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Abstract

We construct a domain-theoretic calculus for Lipschitz
and differentiable functions, which includes additionbsu
traction and composition. We then develop a domain-
theoretic version of the inverse function theorem for a Lip-
schitz function, in which the inverse function is obtained
as a fixed point of a Scott continuous functional and is ap-
proximated by step functions. In the case df afunction,
the inverse and its derivative are obtained as the least fixed
point of a single Scott continuous functional on the domain ,
of differentiable functions and are approximated by two se- *
guences of step functions, which are effectively compute
from two increasing sequences of step functions respéctive
converging to the original function and its derivative. In
this case, we also effectively obtain an increasing seqeienc
of polynomial step functions whose lower and upper bounds
converge in theC'! norm to the inverse function. A similar
result holds for implicit functions, which combined witle th
domain-theoretic model for computational geometry, pro-
vides a robust technique for construction of curves and sur-
faces.

Figure 1. Approximations of the unit circle

+y% — 1 = 0. This well-known and ancient technique
escribes the essence of our work in a simple and accessi-
le way. The present paper aims to develop a systematic
and recursive method of approximating an implicitly given
surface with two sequences of piecewise linear or piecewise
polynomial surfaces, which converge locally in thénorm
from inside and outside to the implicit surface. A main ap-
plication of this method is in geometric modelling and com-
puter aided design, where curves and surfaces are usually
defined implicitly [2]. Currently, there are no robust meth-
ods to approximate an implicit surface and the most reliable
technique provided by interval analysis [12] is only able to
approximate the implicit surface without approximatirgy it
] derivative. The paper thus presents a framework for a robust
1. Introduction CAD system, where implicitly given surfaces can be effec-
tively obtained up to the'* precision required by the user.
The earliest systematic method of computing increas-In more mathematical language, we will use domain the-
ingly better lower and upper bounds tois credited to ory to provide a recursion-theoretic account of the inverse
Archimedes, who obtained his approximation by circum- function and the implicit function theorems, which are the
scribing and inscribing the circle with regular polygons main fundamental tools in multi-variable differential cad
having 96 sides. In the 15th century, Jamshid Kashani,lus and the theory of manifolds. In [7], a domain-theoretic
the Iranian mathematician, further developed this rewarsi framework for differential calculus of one variable was de-
method by using regular polygons with 805306368 sides, veloped which in particular provides an effectively given
obtaining 16 decimal digits ofr with a correct estima-  domain for Lipschitz or differentiable functions. Later,on
tion of the error [1]. In today’s mathematical language, domain-theoretic techniques for solving initial value lpro

we say that the two sequences of refiningided regu-  lems were obtained in [5, 9], which enable us to approxi-
lar polygons circumscribing and inscribing the unit circle mate the unique solution of an initial value problem given
forn = 3,4,5,..., as in Figure 1, converge in th&* by a Lipschitz vector field up to the precision required by

norm respectively from outside and inside to the circle, a the user. In [8], the domain-theoretic model was extended
1-dimensional closed manifold given by the implicit curve to multi-variable differential calculus, resulting in time-



tion of a domain-theoretic derivative, which for Lipschitz holds for allz;, zo € B,.. Then, for allz,, z2 € B,
functions gives the smallest hyper-rectangle contairtireg t

Clark gradient [3], as well as a domain for multi-variable L-p 2o — 21| < || f(z2) — f(z1)
differentiable functions. In this paper, we will illusteathe [Fd| B

first main application of the domain of multi-variable dif-

ferentiable functions, by using it to obtain the inverse and <L+ p)[|z2 — 2],

implicit functions of classical analysis as the fixed poifdéo
functional that we construct on the domain of Lipschitz and of £ o the open ballB, is an open map so that — f[B,]
differentiable functions. We first obtain, as a fixed poing t is open. Thus|; - é e With. ! Scﬁitz
inverse of a function which differs from the identity map by . pen. Br - 2w P pf)lip)
a contraction. Then, based on the domain-theoretic deriva-VE'se and” contains the open balf, wheres = =
tive, we introduce the notion of mean differential and use it ) ) )
to solve the problem of inverse function for Lipschitz in a NOte that the theorem requires the existence of a linear map
more general setting. The domain-theoretic inverse and im-Satisfying the above inequalities. We will actually seehia t
plicit function theorems fo€! functions have the following ~ domain-theoretic Inverse Function Theorem 5.2 that, using
distinguished features compared to other approaches: the mean differential of the domain-theoretic derivative,
are able to compute a linear mdpwith the above prop-
() Theinverse and implicit functions are obtained as fixed €rty. A more general, but still non-constructive result, fo
points of Scott continuous functionals. the existence of an inverse of a Lipschitz function follows
by using the Clarke gradient [3, p. 253], which is non-
(i) Fromtwo increasing sequences of linear step functions elementary. In Bishop’s framework of constructive anaysi
convergingto the function and its derivative, we can ef- a constructive proof of the existence of the inverse fumctio
fectively obtain two increasing sequences of linear and (or the implicit function) for aC"! function is obtained by
polynomial step functions converging to the inverse of approximation but no approximations to the derivative of
the function and its derivative. Similarly for the im- the inverse in provided [4]. In none of these approaches, the
plicit function. inverse or the implicit function is obtained as a fixed point
of a functional.
(iii) From two increasing sequences of linear step function
conyerging to.the fgnction gnd its derivative, we can e_f- 2. Preliminaries
fectively obtain an increasing sequences of polynomial

step functions converging in ti¢' norm to the inverse ) _ _ ]
of the function. Similarly, for the implicit function. We briefly recall the essential notions of the domain-

theoretic framework for multi-variable calculus from [8].
We write IR for the interval domaif{[a,@] | a < @,q,a €
R} U {R}, ordered by reverse inclusion; we write= R
for the least element diR. Then-fold product ofIR with
We have already mentioned the work on interval analy- itself is denoted by R", and we writeIR” for the n-fold
sis regarding implicit surfaces; it gives approximatioas t smash product dfR. The same convention appliesitox k
the surface by voxel sets but there is no approximation of jnterval matrices. Fod € IR", we have the sub-domain
the derivative of the surface [12]. We here state the classi-14 = {4 € IR" | A C «} with inherited ordering. We de-
cal theorem on inverse functions for Lipschitz maps of Eu- note by(A — IB) (resp.(A — IR?)) the set of Scott con-

clidean spaces [11, p. 108], which has an elementary buttinuous functions of typel — IB (resp.A — IR"), where
non-constructive proof, in the version of [10, Theorem 3.1] A, B ¢ IR". For brevity, we putD®(A) = (A — IR) and

i.e. f is injective onB,.. The restrictionf|p, : B, — R"

1.1 Related work

Forz € R™ and any nornj| - || onR™, we write B, = D% = D°([0,1]™).
{y € R" | |ly|l < r} for the open ball around the origin We identify a real number € R with the maximal el-
with radiusr and denote the closed ball iy, = {y € = ement{z} € IR and a classical functiofi : A — R with
R™ [lyll < r}. the functionz — {f(z)} : A — IR, for A € IR".

The Scott continuous functiofi : [0,1]™ — IR hasan
Theorem 1.1 Inverse Function Theorem for Lipschitz interval Lipschitz constar € (IR)1*™ in a € (I[0,1])"
maps [10] Let B, be a closed ball containing the origin if for all z,y € a° we have:b(x — y) C f(z) — f(y),
inR™ and letf : B, — R™ with f(0) = 0, so that for some  where we use the canonical extension of basic arithmetic
invertible linear mapl : R” — R™ and some < 1 operations from real numbers to real intervals. Shwgle-
step tied(a,b) € D°([0,1]") of a with b is the collec-
L7 f (o) — L7 f(1) — (20 — 21)|| < pllaa — 21| tion of all functions inD([0, 1)) which have an interval



Lipschitz constanb in a. If b # L, thené(a,b) con- number of polynomials) satisfying(z) < ¢(«) for x € r°.
sists only of functions which in the interiar® are clas- Note thatp andq can be discontinuous irf. The piecewise
sical Lipschitz functions. The Scott continuopgmitive polynomial single-step functions\ [p, ¢| : [0,1]" — IR
map [ : ([0,1]" — (IR)1*™) — (P(D"), D) is given by  andr \ [p,q] : I[0,1]" — IR are, respectively, given by
J(Uier @i . bi) = N;er 0(ai, bi), whereP is the power

set functor. Thelomain-theoretic derivativef a continuous (r\ [, q])() = { [p,ql(x) ifze 1_~°
functionf : [0, 1] — IR is the well-defined and Scott con- ’ L otherwise
tinuous map = ;50 @\ 0 : [0, ]" — (IR)L*",

For a classical’! function f, we have = f’, where )

f"is the classical derivative of, a notation which is used (r N [P, q)(2) = { Ip.g(z) ifr<a
throughout the paper. For a classical Lipschitz nyap L1 otherwise

the domain-theoretic derivativg—(zo) at z¢ is the small-
est hyper-rectangle containing the Clarke gradient [3}at
which is a non-empty compact and convex set. The domainllier i "\ [Pi-ail (OF Lic;ri i [pi; ail) of a con-

for Lipschitz functions is the continuous Scott subdomain sistent finite set of piecewise polynomial single-step
functions. Ifr;, p; andg; are defined over rationals, then

D'([0,1]" — IR) c ([0,1]™ — IR) x ([0,1]" — IRT) we say that the polynomial step function is rational. From
) , i now on we will be dealing with step functions of type

of consistent pairslefined by(f, ) € D'([0,1]" — IR) A — IB orIA — IB whereA, B € IR"™. A polynomial
iff 1/ N [g # 0, which is equivalent to the existence of step function, say, of typi® 1]71’_) IR" will be given by a
a classical continuous functiola : dom(g) — R with vector polynomial step fur;ction of type:
gC % andf C h Forf e D° we have(f, L) ¢
DY([0,1] — IR), where 4 is, as always in this paper, p,ql(x) ifzere
the domain-theoretic derivative ¢f In [8], it is shown that (r \Ip,d)(z) = { 1 otherwise ’
consistency is decidable on the rational step functions of

A piecewise polynomial step function is the Ilub

([0,1]* — IR) x ([0,1]* — IR?) and thusD([0,1]" — where|[p, q] is now a vector of: interval-valued functions
IR) can be given an effective structure. given by polynomialgp; < ¢; for j = 1,---,n. The
The same results hold, if we replafte 1]™ with an ar- compositionf o g of two piecewise linear step functions
bitrary A € IR™. GivenB € IR"™ andC < IR?*", we f € IR® — IR"™ andg € [0,1]* — IR™ is a piecewise
write D'(A — IB,A — 1IC) (resp. D*(A — IB, A — linear step function of typ@, 1] — IR™. The collection
IR?*™)) for the sub-domain of consistent pairs(id — of rational piecewise linear (or polynomial) step functon
IB) x (A — IC) (resp. (A — 1IB) x (A — IR "), gives a basis of D°)" and(D?)™.
For brevity, we writeD'(A — IB) = D'(A — IB, A — The following gives an algorithm to evaluaté on a
IR ") and D! = D!([0,1]"). The space of classical piecewise polynomial step function, which extends the al-
functions of typed — B is denoted byC! (A — B). gorithm in [7, Section 2]:
The framework can be extended in a straightforward way
to functions of typd|0, 1] — IR and of typelI[0, 1]* — 5(|_| i\ i, qi]) =

IR™: for a € I[0,1]™ andb € IR”, we say thatf : el
1[0,1]™ — IR hasinterval Lipschitz constank in a, if
b(x —y) C f(zx) — f(y) forall z,y < a. The collection of |_|{ jea”
all f: 1[0, 1] — IR with interval Lipschitz constaritin a
is denoted by, (a, b).

If X is a set andf : X — IR", we define the

Ni [ps,qs] | € 1, r§ connectedl, (1)
JjeJ

where, for eacly C I, the piecewise polynomia}sJ,qJ :

, (M,e,75) — R are defined for: € (M,_,7;) by:
widthof f asw(f) := maxi<i<m supzexw(fi(z)) where ’
w([c,d]) = d — cis the width of an interval. ps(z) = max{p;(z) | j € J,z € dom(p;
If we write D? for the space of Scott continuous func- 7@) ps(@) | me;)}
tions of typel[0, 1]* — IR, we have the Scott continuous qs(x) = min{g;(z) | j € J,z € dom(g;)}.

map€ : D° — D with E(f)(z) = T {f(y) | y € =},

which sends any map i®° to its maximal extension in  Lemma 2.1 If Llicr 7\ [pi, ¢:] is a piecewise linear step
D?. For convenience, we sometimes wilite:= £(f). For function, then so i€ (| |,.; i "\ [pi, ¢i])-

functionsf : A — IB andg : B — IC we writeg o f for

Ig o f. We also recall the notion of a piecewise polynomial Lemma 2.2 If v € D° andu = ||~ s;, wheres; are
step function [7]. Let € I|-1,1]" and letp,q : r — Rbe  piecewise linear step functions, thétw) = | |;», £(s:) is
piecewise polynomial functions (i.e. each given by a finite the supremum of piecewise linear step functions.



We will also need to use step functions made up of single- 3. Domain-theoretic calculus of functions

step functions of the form \ [p, ¢] andc \; [p, ¢] where

¢ C R" is a parallelogram. This class of step functions, say,
of type R” — IR"™ is closed under pre-composition and

post-composition with invertible linear maps:

e\ Ip.al)o L =(L7"c) \\[p,dl,

Lo(e\[p.ql) =c¢\.[Lop,Log]
and similarly:

(C \(i [pv Q]) oL = (Lilc) \i [paq]

Lo(eNilp,g])=c\il[Lop,Log]

We note thatf € D!([0,1]" — IR™) iff f, €
N1
D([0,1]" — IR) fori = 1,--- ,m, wheref =

m
For ease of presentation, we take the following notation:
A vector (z1,...,2,) € R™ is denoted by(z;); a short-
hand for(z;)1<i<n, i.€. a repeated index always runs from
1 to n,wheren is the dimension of the Euclidean spare,
and describes the components of a vector, and similarly for
a vector function. Thusf € D*(R™ — IR) is represented

We will use the max norm for vectors and matrices in as(fo, (fi):) wheref, is the function part off and(f;); its
R™, so in particular classical Lipschitz constant are always yearivative part. This notation is also used fox n matri-

meant to be with respect to the max norm. The max norm ces, i.e.(

a;j);; denotes am x n matrix withij entrya;;.

is extended to interval valued vectors and matrices as fol-1, ;s a vector functiorf € D'([0,1]" — IR") is denoted

lows. Forb € IR™*"™ we define its maximum norm by
Hb” = MaxXi<i<m Z?:l max{|bij_|, |b:;|}, Wherebij =
[bi7 b;fj]. We write the maximum norm of a vectere R”
by [[s|| := maxi<i<n [si.

Definition 2.3 We sayf : IA — IR™ isinterval Lipschitz
in the open seD C A, if there exists/ > 0 such that
w(f(z)) < fw(z) for all z € TA with z € O. We say that
f is interval contractingif it is interval Lipschitz with an
interval Lipschitz constant less than one.

Proposition 2.4 If A € IR" and f : A — R has Lipschitz
constant: > 0, thenIf has interval Lipschitz constant

Proof Asin [9, Proposition 6].

Lemma 2.5 Supposed € IR" and f : A — R satisfies
¢ C 4 on A wherec = (ci,...,c,) € IR". Thenf has
Lipschitz constan} """, ||c].

Proposition2.6 (i) For h € ([0,1]* — IR) andg €
([0,1]™ — IR?) we haveh € [ g iff, forall z,y €
[0,1]" we haveg(z My)(z — y) E h(z) — h(y).

(i) Forh € (I[0,1]" — IR) andg € (I[0,1]" — IR?)
we haveh € [ g iff, for all z,y € I]0,1]™ we have
g(xMy)(z —y) E h(z) — h(y).

Proof Similar to [7, Proposition 7.7].

Corollary 2.7 Leth € ([0,1]™ — IR) andg € ([0,1]" —
IR?). Thenh € [giff Ih € [1g.

Proof The “only if” part is trivial. For the “if part”, let
X,Y € I[0,1]", Forz € X andy € Y we have by as-
sumption:

Ig(z Ny)(z —y) C Ih(z) — Ih(y).
By taking glb overz € X, we get:
Ig(X My)(X —y) CIn(X) — Th(y).
The result follows by taking glb overe Y. O

by f = ((fio):, (fij)ij). Wheref;q is theith function part
component of thgf and(f;;); for j = 1,...,n denotes the
n derivative components gf,y. The following statement is
the extension of the classical chain rule to the dondadn

Theorem 3.1 Suppos€ fo, (f;);) € D'(R"* — IR) and
(giOagila s 7gim) S Dl([O, 1]m — IR) fori = 1,---n. If
ho =Tfo((gi0)i)  hy = Tfu((9:0):)) - 9

k=1

for 1 < j <m, then(ho, (h;);) € D'([0,1]™ — IR).

Proof Let h; € Tgio N [gin, k € Tfo N [(fr,++  fn)
and putt = k(h1,---,hy). By Corollary 2.7, we have:
Ik € [(If1,---1f,). We show, by using Proposition 2.6(i)
thatt € [ >0 | fi(910.-* »9no) - gi1. FoOr elements, y €
[0, 1]™ we have:
t(z) — t(y)
=k(h;(x);) — k(h;(y);)

| Z fil(hj () T h;(y);) - (hi(z) = hi(y))

3 fil(hi (@) M hy();) - gin (2 Ny) (@ —y)

| Zfi(gjo(x My);) - gin(zNy)(z —y),

which completes the proof.

As the basic arithmetic operations are differentiable, we
can use their canonical extensions, together with composi-
tion, to obtain versions of the arithmetical operation®ih



Composition (- o -):

DY(R™ — IR™) x D'([0,1]" — IR™) — D*([0,1]" — IR")

Where,f og = ((hzO)u (hlﬂ)lj) with

Z Ifzk ng

hio = Ifio((gmo)m * Gkj

forl1 <i,j <n.
Addition (- 4 -):
DY(R" — IR™) x D*(R" — IR™) — D'(R™ — IR™)
wherdf +g); = (fjo + gjo. fi1 + gj1. -~ fin + gjn)-
Negation(—-):

DY(R" — IR") — D'(R™ — IR™)
where(—f); = (= fjo, = fi1,- -, = fin)-
Multiplication (-):

D'(R™ — IR) x D!
wheref - g = (fo - go, (fi)i

(R" — IR) — D'(R — IR)

“ 9o + (gi)i - fo)-

Inversion (1):
D'(R" — IR) — D*(R™ — IR)

where+ = (4, _fél e f’;“) and, as usual, for intervals

a andb, we puta/b =_L1if 0 € b.

Corollary 3.2 The arithmetic operations are well-defined:

(i) If f € D'(R" — IR") andg € D*([0,1]" — IR™),
thenf o g € D([0,1]" — IR™).

(i) If f € DYR™ — IR") andg € D'(R" — IR"), then
f+ g€ DYR" — IRM).

(iiiy If f € DY(R® — IR"), then—f € D'(R" — IR™).

(iv) If f € DY(R" — IR) andg € D}(R"® — IR
f-ge D' (R" - IR).

(V) If f € D'(R" — IR), then} € D'(R" — IR).

), then

Moreover these operations are Scott continuous.

Lemma 3.3 Chain Rule. For any two functionsf,g €
(R™ — IR"™):

d(fog)
dx

dg
dz’

df
dx

I

(5=09)-

Proof Fix zp € R"™ Letb < %(x0) andb, <

(4 (g(x0)). Then for somen;,az € IR™ with g € a;
andg(xzo) € as we have:f € é(ay,b1) andg € 6(az, ba).
Sinceg is Scott continuousy—*(Taz) is open inR™. Let
a € IR", witha C a; N g~1(Taz) andg(zo) € a°. Then,
forall z,y € a°:

flg(x)) — f(g(y)) 2 ba(g(x) — g(y)) I biba(z —y).
Thereforef o g € 6(a, bibz) and thus™°9 () T b b,.

Note that equality may fail in the chain rule. For example
let f : R — R be the absolute value functian — ||
andg : R — R defined byx — zif x < 0 andO if
x> 0. Thend-l’;;g (0) = [~1, 0] whereasZ (¢(0))- 92 (0) =
&(0)- 2(0) = [-1,1]0,1] = [-1,1].

Lemma 3.4 Let (g0, 91, ,g9.) € D([0,1]" — IR)
with go real valued. Ifg;(z) is a real number for all

i =1,---,n for somex € [0,1]", theng)(z) exists and
g90(x) = (g1(x),- -, gn(2)).

Proof By assumption, there exists 1goN [ (91, , gn),
but thent = g9 as go is maximal. Hence
% 3 (g, ,gs). which implies %(z) =
(g1(z), -+ ,gn(x))). By [7, Proposition 4.3(ii)], the result
follows.

4. Inverse constructing functional

In many areas of mathematics a construction is first ob-
tained for functions close to the identity map and then ex-
tended to more general maps. In this section, we show first
that the inverse of a function close to the identity can be ob-
tained as the fixed point of a functional that we introduce
here. Later in the paper, we show how this functional can
be used to obtain the inverse of a Lipschitz function. For
a > 0and0 < ¢ < 1, we fix then-dimensional rectangles

A=[-a,a]" B=][-ca,ca]” C=[-(1-0)a,(l—c)a]”

and consider the functional

T:D'(A —1B) x D}(C — 1B) — D'(C — 1IB)

defined by

T(f.9)=-1fo(I+yg)
wherel : C — IC is the identity functiom\z.z. We also
put Ty = T(f,-). By Corollary 3.2,T is well-defined.
Later, we construct the inverse function pfas the least

fixpoint of 7. The function part of" is given by the func-
tional

R: (A—-1IB)x(C—-1IB) —
(f,9) —

(C — 1B)
—Ifo(I+g)



Let Ry = R(f,").
functionalS of type

For the derivative part, we have the
(A — IR")x(C — IB)x(C — IR™) — (C' — IR™)
defined by

S(h7 9o, gl) =

whereld = 4. Thus,
T(f? g) = (R((flo)w (gio)i)a S((fl])l]? (gio)i7 (gzy)zy)

it f = ((fio)i,(fij)ij) € DY (A — IB) andg =
((gi0)i, (gij)ij) € DY(C — 1IB). We also PUtS(4,40) =
S(h’agOv')‘

Proposition 4.1 Supposef : A — B. ThenR; : (C —
IB) — (C — 1B) is well defined. If moreovef has Lip-
schitz constant < 1 with respect to the max norm and
f(0) =0, we have:

~Tho (I +go)- (A\a.Id + gy)

(i) The functionalR; has a unique fixed poirty;o); with
w((gi0):) = 0 which is thus a classical’® function.

(i) I+f:[-a,a]™
f) - [_a7 a]n'

(i) (gi0)i(0) = 0.

Proof It is easily checked thak is well-defined. Asf,
and hence every;, has Lipschitz constant < 1, it fol-
lows from Proposition 2.4, thdtf, and hence everdf;, is
interval contracting with contractivity facter

Letz € C. Then we have

w(gio(x)) = w(lfi((zx + gro(x)))r)

k
< ) .
<c 1I£lia<an(xz + gzO(x)))

— R™ has inversd + (gio); : Im(I +

= ¢ max w(gio()).

hencemax;<;<, w(gio(x)) = 0. Thus, the least fixed point
g is maximal and hence the unique fixed point.

(iYWehave(I+ flo(I+g)=1+g+fo(l+g)=1
and thusl + g is a right inverse off + f. Sincel + f is
Lipschitz with | f (z) — f(y)|| < |z —y]| it follows by [10,
Theorem 3.1] thaf + f has an inverse. Thug,+ g, being
aright inverse, is the inverse éf+ f.

(iii) We have (I + f)(0) = 0 and(I + £)(g(0)) = (I +
NO0+g(0) = (I+ f)o (I +g)0)=1(0)=0,asl +g
is the inverse of + f. It follows from injectivity of I + f
thatg(0) = 0.

Now we can obtain a fixed point dT(f ary and examine
Ydx

its properties.

Lemma 4.2 The partial order (D°([0,1] — IR),J) of
Scott continuous functions ordered by reverse pointwise or
dering is a dcpo with Scott continuous operations for addi-
tion - 4 -, multiplication- x - and negation--.

Proof Note that any bounded complete dcpo is a dcpo with
respect to its opposite order. It is routine to check thetScot
continuity of addition and multiplication.

Lemma 4.3 For z,y € IR, we havew(zy) < w(z)|y| +

[ ]|w(y)-

Proposition 4.4 Supposef : A — B satisfieg| 2| < ¢ <

lonAandf(0) =0.If H = [, 15", we have:

(i) The functional

Tipaye D(Xo, X1) — D*(Xo, X1),
whereXy = (C — IB)and X; = (C — IH)
is well-defined and has a unique fixed point=
((gi0)i, (gi7)ij), such that(g,): is the unique fixed
point of Ry and (g;;);; is the unique fixed point
ofS 2 (gi)) X1 — Xi; moreover(gi;)ij =

d(gio)i d(gio)i

|_|Z>OS jj;v(%o)i)( du )E de

(i) The fixed point g of T(j ary will  satisfy
wl(gig(@)iy) < "EPw(E @+ gro@)))
for anyz € C and thusw((gi;)ij) < "D (L),

(i) If w(L((z + gro(w))x)) = 0 for somez € C,
then w(g”( )) = 0, foréi,j = 1,---,n, and
(g1 (2), -+, gin(@)) = gig(x) fori =1, n.

(iv) If w(L) =0, thenw(gzo) =0fori=1,---n, and
(g’ilv : vgln) - g'LO fori = 1

(v) If Z(0) = 0theng,;;(0) =0fori,j=1,---,n

Proof Supposes = ((gi0)i, (9i;)i;) € D'(Xo, X1). Then
by Proposition 4.1 we hav®;((g:0):) € (C — IB) = Xy,
hence it suffices to show thﬁ(%,(gw)i)((gij)ij) e Xj.
As f sat|sf|es|\ ~|| < con A, we have, by definition of
matrix norm, that the row surﬁ:J 1 ||( D)ijll < cforall

i =1,...,n. Letd = %. Then, for anyz € C, we
havegij(:z:) € [—d,d], hence(g;;)ij(z) + 1d € I[—d +
1,d + 1], Letting (hij)ij = —TL(T + (gi0)i(2)) -
(Id + (gi7):j(x)), we obtain for thej-entry h;; of (hi;)i;
thath;; 2 30 (L), - [~d + 1,d + 1] I [~d.d], as
S )]l < e Therefore also the derivative part of
T P is well defined. Consistency of function and deriva-
tive part follow from Corollary 3.2. By continuitﬂ“(f%)

therefore has a least fixpoitto )i, Gmin )-




For any fixed point((g:o)i, (g:;)i;) we have(gi;)i; T know that this linear system has at least one solution since

o) since ((g0)is (gij)i;) is consistent andgio); has — S(r,(gi0)0) * X1 — X1 has at least one fixed point. Sup-
zero width. Now for anys € X; with g C h C (q10)1 ’ pose, for a contradiction, that the fixed point is not unique.

we have, by the Chain rule 3.3: Then (gmin)iojo (€0) # (9max)ioje (20) fOr sOmezy € C
and some, jo with 1 < ig, jo < n. And thus, forz = x,
d(gio): d(gi0)i the linear system (5) will have infinitely many solutions of
Gmin © S(at (3,000 (W) E St (g (Tgy VE —4r - the form:
It follows by Lemma 4.2 that, in the lattice of functions in _ .
X, with O as the orderingg..;, as the top element and u0ij (K) = (gmin )35 (20) + Zkteoz‘j
d(g“’) as the least element, the Scott continuous function =t
S(fy(gm)l) X1 — X, has a least fixed point uri; (k) = (gmm)” o) + Zkt L
t=1
d(gio)i

Jmax = |_|l>OS 4 (gi0)i )( d )7

(2 wheregt € R’ (t = 1,---p) is a basis for the null-set
of A(zo), k € RP andp is the dimension of the null-set
of A(zg). BUt (gmin)i;j (Z0) 2 (gmax)ij(zo) and for some

t k € RP, we have:

which is the greatest fixed point 6f (4,,),) : X1 — X1
and thus induces the greatest fixed pdifato):, gmax) Of
T(fyg_f). It remains to show the uniqueness of the fixed poin
of S¢5.(g:0):) * X1 — Xi. The fixed point equation Uoigjo (k) = (gmax)i—ojo (z0), Ur4g 4o (k) = (gmax)?;jo (70).

n

d Now, using this value of, we defineh : C — IH by
g9ij =Y _I(é)im((ﬂ'k +gk0)k) - (AT0mj + gmj) (2)

m=1

). _ P t t
evaluated at < C yields: B (g“.“n,)“’_”.(xo.)_ : tzl_kt 06i0d’ 110
h”(CC)— |fZ—7,0,_]—j0,£C—(EO
(gmin)i;(z) otherwise.
7 I zm .I' + . 6m + gmj(® ) . . . . .
9ii( Z e+ 9r0@))i - Ormg g (2)) Then, h is Scott continuous and is a fixed point of
) S(fy(gm)i) : X1 — X1 with h C gmin andh # gmin, Which
or equivalently, is the required contradiction
. (i) We letd = $%. Using Lemma 4.3, we have
l9;(2), 935 (@ Z Cim (2 (@) w(gij(x))
m=1
- d
s -9y 71,8+ 90O B (32 I (i h0(E)8) - (s + s (@)
m=1
wheregy; = [g;;, g;;] and n
df Szw(d Jim ((zk + gro(2))k) (1 + d)
[Cim (), dim ()] := —I(a)im(% + gro(2))k, m=1 "
(== )iml| - w(gm;(2))

for1 < i,m < n. Forany fixedr € C, consider the system

2 H .
of 2n° equations represented by: Sn(l‘Fd)w(%)i((xk+gk0($))k)+

n n df
[Yijs 2ij] Z Cim (@ ()] - [Omj + Yij» Omj + Ziz)s mZ:l ”(E)WLH - w((gmg); (@)
m=1
(4) <n(l+d a N

for the unknown values;; andz;; (i,j = 1,--- ,n). This <n(l+ dyw(— ((2k + gro())k)) + cw((gmj)m; ()
is a linear system, which can be written in the form: asH Ll < c. Thus,w((gsj)ij(x)) < 77(1 + d)w(%((:c,g +

A(z)u = b(z) (5) gro(®)e )+ cw((gi;)i; (), which gives:w((gi;)i; () <

2 2 2 (11+cd)w(dm((xk + gkO( ))k)

whereA(x) € R andu, b(x) € R, with ug;; = (iiiy From (i), w(gi;) = 0 for i,j = 1,---,n.
yi; anduy;; = z;4, in which the subscripts of are num- Lemma 3.4, givesg;1(x), -+, gin(x)) = glo(x) fori =

bers written in base, i.e.,kij = kn?+in+j. We already  1,--- ,n.



(iv) Follows from (iii).
(iv) Since LF.(0) = 0, from Equation (2) we get:
9 (0) =0fori,j =1,---,n

(iv) With the assumptions in (iii), we can also effectively

obtain an increasing sequence of polynomial step func-
tions, whose lower and upper parts are continuous and
piecewise polynomial, such that the two sequences of

Corollary 4.5 Supposef € C'([—a,a]” — [—ca,ca]™)
with ||f'(z)]] < 1 for all x € [—a,a]™ and assume
f(0) = f'(0) = 0. Then, there is a unique fixed
pOint ((910)1)5 (glﬂ)lj) of T(ﬁf/). It will SatiSfy w(gzo) =
w(gi;) = 0andg;o(0) = g:;;(0) = 0for1 <7 < n,0 <

j < n,and(gij)i; = (gio);-

lower and upper parts converge in tii&' norm, re-
spectively from below and above, to the inverse.of

Proof (i) SupposeN e j“ is invertible with || N~ 1—m —
I| < 1, e.g. this holds foN = M. Let f = N~'u —
I. Thend = N-1dv _ 14, whereld = 4. Since
[N=1u(0) — I|| < 1, we have:|| L (0)|| < 1. It follows
that for anye satisfying|| N =*4%(0) — I|| < ¢ < 1, there
existsa > 0 such thati| < (z,)|| < cforall z € [~a,a]™.
It follows from Lemma 2.5 thaff has Lipschitz constant
¢ < 1. Thus, by Proposition 4.1, {fy;0); is the unique fixed
point of Ry, thenI + (gio); : Im(I + f) — [—a,a]™ is

In this section we prove the following theorem, which the local inverse of + f. Hence,(I + (gio);) o N~ * :
gives a constructive version of the classical result on thelm(u) — [—a,a]™ is the local inverse of, in [—a, a]™. It
inverse of Lipschitz functions as in Theorem 1.1. follows from Proposition 4.4 that the local inversewofs
locally Lipschitz.

(i) Supposeu = | |;5qs: wheres; = | |;c; m; \,
[pj, g;] is a piecewise linear step function for disjoint finite
indexing sets/; (i > 0) and‘j—z = ;> B foranincreasing

In particular, this shows that the least fixpoinis the
classical inverse function.

5. Inverse functions

Definition 5.1 For an interval matri¥ = ([bw,b ij €

IR™*™ the mid-point matrixof b is given by(ﬂ)”.

If f:[-1,1]" — R" is locally Lipschitz, then thenean ) ) > ,
differential of f atzo € [~1,1]" is the midpoint matrix of sequencép;) of linear rational step functions. We denote
0 (24). the midpoint matrix of3; by M;. As||[M 14 —]|| < 1, we

can find, by Scott continuity, the smalldst> 0 such that

Note that for a locally Lipschitz function, every compo- Mi is invertible and|| M, 3.(0) — I|| < 1, from which
nent of the domain theoretic derivative46L. With this ~ We obtain|[ A" 94(0) — I|| < 1. We write N := M, in
terminology, we can replace the linear map in the statementdccordance with |tem (i) above.
of Theorem 1.1 by the mean differential and obtain the fol- ~ We obtainN~'u = |, N~'s; where N~'s; =
lowing result. Wjes, 75\ N~*[pj, ¢;] and

Theorem 5.2 Inverse Function Theorem. Let u f=N1lu—1I= |_| N (s —1I) = |_| ti,
[-1,1] — R” be locally Lipschitz with:(0) = 0. Sup- >0 i>0

pose the mean differential at the pointi.e., the linear map - -
represented by the mid-point matrix &¢(0)), denoted by ~ wheret; := N~'s; — I = Ujes, i N\ (N"Hpjrq5] —
M, is invertible. Let| M~ 1d 41.(0) — I|| < 1. Then we have: Az.x) is a piecewise linear step function for each> 0.

FromIf =||,.,&(t;) we obtain forl, = A\z.B, that
(i) The mapu has a Lipschitz inverse in a neighbourhood -

of the origin. Ry(Lo) = —Ifo(I+Lg) = ng o (I + Lo)
(ii) If two increasing sequences of linear rational step 620
functions, respectively of tyge-1,1]" — IR™ and = |_| Ry, (Lo),
[ 1,1]" — IR?*™, converging respectively to and i>0
o are given, then we can effectively obtain an increas-
|ng sequence of piecewise linear step functions con-and hence,

verging to the inverse af. (gio)i = |_| Ri(Lo) = |_| |_| R (Lo)
(i) If wis C* and two increasing sequences of linear ra- n>0 n>0i>0
tional step functions, respectively of typel, 1]* — _ |_| R™ (Lo).
IR™ and[-1,1]™ — IR?*™, converging respectively o
touw andu’ are given, then we can also effectively ob- B
tain an increasing sequence of polynomial step func- For each piecewise linear step functisgns A — 1B and
tions converging to the derivative of the inverse:of s € C — 1B, the mapRi(s) = —It o (I + s) is the



composition of two piecewise linear step functions and is  (iv) Consider the two sequences and B; converging
thus a piecewise linear step function. It follows by a simple to »~! and (u~!)’ respectively as constructed in (ii) and
induction that for each > 0, the map,, := R} (Lo)isa (iii). For eachl > 0, we have(4,, B;) € D'(Im(u) —

piecewise linear step function. Finally, we have [—a,a]™) and the update [7, 8] Upl;, B;) is a polynomial
step function whose lower and upper parts are respectively
ul=(T+g))oN"'=||UI+an)o N, the least and the greatest functions consistent with Heth
n>0 andB;. Itfollows thatu™! = | |, , Up(4;, B;) and that the

lower and upper parts give an increasing and a decreasing
sequence of continuous piecewise polynomials converging
in theC* norm tou~! from below and above respectively.

where eachd; := (I +«;) o N~ ! is a piecewise linear step
function, made up of single-step functions with parallelo-
grams as their domains.

(i) With N as above, by Proposition 4.1g;0); is o ]
C' and thus fromu=' = (I + (gio):) o N-' we ob- 6. Implicit functions
tain: (u=!) = (I + (gi0):) o N1, where(g;); is the

3

unique fixed point ofS(ﬁ (9:0)0)- Hence, it is sufficient to As in classical theory, the implicit function theorem in

EERAC AP . . . .
show that an increasing sequence of polynomial step func-the domain-theoretic setting can be deduced from the in-
tions with lub (g0); can be effectively obtained. Let, verse function theorem.

(I > 0) be the piecewise linear step function as in (ii) with o )
(9i0)i = Lli>q cu- Let3; (I > 0) be an increasing sequence Theorem 6.1 Implicit Function Theorem.

of piecewise linear step functions with = | |,»., 3. From Let f : O — R, whereO C R"**, be C* with
_ o d = £(0,0) = 0 where(0,0) € R® x R*. Assume

f=1-N"'uweobtain:d = f' =1 - N-'/. Thus, ’ ’

f = LIZZO(I—N_lﬁz), wherey, := I — N1, is a piece- A(f1,-r s f)

wise linear step function for eadh> 0. It follows that det(m)(oa 0) # 0.

If' = |;s0&(m), where&(y;) is a piecewise linear step
function for eachl > 0. From the Scott continuity of the Then, there exists &-dimensional open sé¥/ C R* with

functionalS we get for anyh € X; — X, whereld = j—i: 0 € W, and a uniquey : W — R™ with

() g€ CronW, (i) g(0) =0, (i) f(g(t),t) =0
Strrworey (1) = S(F. (gi0)i h) fort ¢ 11 ! !

= —If o (I +(gio):) - (Id +h)
= -€tw)o (I + ) - (1d+h) o _ , _ ,
>0 (iv) Given two increasing sequences of linear rational step
_ |_| (v, o, h) functions, of typ@) — IR" andO — IR?*("HH)
s s converging tof and f’ respectively, we can effectively

Moreover, we have:

120 obtain two increasing sequences of, respectively linear
= |_| Sty (h). and polynomial, step functions convergingjtand ¢’
1>0 respectively.
Hence,ng,_’(gio)i) = i>o S{%al) forany;j > 0. (v) With the assumption in (iv), we can also effectively ob-
If 1Ly = Az.H, then the uniqueness of the fixed point tain an increasing sequence of polynomial step func-
S(f,(gi0):) QIVES: tions, whose lower and upper parts are continuous and
. piecewise polynomial, such that the two sequences of
(9i0); = Gmin = |_| ng, (qw)i)(Ll) lower and upper parts converge in ti@' norm, re-
§>0 ' spectively from below and above,do
= |_| |_| Sj (J-l) . n+k i _
. (vea) Proof Letu : O — R with w;(z,t) = fi(z,t) for
720120 1 <i<nandu(z,t) =t;forn+1<i<n+k. Then,
= LISt an (). u(0,0) = (0,0) and
>0
. . . . ’ _ a(flavfn)
Since, for eactt > 0, a; and~; are piecewise linear step detu'(0,0) = det(———--)(0,0) # 0.
- ; . g . Oz, ..., xy)
functions, it follows from a simple induction that, for each

1,j 20,8, ,,(L1)is apolynomial step function. In par- By Theorem 5.2, there exists > 0 with [—a, a]"** C O

ticular, B, := Séw al)(J‘l) is a polynomial step function. such that the restriction : [—a,a]"** — R"** has aC!



inversey™! : Im(u) — R"*, PutW = m; (Im(u)) where
m : R*tF — RF is the projection t®R*. Letg : W — R"
with ¢ = At.u=1(0,¢). Then, as in the classical theory,
W C RF is open andy is the unique function that satisfies
(i), (ii) and (iii). It remains to show (iv) and (v):

(iv) Since[—a, a]"*t* C O, we can restrict the domain of
the step functions, given in the assumption|ta, a]"*.

The results in the paper is a step toward a theoretical foun-
dation for a robust CAD system. Having obtained domain-
theoretic versions of the inverse and implicit functiondhe
rems, which in particular provide locél' approximations

to an implicit surface, the next step would be to be able to
patch the local pieces of an implicit surface together to ob-
tain, in particular, a closed connected orientable maghifol

Suppose, therefore, we are given an increasing sequence dfiven by implicit equations such a&x, y, z) = 0 when0

linear step functiong; : [—a,a]"**

with f = | ], ¢;. The functional

— IR", forj > 0,

S ([_a7 a]n+k - IR") - ([_a7 a]n+k - IRn+k>a

with s(h); = h; for1 < j < n ands(h); = Az.x for
n+1 < j < n+ kis Scott continuous and preserves lin-
ear step functions since the inclusion mag, a]"** —
IR"** is clearly a linear step function. It follows that
u = | |;505(0;) is the lub of an increasing sequence of
linear step functions.

Suppose we also have an increasing sequence of linea

step functionsy; : [—a, a]"** — IRZ*" ) for 1 > 0,

with f' = | |-, ¢:. Note thatu; = f/ for1 < i < n and
(ul); = d;; forn+1 < i < n+ k. Consider the functional
O ([_a7 a]n+k - (IRnx(n+k))s) - ([_a7 a]n+k -

(IR (k)X (k) ) “with (v(v)); = ; for 1 <4 < n and
(U(’L/J))ij = §ij forn+1<¢:<n+kandl <j<n+k.
Then,v is Scott continuous and preserves linear step func-
tions. It follows that we can effectively obtain an increas-
ing sequence of piecewise linear step functiofyg;) with
U= Uzzo v(ir).

By Theorem 5.2, we can effectively obtain two increas-
ing sequence of linear step functionf(gj)jzo with 4!
Ll;>0 Cj and(D;) >0 with (u=')" = | |5, D;. The func-
tional

t:(Im(u) — IR"™F) — (W — IR™),

with t(h) = Az.h(0,z) is Scott continuous and preserves
linear step functions, since partial evaluation of a lirstap
function, on a subset of its arguments, results in a linegr st
function. Thusg = t(u™") = ;5 t(C;) is obtained ef-
fectively as the lub of an increasing sequence of step func-
tion.

For the derivative, we obtain that(g');
Az.(u')!,;(0,2) and thus effectively obtain
(9")i = Uiso A2-(D1)n+i(0,2), whereAz.(Dy)n+i(0, z)
is a polynomial step function.

(v) As in the proof of Theorem 5.2(iv).

7 Further work

We will investigate if the domain-theoretic results on the
inverse of a Lipschitz function can provide a precise withes
for the linear map stipulated in the classical theorem 1.1.

is a regular value of. Furthermore, the domain-theoretic
framework for geometric modelling developed in [6] com-
bined with the results in this work lead to a domain of ori-
entable closed Lipschitz manifolds. This will synthestze t
domain-theoretic framework for geometry and that for dif-
ferential calculus.
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