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Introduction

Inverse problems of heat transfer rely on tempeeatnd/or
heat flux measurements for the estimation of unkna@uantities
appearing in the mathematical formulation of phassjgroblems in
this field (Tikhonov and Arsenin, 1977; Bech andndid, 1977;
Alifanov, 1994; Beck et al, 1985; Alifanov et aQ95; Dulikravich
and Martin, 1996; Ozisik and Orlande, 2000; Kurpssel Nowak,
1995; Woodbury, 2002; Murio, 1993; Trujillo and Bys 1997). As
an example, inverse problems dealing with heat gotioh have
been generally associated with the estimation of uaknown
boundary heat flux, by using temperature measureméaken
below the boundary surface. Therefore, while indlassical direct
heat conduction problem the cause (boundary hesg} i given and
the effect (temperature field in the body) is detieed, the inverse
problem involves the estimation of the cause byizitg the
knowledge of the effeci.

The use of inverse analysis techniques represergw/ aesearch
paradigm The results obtained from numerical simulatiomsl a
from experiments are not simply compaeeg@osteriorj but a close
synergism exists between experimental and theafet&searchers
during the course of study, in order to obtain tmaximum
information regarding the physical problem undensideration
(Beck, 1999). In the recent past inverse probleaveevolved from
a specific theoretical research topic to an impuarpactical tool of
engineering analysis (Tikhonov and Arsenin, 197%&cHB and
Arnold, 1977; Alifanov, 1994; Beck et al, 1985; falov et al,
1995; Dulikravich and Martin, 1996; Ozisik and O, 2000;
Kurpisz and Nowak, 1995; Woodbury, 2002; Murio, 399rujillo
and Busby, 1997; Beck, 1999; Sabatier, 1978; Hen881;
Desinov, 1999; Yagola et al, 1999; Ramm et al, 20d@6rozov,
1984; Zubelli, 1999; Kirsch, 1996; Isakov, 1998)owadays, at
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least three international journals are specificalyented to the
community involved with the solution and applicatiof inverse
problems, both from the mathematical and from thgireering
points of view. These includénverse Problems, Inverse and llI-
posed ProblemandInverse Problems in Science and Engineering
The International Conference on Inverse Problems imgiBeering:
Theory and Practicds held every three years since 1993. Also,
several other seminars and symposia have beenimeadiferent
countries in the past, including thaternational Symposium on
Inverse Problems in Engineering Mechanigs Japan, and the
Inverse Problems, Design and Optimization Symposiufarazil.
More specifically for the heat transfer communitgll major
conferences in the field such as tlmernational Heat Transfer
Conferencehave special sessions or mini-symposia dedicated t
inverse problems.

Inverse problems can be solved either parameter estimation
approach or as function estimatiorapproach. If some information
is available on the functional form of the unknogunantity, the
inverse problem can be reduced to the estimatianfefv unknown
parameters. On the other hand, if no prior inforamats available
on the functional form of the unknown, the invepseblem needs to
be regarded as a function estimation approach ininfinite
dimensional space of functions (Tikhonov and ArsetB77; Bech
and Arnold, 1977; Alifanov, 1994; Beck et al, 1928ifanov et al,
1995; Dulikravich and Martin, 1996; Ozisik and Oudie, 2000;
Kurpisz and Nowak, 1995; Woodbury, 2002; Murio, 399rujillo
and Busby, 1997; Beck, 1999; Sabatier, 1978; Hen$891;
Desinov, 1999; Yagola et al, 1999; Ramm et al, 20@6rozov,
1984; Zubelli, 1999; Kirsch, 1996; Isakov, 1998).

Inverse problems are mathematically classifiedilbposed
whereas standard heat transfer problems veed-posed The
solution of a well-posed problem must satisfy tremditions of
existence, uniqueness and stability with respecth&input data
(Hadamard, 1923). The existence of a solution foirerse heat
transfer problem may be assured by physical reagofiin the other
hand, the uniqueness of the solution of inverseélpros can be
mathematically proved only for some special cas&lso, the
inverse problem is very sensitive to random eriorthe measured
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input data, thus requiring special technigues t®solution in order
to satisfy the stability condition.

Successful solution of an inverse problem geneiailglves its
reformulation as an approximate well-posed probéemh makes use
of some kind of regularization (stabilization) te@jue. Although
the solution techniques for inverse problems do metessarily
make use of optimization technigues, many populathods are
nowadays based on them (Tikhonov and Arsenin, 18&¢h and
Arnold, 1977; Alifanov, 1994; Beck et al, 1985; faliov et al,
1995; Dulikravich and Martin, 1996; Ozisik and O, 2000;
Kurpisz and Nowak, 1995; Woodbury, 2002; Murio, 399rujillo
and Busby, 1997; Beck, 1999; Sabatier, 1978; Hen$891;
Desinov, 1999; Yagola et al, 1999; Ramm et al, 20d@6rozov,
1984; Zubelli, 1999; Kirsch, 1996; Isakov, 1998).

Despite their similarities, inverse and optimizatjoroblems are

Marcelo J. Colago et al

2004). Deterministic methods are in general contprtally faster
than stochastic methods, although they can convewge local

minima or maxima, instead of the global one. On dheer hand,
stochastic algorithms can ideally converge to @ajlanaxima or
minima, although they are computationally slowerarththe
deterministic ones. Indeed, the stochastic algmstican require
thousands of evaluations of the objective functiansl, in some
cases, become non-practical. In order to overctrasetdifficulties,
we will also discuss the so-called hybrid algorithwhich takes
advantage of the robustness of the stochastic metwed of the fast
convergence of the deterministic methods (Colac@let2003a;
Colaco et al, 2004; Colago et al, 2003b; Dulikravet al, 2003a;
Dulikravich et al, 2003b; Dulikravich et al, 20032ulikravich et al,

2004; Colago et al, 2003c). Each technique provideanique
approach with varying degrees of convergence, hiditia and

conceptually differentinverse problems are concerned with therobustness at different cycles during the iteratm@imization

identification of unknown quantities appearing re tmathematical
formulation of physical problems, by using measems of the
system responseOn the other handoptimization problems
generally deal with the minimization or maximizatiof a certain
objective or cost function, in order to find desigariables that will
result in desired state variablesin addition, inverse and
optimization problems involve other different copte For
example, the solution technique for an inverse lgrobis required
to cope with instabilities resulting from the noisyeasured input
data, while for an optimization problem the inpattalis given by
the desired response(s) of the system. In conti@stnverse
problems, the solution uniqueness may not be aworitapt issue for
optimization problems, as long as the solution iolethis physically
feasible and can be practically implemented. Ereging
applications of optimization techniques are veryewofconcerned
with the minimization or maximization of differequantities, such
as minimum weight (e.g., lighter airplanes), minimufuel
consumption (e.g., more economic cars), maximurareuy (e.g.,
longer range airplanes), etc. The necessity ofifipdhe maximum
or minimum values of some parameters (or functiocah be
governed by economic factors, as in the case ¢tfuesumption, or
design characteristics, as in the case of maximutonamy of an
airplane. Sometimes, however, the decision is raobgective, as in
the case of choosing a car model. In general, rdifitedesigns can
be idealized for a given application, but only e fef them will be
economically viable. The best design is usuallyait®d by some
Min-Max technique.

In this paper we address solution methodologiesnfeerse and
single-objective optimization problems, based onnimization
techniques. Several gradient and stochastic teohsigare
introduced, together with their basic implementatisteps and
algorithms. We present some deterministic methedsh as the
Conjugate Gradient Method, the Newton Method ardDhavidon-
Fletcher-Powell Method (Tikhonov and Arsenin, 19B&ch and
Arnold, 1977; Alifanov, 1994; Beck et al, 1985; faliov et al,
1995; Dulikravich and Martin, 1996; Ozisik and O, 2000;
Kurpisz and Nowak, 1995; Woodbury, 2002; Murio, 399rujillo
and Busby, 1997; Beck, 1999; Daniel, 1971; Jald9®8; Stoecker,
1989; Belegundu and Chandrupatla, 1999; Fletch@®p2Powell,
1977; Fletcher and Reeves, 1964; Hestenes an@ISfi6b2; Polak,
1971; Beale, 1972; Davidon, 1959; Fletcher and Hpw®63;
Broyden, 1965; Broyden, 1967; Levenberg, 1944; Mardt, 1963;
Bard, 1974; Dennis and Schnabel, 1983; Moré, 19n7addition,
we present some of the most promising stochaspcoaphes, such
as the Simulated Annealing Method (Corana et &71%offe et al,
1994), the Differential Evolutionary Method (Stomnd Price,
1996), Genetic Algorithms (Goldberg, 1989; Deb, 20@nd the
Particle Swarm Method (Kennedy and Eberhart, 199&nnedy,
1999; Naka et al, 2001; Eberhart et al, 2001; Doagd Stitzle,
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procedure. A set of analytically formulated rulesdaswitching
criteria can be coded into the program to autoraliyiswitch back
and forth among the different algorithms as theattee process
advances. Specific concepts for inverse and opditioiz problems
are discussed and several examples in heat treansfagiven in the
paper.

Obijective Function

Basic Concept

For the solution of inverse problems, as considaredis paper,
we make use of minimization techniques that arthefsame kind
of those used in optimization problems. Thereftie, first step in
establishing a procedure for the solution of eitineerse problems
or optimization problems is thus the definition afi objective
function The objective function is the mathematical repn¢ation
of an aspect under evaluation, which must be mieuhi (or
maximized). It can be mathematically stated as

U=U®X): x={x,%p Xy} (1)
where xi, X, ... , Xy are the variables of the problem under
consideration that can be modified in order to fthé minimum
value of the functiofu.

The relationship betweed and x can, most of the times, be
expressed by a physical / mathematical model. Hewen some
cases this relationship is impractical or even isgide and the
variation ofU with respect tx must be determined by experiments.

Constraints

Usually the variabless, X, ... , Xy which appear on the
objective function formulation are only allowed vary between
some pre-specified ranges. Swamnstraintsare, for example, due to
physical or economical limitations.

We can have two types of constraints. The first @eahe
equality constraintwhich can be represented by

G:G(x):a (2.2)

This kind of constraint can represent, for examphe pre-
specified power of an automobile.

The second type of constraint is calledquality constrainand
it is represented by

G=G(X)sa (2.b)
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This can represent, for example, the maximum teatper 8. There is no prior information regarding the dit@s to be
allowed in a gas turbine engine. estimated, which can be either parameters or fomsti If such
information exists, it can be utilized to obtainpraved estimates.

If all of the eight statistical assumptions statdmbve are valid,
the objective functionU, that provides minimum variance estimates

For optimization problems, the objective functidncan be, for is theordinary least squares nor@Beck and Arnold, 1977) (i.e., the
example, the fuel consumption of an automobile #redvariables sum of the squared residuals) defined as

Optimization Problems

X1, X0, ... , Xy C@N be the aerodynamic profile of the car, theenmedt
of the engine, the type of wheels used, the distdram the floor, U )=LY =TI LY =T(x)] 4)
etc.

whereY and T(x) are the vectors containing the measured and
Inverse Problems and Regularization estimated temperatures, respectively, and the sciyetT indica.tes
the transpose of the vector. The estimated temesatire obtained
For inverse problems, the objective function uguadivolves from the solution of the direct problem with esttem for the
the squared difference between measured and estimatiables of unknown quantities.
the system under consideratidks a result, some statistical aspects |f the values of the standard deviations of the susaments are
regarding the unknown parameters and the measured @eed to quite different, the ordinary least squares metbods not yield
be examined in order to select an appropriate Glgetunction. In. minimum variance estimates (Beck and Arnold, 19T@)such a
the examples presented below we assume that tetufeeracase, thebjective functioris given by theweighted least squares
measurements are available for the inverse analyi$ie eight norm U,, defined as
standard assumptions (Beck and Arnold, 1977) réggrdhe
statistical descriptiorf the problem are: Uy () =LY =T()]T WY =T(x)] )
1. The errors are additive, that is,
whereW is adiagonal weighting matrixSuch matrix is taken as the
Y =T+ (33) jnverse of the covariance matrix of the measureraens in cases

where the other statistical hypotheses remain véidck and
whereY; is the measured temperatuiig,is the actual temperature Arnold, 1977).

andg is the random error. If we consider that some information regarding theknown
2. The temperature errogshave a zero mean, that is, parameters is available, we can use thaximum a posteriori
objective functiorin the minimization procedure (Beck and Arnold,
E(&)=0 (3.b)  1977). Such an objective function is defined as:
whereE(+) is the expected value operator. The errorshene said to Unap ) =[Y = TEOTWIY = Te0] + (= %)V i(u - x) O]
be unbiased.
3. The errors have constant variance, that is, wherex is assumed to be a random vector with known npeand
known covariance matrixV. Therefore, the meamu and the
a? = E{[Y,~E(¥,)]*} =o°=constant (3.)  covariance matrixV provide a priori information regarding the

parameter vectox to be estimated. Such information can be
which means that the variance of is independent of the available from previous experiments with the sampegmental
measurement. apparatus or even from the literature data. Byrassy the validity
4. The errors associated with different measuresnemre of the other statistical hypotheses described abegarding the
uncorrelated. Two measurement errgr&nd § , wherei # j, are  experimental errors, the weighting mati is given by the inverse

uncorrelated if the covariance gfandg is zero, that is, of the covariance matrix of the measurement er(@wsck and
Arnold, 1977).
cov(&;.&;)=E{[ & -E(&)][&;-E(£))]} =0 fori #j (3.d) If the inverse heat transfer problem involves tkéneation of

only few unknown parameters, such as the estimatica thermal
conductivity value from the transient temperatueasurements in a
solid, the minimization of the objective functiogazen above can
stable. However, if the inverse problem invslttee estimation
a large number of parameters, such as the regcook the
unknown transient heat flux componefitg = f; at timest;, i=1,... ),
excursion and oscillation of the solution may occ@ne approach
) to reduce such instabilities is to use the procedailedTikhonov's
f(gi):;exr{;giz] (3.e) regularization (Tikhonov and Arsenin, 1977; Bech and Arnold,
ov2r 20 1977; Alifanov, 1994; Beck et al, 1985; Alifanov at, 1995;
Dulikravich and Martin, 1996; Ozisik and Orland®0B; Kurpisz
6. The statistical parameters describigg such aso , are and Nowak, 1995; Woodbury, 2002; Murio, 1993; Tiojiand
known. Busby, 1997; Beck, 1999; Sabatier, 1978; Hense311®esinov,
7. The only variables that contain random errore #ne 1999; Yagola et al, 1999; Ramm et al, 2000; Morozb984;
measured temperatures. The measurement times, maemsu Zubelli, 1999; Kirsch, 1996; Isakov, 1998), whiclodifies the least
positions, dimensions of the heated body, and takroquantities squares norm by the addition of a term such as
appearing in the formulation of the inverse problare all
accuratelyknown.

Such is the case if the erroesand g§ have no effect on or
relationship to each other.

5. The measurement errors have a normal (Gaussiapﬁ
distribution. By taking into consideration the asgtions 2, 3 and 4 0
above, the probability distribution function &fis given by

ULTOI=3 (4T a* X 12 (7.2)
i=1 i=1
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where o (> 0) is theregularization parameterand the second Hensel, 1991; Desinov, 1999; Yagola et al, 1999nReet al, 2000;

summation on the right
regularization term In Eq. (7.a)f; is the heat flux at timg, which
is supposed to be constant in the intetval 4t/2 < t < t; + 4t/2,
where At is the time interval between
measurements. The values chosen for the regulanzparameter
a* influence the stability of the solution as the mmiization of Eq.

is thewvhole-domain zeroth-order Morozov, 1984; Zubell,

1999; Kirsch, 1996; Isako998;
Hadamard, 1923; Daniel, 1971). A powerful and gtrdorward
technigue for the minimization in a functional spaethe conjugate

two consecutivedradient method with adjoint problem formulationlif@nov, 1994;

Alifanov et al, 1995; Ozisk and Orlande, 2000; [4nil971).
Therefore, this technique is also described belmsvapplied to the

(7.a) is performed. As* — 0 the solution may exhibit oscillatory Solution of an inverse problem of function estiroati

behavior and become unstable, since the summattithterms may
attain very large values and the estimated temp@smttend to
match those measured. On the other hand, with hayees ofa*
the solution is damped and deviates from the enesscilt.

The whole-domain Tikhonov’s first-order regularization
procedure involves the minimization of the follogimodified least
squares norm:

ULE O] =35 (1 -T2+ a* 3 (fg-f)2 (7.b)
i=1 i=1

For a* — 0, exact matching between estimated and measured

temperatures is obtained as the minimizatiob[d(t)] is performed
and the inverse problem solution becomes unstkblelarge values
of &, when the second summation in Eq. (7.b) is dontjriae heat
flux components; tend to become constant for 1, 2 ..., |, that is,

the first derivative of(t) tends to zero. Instabilities on the solution

can be alleviated by proper selection of the valfie*. Tikhonov

(Tikhonov, 1977) suggested that should be selected so that the

minimum value of the objective function would bauabto the sum
of the squares of the errors expected for the meawnts, which is
know as théiscrepancy Principle

Alternative approaches for Tikhonov's regularizatiecheme
described above is the use deck’'s Sequential
Specification MethodBeck et al, 1985) or oflifanov’s Iterative

Function

Deterministic Methods

These types of methods, as applied to non-lineainnization
problems, generally rely on establishing an itemtprocedure,
which, after a certain number of iterations, witipefully converge
to the minimum of the objective function. The itira procedure
can be written in the following general form (Beakd Arnold,
1977; Alifanov, 1994; Alifanov et al, 1995; Jalyrie998; Stoecker,
1989; Belegundu and Chandrupatla, 1999; Fletch@902 Bard,
1974; Dennis and Schnabel, 1983):
XKL = kg gkgk (8)
wherex is the vector of design variablesjs the search step siz,
is the direction of descent akds the number of iterations.

An iteration step isicceptableif U < UK. The direction of
descend will generate an acceptable step if and only éf ¢hexists
a positive definite matriR, such thad = -ROU (Bard, 1974).

In fact, such requirement results in directionsdeScent that
form an angle greater than Q®ith the gradient direction. A
minimization method in which the directions are adbéd in this
manner is called aacceptable gradient methdBard, 1974).

A stationary pointof the objective function is one at which

U =0 The most that we can hope about any gradientoddth

Regularization MethodgAlifanov, 1994: Alifanov et al, 1995; that it converges to a stationary point. Convergetw the true
Ozisk and Orlande, 2000). Beck’s sequential fumctpecification Minimum can be guaranteed only if it can be showat tthe
method is a quite stable inverse analysis technifjbis is due to Objective function has no other stationary poirits. practice,
the averaging property of the least-squares norch cause the how_e\_/(_er, one usually r(_eache_s the local minimunhéwmalley where
measurement at the time when the heat flux is tedtinated, is the initial guess for the iterative procedure wasted (Bard, 1974).

used in the minimization procedure together with feeasurements

taken at future time steps (Beck et al, 1985). IlifaAov’s
regularization methods, the number of iteratiormyglthe role of the

regularization parameter* and the stopping criterion is so chosen

that reasonably stable solutions be obtained. Ttrerethere is no
need to modify the original objective function, apposed to
Tikhonov's or Beck’'s approaches. The iterative tagmation
approach is sufficiently general and can be appliedboth
parameter and function estimations, as well adneat and non-
linear inverse problems (Alifanov, 1994; Alifanavat, 1995; Ozisk
and Orlande, 2000).

Minimization Techniques

In this section, we present deterministic and sistib
techniques for the minimization of an objective dtion U(x) and
the identification of the parametexg x,, ... , Xy, Which appear on
the objective function formulation. Basically, thisype of
minimization problem is solved in a space of findienensionN,
which is the number of unknown parameters. For
minimization problems, the unknowns cannot be teirathe form
of a finite number of parameters and the minimaratheeds to be
performed in an infinite dimensional space of fimts (Tikhonov
and Arsenin, 1977; Bech and Arnold, 1977; Alifand994; Beck et
al, 1985; Alifanov et al, 1995; Dulikravich and Mar 1996; Ozisik
and Orlande, 2000; Kurpisz and Nowak, 1995; Wooghb2002;
Murio, 1993; Trujillo and Busby, 1997; Beck, 19%xbatier, 1978;
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Steepest Descent Method

In this section we will introduce the most basiadjent method,
which is the Steepest Descent Method. The basia ife this
method is to move downwards on the objective famctilong the
direction of highest variation, in order to locéte minimum value.
Therefore, the direction of descent is given by

d“=-0uU (x4 €)]
since the gradient direction is the one that gihesfastest increase
of the objective function. Despite being the ndtwfzoice for the
direction of descent, the use of the gradient dimacis not very
efficient. Usually the steepest-descent methodtsstaith large
variations in the objective function, but, as thaimum value is
reached, the convergence rate becomes very low.

The optimum choice for the search step sizes the one that
minimizes the objective function along the direatiof descent.

man{hus, a univariate search method needs to be eeglioyorder to

ind the search step size at each iteration. Inctfse of a unimodal
function some classical procedures can be usedy ssc the
Dichotomous Search, Fibonacci Search, Golden SemrdhCubic
Interpolation, among others. However, for someisgelcases, the
variation of the objective function with the seastiep size is not
unimodal and, then, more robust techniques arenestjisuch as the
exhaustive search method or a technique based baustive
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interpolation (Jaluria, 1988; Stoecker, 1989; Beftety and

Figure 1 illustrates the iterative procedure foe tBteepest

Chandrupatla, 1999; Fletcher, 2000; Bard, 1974; nidrand Descent Method.

Schnabel, 1983).

k=0
» Calculate

Calculate

Make an initial guess
for xk

aOu (x*)

d“*=-0U (x) >

ak

1 - Maximum number

of iterations reached;
2 - U(x¥) reached the
expected value;

3 - The gradient of
U(x¥) reached the
expected value.

x¥ is the optimum Convergence?

Figure 1. Iterative procedure for the Steepest Desc

Conjugate Gradient Method

The Conjugate Gradient Method improves the convergeate
of the Steepest Descent Method, by choosing daestof descent
that are a linear combination of the gradient dioec with
directions of descent of previous iterations (Alida, 1994;
Alifanov et al, 1995; Ozisik and Orlande, 2000; 2hn1971;
Jaluria, 1998; Stoecker, 1989; Belegundu and Chgadla, 1999;
Fletcher, 2000; Powell, 1977; Fletcher and Reel®64; Hestenes

Xk+1 = Xk +akdk+l

Calculate k=k+1

au (x*)

ent Method.

)= [DU(Xk)]T l[IU(xk)—ZEIU(Xk'l)] ,
|oube)
with )~ = 0 fork=0

(12.a)

wk=0,fork=0,1,2,... (12.b)

Based on previous work by Beale (Beale, 1972), Mowe
(Powell, 1977) suggested the following expressidios the
conjugation coefficients, which gives the so-calkRolwell-Beale’s

and Stiefel, 1952, Polak, 1971, Beale, 1972, Dav,ld1959) In a version of the Conjugate Gradient Method:

general form, the direction of descent is given by:

o = —00xk )+ pRd + gkd (10)

where ¥ and ¢} are the conjugation coefficients. This directidn o

descent is used in the iterative procedure spddifjeEq. (8).

The superscripg in Eq. (10) denotes the iteration number where W

a restarting strategy is applied to the iterativecpdure of the
conjugate gradient method. Restarting strategies weaggested for
the conjugate gradient method of parameter estmati order to
improve its convergence rate (Powell, 1977).

Different versions of the Conjugate Gradient Methzath be
found in the literature depending on the form uded the
computation of the direction of descent given by @) (Alifanov,
1994; Alifanov et al, 1995; Ozisik and Orlande, @0Daniel, 1971;
Jaluria, 1998; Stoecker, 1989; Belegundu and Chgadla, 1999;
Fletcher, 2000; Powell, 1977; Fletcher and Reel®64; Hestenes
and Stiefel, 1952; Polak, 1971, Beale, 1972; David®59). In the
Fletcher-Reevesersion, the conjugation coefficiengsand ¢/* are
obtained from the following expressions:

S HDU(Xk)HZ , with y° = 0 fork=0 (11.a)
B
¥ =0 fork=01.2,.. (11.b)

where || . || denotes the Euclidian norm in théovespace.
In the Polak-Ribiere version of the Conjugate GeatliMethod
the conjugation coefficients are given by:

J. of the Braz. Soc. of Mech. Sci. & Eng. Copyrigh
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= [BUCOITOU ) DU (¢
[dk_l]T[DU (Xk) -0u (Xk—l)]

with y° = 0 fork=0 (13.a)
k _ [DU OV (x*) - 0U (x9)] |

[d]T [0V (x**) = 0U (x9)]

with ° = 0 fork=0 (13.b)

In accordance with Powell (Powell, 1977), the aggilon of the
conjugate gradient method with the conjugation ficiehts given
by Egs. (13.a,b) requires restarting when gradientsuccessive
iterations tend to be non-orthogonal (which is @asoee of the local
non-linearity of the problem) and when the directimf descent is
not sufficiently downhill. Restarting is performéy making /=0
in Eq. (10).

The non-orthogonality of gradients at successieeafions is
tested by the following equation:

ABS[O(X Y] O(x))2 o.q‘m(xk}f (14.9)
where ABS (.) denotes the absolute value.

A non-sufficiently downhill direction of descentdi, the angle
between the direction of descent and the negatadient direction
is too large) is identified if either of the follamg inequalities is
satisfied

(a7 0lx*) < 120 (14.b)

or
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[dk]TD(x")z —O-Q‘D(Xk)‘z (14.c) STEP 4 Compute the search directidhwith Eq. (10).

STEP 5If k# g+1 test the inequalities (14.b,c). If either one of
them is satisfied sef = k-1 and ¢/=0. Then recompute the search

We note that the coefficients 0.2, 1.2 and 0.8 appg in EQS. jirection with Eq. (10).

(14.a-c) are empirical and are the same used byelP¢Rowell, The Steepest Descent Method, with the directiordecent

1977). iven by the negative gradient equation, would deovered with
In Powell-Beale’s version of the conjugate gradimethod, the 9 y g g a '

direction of descent given by Eg. (10) is compuitedciccordance

with the following algorithm fok > 1 (Powell, 1977): are employed for the Conjugate Gradient Method.
STEP 1 Test the inequality (14.a). If it is true spt k-1. Figure 2 shows the iterative procedure for thedhlet-Reeves

STEP 2 Computey* with Eq. (13.2). _ version of the Conjugate Gradient Method.
STEP 3 1If k = gq+1 setyf = 0. If k # q+1 computeyf with Eq.

(13.b).

evaluation of the search step size in the Stedpestent Method

k=0, d°=0, )° =0

K+ _ K K
Make an initial guess i Calculatke » d“'=-0U(x*)+)4d > Calculate
for xk Ou (x%) a~

1- Maximumnumber |
of iterations reached, N
2 - U(xX) reached the HDU (XKX‘

expected value; L XM = K 4 kgt
3 - The gradient of / HI:IU (XHM

U(x¥) reached the No
expected value.

x¥ is the optimum —Yes Convergence? Calculate < k=k+1
I T

Figure 2. Iterative procedure for the Fletcher-Reev  es version of the Conjugate Gradient Method.

Newton-Raphson Method h 0-[p2u o) "ou (¢ 17

While the Steepest Descent and the Conjugate Gradigyng the vector that locally optimizes the functigf) is given by
Methods use gradients of the objective functiorthair iterative

procedures, the Newton-Raphson Method also usesniation of Ok —[DZU K ]_1[IU( k) (18)
the second derivative of the objective functioroider to achieve a XX ) X

faster convergence rate (which doesn’'t mean a lewmputational . .
cost). 9 ( eIp Therefore, the iterative procedure of the Newtopiian

Let us consider an objective functit¥(x), which is, at least, Method, given by Eq. (18), can be written in thmedorm of Eg.

: k—
twice differentiable. The Taylor expansiondfx) around a vector (8) Py settingr’=1 and
x¥, wherex — x* = h, is given by (Beck, 1977; Jaluria, 1998;

Belegundu and Chandrupatla, 1999; Broyden, 1968ydm, 1967; d< = —[DZU (xk)]_lmu(xk) (19)
Levenberg, 1944; Marquardt, 1963; Bard, 1974; Denand
Schnabel, 1983): However, the Newton-Raphson method converges to
extreme point closer to the initial guess, disrdiay if it is a
k Uk PALUPE k 3 15) Mmaximum, a minimum or a saddle point. For this oeas is
Ve + =0 )+DU(X ) h 2h DU (x )h+O(h ) (13) common to introduce a search step size to be takemg the
direction of descent for this method, so that ivigten as:
whereJU(x) is the gradient (vector oflorder derivatives) of the
objective function and fJ(x) is the Hessian (matrix of"2order d =—ak[D2U (xk)]'lmu(xk) (20)
derivatives) of the objective function.
. If the opjectlve functlonJ(?() is twice differentiable, the Hessian Figure 3 shows the iterative procedure for the NewRaphson
is symmetric, and we can write Method.
‘ ‘ S 16 Although the convergence rate of the Newton-Raph&on
0U (x* +h) 00U )+ D2U (x)h (16)  guadratic, the calculation of the Hessian is comimally

N o o expensive. As a result, other methods that appraterthe Hessian
A necessary condition for the minimization of thbjemtive wijth simpler and faster-computing forms have beewvetbped.
function is that its gradient vanishes. Therefdrem Eq. (16) we some of these methods are described next.
have:
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k=0

Calculate
Ou (x), DU ()

A,

Make an initial guess
for xk

d** = [p2u (x)["ou (x*)

Calculate

1 - Maximum number

of iterations reached;
2 - U(x¥) reached the
expected value;

3 - The gradient of
U(x¥) reached the
expected value.

No

xK is the optimum

Quasi-Newton Methods

In these types of methods, the Hessian matrix appea the
Newton-Raphson’s Method is approximated in suchag that it
does not involve second derivatives. Usually, fygraximations for
the Hessian are based on first derivatives. Assaltrethe Quasi-
Newton Methods have a slower convergence rate ttieuNewton-
Raphson Method, but they are computationally fa@eck, 1977;
Jaluria, 1998; Belegundu and Chandrupatla, 1998yden, 1965;
Broyden, 1967; Levenberg, 1944; Marquardt, 1963rdB4974;
Dennis and Schnabel, 1983).

Let us define a new matri{, which is an approximation for the
inverse of the Hessian, that is,

HX D[DZU (xk)]‘1 (21)

The direction of descent for the Quasi-Newton méshis thus
given by:

d“* = —HkOU (x¥) (22)

and the matriH is iteratively calculated as
HY = Hk T+ MR T+ NKT fork=1,2,... (23.a)
Hk=1 fork=0 (23.b)

wherel is the identity matrix. Note that, for the firseration, the
method starts as the Steepest Descent Method.

Different Quasi-Newton methods can be found inliteeature
depending on the choice of the matritdésandN. For the Davidon-
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Figure 3. Iterative procedure for the Newton-Raphso
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A

Calculate X< = xk + gfd*t?
DU (x¥)

A
Calculate < k=k+1
0u (x*)

n Method.

Fletcher-Powell (DFP) Method (Davidon,
Powell, 1963), such matrices are given by

1959; Fletchand

MK = gk dk_l(dk_l)T (24.9)
k1]l y kL
Nt (Hk—lYk—IXHk—lYk—l)T (24.b)
(Yk—l)T Hk-ly k-1
where
v = 0u(xk)-ou (x?) (24.0)

Note that, since the matril is iteratively calculated, some
errors can be propagated and, in general, the oheteeds to be
restarted after some number of iterations. Alsocesithe matrixv
depends on the choice of the search stepaiziee method is very
sensitive to its choice. A variation of the DFP huet is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method (Dem,
1959; Fletcher and Powell, 1963; Broyden, 1965;yBem, 1967),
which is less sensitive to the choice of the seatep size. For this
method, the matricdd andN are calculated as

dk—l(dk—l)T

B 1 Yk—lTHk—lYk—l
M :[ . ((Yk—)l)Tdk—l } (dk—l)T vk (252)
et o dk—l(Y k—l)T HELy Hk—lYk—l(dk—l)T 25b)

(Y k—l)T e

Figure 4 shows the iterative procedure for the BRGthod.
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k=0, H=I
K+l _ gk K
Make an initial guess 7 CaquIaie » d“"=-H"0OU (X ) > Calculate
for xX bu(x¥) a

—

N =

o dk—l(Y k—1)T H 4 gy k—1(dk—1)T

(Y k—1)T g<t

» Hk:kal+Mkfl+Nkfl

A

(Y k—l)T g<t

o [1+ (Y k—1)T H KLy kL dk—l(d k—1)T
M (d k—l)T ykt

Xk+1 = Xk +akdk+1

Y

1 - Maximum number

of iterations reached;
2 - U(x¥) reached the
expected value;

3 - The gradient of
U(x¥) reached the
expected value.

Y4 =0U (x)-0u (<

¥
No

x¥is the optimum ~ [«—Yes Convergence?

k=k+1

Calculate <
Ou (x*)

Figure 4. Iterative procedure for the BFGS Method.

Levenberg-Marquardt Method

The Levenberg-Marquardt Method was first derived by

Levenberg (Levenberg, 1944) in 1944, by modifyihg brdinary
least squares norm. Later, in 1963, Marquardt (Mardt, 1963)
derived basically the same technique by using feréifit approach.
Marquardt’s intention was to obtain a method thatil tend to the
Gauss method in the neighborhood of the minimurthefordinary
least squares norm, and would tend to the steejessent method
in the neighborhood of the initial guess used foe fterative
procedure. This method actually converts a maldx approximates
the Hessian into a positive definite one, so tlet direction of
descent is acceptable.

The method rests on the observation thaPifs a positive
definite matrix, thenA + A P is positive definite for sufficiently

Evolutionary and Stochastic Methods

In this section some Evolutionary and Stochasti¢hides like
Genetic Algorithms, Differential Evolution, ParéclSwarm and
Simulated Annealing will be discussed. Evolutionamgthods, in
opposition to the deterministic methods, don't yéty general, on
strong mathematical basis and do not make useedjrddient of the
objective function as a direction of descent. Theyd to mimic
nature in order to find the minimum of the objeetifunction, by
selecting, in a fashionable and organized waypthiets where such
function is going to be computed.

Genetic Algorithms

Genetic algorithms are heuristic global optimizatimethods

largeA. If A is an approximation for the Hessian, we can chébse that are based on the process of natural seleclitamting from a

as a diagonal matrix whose elements coincide with absolute
values of the diagonal elementsfofBard, 1974).
The direction of descent for the Levenberg-Marquarethod is
given by (Bard, 1974):
d“ = —(A* + 2Py 10U (x4 (26)
and the step size is takena@s= 1. Note that for large values #fa
small step is taken along the negative gradiergction. On the

randomly generated population of designs, the opimseeks to
produce improved designs from one generation tonthe. This is
accomplished by exchanging genetic information ketwdesigns
in the current population, in what is referred ® the crossover
operation. Hopefully this crossover produces imptbwdesigns,
which are then used to populate the next generg@widberg,
1989; Deb, 2002).
The basic genetic algorithm works with a collectiam

population of potential solutions to the minimizettiproblem. The

other hand, asl® tends to zero, the Levenberg-Marquardt methoélgorithm works in an iterative manner. At eachat®n, also called

tends to an approximation of Newton’s method basethe matri
A. Usually,
(Beck, 1977; Ozisik and Orlande, 2000; Bard, 1974).
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x generation, three operators are applied to theeeptpulation of
the matrixA is taken as that for the Gauss methodﬂesigns. These operators are selection, crossawveénnutation. For

the operators to be effective, each potential sniudr design must
be represented as a collection of finite parame#dse called genes.
Each design must have a unique sequence of thesmetrs that
define it. This collection of genes is often callb@ chromosome.

ABCM
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The genes themselves are often encoded as binargssthough
they can be represented as real numbers. The |lefigtie binary
string determines how precisely the value, alsorkas the allele of
the gene, is represented.

The genetic algorithm applied to an optimizatiorolpem
proceeds as follows. The process begins with alipopulation of
random designs. Each gene is generated by randgemirating 0's
and 1's. The chromosome strings are then formecdobybining the
genes together. This chromosome defines the deBignobjective
function is evaluated for each design in the pojia Each design
is assigned a fitness value, which correspond$i¢ovalue of the
objective function for that design. In the casenghimization, a
higher fitness is assigned to designs with lowdnasm of the object
function.

Next, the population members are selected for ceprion,
based upon their fitness. The selection operatapidied to each
member of the population. The selection operatamoshs pairs of
individuals from the population who will mate andoguce
offspring. In the tournament selection scheme, oamgairs are
selected from the population and the individualhwibe higher
fithess of each pair is allowed to mate.

Once a mating pair is selected, the crossover tpeaapplied.
The crossover operator essentially produces newigriesor
offspring by combining the genes from the parensigles in a
stochastic manner. In the uniform crossover schémepossible to
obtain any combination of the two parent’s chrormess. Each bit
in each gene in the chromosome is assigned a plitpahat
crossover will occur (for example, 50 % for all gesh A random
number between 0 and 1 is generated for each ki#iéh gene. If a
number greater than 0.5 is generated then thas béplaced by the
corresponding bit in the gene from the other parérit is less than
0.5, the original bit in the gene remains unchan@éds process is
repeated for the entire chromosome for each ofptirents. When
complete, two offspring are generated, which maglaee the
parents in the population.

The mutation process follows next. When the crossov

procedure is complete and a new population is fdrrttee mutation
operator is applied. Each bit in each gene in #sgh is subjected
to a chance for a change from 0 to 1, or vice veFs& chance is
known as the mutation probability, which is usuadiyall. This
introduces additional randomness into the prooebsch helps to
avoid local minima. Completion of the mutation pess signals the
end of a design cycle. Many cycles may be needddrédhe
method converges to an optimum design.

For more details or for the numerical implementatid Genetic
Algorithms, the reader is referred to (Goldberg89;:®Deb, 2002).
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Differential Evolution

The Differential Evolution Method is an evolutiogamethod
based on Darwin’s Theory for the Evolution of thee8ies. It was
created in 1995 by two researchers from Berkelegn(i€th Price
and Rainer Storn) (Storn and Price, 1996) as amnaltive to the
Genetic Algorithm Method. Following the Theory fibre Evolution
of the Species, the strongest members of a popuolatill be more
capable to survive in a certain environmental ctooli During the
matting process, the chromosomes of two individualsthe
population are combined in a process called cressd@wring this
process mutations can occur, which can be goodvithehl with a
better objective function) or bad (individual withworst objective
function). The mutations are used as a way to esdapn local
minima. However, their excessive usage can leada tmon-
convergence of the method.

The method starts with a randomly generated populan the
domain of interest. Then, successive combinatidrechmmosomes
and mutations are performed, creating new genestimtil an
optimum value is found.

The iterative process of the Differential Evolutitethod is
given by:

Xt = ol + Syla+ F (B -v)] @7
where

X; is thei-th individual vector of parameters.

a, B and y are three members of the population matpix
randomly chosen.

F is a weight function, which defines the mutatiOrb(<F < 1).

kis the number of generations.

o, ando, are Dirac delta functions that define the mutation

In the minimization process, iJ(x“") < U(X), then x*
replaces< in the population matri®. Otherwisex® is kept in the
population matrix.

The binomial crossover is given as

5 _{0, if R<CR (28.a,b)

_[4if R<CR
"1 if R>CR 2

“lo if R>CR

where CR is a factor that defines the crossovér<@CR < 1) and R
is a random number with uniform distribution betw@&eand 1.

Figure 5 shows the iterative procedure for the déédhtial
Evolution Method.

January-March 2006, Vol. XXVIII, No. 1/9



k=0, n=population size

Generate population
matrix P
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Define F (mutation)

x¥1 replaces x*in P

<—Yes

k=k+1

"| Define CR (crossover)

No
v

Choose ramdonly Generate a random
» three members of P > number R
a,B,y
51 =
—Yes
3,=1
No
I v
o, =1
X =axt +8fa+F(p-1) 5=
, =

Convergence?

x¥is keptin P

'\b @

Yes
v 1 - Maximum number
of iterations reached;
best member is the 2- U(best member)
optimum reachs the expected
value.

Figure 5. Iterative procedure for the Differential

Particle Swarm

Another evolutionary method is the one that usestincepts of
Particle Swarm. Such method was created in 199&nb¥lectrical
Engineer (Russel Eberhart) and a Social Psychalogiames
Kennedy) (Kennedy and Eberhart, 1995; Kennedy, 18i88a et al,
2001; Eberhart et al, 2001) as an alternative te @enetic
Algorithm Method. This method is based on the ddo@havior of
various species and tries to equilibrate the imbligiity and
sociability of the individuals in order to locatbet optimum of
interest. The original idea of Kennedy and Eberlsarhe from the
observation of birds looking for nesting places. aWhthe
individuality is increased, the search for alteiveatplaces for
nesting is also increased. However, if the indigiidty becomes too
high, the individual might never finds the bestgalaOn the other
hand, when the sociability is increased, the irdlial learns more
from its neighbors’ experience. However, if theiabdity becomes
too high, all the individuals might converge to tfiesst minima
found, which is possibly a local minima.

In this method, the iterative procedure is given by

k+l xik + vk (29a)

X i
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Evolution Method.

vt = avi + iy (pi ‘Xik)"'.a'zi (pg _Xik) (29.b)
where:
X; is thei-th individual vector of parameters.
v; = 0, for k=0.

r;ij and ry are random numbers with uniform distribution
between 0 and 1.

pi is the best value found for the veckar

pg is the best value found for the entire population.

O<a<l;1<B<2

In Eqg. (29.b), the second term on the right hadé sepresents
the individuality and the third term the socialyiliThe first term on
the right-hand side represents the inertia of theigles and, in
general, must be decreased as the iterative process In this
equation, the vectqy; represents the best value ever found for the i-
th component vector of parametegsduring the iterative process.
Thus, the individuality term involves the comparisbetween the
current value of the i-th individua with its best value in the past.
The vectomy is the best value ever found for the entire pojputat
of parameters (not only the i-th individual). Thtiee sociability
term compares; with the best value of the entire population ia th
past.

Figure 6 shows the iterative procedure for thei€larSwarm
Method.
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k=0, n=population size

vk=0 Define a =1 Generate random
Generate population Define [ 7 a vectors r;and r,,
matrix P
1 - Maximum number
of iterations reached; Y
2- U(p,) reachs the
Py is the optimum expected value. )
— No Determine p, and Py
LY
No
A
? k+1 k k k
Convergences Vi+ =av; +:&ﬁ(pi =X )+ﬁrzi(pg_xi )
I A
k=k+1 «Yes =i+l X =xk v

Figure 6. Iterative procedure for the Particle Swar

Simulated Annealing

This method is based on the thermodynamics of dloérg of a
material from a liquid to a solid phase (Coranaleti987; Goffe et
al, 1994). If a liquid material (e.g. liquid metaljarts being slowly
cooled down and left for a sufficiently long timese to the phase
change temperature, a perfect crystal will be eckawhich has the
lowest internal energy state. On the other hanttheifiquid material
is not left for a sufficient long time close to tlphase change
temperature, or, if the cooling process is notisidgfitly slow, the
final crystal will have several defects and a higternal energy
state. This is similar to the quenching processl uisenetallurgical
applications.

We can say that gradient-based methods “cool doerfdst”,
going rapidly to an optimum location which, in masitses, is not
the global but the local one. Differently from tiyeadient-based
methods, the Simulated Annealing Method can moveaiy
direction, escaping from possible local minimum maximum
values. Consider, for example, the Boltzmann priiafunction

ProdE) O el E/) (30)

This equation expresses the idea that a systemhémmal
equilibrium has its energy distributed probabitiatly among
different energy stateg. In this equationK is the Boltzmann
constant. Such equation tells us that, even atdéomperatures, there
is a chance, even small, that the system is agla dmiergy level, as
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m Method.

illustrated in Fig. 7. Thus, there is a chancehef $ystem to get out
of this local minimum and search for a global one.

High temperature
—eii—
High Probability of high

energy state

Prob (E)

Low temperature

A}
Small Probability of high
energy state

~

E/KT

Figure 7. Schematic representation of Eq. (30).

Figure 8 shows the iterative procedure for the $%ated
Annealing Method. The procedure starts by geneagaipopulation
of individuals of the same size of the number afatdes G=m), in
such a way that the population matrix is a squaa&rira Then, the
initial temperatureT), the reducing ratioRT), the number of cycles
(Ny) and the number of iterations of the annealingcess ;) are
selected. AfteMNgn function evaluations, each element of the step
length V is adjusted, so that approximately half of all dtion
evaluations are accepted. The suggested valuenéonamber of
cycles is 20. AfteN;Nsn function evaluations, the temperatuf® is
changed by the factdRT. The value suggested for the number of
iterations by Corana et al (Corana et al, 198®)As{(100, 5n).
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Define initial
menumber of variables temperature T;
n=population size=m temperature reducing i=0; j=0; k=0 .
Make a initial guess for ration RT; number of N=0, where i=1,...,m =il
x=x° and U(x°) cycles N; number of
iterations N, l
Generate a random
Calculate
[+No number R
pP= e[U (e hu el
l Yes l
v
Generate a random x0=x1 )gl = )go +RV
number R Objective function
goes dow n i
i — Calculate U(x!)
Reject x?! f«-No N=N+1
Yes
v
x0=x1
Goto Objective function No
B goes up
No Yes
v
Convergence? Yes»  xXis the optimum A No
T Yes
[1 - Maximum number L
Reduce the . . .
temperature of iterations reached;
il 2 - U(x¥) reachs the Calculate
T=TRT expected value
£ : r=N;/Ng
f
Yes
2(r - 04
k=k+1 — V, =V 1+ ( ) l«-No
04
A
No Yes
+
2(r - 06
v =y 1+ 2206)
04

Figure 8. lterative procedure for the Simulated Ann  ealing Method.

The iterative process is given by the following aiipn:
p= e[u (x})—u (x?) /T (32)
X =x2+RV (31)

The smallerT and the size of the uphill move are, the more
whereR is a random number with uniform distribution betwed likely that move will be accepted. If the trial &ccepted, the
and 1 and/ is a step-size which is continuously adjusted. algorithm moves on from that point. If it is rejedt another point is

To start, it randomly chooses a trial point witktie step length chosen for a trial evaluation.
V (a vector of lengtiN) of the user selected starting point. The Each element o¥ is periodically adjusted, so that half of all
function is evaluated at this trial poin¢j and its value is compared function evaluations in that direction are accepfBae number of
to its value at the initial pointf). In a minimization problem, all accepted function evaluations is represented byatableN;. Thus
downhill moves are accepted and the algorithm ooes from that the variabler represents the ratio of accepted over total foncti
trial point. Uphill moves may be accepted; the sieci is made by evaluations for an entire cych and it is used to adjust the step
the Metropolis criteria. It uset (temperature) and the size of thelengthV.
downhill move in a probabilistic manner
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A decrease i is imposed upon the system with fRR€variable

by using
TG+ =RT*T() (33)

wherei is the i-th iteration. Thus, &b declines, uphill moves are
less likely to be accepted and the percentage jettiens rises.
Given the scheme for the selection fdr V falls. Thus, asT
declines)V falls and the algorithm focuses upon the most B
area for optimization.

Function Estimation Approach

The methods described above were applied for thémization
of an objective functiotJ(x), wherex = [X;, X, ... ,Xy] iS the vector

with the parameters of the problem under consiaerahat can be

modified in order to find the minimum dfi(x). Therefore, the
minimization is performed in a parameter space iofedsionN.

Several optimization or inverse problems rely oncfions, instead
of parameters, which need to be selected for tménmEation of an
objective function. In these cases, the minimizatieeds to be

The parameterT is crucial for the successful use of thePerformed in an infinite dimensional space of fiores and nca
algorithm. It influenced/, the step length over which the algorithmPriori assumption is required regarding the functionainfof the

searches for the minimum. For a small inifiathe step length may
be too small; thus not enough values of the functwill be
evaluated to find the global minimum. To determthe starting
temperature that is consistent with optimizing achion, it is
worthwhile to run a trial run first. The user shbgetRT = 1.5 and
T = 1.0. WithRT > 1.0, the temperature increases &hdses as
well. Then the T must be selected that producasge lenough.

Hybrid Methods

The so-called Hybrid Methods are a combination bé t
deterministic and the evolutionary/stochastic mdthan a sense
that the advantages of each one of them are usdatidHMethods
usually employ an evolutionary/stochastic methodldoate the
region where the global minimum is located and theitches to a
deterministic method to get closer to the exaahipiaister.

As an example, consider the Hybrid Method illugtdain Fig. 9.
The main module is the Particle Swarm Method, wiioks almost
the entire optimization task. When some percemtléhe particles
find a minima (let us say, some birds already fouheir best
nesting place), the algorithm switches to the Défaial Evolution
Method and the particles (birds) are forced to dbrdethere is an
improvement of the objective function, the algaritiheturns to the
Particle Swarm Method, meaning that some otheroregs more
prone to have a global minimum. If there is no iay@ment of the
objective function, this can indicate that thisiosgalready contains
the global minimum expected and the algorithm dvétcto the
BFGS Method in order to locate more preciselyatstion. Finally,
the algorithm returns again to the Particle Swarethdd in order to
check if there are any changes in the minimum lonaand the
entire procedure is repeated for a few more it@natie.g., 5).

More involved Hybrid Methods, dealing with the apption of
other deterministic and stochastic methods, can fdaand in
references (Colaco et al, 2003a; Colaco et al, 2@Maco et al,
2003b; Dulikravich et al, 2003a; Dulikravich et aR003b;
Dulikravich et al, 2003c; Dulikravich et al, 200€olaco et al,
2003c).

m% of the particles found a minima

Particle Swarm
using Boltzmann
probability

Differential

Improvement of the objective Evolution

unction

No-improvement of
the objective function

BFGS
Method

Figure 9. Global procedure for the Hybrid Method.
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unknown functions, except for the functional spta they belong
to (Alifanov, 1994; Alifanov et al, 1995; Ozisik @®©rlande, 2000).
A common selection is the Hilbert space of squaregrable
functions in the domain of interest.

In this paper we use the conjugate gradient mettitid adjoint
problem formulation for the minimization of the ebjive function.
We illustrate here the function estimation approastapplied to the
solution of a specific inverse problem involvingetHollowing
diffusion equation (Colago et al, 2003c):

AT (r*, 1) _
at*

C* (r*) D [DD* (r*) DT*] + /j* (r*) T* (34)

wherer* denotes the vector of coordinates and the supptstri
denotes dimensional quantities.

Equation (34) can be used for the modeling of sdvgnysical
phenomena, such as heat conduction, groundwatev #od
tomography. We focus our attention here to a oneedsional
version of Eq. (34) written in dimensionless forsn a

oT _ d oT . (35.a)
W_E(D(X)HJ +u(X)T in 0<x<1,fort>0
and subject to the following boundary and initiahditions.
AT o atx=0 for t>0 (35.b)
0 X
D(x)a—T- atx=1 for t>0 (35.0)
d X
T=0 fort=0 in0<x<1 (35.d)

Notice that in thedirect problem the diffusion coefficient
function D(x) and the source term distribution functipfx) are
regarded as known quantities, so that a directlysisi problem is
concerned with the computation T,t).

Inverse Problem

For theinverse problenof interest here, the functiom¥x) and
(X)) are regarded as unknown. Such functions will
simultaneously estimated by using measuremenT®)of) taken at
appropriate locations in the medium or on its bauies. Such
measurements may contain random errors. These neezasut
errors are assumed to be uncorrelated, additivesmailty
distributed, with zero mean, and with a known canststandard
deviation.

Practical applications of this inverse problem umd the
identification of non-homogeneities in the mediusuch as
inclusions, obstacles or cracks, determinationhefrhal diffusion
coefficients and distribution of heat sources, gdwater flow and
tomography physical problems, in which ba@i{x) andz(x) vary.

be
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The basic steps of the conjugate gradient methoturagtion 04T, 9 4T,
estimation are discussed below. 31 ox (x) ax () 4T, + ()T
. ) , - in 0<x<1 fort>0 (39.a)
Conjugate Gradient Method with Adjoint Problem
For the simultaneous estimation of the functi@{g) and z(x) 94T _o atx=0 andx=1 for t>0 (39.b,c)
with the conjugate gradient method with adjoint ppeon, we ox
consider the minimization of the following objeaifunctional
4T,=0 in0<x<l;fort=0 (39.d)
1t om . 2 36
UID(X), 4(x)] ) ] 2 (T £ DY, (] = Y (0}t (36) A Lagrange multiplierd(x,t) is utilized in the minimization of

t=0 m=1

the functional (36) because the estimated dependenable
where Yn(t) are the transient measurementsTott) taken at the T[XmtD(X),44¥)] appearing in such functional needs to satisfy a
positions X, m = 1,..., M. The estimated dependent variableconstraint, which is the solution of the direct fen. Such
T[Xn:D(X),44X)] is obtained from the solution of the direct pesh Lagrange multiplier, needed for the computationtiod gradient
(35.a-d) at the measurement positiags m = 1,.., M, with equations (as will be apparent below), is obtaitlecbugh the
estimates forD(x) and /(x). When dealing with an optimization solution of problemsadjoint to_the sensitivity proplems, given by
problem, instead of an inverse problerp(t) represents the desired EdS- (38.a-d) and (39.a-d) (Alifanov, 1994). Despite fact that the
temperature at the positions, m = 1,..., M. We note in Eq. (36 present inverse probl_em _|nvolves the;_e_stlmatlortvm ur_lknown
that, for simplicity in the analytical analysis @oped below, the functions, thu_s resulting in two sensitivity praie as discussed
measurements,(t) are assumed to be continuous in the tim&P0ve, one single problem, adjoint to problemsa#h.and (39.a-

domain. d), is obtained.

The use of the conjugate gradient method for theimization In prder to derive the adjoint prqblem, t_hg govegneéquation of
of the objective functional (36) requires the slntof auxiliary —the direct problem, Eq. (35.a), is multiplied bye t.agrange
problems, known asensitivity and adjoint problems multiplier A(x,t), integrated in the space and time domains ofeaste

The sensitivity functionsolution of the sensitivity problem, is @nd added to the original functional (36). Thedwling extended
defined as the directional derivative Tfi.!) in the direction of the functional is obtained:
perturbation of the unknown function (Alifanov, ¥89Alifanov et

al, 1995; Ozisik and Orlande, 2000). Since the gegproblem UID() /I(X)]=E } tf %[T—Y]zd(x—xm)dtdx+

involves two unknown functions, two sensitivity ptems are ' 2 x=0t=0 m=1 (40)
required for the estimation procedure, resultimpfrperturbations 14 (9T o T

in D(X) andg(x). 1 ﬂ_ﬂ[ ( )H] - u(X)T |A(x.t) dtdx

The sensitivity problem foATp(x,t) is obtained by assuming
that the dependent variabléx,t) is perturbed byATp(x,t) when the
diffusion coefficientD(X) is perturbed byAD(x), wheree is a real
number. The sensitivity problem resulting from pésations in
D(x) is then obtained by applying the following limigj process:

wheredis the Dirac delta function.
Directional derivatives ofU[D(x),(x)] in the directions of
perturbations iD(x) and/(x) are respectively defined by

- _ i D, 4] - §D, 4] 41.a
lim Le(P) ~L(O) _ 37) AUp[D, 4 = im 22e LA (41.a)
£-0 £
whereL(D,) andL(D) are the direct problem formulations written AU ,[D, u] = Iimow (41.b)
£

in operator form for perturbed and unperturbed tties,
respectively. The application of the limiting presegiven by Eq.

(37) results in the following sensitivity problem: where U[D,4] and U[D,.,] denote the extended functional (40)

written for perturbed(x) and/(X), respectively.

3 AT 3 3 AT oT After letting the above directional derivativesiD(x),.(x)] go
atD ZE[D(X) 3 XD +AD(X)HJ + u(x) 4Ty to zero, which is a necessary condition for theimization of the

. extended functional (40), and after performing sdewgthy but
in 0<x<1 for t>0 (38.2)  straightforward manipulations (Alifanov, 1994; Alifov et al, 1995;

_ Ozisik and Orlande, 2000), the following adjoinbiplem for the

0 aATD _o ax=0 for t>0 (38.b) Lagrange multiplieh(x.t) is obtained
X
dA 0 a1 M
-— - —| D(x)— | —ux)A + Z[T - Y]o(X - Xp,) =0
AD(x)a—T+ D(X)mzo atx=1 for t>0 (38.0) ot 9 x[ ( )6 x] #k) m=£ 1ot )

o x 0 x in0<x<1, fot>0 (42.2)
AT, =0 ino<x<1 fort=0 (38.d) 94 _y atx=0andx=1 for t>0 (42.b,c)

A limiting process analogous to that given by E3¥)( obtained
from the perturbationgAz(x), results in the following sensitivity A=0 ih0<x<1 for t =t (42.d)
problem forAT,(xt) f
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During the limiting processes used to obtain thgoiatl
problem, applied to the directional derivativesid(x),.(X)] in the
directions of perturbations iB(x) and (x), the following integral
terms are respectively obtained:

1t
Ap[D, = [ | AD(x)a—T%dtdx

x=0t=0 0Xx

(43.a)

t
AU ,[D, ] =~ } [ Au(x) A, )T (x,t)dt dx
x=0t=0

(43.b)

By invoking the hypotheses th&t(x) and p(x) belong to the
Hilbert space of square integrable functions indbmain 0 <x < 1,
it is possible to write (Alifanov, 1994; Alifanou al, 1995; Ozisik
and Orlande, 2000):

AUp[D, 4] = jl'DS[D(x)]AD(x) dx (44.2)
x=0

20,0, = [0S () dx (44.5)

x=0

Hence, by comparing Eqgs. (43.a,b) and (44.a,b) btaim the
gradient components df[D,u] with respect toD(x) and p(x),
respectively, as

t
OU[D(x)] = 9T 04 (45.a)
1200 X 0 X
t
OULu(x) = - [ AT (xt)dt (45.b)

t=0

An analysis of Eqgs. (45.a) and (42.b.c) reveals titva gradient
component with respect ©(x) is null atx = 0 and ak = 1. As a
result, the initial guess used f@(x) is never changed by the
iterative procedure of the conjugate gradient nebthibsuch points,
which can create instabilities in the inverse peatokolution in their
neighborhoods.

For the simultaneous estimation Bfx) and (x), the iterative
procedure of the conjugate gradient method is erittespectively
as (Alifanov, 1994; Alifanov et al, 1995; Ozisikca@rlande, 2000)

D**(x) = D¥(x) + aKd5 (%) (46.a)

HEHX) = () + agd () (46.0)
whered“o(x) and dku(x) are the directions of descent fid(x) and
14X), respectivelyp®p and aku are the search step sizes k) and
HM(X), respectively; an#l is the number of iterations.

For the iterative procedure for each unknown fumttithe
direction of descent is obtained as a linear coathin of the
gradient direction with directions of descent oé\ous iterations.
The directions of descent for the conjugate gradiegthod forD(x)
andz(x) can be written respectively as

di (x) = -0S[D ()] + yids ™ (x) +wdd’ (47.2)

dys () = OS] + ydys () + g d (47.b)

where ¥, ¥, o and ¢, are the conjugation coefficients. The

procedure for the estimation Bi(x) and (x), respectively (Powell,
1977).

Different versions of the conjugate gradient methwzh be
found in the literature, depending on how the cgafion
coefficients are computed. In this work we usedbealled Powell-
Beale's version of the conjugate gradient methodabse of its
superior robustness and convergence rate in neatliproblems
(Colacgo et al, 2003c). The conjugation coefficielmisthis version
of the conjugate gradient method are given by:

} 0S[D*(x)] - 0 Dk'l(X)]}DS[ D¥(x)] dx
=0

(48.a)

HosiD* (41 - SO+ ool (0 dx

x=0

1{ K k-1 } K
yk=xiomsuz 091 - DS IS Ol e
u T

Hostu* o01 - s 2 ool dx

x=0

1

D+1 _ D K

wgzx{imsoq (91 - DSDPSOH N

1

[{osip®2(x)] - 0SD® (1}ag° () dx

x=0

1

+1 _ k

wk:x{imq/ﬂ‘ (91 - DS OIS Gl
u 1

Hos (01 - DS (s () i

x=0

whereyp =y, = ¢fo = ¢}, = 0, fork = 0.

Powell-Beale’s version of the conjugate gradientthoé is
restarted by making the conjugation coefficiefi = 0 (orzﬂ‘“ =0)
if gradients at successive iterations are too faymf being
orthogonal (which is a measure of the nonlineasitghe problem)
or if the direction of descent is not sufficientigwnhill. For further
details, the reader is referred to (Colago et@032).

The search step sizeXp and aku, appearing in the expressions
of the iterative procedures for the estimatiorDgk) and ((x), Eqgs,
(46.a,b), respectively, are obtained by minimizithg objective
functional at each iteration along the specifiagdtions of descent.
If the objective functional given by Eq. (36) isdiarized with
respect togk and ”;kﬂ closed form expressions can be obtained for

such quantities as follows (Alifanov, 1994; Alifanet al, 1995;
Ozisik and Orlande, 2000):

kPl —FA, koA RAy (49.a,b)
ag : ak !
Anhor — AL Aihr - AL
where
t
As= | S AT (%o )t (50.a)
t=0 m=1
t
A= | %[ATﬁ(xm,t)]zdt (50.b)
t=0 m=1
t
Ar= | %ATg(Xm,t)AT},‘(xm,t)dt (50.c)

t=0 m=1

superscriptsgD and gu in Egs. (47.a,b) represent the iteration

numbers where a restarting strategy is applied ht iterative
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Fo= | SOV = Tt OILATE (X ] (50.d)
t=0 m=1
ty

Fo= [ SV = T (o DL AT (i ] dt (50.€)
t=0 m=1

In Egs. (50.a-e)ATk;)(x,t) andATkﬂ(x,t) are the solutions of the
sensitivity problems given by Egs. (38.a-d) and .439),
respectively, obtained by settidd*(x)=d*5(x) andAz/(x)=d" (x).

The use of the conjugate gradient method for theikaneous

estimation ofD(x) and/(X) can be suitably arranged in a systematic

and straightforward computational procedure, whigcbmitted here
for the sake of brevity, but can be readily adagteth those found
in reference (Ozisik and Orlande, 2000). The coajeiggradient
method of function estimation belongs to the cla$siterative

Marcelo J. Colago et al

detection, and tomography. Two solution technicaies applied to
the inverse problem under consideration, namelg ¢tbnjugate
gradient method with adjoint problem and a hybrtirization
algorithm. For the hybrid optimization algorithntalsilization for
the solution of the inverse problem was obtaineth wiikhonov's
first order regularization. Thus, the objectivedtion was rewritten
in the form

1w 2
D). 1= | S {T 1%t D(X), (3] = Yin (D}t +

t=0 m=1

(54)

#0 % {01309~ 0, + (1100 - ]

whereaq, is the first-order Tikhonov's regularization pareter.
The test cases examined below in dimensionless faren

regularization methodgAlifanov, 1994). For this class of methods, Physically associated with a heat conduction prmblén a

the stopping criterion for the computational pragedis chosen so
that sufficiently accurate and smooth solutions @btained for the
unknown functions. Although different approaches ba used for
the specification of the tolerance for the stoppimigerion, we use
in this work thediscrepancy principl€Alifanov, 1994).

With the use of the discrepancy principle, thesitie procedure
of the conjugate gradient method is stopped whendifference
between measured and estimated variables is obrther of the
standard deviationg, of the measurements, that is, when

|T (X, t; D, 1) =Y (D) = & (51)
Therefore, the iterative procedure is stopped when
U[D(X), u(X)] < ¢ (52)

where the toleranceg is obtained by substituting Eq. (51) into the

definition of the functional given by Eq. (36), ths,

(53)

1
==Mo%,
2

Applications

We now present some applications of inverse aninggztion
problems in heat transfer. The first example deaith the
simultaneous estimation of the spatial distribugiar the diffusion
coefficient and of the source-term in a 1D diffusjproblem. Such
is the same kind of inverse problem for which tbejogate gradient
method of function estimation was derived abovee Dther four
examples of applications deal with convective heansfer. The
first two examples involve the solution of inverpeoblems in
irregularly shaped channels (forced convection) @adties (natural
convection), respectively, while the other two ilveo the
optimization of externally induced electro or matimdields in
order to control the solidification characteristidamelts.

Simultaneous Estimation of Spatially-Dependent Diffsion
Coefficient and Source Term in a Diffusion Problem(Colaco et
al, 2003c)

This work deals with the simultaneous estimation tbé
spatially varying diffusion coefficient and of theource term
distribution in a one-dimensional diffusion probleffhe problem
formulation is given by Egs. (35.a-d). This workndae physically
associated with the detection of material non-hagnegies such as
inclusions, obstacles or cracks, heat conductiooyrglwater flow
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homogeneous steel bar of length 0.0&0The diffusion coefficient
and the spatial distribution of the source termsamgposed to vary
from base values db(X) = 54 W/mKandp(x) = 16 W/ntK, which
result in dimensionless base values @f = 1 and i = 5,
respectively. The base values for the diffusiorffamient and source
term distribution are associated with solid-solidhage
transformations in steels. The final time is asslinbe be 60
seconds, resulting in a dimensionless valuet;of 0.36. Fifty
measurements are supposed to be available perratongesensor.

Figure 10 shows the results obtained with the qgatjeigradient
method and with the measurements of two non-inteusensors, for
a step variation ofD(x) and for constanf(x). The simulated
measurements in this case contained random errithsstandard
deviationo = 0.01Y,,,,, WhereY.is the maximum absolute value
of the measured variable. The initial guesses fisethe iterative
procedure of the conjugate gradient method andtter hybrid
optimizer wereD(x) = 0.9 andu(x) = 4.5. We note in Fig. 10 that
quite good results were obtained for such a skt case involving
a discontinuous variation f@(x), even with only two non-intrusive
sensors, by using the conjugate gradient methodfuattion
estimation.

—e— Exact

—+— Estimated

00 6.00 —
i 5.50
50 | |
= J =3
z =500 <
1.00 4
450 |
0.50 rer o 400 I A N
00 02 04 06 08 10 00 02 04 06 08 @
X X

Figure 10. Estimation of p (x) and D(x) obtained by ~ the CGM with two non-
intrusive sensors with standard deviation (6 =0.01 Ymax).

Figure 11 shows the results obtained for the saast dase
shown in Fig. 10, but with 10 sensors. We noteign FE1 that more
accurate results are obtained for b@x) and ((x) when more
sensors are used in the inverse analysis.

ABCM
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_ e — Exact

—+— Estimated

approach, with the measurements of two non-intausansors. Note
that the oscillations are eliminated because of gstabilization

200 6.00 introduced by the first order regularization terkmowever, the
] 1 estimated function fob(x)-is in very bad agreement with the exact
150 | 580 7 one. This is probably due to the fact that thisecasvolving 50
) ] X500 ’jm*( measurements per sensor and only two sensorsgde&determined,
© 100 = that is, the number of unknown parameters is leaa the number
] 450 of measurements. Note that for the hybrid optiniiagpproach, 2
0.50 ey 400 | T parameters are estimated for each of the contiakves used for
the discretization of the domain, correspondintheovalues oD(X)
00 02 04 06 08 10 00 02 04 06 08 1

Figure 11. Estimation of p (x) and D(x) obtained by
o0 = 0.01 Ymax).

sensors with standard deviation (

the CGM with ten

and /(x) at the control volume. Therefore, a total of J@0®ameters
were estimated in this case. A comparison of thetfans estimated
for D(x) with the conjugate gradient method and with tlyerid

optimization approach by using only two sensorg (Bigs. 10 and
14, respectively) shows that the conjugate gradiegthod is not as

Figure 12 shows results similar to those preseimefig. 10, sensitive to the fact that the problem is undeteesi This is
obtained with the hybrid optimization algorithm biging 2 non-  pecause of the fact that the measured data is inst#e source-
intrusive sensors, with the regularization parameét as zero. The f,nction term of the adjoint problem in the functi@stimation
x-axis in this figure represents tif& value of the control volume, approach with the conjugate gradient method, sot tte
that is,i = 80 represents = 1.0. Note that the estimated functionsinformation from the sensors at the boundariesxteneled to the
suffer from large oscillations resulting from tHeposed character (oqt of the domain through the adjoint functiét). On the other
of the inverse problem. hand, the accuracies of the functions estimatedufg)y with the

204

—@— Exact

Estimated

6.0

554

—@— Exact
—— Estimated

conjugate gradient method and with the hybrid ojztition
approach, with the measurements of two non-inteusensors (see
Figs. 10 and 14, respectively), are similar. Thidue to the fact that
the exactz(x) is constant and the initial guess used for both

approaches was relatively near the exact function.

Z 504
=

—@— Exact
—o—  Estimated

20 60—

—@— Exact
——  Estimated

454
0.8+ 5

554

Z50 —M
=

45+

— 40 e
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T T
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Figure 12. Estimation of p(x) and D(x) by the hybri

regularization and with 2 sensors (¢ = 0.01 Ymax).

d optimizer without

089

In order to find the best value of the first ordékhonov’'s
regularization parameter;, we used the L-shape curve as shown in o |
Fig. 13. In this figure, thex-axis represents the second term
appearing on the RHS of Eq. (54) and yrexis represents the first Figure 14. Estimation of p (x) and D(x) by the hybr
term appearing on the RHS of Eq. (54). The besicetfor a; is the ~ "egularization and with 2 sensors (¢ =0.01 Ymax).
one that minimizes both terms represented bythrdy-axis. The
optimum value fora; in this case was 0.0001.

— 40 —7—
80 100 0 20 40 60 80
Control Volume

T T T
20 40 60
Control Volume

id optimizer with

Figure 15 shows the estimated functions obtaineth whe
hybrid optimization approach and the measuremeht)csensors

= 47 evenly spread in the medium and with= 0.0001. It is interesting
2 to note that the function estimated fofx) with 10 sensors is in
% o5 o =000 much better agreement with the exact one thanaibt@ined with 2
ES sensors. A comparison of Figs. 11 and 15 showssihalar results
< are obtained for the simultaneous estimatiorDEf) and 1(x), by
@ 1847 using either the conjugate gradient method or thdorit
= optimization approach, when ten sensors are usetheninverse
S gE-5- analysis.
£
g 455 @ =0.0000y._,8 =0:00001
3 a=0.00005 a =0,000001
B IR IR IR B |
1E-4 1E-3 1E2 1E-1 1E+0 1E+1

2nd term on the RHS of equation (19)

Figure 13. L-shape curve for choice of the regulari
2 sensors.

zation parameter using

Figure 14 shows the estimated functions obtaineith wuch
value of the regularization parameter and the lybptimization
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Figure 15. Estimation of p (x) and D(x) by the hybr
regularization and with 10 sensors (@ =0.01 Ymax).

id optimizer with

We note that the use of the regularization paramégesed on
the Tikhonov's technique, produced the regulariratiecessary to
obtain stable results for the estimation of bothcfions with the
hybrid optimization approach. In fact, completelystable results
were obtained if the regularization technique was$ wmsed, as a
result of the ill-posed character of the invers®bfem under
consideration. Also, the results presented aboeev ghat the two
solution approaches examined in this paper areseaositive to
measurement errors. In fact, qualitatively similasults were
obtained by using errorless simulated measurements.

Finally, Fig. 16 shows the convergence history ted hybrid
optimizer for the estimation of the functions prese in Fig. 15,
where one can see that no further reduction inctis function is
obtained after approximately 500 iterations.

1.0E-1 5 1000000

] - 800000

b [ .
- 1.0E-2 o I s
£ ] 600000 ;
§ ] <= L §
z 1 L 400000 §
© 1.0E-3 | 5

3 H*

] I 200000

1.0E-4 : ‘ 0
0 1000 2000 3000

Iteration number

Figure 16. Convergence history for the simultaneous
and D(x) by the hybrid optimizer with regularizatio

estimation of p (x)
n and with 10 sensors.

Inverse Forced Convection Problem of Simultaneous
Estimation of Two Boundary Heat Fluxes in Irregulady Shaped
Channels (Colago and Orlande, 2001)

This work deals with the use of the conjugate gmadmethod
of function estimation for the simultaneous idenéfion of two
unknown boundary heat fluxes in channels with lamitows. The
irregularly shaped channel in the physical domairtransformed
into a parallel plate channel in the computatiah@ain, by using
an elliptic scheme of numerical grid generatione Hirect problem,
as well as the auxiliary problems and the gradiequations,
required for the solution of the inverse problenthwthe conjugate
gradient method, are formulated in terms of geimadlboundary-
fitted coordinates. Therefore, this solution appltoaan be readily
applied to forced convection boundary inverse potd in channels
of any shape. Direct and auxiliary problems areeblwith finite-
volumes. The numerical solution for the direct peob is validated
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by comparing the results obtained here with bencksalutions for
smoothly expanding channels.

For the results presented below, we considered axample of
application of the present solution approach, ¢ases involving the
laminar flow of water f = 1000.52 kg/y 1= 0.001 kg/m sk =
0.597 W/m, G = 4.1818 x 18 J/kg °C) inside a channel with a
smooth expansion, as illustrated in Fig. 17.

vs f(x*Re)
b
-Lh (0,0) bRe/3 X
-b
-f(x* Re)
Figure 17. Geometry for the channel with smooth exp  ansion.

Test-cases involving the estimation of the time apdtial
variations for the heat fluxes were examined. FRer eéstimation of
the unknown functions we considered available #aings of 28
sensors uniformly distributed along the channel moated at the
second control-volumes distant from each of thelsv&imulated
measurements with a standard-deviation 0.01T,,,, were used for
the inverse analysis. Figs. 18.a and 18.b show ttietestimated
functions are quite accurate, even for the stiecefunctions tested
here, and for measurements with random errors. eTtiggires
present the results obtained for 999 s and 1665 s, respectively.

4400.00
4000.00 | Exact
i Esti =1
3600.00 - L stimated (n=1)
a 1 €  Estimated (1=N)
£ 3200.00 -
H ]
< 2800.00 -
o 1 4
2400.00 |
+H
i . .
2000.00 %
e .
1600.00 — . | . | . |
53.00 78.00 103.00 128.00
13
Figure 18.a. Estimated and exact heat fluxes for t= 999 s.
2400.00
2000.00 | Bxact
_ &=  Estimated (n=1)
N 4
£ €  Estimated (1=N)
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Figure 18.b. Estimated and exact heat fluxes for t= 1665 s.
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Inverse Natural Convection Problem of Simultaneous
Estimation of Two Boundary Heat Fluxes In Irregular Cavities
(Colago and Orlande, 2004)

This paper deals with the use of the Conjugate i@nadviethod
of function estimation with Adjoint Problem for tr@multaneous
identification of two boundary conditions in natureonvection
inverse problems in two-dimensional irregular dasit This is a
much more involved inverse problem solution thaat thddressed
above for forced convection. Such is the case lssgdor natural
convection, the energy equation is coupled withtiooity and
momentum equations. As a result, the counterpaftsthese
equations for the sensitivity and adjoint problears also coupled.

The unknown boundary conditions are estimated witha
priori information about their functional forms. Irregulzeometries
in the physical domain are transformed into reggl@ometries in
the computational domain by using an elliptic sceeshnumerical
grid generation. The methodology is applied to sdsgolving an
annular cavity, as depicted in Fig. 19, where tbsitpn and time
dependent heat fluxes are unknown at the inneroatet surfaces.
These two surfaces are supposed to be maintaintte atonstant
temperatured3;, andT,, respectively.

For the results presented here we considered hammaection
of air with physical propertiesg=1.19 kg/ni; 1=1.8 x 10° kg/m s;
[(=0.00341 K% Pr=0.70;K=0.2624 W/m K;Cp=1020.4 J/Kg°C.
The test-cases analyzed below correspond to a iBahyteimber of
5 x 10f, where the characteristic length used WwaR, - R;. For this
Rayleigh numberR, was taken as 54.4 mm afd as 22.9 mm,
while the temperatures at the waltsN and ;=1 were taken a§, =
30°C andT, = 20°C, respectively.

y

Q
Rz
Symmetry
Tc
é' =M |
Ry n=1
Th

Symmetry |

¢=1

Figure 19. Geometry for the irregular cavity.

We now examine the results obtained with simulate
measurements containing random errors of standewthtibn o =
0.6 °C. For this test-case, the measurements of 27 iserisoated
near each of the boundaries, were assumed avaftabllee inverse
analysis. The sensors were located 1.08 mm belewstinface at
n=1 and 1.25 mm below the surfacesatN. Figures 20.a,b show
that the estimated functions are in very good agesg with the
exact ones for such test-case, although some aismilt are
observed in the inverse problem solution, espegciadiar the sharp
variation around 2 seconds/atN (see Fig. 20.a).
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Figure 20. Results for: (a) &79, (b) t =7.5 seconds.

Optimization Problem in Magnetohydrodynamics (Cola@ et
al, 2003b; Dulikravich et al, 2003a; Dulikravich etal, 2003b;
Dulikravich et al, 2003c; Dulikravich et al, 2004)

This section presents the optimization problem dohieving
desired features of a melt undergoing solidifiaatimvolving the
application of an external magnetic field, whogetrisity and spatial
distribution are obtained by the use of a Hybridtive. The
intensities of the magnets along the boundarighefcontainer are
described as B-splines. The inverse problem is ftienulated as to
find the magnetic boundary conditions (the coedfits of the B-
splines) in such a way that the gradients of teatpee along the
gravity acceleration direction are minimized.

Transient Navier-Stokes and Maxwell equations
giscretized using the Finite Volume Method in a egafized
curvilinear non-orthogonal coordinate system. fer phase change
problems, an enthalpy formulation was used. Theecodhs
validated against analytical and numerical benckmesults with
very good agreement in both cases.

First, let us demonstrate the inverse determinatidnthe
magnetic boundary conditions that create certagaspecified flow-
field within some domain. Fig. 21 shows the geognetnd the
boundary conditions for the test cases consideesd. fThe height
and length of the square container were equallt® 8. The top and
bottom walls were kept thermally insulated. The¢ undary was
kept at a “hot” temperature while the right wallsseept at a “cold”
temperature. For the first test case, there wgshase change, since
the “hot” and “cold” temperatures were above the Itimg
temperature.
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Figure 21. Geometry and boundary conditions for MHD

The four walls were subjected to unknown magnetéatdf
distributions whose directions were made orthogdoatach wall.
In order to satisfy the magnetic flux conservatgpation

OmB=0 (55)

The following periodic conditions were imposed
By(y) = By(y) (56)
By(x) = B, (%) (57)

The objective was to minimize the natural convectdfects by
reducing the gradient of temperature along yhdirection, thus

trying to obtain a temperature profile similar twse obtained for rigyre 22 Natural convection; results of analysis

(left column) and results with optimized magnetic b
(right

pure conduction. The objective function to be miaid is then
formulated as:

Marcelo J. Colago et al
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starting from lower the left corner.

2
F= 1 #tfls al (58)
#ceells {7 | oy;
The magnetic field boundary conditions were invigrse

determined at either four or six points equallycgshalong each of
the four boundaries and interpolated using B-splifte the other
points at those boundaries. The magnetic boundaglitons atx =
0.15 m andy = 0.15 m were then obtained using the periodic
conditions from Eq. (56) and Eq. (57).

The fluid analyzed was silicon. For the first testse, the
temperature differencg,-T, was set equal to 0.65 K, which gives a
Rayleigh number of 0

Figure 22 shows streamlines, isotherms and heaédlwon all
four boundaries, predicted without any magnetiz #ipplied and no
phase change (left column), as well as streamliisetherms and
heat fluxes on all four boundaries resulting frohe toptimized
magnetic boundary conditions with six points onhedoundary.
One can see that the gradients of temperatureeig tlirection are
reduced. Figure 23 shows the optimized magnetid fimundary
conditions forx = 0 andy = 0 and Fig. 24 shows the convergencex
history of the process.
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Figure 24. Natural convection; optimization converg
estimation of B at six points per boundary.

ence history for the

As a second test case, we minimized the curvatir¢h®
isotherms in a solidifying process after a pre-djgettime from the
start of the solidification process. The tempemrtdifferenceT,-T,
was set equal to 6.5 K= 1686. K, T, = 1676.5 K) and the length
of the square container was taken as 0.069 m, whighs a
Rayleigh number of £0Thesolidusandliquidustemperatures were
equal to 1681.0 K and 1686.0 K, respectively. Thusyushy region
exists between the phases. The initial conditios set asly = T,,.
Then, the solidifying process started at the rigll, whereT = T..

Without MHD Optimized MHD

LéilO E

i

4

80—
0]

620~

63
33
ST==0.0;

R IR I

S o oo,

: |||
$ Ry 3 (|8
Z %5 @ ||of
o] S |
3 Kep]
S| 555
Sy pind

& < | TP

@ N Mol |[RN

] o O® m‘%

3 SI|[E

o l \ LS o Ll¢

© &y @ o)

Normalized isotherms
16000

Normalized isotherms
12000

12000
8000

8000

awim3
awim?)

4000
4000

[ T T T T 1 0t T T T T

1
0 20 40 60 80 100 0 20 40 60 80 100

S s
Heat fluxes along four boundarigsHeat fluxes along four boundarig

2]

Figure 25. Natural convection with solidification; results of analysis with

no magnetic field (left column) and results with op timized magnetic
boundary conditions (right column) for Ra = 10  ° . The parameter s is
measured counterclockwise along the boundaries of t he rectangular
container starting from the lower left corner.
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Figure 25 shows the streamlines, isotherms and fheas on
all four boundaries for this test case without anggnetic flux
applied, predicted at 500 seconds, (left column)wafl as the
streamlines, isotherms and heat fluxes on all fboundaries
resulting from the optimization of six B-splinesimps for the
estimation of the magnetic boundary conditions aoheboundary
(right column). The boundary conditions at the otpeints were
interpolated using B-splines. One can see thactimeature of the
isotherms is smaller than in the case without amgmetic fields
applied.

Figure 26 shows the optimized variation of the nedignfields
orthogonal tox = 0 andy = 0 boundaries. Figure 27 shows the
convergence history of the optimization process.

3.0E-3+

T 20e3-

[0}

=

= ]

< 1.0E-34

o

= 0.0E+0 —A— x=0

-1.0E-3 — T T T 1
000 002 004 006 008

Xy [m]

Figure 26. Optimized magnetic boundary conditions o
boundaries with the estimation of B at six points p
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Figure 27. Optimization convergence history for the
points per boundary in case with solidification.

estimation of B at six

Optimization Problem in Electrohydrodynamics (Cola@ et
al, 2003a; Colaco et al, 2004)

In another test case we dealt with the inverserchiation of
the electric boundary conditions that create soreespecified flow-
field features within some region. Figure 28 shéwesgeometry and
the boundary conditions for the configuration cdesed here.
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Insulated Insulated

i =9.81 m/$
g@

Th
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XV

Figure 28. Geometry and boundary conditions for EHD
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The height and length of the closed containerdillgith the
electrically conducting liquid were equal to 33.8&wmand 66.7 mm,
respectively. The vertical walls were kept thermatisulated. The
bottom boundary was kept at a “hot” temperaturdenthie top wall
was kept at a “cold” temperature. A slightly triahey temperature
profile was applied to the bottom wall in order tweate a
preferential direction for the thermally inducedid flow.

The vertical walls were subjected to unknown eiegiotential
boundary conditions. The electrically charged phet were
assumed to enter the fluid from the walls wheresileetric potential
was applied. The objective was to minimize the rataonvection
effects by reducing the gradient of temperaturegkhex direction,
thus trying to obtain a temperature profile simiiarthose obtained
for pure conduction. The objective function to b&imized was

1

then formulated as
#eells| 2
#cells .gl

The electric boundary conditions were inverselyedatned at
six points equally spaced along each of the vérticalls and
parameterized using B-splines for the other poiofs these
boundaries. In this case we considered naturalemtion of gallium
arsenide. The temperature differeNGeT, was set equal to 1.0 K,
which gives a Rayleigh number of 1.9%10

For the first test case, there was no phase chamge the “hot”
and “cold” temperatures were above the melting enetoire Ty, =
1521.5 K;T.= 1520.5 K).

Figure 29 shows the streamlines, isotherms and theats on
all four walls predicted for the first test casetheut any electric
field applied and no phase change (left columnyufé 29 also
shows the streamlines, isotherms, and heat flureth® four walls
when using six points on each vertical wall for #stimation of the
electric boundary conditions (right column). Onen csee that the
gradients of temperature in tledirection are reduced close to the
top and bottom walls. One can see that the isothetart to become
horizontal which is similar to those obtained iethravity vector
was acting in the horizontal direction.
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Figure 29. Natural convection with no solidificatio
with no electric field (left column) and results of optimized electric

boundary conditions (right column) for Ra = 1.9x10  *. The parameter s is
measured counterclockwise along the boundaries of t he rectangular
container starting from lower left corner.
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Figure 30 shows the optimized electric potentiadl &fig. 31
shows the convergence history.
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estimation of E at six points per boundary.
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Figure 31. Optimization convergence history for the estimation of E at six

points per boundary.

In a second test case, we tried to minimize theature of the
isotherms in a solidifying process after a pre-gjgettime from the
start of the solidifying process. Figure 32 shoveft (column) the
results obtained for a Rayleigh number equal talld®without any
electric field applied. In this case, the “hot” diudbld” temperatures
were equal to 1510.5 K and 1511.5 K, respectivieéigure 32 also
shows the results obtained with an optimized etegbotential
acting in the horizontal direction. Note that theotherms are
smoother than those for a case without any elefgit applied.

Figure 33 shows the optimized electric potentiadl &tg. 34
shows the convergence history for the hybrid opéni
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