a uniqueg : W → R
n with

(i) g ∈ C1 onW , (ii) g(0) = 0, (iii) f(g(t), t) = 0
for t ∈W .

Moreover, we have:

(iv) Given two increasing sequences of linear rational step
functions, of typeO → IR

n andO → IR
n×(n+k)
s ,

converging tof andf ′ respectively, we can effectively
obtain two increasing sequences of, respectively linear
and polynomial, step functions converging tog andg′

respectively.

(v) With the assumption in (iv), we can also effectively ob-
tain an increasing sequence of polynomial step func-
tions, whose lower and upper parts are continuous and
piecewise polynomial, such that the two sequences of
lower and upper parts converge in theC1 norm, re-
spectively from below and above, tog.

Proof Let u : O → R
n+k with ui(x, t) = fi(x, t) for

1 ≤ i ≤ n andui(x, t) = ti for n+ 1 ≤ i ≤ n+ k. Then,
u(0, 0) = (0, 0) and

detu′(0, 0) = det(
∂(f1, . . . , fn)

∂(x1, . . . , xn)
)(0, 0) 6= 0.

By Theorem 5.2, there existsa > 0 with [−a, a]n+k ⊆ O
such that the restrictionu : [−a, a]n+k → R

n+k has aC1



inverseu−1 : Im(u) → R
n+k. PutW = π1(Im(u)) where

π1 : R
n+k → R

k is the projection toRk. Let g : W → R
n

with g = λt.u−1(0, t). Then, as in the classical theory,
W ⊆ R

k is open andg is the unique function that satisfies
(i), (ii) and (iii). It remains to show (iv) and (v):

(iv) Since[−a, a]n+k ⊆ O, we can restrict the domain of
the step functions, given in the assumption, to[−a, a]n+k.
Suppose, therefore, we are given an increasing sequence of
linear step functionsθj : [−a, a]n+k → IR

n, for j ≥ 0,
with f =

⊔

j≥0 θj . The functional

s : ([−a, a]n+k → IR
n) → ([−a, a]n+k → IR

n+k),

with s(h)j = hj for 1 ≤ j ≤ n ands(h)j = λx.x for
n + 1 ≤ j ≤ n + k is Scott continuous and preserves lin-
ear step functions since the inclusion map[−a, a]n+k →
IR

n+k is clearly a linear step function. It follows that
u =

⊔

j≥0 s(θj) is the lub of an increasing sequence of
linear step functions.

Suppose we also have an increasing sequence of linear
step functionsψl : [−a, a]n+k → IR

n×(n+k)
s , for l ≥ 0,

with f ′ =
⊔

l≥0 ψl. Note thatu′i = f ′
i for 1 ≤ i ≤ n and

(u′i)j = δij for n+ 1 ≤ i ≤ n+ k. Consider the functional
v : ([−a, a]n+k → (IRn×(n+k))s) → ([−a, a]n+k →
(IR(n+k)×(n+k))s), with (v(ψ))i = ψi for 1 ≤ i ≤ n and
(v(ψ))ij = δij for n+ 1 ≤ i ≤ n+ k and1 ≤ j ≤ n+ k.
Then,v is Scott continuous and preserves linear step func-
tions. It follows that we can effectively obtain an increas-
ing sequence of piecewise linear step functionsv(ψl) with
u′ =

⊔

l≥0 v(ψl).
By Theorem 5.2, we can effectively obtain two increas-

ing sequence of linear step functions(Cj)j≥0 with u−1 =
⊔

j≥0 Cj and(Dj)j≥0 with (u−1)′ =
⊔

l≥0Dl. The func-
tional

t : (Im(u) → IR
n+k) → (W → IR

n),

with t(h) = λx.h(0, x) is Scott continuous and preserves
linear step functions, since partial evaluation of a linearstep
function, on a subset of its arguments, results in a linear step
function. Thus,g = t(u−1) =

⊔

j≥0 t(Cj) is obtained ef-
fectively as the lub of an increasing sequence of step func-
tion.

For the derivative, we obtain that(g′)i =
λx.(u−1)′n+i(0, x) and thus effectively obtain
(g′)i =

⊔

l≥0 λx.(Dl)n+i(0, x), whereλx.(Dl)n+i(0, x)
is a polynomial step function.

(v) As in the proof of Theorem 5.2(iv).

7 Further work

We will investigate if the domain-theoretic results on the
inverse of a Lipschitz function can provide a precise witness
for the linear map stipulated in the classical theorem 1.1.

The results in the paper is a step toward a theoretical foun-
dation for a robust CAD system. Having obtained domain-
theoretic versions of the inverse and implicit function theo-
rems, which in particular provide localC1 approximations
to an implicit surface, the next step would be to be able to
patch the local pieces of an implicit surface together to ob-
tain, in particular, a closed connected orientable manifold
given by implicit equations such asf(x, y, z) = 0 when0
is a regular value off . Furthermore, the domain-theoretic
framework for geometric modelling developed in [6] com-
bined with the results in this work lead to a domain of ori-
entable closed Lipschitz manifolds. This will synthesize the
domain-theoretic framework for geometry and that for dif-
ferential calculus.
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