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Abstract—In this paper, we consider an inverse boundary value problem for a mixed type partial
differential equation with Hilfer operator of fractional integro-differentiation in a positive rectangular
domain and with spectral parameter in a negative rectangular domain. The differential equation
depends from another positive parameter in mixed derivatives. With respect to first variable this
equation is a fractional-order nonhomogeneous differential equation in the positive part of the
considering segment, and with respect to second variable is a second-order differential equation
with spectral parameter in the negative part of this segment. Using the Fourier series method, the
solutions of direct and inverse boundary value problems are constructed in the form of a Fourier
series. Theorems on the existence and uniqueness of the problem are proved for regular values of the
spectral parameter. It is proved the stability of the solution with respect to redefinition functions, and
with respect to parameter given in mixed derivatives. For irregular values of the spectral parameter,
an infinite number of solutions in the form of a Fourier series are constructed.
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I. STATEMENT OF THE INVERSE PROBLEM

One of the most striking areas of mathematical analysis is the invention of iractional-order integro-
differential operators. Today, the theory and application of operators of fractional differentiation and
integration have become a powerful industry of theoretical and applied research at the highest levels of
different science and technology. At present, the operators of fractional differentiation and integration
are also widely used in the study of problems associated with the study of the coronavirus COVID-19
(see, for example [1, 2]).

In a rectangular domain Q = {(¢,z) : —a <t < b,0 <z <1} we consider the fractional partial
differential equation of mixed type

Dot —y &, Doy - 83) Ult,2) + A (x), (t,x) €,
S = Vol — ) UL D) + LDg(@), (L) € s,
where Q1 = {(t,z) : 0 <t <b,0<x <}, Q={(t,z): —a<t<0,0<z<I},vispositive param-
eter, w is positive spectral parameter, a, b are positive real numbers,

ad 4
Dawzjgfdtjgg, D<a<y<l1

0= (1)
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650 YULDASHEYV, KADIRKULOV

is Hilfer operator and

t
(T
Jore(t) / 1a, a>0
0

is Riemann—Liouville integral operator, fi(t) € C[0;b], f2(t) € C[—a;0], g;(x) € C|0;1] are redefinition
functions, ¢ = 1, 2.

Problem IT, . It is required to find a triple of functions {U (¢, x), g1(z), g2(x)}, which belongs to
the class

P e o), IV eC(), DYU e (),
Up,Upe € C(QUQ), k=0,1,2, (2)
gi(x) € C[0;1], i=1,2;

satisfies equation (1) in the domain €, U §25, boundary value conditions

Ut @) |z=0 =U(t, @) o= =0, t#0, (3)
gluing conditions
d 1 d
IRT : -« 0l —
tngrrl J0+ Ult,z) = tgrilo Ul(t,z), tkgrlo Jor &t J0+ Ult,z) = hm o di Ul(t,z) (5)
and additional integral conditions
/el(t)tl—’YU(t,x)dt —(x), 0<z<l, (6)
/@2 Ut 2)dt = a(z), 0<a <L, (7)

where (), ¥;(x) are given sufficiently smooth functions, ©1(t) € C[0;b], ©2(t) € C[—a;0],i = 1,2.

The generalized integro-differentiation operator D7 is a continuous interpolation of the well-known
fractional order differentiation operators of Riemann—Liouville and Caputo, which describe diffusion
processes [2, vol. 1, 47—85]. A physical and engineering interpretation of the generalized fractional
operator D7 is given in [2, vol. 4=8], [3—7]. In[4], in particular, were provide results on the existence
and representation of solution to an initial value problem for the general ordinary linear fractional
differential equation with generalized Riemann—Liouville fractional derivatives and constant coefficients
by using operational calculus of Mikusinski type. In[8], the problem of source identification was studied
for the generalized diffusion equation with operator D®?. In the work [9] the inverse problems are
investigated for a generalized fourth-order parabolic equation with the operator D®7.

Note that boundary value conditions of the type (3) take place in modeling problems of the flow around
a profile by a subsonic velocity stream with a supersonic zone. Nonlocal boundary value problems for
different type of equations were studied in the works of many authors, in particular, in [10—16].

In our work, unlike mixed parabolic-hyperbolic equations, the problem of small denominators does
not arise. In addition, in our solvability problem we impose conditions that are weaker than in the case
of corresponding parabolic-hyperbolic equations. In this paper, we consider an inverse boundary value
problem for a mixed type fourth-order differential equation with Hilfer operator of fractional integro-
differentiation and spectral parameter. The Fourier method of separation of variables is used taking into
account the features of the fractional integro-differentiation operator. We study the solvability of the
problem (1)—(7) for various values of the spectral parameter. We prove the stability of the solution with
respect to redefinition functions and with respect to parameter given in mixed derivatives. This work is a
further development and generalization of the results of [17—19].
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INVERSE BOUNDARY VALUE PROBLEM 651

We consider the Cauchy problem for a nonhomogeneous differential equation of fractional order

DVu(t) = ku(t) + f(t), te€ (0,t1), ®)
: 1—y _
tkglo Jor Tu(t) = o,
where f(t) is given continuous function, ug = const.

Lemma 1. Let be f(t) € C(0;t1) N L1(0;t1). Then the solution of the problem (8) u(t) €
C(0;t1) N L1(0;ty) is represented as follows

t
u(t) = upt’ " By ( k#”+—/ﬂ ) Baa (k(t = 7)%) f(7)dr, (9)
0
where
o Zm
Eoqy(2) = mZ::O Iam + 1)’ z,a,7 € C, Re(a)>0

is Mittag-Leffler function [2, vol. I, 269—295].

In [9], the Laplace method was applied to prove this Lemma 1. In [4] a solution was found using
operational calculus for a more general problem than (8) in a specially constructed functional space. We
note that there is a more rational way to solve this problem (8), which allows us to obtain an explicit
solution (9) (see [20]).

2. FORMAL EXPANSION OF THE SOLUTION OF THE DIRECT PROBLEM
INTO FOURIER SERIES

The solution of the differential equation (1) in the domain € is sought in the form of a Fourier series

n=1
where
l
2 nmw
un(t) = /U(t,x)z?n(ac)d:r:, In(x) = \/l S fin®,  pn =, N eN. (11)
0
We suppose also
= gimln(z), i=12, (12)
n=1

1
where gin, = [ gi(x)0y(x)dz. Substituting series (10) and (12) into equation (1), we obtain a countable
0

systems of differential equations

DYy (t) + X2 (V) un(t) = f(t)gin, t >0, (13)
U (1) + An ()W un(t) = fo(t)gan, T <0, (14)
where \2(v) = 14:?/1%’ pn =", n € N. Taking (11) into account from the conditions (5) we obtain

l

2 .
tl—1>r—rl—10 JOJr Tun(t) = \/l /tl_1)r£0 J0+ TU(t, ) sin ppzde

0
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l

2 . . .
= \/l /tl_1>I£10U(t,a:) sin ppxdr = tgrilo un (1), (15)
0
1
lim Ji“ d Jo Tun(t) = \/2 lim Ji d Jo YU (t, @) sin ppads
=40 0T g "0+ " 1) t=5+0"0F gt=0F ’ Hn
0
2 / d d
= \/l /tl_lglo dtU(t,a:) sin ppxdr = tgrilo dtun(t). (16)
0
Analogously we find from (4) that
Un(—a) = up(b) + ¢n, (17)

where
l

2
Onp = \/l /gp(m) sin ppxdr, n=1,2,..

0

Applying Lemma 1 to (13) and variation method of arbitrary constants to (14), we obtain the general
forms of solutions

up (t,v) = Alntw_lECW (—Ai(u)to‘) + ginhin(t,v), t>0, (18)
U (t,v) = Agp sin A\, (V)wt + Asy, cos A\ (V)wt + gonhon(t,v), t <0, (19)

where A;, are arbitrary constants, i =1,3,n=1,2, ...,

B (t ) = / (t — )" Eaa (“A20)(t — )% f1(s)ds,
0

hon(t,v) = )\n(ly)w /sin)\n(u)w(t — 5) fa(s)ds.
0

Taking into account that hy,(0) = he,(0) = 0 and satisfying functions (18) and (19) to conditions
(15) and (16), we obtain the following systems of algebraic equations

An (V)

A2n = - Alna A3n = Aln- (20)

Applying the condition (17) and representation (20) to (18) and (19), we derive
A o ©®n + glnhln(b) - g2nh2n(_a)

n = A o) , (21)
if there holds the condition
Aop(w,v) = Ay (V)w ™t sin A, (v)wa + cos Ay (V)wa — b7 L E, (—A%(U)bo‘) # 0. (22)

Substituting (21) into (20), for (18) and (19) we obtain the representations

un(t,v,w) = Eunin(t, v,w) + ginNon(t, v, w) + gannzn(t,v,w), t >0, (23)

un (t,v,w) = enéin(t, v,w) + ginon(t, v,w) + gansn(t,v,w), t <0, (24)
where

-t
Mn(t, v, w) = Eopy (=20 0)t%),

Agp(w, )
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INVERSE BOUNDARY VALUE PROBLEM 653
772n(t’ v, w) = hln(t’ V) + hln(b’ V)nln(t7 v, w),

773n(t7 v, w) = _hQn(_av V)Tlln(tv v, w),

Ein(t,v,w) = (sin A, (v)wt + cos Ay, (V)wt) ,

1
Aon(u}, I/)
£2n(t7 v, w) = hln(b7 V)gln(ta v, w)7 £3n(t7 v, w) = h2n(t7 V) + h2n(_a7 V)gln(ta v, w)-

Substituting representations (23) and (24) into the Fourier series (10), we obtain

Ult,x,v,w) Zﬁ [gonmn (t,v,w) + ginNon(t, v,w) + gonnzn(t, v w)] (t,z) € Q, (25)

U(t,z,v,w) 219 [gon&n (t,v,w) + ginlon(t, v, w) + gonlsn(t,v w)] (t,z) € Qo. (26)

To establish the uniqueness of the solution U (¢, x, v, w) of the direct problem (1)—(5) we suppose that
there are two solutions Uy and Us of this direct problem. Then their difference U = U; — Us is a solution
of equation (1), satisfying conditions (2)—(5) with functions ¢(x) = 0. Then for ¢,, = 0 it follows from
representations (25) and (26) in the domain €2 that

!
/tl_”’U(t,x, v,w)iy(x)de =0, (t,x) € Q,
0

l
/U(t,a:,u,w)ﬁn(ac)da: =0, (t,x)€ Q.

Hence, by virtue of the completeness of the system of eigenfunctions {,,(z)} in L2(0;1), we deduce that
U(t,z,v,w) =0forallz € [0;]] and t € [—a3b].

Since t1U(t, x,v,w) € C (Ql) Uz, v,w) € C (Qg), then t!=7U (¢,x,v,w) = 0 in the domain
Q. Therefore, the solution of direct problem is unique in the domain . Thus, we have proved that the
following theorem holds:

Theorem 1. Suppose that there exists a solution of the direct problem (1)—(5). Then this
solution is unique, if condition (22) is fulfilled for alln € N.

Now we consider the case, when condition (22) is violated. Let Ag;,(w,v) = 0 beforallw, vy € (0;1).
Then the direct problem (1)—(5) (¢ (z) = 0) for fixed values of the redefinition functions has nontrivial
solutions

Vin(t,2) = vy (D) (z), (t,z) € Q, (27)
where

om(t) = O Eoy (AL (W) + ginhin(t), >0,
" sin A\, (V)wt + cos A\, (V)wt + gophan(t), ¢ <O0.

From the condition Ag, (w, ) = 0 we come to the trigonometric equation

\/1 + Ai(;) sin (An(1V)wa + pn) = b7 Bay (A5 (0)0") =0, (28)

where p,, = arcsin <\/w2+/\%(y)>. Hence we obtain, that the quantity Ag, (w) vanishes at
wb‘*‘lEow (—A%(U)bo‘)
Vw? + X2 (v)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol.42 No.3 2021
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654 YULDASHEYV, KADIRKULOV

The set of positive solutions & of trigonometric equation (28) with respect to spectral parameter w
is called a set of irregular values of the spectral parameter w. The set of the remaining all values of the
spectral parameter X = (0; 00)\S is called a set of regular values of the spectral parameter w. For all
regular values of the spectral parameter w the quantity Ao, (w, v) is nonzero. So, for large n the values
of Ag,(w,v) can not become quite small and there the problem of “small denominators” does not arise.
Therefore, for regular values of the spectral parameter w the quantity Ay, (w, v) is separated from zero.

Indeed, from the relations A2 (v) = 14:5202 ,pn = "F wesee that A2(v) — L asn — oo. So, for regular
values of the spectral parameter w we have

1 be
nh_)IEO App(w,v) = o sin \C/uya + cos \C/Uya — b“*‘lEomY <— , > £ 0.

Lemma 2. Suppose that v € (0;1], a, b are arbitrary positive real numbers. Then for regular
values of the spectral parameter w and for arbitrary n there exists a positive constant My such
that there holds the following estimate

|Aon(w,v)| = Mo > 0. (29)

Proof. From (28) for all n and a, b > 0 we derive

Bl 2 |yf14+ 80 i, (0087 2 1By (-X200)).

We use the following properties of the Mittag-Leffler function [2, vol. 1, 269—295]:

1) Forallk >0, a, v € (0;1], a < 7, t > 0 the function 771 E,, , (—kt®) is completely monotonous
and there holds

(-1 [ 1B, (—k‘ta)](”) >0, n=012,.. (30)
2)Foralla € (0;2), v € R and arg z = 7 there takes place the following estimate
My
Eoy(2)l < : 31
Eanll < o1y

where 0 < M; = const does not depend from z.
Then, from (30) and (31) implies that there exists a number My such that

|1 =" Eqy (—A2()b%)| = Mo > 0.

Consequently, for regular values of the spectral parameter w there takes place (29): |A,,(w)| > My > 0.
Lemma 2 is proved. 0

3. REDEFINITION FUNCTIONS
We apply the conditions (6) and (7) to Fourier series (25) and (26), respectively:

o b
bi(@) = 0n(a) / (1)
n=1 0

X [onmin(t, v, w) + gintzn (t, v,w) + gonnsn(t, v,w)] dt, (32)
- 0
vala) = 3 0a(a) [ €20
n=1 4
X [on&in(t, v, w) + g1non(t, v, w) + gonlsn(t, v, w)] dt. (33)
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INVERSE BOUNDARY VALUE PROBLEM 655

We suppose here that

n=1
l
where ¢, = [ ¢;(x)0,(z)dz. Substituting Fourier series (34) into (32) and (33), we obtain
0

b
7[)111, = f @1(t)tl_’y X [%ﬂ?ln(t, v, (,4.)) + 91n772n(75, v, (,4.)) + 92n773n(75, v, Ld)] dt7
0

0
7[)211, = f 62(t) [@n&n(t, v, W) + gln£2n (t7 v, (,4.)) + 927153” (t7 v, Ld)] dt.

This system of equations we rewrite as

JinXizn (Vs w) + g2nXizn(V;w) = Yin — OnXim(V,w), i=1,2, (35)

where

b

len(yaw) = /Gl(t)tl_fyﬂ]n(ty V,W)dt, j: 172737
0

0
Nogn (1)) = / Oa (D)t vow)dt, j—=1,2,3.

—a

From the system (35) we determine the Fourier coefficients of redefinition functions

gln(Va w) = Aln(l% w) [QonTln(Va w) + ¢1HX23H(V7 w) - ¢2nX13n(V7 w)} 5 (36)
gon(V,w) = AM;U’ W) {Qon7—2n(ya w) — Y1nXx22n (VW) + Yo X120 (Vs w)} , (37)

if there fulfilled condition

App(v,w) = X120 (v, w) X230 (V, W) — X130 (V, W) X220 (v, w) # 0, (38)

where

Tln(V,CU) = X21n(V7w)Xl3n(l/7w) - Xlln(yaw)XQSH(V7w)7

7_2n(7/7w) = X11n(V,w)X22n(V, w) - X21n(V7 W)X12n(7/7w)'

Substituting presentations (36) and (37) into Fourier series (12), we found the redefinition functions

(@ vw) =) Af”((f)w) [PnTin (v, w) + Y1n X230 (V,) = Y xaan (v, )] ; (39)
n—1 n 9
[ere} 19”

galavw) =3\ ((f)w) [onTon (v, w) = Y1n X220 (V,) + Y2 x120 (v, ) (40)
n=1 nAT

4. CONVERGENCE OF REDEFINITION FUNCTIONS
Condition A. Let be
p(z) € C*0;1),  ©"V)(z) € L(0;1),  (0) = (1) =0,
bi(z) € C30;1), vV (z) e LO;D), i=1,2.
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Then, by integrating in parts desired number of times over the variable z of the integrals

y l
e 0/ (@)U (@)d, Yin = 0/ Ui ()0 (x)dz, i=1,2,

we obtain

Yim = LIV = / I (3 v, =12

Bessel inequalities are true here

i</,

n=1

i 2 / WV c, i=1,2.

n=1 0

(44)

Theorem 2. Let conditions A and (38) are fulfilled. Then for regular values of the spectral

parameter w the Fourier series (39) and (40) are convergent absolutely and uniformly.

Proof. We prove the absolutely and uniformly convergence of series (39). The absolutely and
uniformly convergence of series (40) is proved similarly. Taking Lemma 2 into account by the aid of

(41)—(44) we obtain

91 (2, v,w)| < Mg\/ [Z 1| + Z [an] + Z \son]

_ [Z[”V} ;[apé,i] Z[“V}]
_ Ml /WW%ﬁw
l °l
. / o)+ 0/[¢<IV>< P de| < oo
where
My =g { St anto ) | Do)

Theorem 2 is proved.
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5. EXISTENCE OF THE FUNCTION U(t,z,v)

Substituting representations (36) and (37) into the Fourier series (25) and (26), respectively, we
obtain

t ZT,V, W Zﬂn Spnelln t v, W) +¢1n912n(t v, W) +¢2n913n(t v w)] (tvl‘) € Qh (45)
n=1

o0

Ult,x,v,w) Zz?n [onb21n (t, v, w) + Y1000 (t, v, w) + Yon a3, (t, v, w)],  (t,z) € Qo, (46)

where
n t, V) w n t, I/, w
O11n(t, v, w) = Mma(t, v, w) + nzl( (v w)) 1n(v,w) + 7721( (v w)) Ton (V, w),
Mo (£, v, w) _ Man(t,v,w)
O12n(t, v,w) = Atn(v,w) X23n (v, w) Ain(v,w) Xa2n (V, w),
. _T]Qn(t,l/,W) 773n(t7 I/,CU)
913n(t7 V? U.)) - Aln(l/7 (,U) X131’L(V7 U.)) + A]_n(y,w) X12?’L(U7 w)?
n t; V; w n t, V, w
ot ) = (b)) 1 S ),
§2n(t v, CU) €3n(t7 I/,CU)
0 nt n 9 - n 9 bl
22n (b, v, w) = A (v,0) 2 (v,w) A (v,0) 22 (v,w)
o €2n(t7 V,LU) €3n(t7 V,LU)
9237’L(t7 V7w) - Aln(V,CL)) X137’L(V7 CU) + Aln(l/7 (,U) X].QTL(V7 CU)

Theorem 3. Let conditions A and (38) are fulfilled. Then for regular values of spectral
parameter w the Fourier series (45) and (46) are convergent absolutely and uniformly. The series
(45) and (46) possess the properties (2).

Proof. It is easy to check that for regular values of the spectral parameter w there hold for ¢ € [0; 8]
7 Jun(t, v, w)| < Cr (lonl + [Y1al + [2l) (47)

7 DYy (8, v, w)| < Co (|@nl + [W1a] + [¢20]) (48)
and fort € [—a; 0]
|un(t, v, w)| < Cs ([n| + [Y1n| + [Y2n])

dun(fi,tl/,w)‘ < Cy (|90n| + |’(/11n| -+ |1[)2n|) , (49)
2
d unc(;;%w)‘ < C5 (Jon| + [Y1n] + [¥2n]) (50)

where C, k = 1,5 are positive constants.

Now formally differentiating term-by-term the series (45) and (46) the required number of times, we
obtain the series

DU (L, 2, v,w) = Ztl_VDa”un(t, v,w)iy(x), (t,x) € Qy, (o1)

n=1
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658 YULDASHEYV, KADIRKULOV

= (=DM Tt v wpgdn(a), k=12, (ta) €, (52)

Ok &
*U(t,z,v,w) S dPup (t, v, w)
ot2 - nz::l d2 Un(x), (L) € Qa, (53)
k o0
0 U(g;]; V,w) = (_1)k+1 Z un(t, V,(A))/,Lflﬁn(l’), k= 17 27 (t’x) c Q2' (54)
n=1

As the case of proof of Theorem 2, it is easy to check the convergence of series (45), (46) and (51)—(54),
using the properties (41)—(44) and (47)—(50).

Therefore, for regular values of the spectral parameter w the function U(¢t, z, v, w), represented by
series (45) and (46), possesses properties (2) and satisfies conditions (3)—(7). This is finished the proof
of the theorem 3. O

6. STABILITY OF THE SOLUTION

For regular values of the spectral parameter w we consider the question of the stability of the solution
of the inverse boundary value problem IT,,,, with respect to the redefinition functions g;(z),7 = 1,2 and
with respect to parameter v. To this end, we introduce the norm in the space of continuous functions as
follows

||U(t,a:,1/,w)||c(m: max ‘tl_vU(t,a:,V,w)H— max |U(t,z,v,w)|.
(t,x)EN (t,x)EN2

6.1. Stability with Respect to Redefinition Functions

Theorem 4. Suppose that all the conditions of theorem 2 are fulfilled. Then, the solution of the
problem IT, , for regular values of the spectral parameter w is stable with respect to redefinition
functions g;(x),1 =1, 2.

Proof. We show that the solution of the mixed differential equation (1) U(¢,x,v,w) is stable with
respect to redefinition functions g;(z),i =1,2. Let Uy(¢t,x,v,w) and Us(t,x,v,w) be two different
solutions of the inverse boundary value problem IT, ,, corresponding to two different values of the
functions g11(x), g12(z) and ga1 (), g22 ().

We put that |g11n, — g12n] < 010, [921n — 922n| < 02y, Where 0 < &, are sufficiently small quantities

and the series > |d;n| are convergent, ¢ = 1,2. Then, taking this fact into account, by virtue of the

conditions of the_theorem, from (25) and (26) we see that

max |t1_ﬂ/U(t,x, V,w)‘ S 06 Z (|glln - 912n| + |g2ln - g22n|)
(t,z)EQl n—1
< Cs Z (1610 + [02n]) ,
n=1
max |U(t,z,v,w)| < C?Z (lg11n — g120] + |g210 — g22n1)
(t,r)GQQ n=1
< C7 Y (161n] + 162n])
n=1
||U1(t,$,l/,(,d) - UQ(tvwvva)HC(Q) < 08 Z (|51n| + |52n|) ;
n=1
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where 08 = 06 + 07, CG = maX{C’G 13 06 25 06 3} 07 = max{C’7 13 07 25 07 3}

Cs.i = max max |t “Tnin(t, v, w)‘ Cri= max max |£m(t v,w)|, i=1,2,3.

By virtue of these estimates we finally obtain assertions on the stability of the solution of differential
equation (1) with respect to redefinition functions g;(x),i = 1,2, if we put e = Cs > (|01n] + |020]) -
n=1

The Theorem 4 is proved. 0

6.2. Stability with Respect To Parameter v

Now we show that the solution of the mixed differential equation (1) U (¢, x, v, w) is stable with respect
to a given parameter v.

Theorem 5. Suppose that all the conditions of theorem 2 are [ulfilled. Then, the solution of
the problem IT,,, [or regular values of the spectral parameter w is stable with respect to given
parameter v.

Proof. Let Uy(t,x,v,w) and Us(t,x,v,w) be two different solutions of the inverse boundary value
problem IT, ,, corresponding to two different values of the parameter vy and vy, respectively. We put

that |1y — 1»| < 8, where 0 < § is sufficiently small real number. By virtue of A\2(v) = 1J§M2 , we derive

the following estimates
thn(ta Vl) - hln(ta V2)H < m?X/ ‘(t - S)Oé_lfl(S)‘ . ‘Ea,a (—)\%(Vl)(t — S)Q)
0
— Eoo (—)\%(W)(t - S)o‘)| ds < Oy |>\%(U1) - A%(Ug)‘

Vo 9
< Cy 9
dvl+uvps

V1

[[han(t, v1) — hon(t, v2)|
)

< Cho|lv1 — 1a;

sin A\, (r1)w(t —s)  sin\,(v2)w(t — s)

ds
)\n(Vl) An V2)

V2

/ ddy sin A\, (V)w(t — s)

V1

+ Cll

] ds < Cia|v1 — 1l

[| A (1) sin Ay, (11 )wt — Ay (v2) sin Ay, (v2)wt|| < max [[An(r1) — Ap(v2)] sin Ay, (vo )wi|

+

n(v1) max [sin Ay, (v1)wt — sin )\n(l/g)wt]‘ < Cizlvn — 19|,
where Cy, Cy, ..., C13 are constants. Similarly, we can show that the following estimate is also valid
||9ijn(t7 1/1,(,4.)) — Gijn(t, 1/2,(,4.))|| < 014 |I/1 — I/2| s 014 = COHSt, 1= 1, 2, ] = 1, 2, 3.
Therefore, for series (45) and (46) we obtain
||U1(t7$7 Vaw) - U2(t7$7 Vyw)HC
< 0 [0 s #9576 g = 0]y 11—
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< Cs [Hsoav H cou H% H cog T sz H [o;l]] >
where Cy5 is constant. If we put
e=Crs [HSO(W Ho[oz Hw(w H o) Hw(w H [O;IJ >

then we obtain
||U1(t,(13,1/,(x)) - U2(t7x7y7w)|‘C(Q) <e

The Theorem 5 is proved. 0

7. IRREGULAR VALUES OF SPECTRAL PARAMETER w

We note that A,,(w,v) =0 for irregular values of the spectral parameter w and m = kq, ..., ks
(v # 1). Then, for the solvability of systems (18) and (19), it is necessary and sufficient that the
orthogonality conditions are satisfied

Om = /go(:r)z?m(:n)dzr = 0. (55)
0
In this case, by virtue of (27) the solutions of direct problem are represented as the sum of the series

Z ConIm () [ Egry (=2, (0)t%) + gimbam(t, V)], (t,x) € Qu, (56)

= Z CrnOm () [sin Ay, (V)wt 4 €08 A (V)wt + gamhom (8, V)], (t,x) € Qa,  (57)

where m = k1, ..., ks, C,, are arbitrary constants.

For irregular values of the spectral parameter w and for some m = ky, ..., ks direct problem has an
infinite number of solutions in the form of series (56) and (57). The solvability condition is formula (55).
Substituting Fourier series (56) and (57) into (6) and (7), respectively, we obtain

= i CnOpm ()
. m=1
X /el(t)tl_“* [ By (=22, (W) + gimbam(t, V)], (t2) € 4, (58)
0
= i CrnVm ()
; m=1
X /@g(t) [sin A, (V)wt + cos A, (V)wit + gomhom (t, V)], (¢, x) € Qo, (59)

—a

where m = kq, ..., k.
By virtue of (34), from (58) and (59) we derive coefficients of redefinition functions

b
wlm - Cm f el(t)Ea;y (_)\gn(y)ta) dt
’ ) (60)

gim = O1m =

b
Cr [ ©1()t1 Y hap (t,v)dE
0
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0
Yom — Cry [ O2(t) (sin Ay (V)wt + cos A (V)wt) dt
92m = Oom = I : (61)
Cm | ©2(t)hom(t,v)dt

—a

where
b

0
/el(t)tl_“’hlm(t, v)dt # 0, /@Q(t)hgm(t, v)dt # 0. (62)

0 —a

Substituting Fourier coefficients (60) and (61) into series (12), (56) and (57) we obtain Fourier series
for redefinition functions g1 (), g2(x) and for main unknown function U (¢, x):

gi(z) = i OCimIm(z), 1=1,2; (63)
m=1

U(t,z) = Y Conlm()
m=1

X [ Boy (=X (0)E%) + oimham(t )] (8,2) € Qu, (64)

Ut,z) = Y Conlm()
m=1
X [sin A, (V)wt 4 cos A\, (V)wt + gophon(t, V)], (¢, ) € Qa, (65)
where m = k1, ..., ks and C,,, are arbitrary constants.

The absolutely and uniformly convergence of obtained series (63)—(65) is clear. Because C,, are
arbitrary numbers. Them we can select so that these series (63)—(65) converge. The coefficients 1,
and g, in (60) and (61) are satisfy the properties (42) and (44).

8. CONCLUSIONS

We studied the inverse boundary value problem I7}, ., with following assumption
pl(z) € CPl0:1], 0" (x) € L(051),  (0) = (1) =0,
vi(z) € Cl0l), v () € L(0s1), i=1,2

I these conditions and (38) are fulfilled, then the inverse boundary value problem IT,,, is uniquely
solvable for regular values of the spectral parameter w € X and this solution is represented in the form of
the Fourier series (39), (40) and (45), (46) in the domain €.

For irregular values of the spectral parameter w € & and for some m = ki, ..., ks inverse problem
IT, , has an infinite number of solutions in the form of series (63)—(65), if there the condition (62) is
fulfilled. The solvability condition is formula (55).

For regular values of the spectral parameter w we studied also the questions of the stability of the
solution of the inverse boundary value problem I7, ,, with respect to the redefinition functions g;(z),
g2(z) and with respect to parameter v.
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