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Abstract—In this paper, we consider an inverse boundary value problem for a mixed type partial
differential equation with Hilfer operator of fractional integro-differentiation in a positive rectangular
domain and with spectral parameter in a negative rectangular domain. The differential equation
depends from another positive parameter in mixed derivatives. With respect to first variable this
equation is a fractional-order nonhomogeneous differential equation in the positive part of the
considering segment, and with respect to second variable is a second-order differential equation
with spectral parameter in the negative part of this segment. Using the Fourier series method, the
solutions of direct and inverse boundary value problems are constructed in the form of a Fourier
series. Theorems on the existence and uniqueness of the problem are proved for regular values of the
spectral parameter. It is proved the stability of the solution with respect to redefinition functions, and
with respect to parameter given in mixed derivatives. For irregular values of the spectral parameter,
an infinite number of solutions in the form of a Fourier series are constructed.
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1. STATEMENT OF THE INVERSE PROBLEM

One of the most striking areas of mathematical analysis is the invention of fractional-order integro-
differential operators. Today, the theory and application of operators of fractional differentiation and
integration have become a powerful industry of theoretical and applied research at the highest levels of
different science and technology. At present, the operators of fractional differentiation and integration
are also widely used in the study of problems associated with the study of the coronavirus COVID-19
(see, for example [1, 2]).

In a rectangular domain Ω = {(t, x) : −a < t < b, 0 < x < l} we consider the fractional partial
differential equation of mixed type

0 =

⎧
⎨

⎩

(
Dα,γ − ν ∂2

∂x2D
α,γ − ∂2

∂x2

)
U(t, x) + f1(t)g1(x), (t, x) ∈ Ω1,

(
∂2

∂t2 − ν ∂4

∂t2∂x2 − ω2 ∂2

∂x2

)
U(t, x) + f2(t)g2(x), (t, x) ∈ Ω2,

(1)

where Ω1 = {(t, x) : 0 < t < b, 0 < x < l}, Ω2 = {(t, x) : −a < t < 0, 0 < x < l}, ν is positive param-
eter, ω is positive spectral parameter, a, b are positive real numbers,

Dα,γ = Jγ−α
0+

d

dt
J1−γ
0+ , 0 < α ≤ γ ≤ 1

*E-mail: tursun.k.yuldashev@gmail.com
**E-mail: kadirkulovbj@gmail.com

649
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is Hilfer operator and

Jα
0+ϕ(t) =

1

Γ(α)

t∫

0

ϕ(τ)dτ

(t− τ)1−α
, α > 0

is Riemann–Liouville integral operator, f1(t) ∈ C[0; b], f2(t) ∈ C[−a; 0], gi(x) ∈ C[0; l] are redefinition
functions, i = 1, 2.

Problem ITITIT ν,ω. It is required to find a triple of functions {U(t, x), g1(x), g2(x)}, which belongs to
the class

⎡

⎢
⎢
⎢
⎣

t1−γ ∂kU
∂xk ∈ C(Ω1),

∂kU
∂xk ∈ C(Ω2), Dα,γU ∈ C(Ω1),

Utt, Uxx ∈ C(Ω1 ∪ Ω2), k = 0, 1, 2,

gi(x) ∈ C[0; l], i = 1, 2;

(2)

satisfies equation (1) in the domain Ω1 ∪ Ω2, boundary value conditions

U(t, x) |x=0 = U(t, x) |x=l = 0, t �= 0, (3)

U(−a, x) = U(b, x) + ϕ(x), 0 ≤ x ≤ l, (4)

gluing conditions

lim
t→+0

J1−γ
0+ U(t, x) = lim

t→−0
U(t, x), lim

t→+0
J1−α
0+

d

dt
J1−γ
0+ U(t, x) = lim

t→−0

d

dt
U(t, x) (5)

and additional integral conditions
b∫

0

Θ1(t)t
1−γU(t, x)dt = ψ1(x), 0 ≤ x ≤ l, (6)

0∫

−a

Θ2(t)U(t, x)dt = ψ2(x), 0 ≤ x ≤ l, (7)

where ϕ(x), ψi(x) are given sufficiently smooth functions, Θ1(t) ∈ C[0; b], Θ2(t) ∈ C[−a; 0], i = 1, 2.
The generalized integro-differentiation operator Dα,γ is a continuous interpolation of the well-known

fractional order differentiation operators of Riemann–Liouville and Caputo, which describe diffusion
processes [2, vol. 1, 47–85]. A physical and engineering interpretation of the generalized fractional
operator Dα,γ is given in [2, vol. 4–8], [3–7]. In [4], in particular, were provide results on the existence
and representation of solution to an initial value problem for the general ordinary linear fractional
differential equation with generalized Riemann–Liouville fractional derivatives and constant coefficients
by using operational calculus of Mikusinski type. In [8], the problem of source identification was studied
for the generalized diffusion equation with operator Dα,γ . In the work [9] the inverse problems are
investigated for a generalized fourth-order parabolic equation with the operator Dα,γ .

Note that boundary value conditions of the type (3) take place in modeling problems of the flow around
a profile by a subsonic velocity stream with a supersonic zone. Nonlocal boundary value problems for
different type of equations were studied in the works of many authors, in particular, in [10–16].

In our work, unlike mixed parabolic-hyperbolic equations, the problem of small denominators does
not arise. In addition, in our solvability problem we impose conditions that are weaker than in the case
of corresponding parabolic-hyperbolic equations. In this paper, we consider an inverse boundary value
problem for a mixed type fourth-order differential equation with Hilfer operator of fractional integro-
differentiation and spectral parameter. The Fourier method of separation of variables is used taking into
account the features of the fractional integro-differentiation operator. We study the solvability of the
problem (1)–(7) for various values of the spectral parameter. We prove the stability of the solution with
respect to redefinition functions and with respect to parameter given in mixed derivatives. This work is a
further development and generalization of the results of [17–19].
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INVERSE BOUNDARY VALUE PROBLEM 651

We consider the Cauchy problem for a nonhomogeneous differential equation of fractional order
⎧
⎨

⎩

Dα,γu(t) = ku(t) + f(t), t ∈ (0, t1),

lim
t→+0

J1−γ
0+ u(t) = u0,

(8)

where f(t) is given continuous function, u0 = const.

Lemma 1. Let be f(t) ∈ C(0; t1) ∩ L1(0; t1). Then the solution of the problem (8) u(t) ∈
C(0; t1) ∩ L1(0; t1) is represented as follows

u(t) = u0t
γ−1Eα,γ (kt

α) +

t∫

0

(t− τ)α−1Eα,α (k(t− τ)α) f(τ)dτ, (9)

where

Eα,γ(z) =

∞∑

m=0

zm

Γ(αm+ γ)
, z, α, γ ∈ C, Re(α) > 0

is Mittag-Leffler function [2, vol. 1, 269–295].
In [9], the Laplace method was applied to prove this Lemma 1. In [4] a solution was found using

operational calculus for a more general problem than (8) in a specially constructed functional space. We
note that there is a more rational way to solve this problem (8), which allows us to obtain an explicit
solution (9) (see [20]).

2. FORMAL EXPANSION OF THE SOLUTION OF THE DIRECT PROBLEM
INTO FOURIER SERIES

The solution of the differential equation (1) in the domain Ω is sought in the form of a Fourier series

U(t, x) =

∞∑

n=1

un(t)ϑn(x), (10)

where

un(t) =

l∫

0

U(t, x)ϑn(x)dx, ϑn(x) =

√
2

l
sinμnx, μn =

nπ

l
, n ∈ N. (11)

We suppose also

gi(x) =

∞∑

n=1

ginϑn(x), i = 1, 2, (12)

where gin =
l∫

0

gi(x)ϑn(x)dx. Substituting series (10) and (12) into equation (1), we obtain a countable

systems of differential equations

Dα,γun(t) + λ2
n(ν)un(t) = f1(t)g1n, t > 0, (13)

u′′n(t) + λ2
n(ν)ω

2un(t) = f2(t)g2n, t < 0, (14)

where λ2
n(ν) =

μ2
n

1+νμ2
n

, μn = nπ
l , n ∈ N. Taking (11) into account from the conditions (5) we obtain

lim
t→+0

J1−γ
0+ un(t) =

√
2

l

l∫

0

lim
t→+0

J1−γ
0+ U(t, x) sin μnxdx

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 3 2021



652 YULDASHEV, KADIRKULOV

=

√
2

l

l∫

0

lim
t→−0

U(t, x) sin μnxdx = lim
t→−0

un(t), (15)

lim
t→+0

J1−α
0+

d

dt
J1−γ
0+ un(t) =

√
2

l

l∫

0

lim
t→+0

J1−α
0+

d

dt
J1−γ
0+ U(t, x) sin μnxdx

=

√
2

l

l∫

0

lim
t→−0

d

dt
U(t, x) sin μnxdx = lim

t→−0

d

dt
un(t). (16)

Analogously we find from (4) that

un(−a) = un(b) + ϕn, (17)

where

ϕn =

√
2

l

l∫

0

ϕ(x) sin μnxdx, n = 1, 2, ...

Applying Lemma 1 to (13) and variation method of arbitrary constants to (14), we obtain the general
forms of solutions

un (t, ν) = A1nt
γ−1Eα,γ

(
−λ2

n(ν)t
α
)
+ g1nh1n(t, ν), t > 0, (18)

un (t, ν) = A2n sinλn(ν)ωt+A3n cos λn(ν)ωt+ g2nh2n(t, ν), t < 0, (19)

where Ain are arbitrary constants, i = 1, 3, n = 1, 2, ...,

h1n(t, ν) =

t∫

0

(t− s)α−1Eα,α

(
−λ2

n(ν)(t− s)α
)
f1(s)ds,

h2n(t, ν) =
1

λn(ν)ω

t∫

0

sinλn(ν)ω(t− s)f2(s)ds.

Taking into account that h1n(0) = h2n(0) = 0 and satisfying functions (18) and (19) to conditions
(15) and (16), we obtain the following systems of algebraic equations

A2n = −λn(ν)

ω
A1n, A3n = A1n. (20)

Applying the condition (17) and representation (20) to (18) and (19), we derive

A1n =
ϕn + g1nh1n(b)− g2nh2n(−a)

Δn(ω)
, (21)

if there holds the condition
Δ0n(ω, ν) = λn(ν)ω

−1 sinλn(ν)ωa+ cos λn(ν)ωa− bγ−1Eα,γ

(
−λ2

n(ν)b
α
)
�= 0. (22)

Substituting (21) into (20), for (18) and (19) we obtain the representations

un(t, ν, ω) = ϕnη1n(t, ν, ω) + g1nη2n(t, ν, ω) + g2nη3n(t, ν, ω), t > 0, (23)

un (t, ν, ω) = ϕnξ1n(t, ν, ω) + g1nξ2n(t, ν, ω) + g2nξ3n(t, ν, ω), t < 0, (24)

where

η1n(t, ν, ω) =
tγ−1

Δ0n(ω, ν)
Eα,γ

(
−λ2

n(ν)t
α
)
,

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 3 2021



INVERSE BOUNDARY VALUE PROBLEM 653

η2n(t, ν, ω) = h1n(t, ν) + h1n(b, ν)η1n(t, ν, ω),

η3n(t, ν, ω) = −h2n(−a, ν)η1n(t, ν, ω),

ξ1n(t, ν, ω) =
1

Δ0n(ω, ν)
(sinλn(ν)ωt+ cos λn(ν)ωt) ,

ξ2n(t, ν, ω) = h1n(b, ν)ξ1n(t, ν, ω), ξ3n(t, ν, ω) = h2n(t, ν) + h2n(−a, ν)ξ1n(t, ν, ω).

Substituting representations (23) and (24) into the Fourier series (10), we obtain

U(t, x, ν, ω) =

∞∑

n=1

ϑn(x)
[
ϕnη1n(t, ν, ω) + g1nη2n(t, ν, ω) + g2nη3n(t, ν, ω)

]
, (t, x) ∈ Ω1, (25)

U(t, x, ν, ω) =
∞∑

n=1

ϑn(x)
[
ϕnξ1n(t, ν, ω) + g1nξ2n(t, ν, ω) + g2nξ3n(t, ν, ω)

]
, (t, x) ∈ Ω2. (26)

To establish the uniqueness of the solutionU(t, x, ν, ω) of the direct problem (1)–(5) we suppose that
there are two solutions U1 and U2 of this direct problem. Then their difference U = U1 − U2 is a solution
of equation (1), satisfying conditions (2)–(5) with functions ϕ(x) ≡ 0. Then for ϕn = 0 it follows from
representations (25) and (26) in the domain Ω that

l∫

0

t1−γU(t, x, ν, ω)ϑn(x)dx = 0, (t, x) ∈ Ω1,

l∫

0

U(t, x, ν, ω)ϑn(x)dx = 0, (t, x) ∈ Ω2.

Hence, by virtue of the completeness of the system of eigenfunctions {ϑn(x)} in L2(0; l), we deduce that
U(t, x, ν, ω) ≡ 0 for all x ∈ [0; l] and t ∈ [−a; b].

Since t1−γU(t, x, ν, ω) ∈ C
(
Ω1

)
, U(t, x, ν, ω) ∈ C

(
Ω2

)
, then t1−γU (t, x, ν, ω) ≡ 0 in the domain

Ω. Therefore, the solution of direct problem is unique in the domain Ω. Thus, we have proved that the
following theorem holds:

Theorem 1. Suppose that there exists a solution of the direct problem (1)–(5). Then this
solution is unique, if condition (22) is fulfilled for all n ∈ N.

Now we consider the case, when condition (22) is violated. Let Δ0m(ω, ν) = 0 be for all ω, γ ∈ (0; 1).
Then the direct problem (1)–(5) (ϕ (x) ≡ 0) for fixed values of the redefinition functions has nontrivial
solutions

Vm(t, x) = υm(t)ϑm(x), (t, x) ∈ Ω, (27)

where

υm(t) =

{
tγ−1Eα,γ

(
−λ2

m(ν)tα
)
+ g1nh1n(t), t > 0,

sinλm(ν)ωt+ cos λm(ν)ωt+ g2nh2n(t), t < 0.

From the condition Δ0n(ω, ν) = 0 we come to the trigonometric equation
√

1 +
λ2
n(ν)

ω2
sin (λn(ν)ωa+ ρn)− bγ−1Eα,γ

(
−λ2

n(ν)b
α
)
= 0, (28)

where ρn = arcsin

(
ω√

ω2+λ2
n(ν)

)

. Hence we obtain, that the quantity Δ0n(ω) vanishes at

ω =
1

λn(ν)a

[

(−1)k arcsin
ωbγ−1Eα,γ

(
−λ2

n(ν)b
α
)

√
ω2 + λ2

n(ν)
+ πk − ρn

]

, k = 1, 2, ...
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The set of positive solutions 	 of trigonometric equation (28) with respect to spectral parameter ω
is called a set of irregular values of the spectral parameter ω. The set of the remaining all values of the
spectral parameter ℵ = (0;∞)\	 is called a set of regular values of the spectral parameter ω. For all
regular values of the spectral parameter ω the quantity Δ0n(ω, ν) is nonzero. So, for large n the values
of Δ0n(ω, ν) can not become quite small and there the problem of “small denominators” does not arise.
Therefore, for regular values of the spectral parameter ω the quantity Δ0n(ω, ν) is separated from zero.

Indeed, from the relations λ2
n(ν) =

μ2
n

1+νμ2
n

, μn = nπ
l we see that λ2

n(ν) → 1
ν as n → ∞. So, for regular

values of the spectral parameter ω we have

lim
n→∞

Δ0n(ω, ν) =
1

ω
√
ν
sin

ω√
ν
a+ cos

ω√
ν
a− bγ−1Eα,γ

(

−bα

ν

)

�= 0.

Lemma 2. Suppose that γ ∈ (0; 1], a, b are arbitrary positive real numbers. Then for regular
values of the spectral parameter ω and for arbitrary n there exists a positive constant M0 such
that there holds the following estimate

|Δ0n(ω, ν)| ≥ M0 > 0. (29)

Proof. From (28) for all n and a, b > 0 we derive

|Δ0n(ω, ν)| ≥
∣
∣
∣
∣
∣

√

1 +
λ2
n(ν)

ω2
− bγ−1Eα,γ

(
−λ2

n(ν)b
α
)
∣
∣
∣
∣
∣
≥
∣
∣1− bγ−1Eα,γ

(
−λ2

n(ν)b
α
)∣
∣ .

We use the following properties of the Mittag-Leffler function [2, vol. 1, 269–295]:

1) For all k > 0, α, γ ∈ (0; 1], α ≤ γ, t ≥ 0 the function tγ−1Eα,γ (−ktα) is completely monotonous
and there holds

(−1)n
[
tγ−1Eα,γ (−ktα)

](n) ≥ 0, n = 0, 1, 2, ... (30)

2) For all α ∈ (0; 2), γ ∈ R and arg z = π there takes place the following estimate

|Eα,γ(z)| ≤
M1

1 + |z| , (31)

where 0 < M1 = const does not depend from z.
Then, from (30) and (31) implies that there exists a number M0 such that

∣
∣1− bγ−1Eα,γ

(
−λ2

n(ν)b
α
)∣
∣ = M0 > 0.

Consequently, for regular values of the spectral parameter ω there takes place (29): |Δn(ω)| ≥ M0 > 0.
Lemma 2 is proved. �

3. REDEFINITION FUNCTIONS

We apply the conditions (6) and (7) to Fourier series (25) and (26), respectively:

ψ1(x) =

∞∑

n=1

ϑn(x)

b∫

0

Θ1(t)t
1−γ

× [ϕnη1n(t, ν, ω) + g1nη2n(t, ν, ω) + g2nη3n(t, ν, ω)] dt, (32)

ψ2(x) =

∞∑

n=1

ϑn(x)

0∫

−a

Θ2(t)

× [ϕnξ1n(t, ν, ω) + g1nξ2n(t, ν, ω) + g2nξ3n(t, ν, ω)] dt. (33)
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We suppose here that

ψi(x) =
∞∑

n=1

ψinϑn(x), i = 1, 2, (34)

where ψin =
l∫

0

ψi(x)ϑn(x)dx. Substituting Fourier series (34) into (32) and (33), we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ1n =
b∫

0

Θ1(t)t
1−γ × [ϕnη1n(t, ν, ω) + g1nη2n(t, ν, ω) + g2nη3n(t, ν, ω)] dt,

ψ2n =
0∫

−a
Θ2(t) [ϕnξ1n(t, ν, ω) + g1nξ2n(t, ν, ω) + g2nξ3n(t, ν, ω)] dt.

This system of equations we rewrite as

g1nχi2n(ν, ω) + g2nχi3n(ν, ω) = ψin − ϕnχi1n(ν, ω), i = 1, 2, (35)

where

χ1jn(ν, ω) =

b∫

0

Θ1(t)t
1−γηjn(t, ν, ω)dt, j = 1, 2, 3,

χ2jn(ν, ω) =

0∫

−a

Θ2(t)ξjn(t, ν, ω)dt, j = 1, 2, 3.

From the system (35) we determine the Fourier coefficients of redefinition functions

g1n(ν, ω) =
1

Δ1n(ν, ω)

[
ϕnτ1n(ν, ω) + ψ1nχ23n(ν, ω)− ψ2nχ13n(ν, ω)

]
; (36)

g2n(ν, ω) =
1

Δ1n(ν, ω)

[
ϕnτ2n(ν, ω)− ψ1nχ22n(ν, ω) + ψ2nχ12n(ν, ω)

]
, (37)

if there fulfilled condition

Δ1n(ν, ω) = χ12n(ν, ω)χ23n(ν, ω)− χ13n(ν, ω)χ22n(ν, ω) �= 0, (38)

where

τ1n(ν, ω) = χ21n(ν, ω)χ13n(ν, ω)− χ11n(ν, ω)χ23n(ν, ω),

τ2n(ν, ω) = χ11n(ν, ω)χ22n(ν, ω)− χ21n(ν, ω)χ12n(ν, ω).

Substituting presentations (36) and (37) into Fourier series (12), we found the redefinition functions

g1(x, ν, ω) =

∞∑

n=1

ϑn(x)

Δ1n(ν, ω)
[ϕnτ1n(ν, ω) + ψ1nχ23n(ν, ω)− ψ2nχ13n(ν, ω)] ; (39)

g2(x, ν, ω) =

∞∑

n=1

ϑn(x)

Δ1n(ν, ω)
[ϕnτ2n(ν, ω)− ψ1nχ22n(ν, ω) + ψ2nχ12n(ν, ω)] . (40)

4. CONVERGENCE OF REDEFINITION FUNCTIONS

Condition A. Let be

ϕ(x) ∈ C3[0; l], ϕ(IV )(x) ∈ L(0; l), ϕ(0) = ϕ(l) = 0,

ψi(x) ∈ C3[0; l], ψ
(IV )
i (x) ∈ L(0; l), i = 1, 2.
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Then, by integrating in parts desired number of times over the variable x of the integrals

ϕn =

l∫

0

ϕ(x)ϑn(x)dx, ψin =

l∫

0

ψi(x)ϑn(x)dx, i = 1, 2,

we obtain

ϕn =
1

μ4
n

ϕ(IV )
n =

1

μ4
n

l∫

0

ϕ(IV )(x)ϑn(x)dx, μn =
nπ

l
; (41)

ψin =
1

μ4
n

ψ
(IV )
in =

1

μ4
n

l∫

0

ψ
(IV )
i (x)ϑn(x)dx, i = 1, 2. (42)

Bessel inequalities are true here

∞∑

n=1

[
ϕ(IV )
n

]2
≤ 2

l

l∫

0

[
ϕ(IV )(x)

]2
dx, (43)

∞∑

n=1

[
ψ
(IV )
in

]2
≤ 2

l

l∫

0

[
ψ
(IV )
i (x)

]2
dx, i = 1, 2. (44)

Theorem 2. Let conditions A and (38) are fulfilled. Then for regular values of the spectral
parameter ω the Fourier series (39) and (40) are convergent absolutely and uniformly.

Proof. We prove the absolutely and uniformly convergence of series (39). The absolutely and
uniformly convergence of series (40) is proved similarly. Taking Lemma 2 into account by the aid of
(41)–(44) we obtain

|g1(x, ν, ω)| ≤ M2

√
l

2

[ ∞∑

n=1

|ψ1n|+
∞∑

n=1

|ψ2n|+
∞∑

n=1

|ϕn|
]

≤ M2

√
l

2

[ ∞∑

n=1

∣
∣
∣
∣
1

μ4
n

ψ
(IV )
1n

∣
∣
∣
∣+

∞∑

n=1

∣
∣
∣
∣
1

μ4
n

ψ
(IV )
2n

∣
∣
∣
∣+

∞∑

n=1

∣
∣
∣
∣
1

μ4
n

ϕ(IV )
n

∣
∣
∣
∣

]

≤ M2l

2

√
√
√
√

∞∑

n=1

∣
∣
∣
∣
1

μ8
n

∣
∣
∣
∣

⎡

⎣

√
√
√
√

∞∑

n=1

[
ψ
(IV )
1n

]2
+

√
√
√
√

∞∑

n=1

[
ψ
(IV )
2n

]2
+

√
√
√
√

∞∑

n=1

[
ϕ
(IV )
n

]2

⎤

⎦

≤ M2l

2

√
√
√
√

∞∑

n=1

∣
∣
∣
∣
1

μ8
n

∣
∣
∣
∣

⎡

⎢
⎣

√
√
√
√
√

l∫

0

[
ψ
(IV )
1 (x)

]2
dx

+

√
√
√
√
√

l∫

0

[
ψ
(IV )
2 (x)

]2
dx+

√
√
√
√
√

l∫

0

[
ϕ(IV )(x)

]2
dx

⎤

⎥
⎦ < ∞,

where

M2 = max
n

{∣
∣
∣
∣
χ23n(ν, ω)

Δ1n(ν, ω)

∣
∣
∣
∣ ;

∣
∣
∣
∣
χ13n(ν, ω)

Δ1n(ν, ω)

∣
∣
∣
∣ ;

∣
∣
∣
∣
τ1n(ν, ω)

Δ1n(ν, ω)

∣
∣
∣
∣

}

.

Theorem 2 is proved. �
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5. EXISTENCE OF THE FUNCTION U(t, x, ν)

Substituting representations (36) and (37) into the Fourier series (25) and (26), respectively, we
obtain

U(t, x, ν, ω) =
∞∑

n=1

ϑn(x) [ϕnθ11n(t, ν, ω) + ψ1nθ12n(t, ν, ω) + ψ2nθ13n(t, ν, ω)] , (t, x) ∈ Ω1, (45)

U(t, x, ν, ω) =
∞∑

n=1

ϑn(x) [ϕnθ21n(t, ν, ω) + ψ1nθ22n(t, ν, ω) + ψ2nθ23n(t, ν, ω)] , (t, x) ∈ Ω2, (46)

where

θ11n(t, ν, ω) = η1n(t, ν, ω) +
η2n(t, ν, ω)

Δ1n(ν, ω)
τ1n(ν, ω) +

η3n(t, ν, ω)

Δ1n(ν, ω)
τ2n(ν, ω),

θ12n(t, ν, ω) =
η2n(t, ν, ω)

Δ1n(ν, ω)
χ23n(ν, ω)−

η3n(t, ν, ω)

Δ1n(ν, ω)
χ22n(ν, ω),

θ13n(t, ν, ω) = −η2n(t, ν, ω)

Δ1n(ν, ω)
χ13n(ν, ω) +

η3n(t, ν, ω)

Δ1n(ν, ω)
χ12n(ν, ω),

θ21n(t, ν, ω) = ξ1n(t, ν, ω) +
ξ2n(t, ν, ω)

Δ1n(ν, ω)
τ1n(ν, ω) +

ξ3n(t, ν, ω)

Δ1n(ν, ω)
τ2n(ν, ω),

θ22n(t, ν, ω) =
ξ2n(t, ν, ω)

Δ1n(ν, ω)
χ23n(ν, ω)−

ξ3n(t, ν, ω)

Δ1n(ν, ω)
χ22n(ν, ω),

θ23n(t, ν, ω) = −ξ2n(t, ν, ω)

Δ1n(ν, ω)
χ13n(ν, ω) +

ξ3n(t, ν, ω)

Δ1n(ν, ω)
χ12n(ν, ω).

Theorem 3. Let conditions A and (38) are fulfilled. Then for regular values of spectral
parameter ω the Fourier series (45) and (46) are convergent absolutely and uniformly. The series
(45) and (46) possess the properties (2).

Proof. It is easy to check that for regular values of the spectral parameter ω there hold for t ∈ [0; b]

t1−γ |un(t, ν, ω)| ≤ C1 (|ϕn|+ |ψ1n|+ |ψ2n|) , (47)

t1−γ |Dα,γun (t, ν, ω)| ≤ C2 (|ϕn|+ |ψ1n|+ |ψ2n|) (48)

and for t ∈ [−a; 0]

|un(t, ν, ω)| ≤ C3 (|ϕn|+ |ψ1n|+ |ψ2n|) ,
∣
∣
∣
∣
dun(t, ν, ω)

dt

∣
∣
∣
∣ ≤ C4 (|ϕn|+ |ψ1n|+ |ψ2n|) , (49)

∣
∣
∣
∣
d2un(t, ν, ω)

dt2

∣
∣
∣
∣ ≤ C5 (|ϕn|+ |ψ1n|+ |ψ2n|) , (50)

where Ck, k = 1, 5 are positive constants.
Now formally differentiating term-by-term the series (45) and (46) the required number of times, we

obtain the series

t1−γDα,γU(t, x, ν, ω) =

∞∑

n=1

t1−γDα,γun(t, ν, ω)ϑn(x), (t, x) ∈ Ω1, (51)
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t1−γ ∂
kU(t, x, ν, ω)

∂xk
= (−1)k+1

∞∑

n=1

t1−γun(t, ν, ω)μ
k
nϑn(x), k = 1, 2, (t, x) ∈ Ω1, (52)

∂2U(t, x, ν, ω)

∂t2
=

∞∑

n=1

d2un(t, ν, ω)

dt2
ϑn(x), (t, x) ∈ Ω2, (53)

∂kU(t, x, ν, ω)

∂xk
= (−1)k+1

∞∑

n=1

un(t, ν, ω)μ
k
nϑn(x), k = 1, 2, (t, x) ∈ Ω2. (54)

As the case of proof of Theorem 2, it is easy to check the convergence of series (45), (46) and (51)–(54),
using the properties (41)–(44) and (47)–(50).

Therefore, for regular values of the spectral parameter ω the function U(t, x, ν, ω), represented by
series (45) and (46), possesses properties (2) and satisfies conditions (3)–(7). This is finished the proof
of the theorem 3. �

6. STABILITY OF THE SOLUTION

For regular values of the spectral parameter ω we consider the question of the stability of the solution
of the inverse boundary value problem ITν,ω with respect to the redefinition functions gi(x), i = 1, 2 and
with respect to parameter ν. To this end, we introduce the norm in the space of continuous functions as
follows

||U(t, x, ν, ω)||C(Ω) = max
(t,x)∈Ω1

∣
∣t1−γU(t, x, ν, ω)

∣
∣ + max

(t,x)∈Ω2

|U(t, x, ν, ω)| .

6.1. Stability with Respect to Redefinition Functions

Theorem 4. Suppose that all the conditions of theorem 2 are fulfilled. Then, the solution of the
problem ITν,ω for regular values of the spectral parameter ω is stable with respect to redefinition
functions gi(x), i = 1, 2.

Proof. We show that the solution of the mixed differential equation (1) U(t, x, ν, ω) is stable with
respect to redefinition functions gi(x), i = 1, 2. Let U1(t, x, ν, ω) and U2(t, x, ν, ω) be two different
solutions of the inverse boundary value problem ITν,ω, corresponding to two different values of the
functions g11(x), g12(x) and g21(x), g22(x).

We put that |g11n − g12n| < δ1n, |g21n − g22n| < δ2n, where 0 < δin are sufficiently small quantities

and the series
∞∑

n=1
|δin| are convergent, i = 1, 2. Then, taking this fact into account, by virtue of the

conditions of the theorem, from (25) and (26) we see that

max
(t,x)∈Ω1

∣
∣t1−γU(t, x, ν, ω)

∣
∣ ≤ C6

∞∑

n=1

(|g11n − g12n|+ |g21n − g22n|)

< C6

∞∑

n=1

(|δ1n|+ |δ2n|) ,

max
(t,x)∈Ω2

|U(t, x, ν, ω)| ≤ C7

∞∑

n=1

(|g11n − g12n|+ |g21n − g22n|)

< C7

∞∑

n=1

(|δ1n|+ |δ2n|) ,

||U1(t, x, ν, ω)− U2(t, x, ν, ω)||C(Ω) < C8

∞∑

n=1

(|δ1n|+ |δ2n|) ,
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where C8 = C6 + C7, C6 = max{C6.1;C6.2;C6.3}, C7 = max{C7.1;C7.2;C7.3},

C6.i = max
n∈N

max
0<t<b

∣
∣t1−γηin(t, ν, ω)

∣
∣ ; C7.i = max

n∈N
max

−a<t<0
|ξin(t, ν, ω)| , i = 1, 2, 3.

By virtue of these estimates we finally obtain assertions on the stability of the solution of differential

equation (1) with respect to redefinition functions gi(x), i = 1, 2, if we put ε = C8

∞∑

n=1
(|δ1n|+ |δ2n|) .

The Theorem 4 is proved. �

6.2. Stability with Respect To Parameter ν

Now we show that the solution of the mixed differential equation (1) U(t, x, ν, ω) is stable with respect
to a given parameter ν.

Theorem 5. Suppose that all the conditions of theorem 2 are fulfilled. Then, the solution of
the problem ITν,ω for regular values of the spectral parameter ω is stable with respect to given
parameter ν.

Proof. Let U1(t, x, ν, ω) and U2(t, x, ν, ω) be two different solutions of the inverse boundary value
problem ITν,ω, corresponding to two different values of the parameter ν1 and ν1, respectively. We put

that |ν1 − ν2| < δ, where 0 < δ is sufficiently small real number. By virtue of λ2
n(ν) =

μ2
n

1+νμ2
n

, we derive
the following estimates

||h1n(t, ν1)− h1n(t, ν2)|| ≤ max
t

t∫

0

∣
∣(t− s)α−1f1(s)

∣
∣ ·
∣
∣Eα,α

(
−λ2

n(ν1)(t− s)α
)

− Eα,α

(
−λ2

n(ν2)(t− s)α
)∣
∣ ds ≤ C9

∣
∣λ2

n(ν1)− λ2
n(ν2)

∣
∣

≤ C9

∣
∣
∣
∣
∣
∣

ν2∫

ν1

d

dν

μ2
n

1 + νμ2
n

∣
∣
∣
∣
∣
∣
≤ C10 |ν1 − ν2| ;

||h2n(t, ν1)− h2n(t, ν2)||

≤ 1

ω
max

t

t∫

0

|f2(s)|
∣
∣
∣
∣
sinλn(ν1)ω(t− s)

λn(ν1)
− sinλn(ν2)ω(t− s)

λn(ν2)

∣
∣
∣
∣ ds

≤ 1

ω
max

t

t∫

0

|f2(s)|

⎡

⎣

∣
∣
∣
∣
∣
∣

ν2∫

ν1

d

dν

1

λn(ν)

∣
∣
∣
∣
∣
∣

+ C11

∣
∣
∣
∣
∣
∣

ν2∫

ν1

d

dν
sinλn(ν)ω(t− s)

∣
∣
∣
∣
∣
∣

⎤

⎦ ds ≤ C12 |ν1 − ν2| ;

||λn(ν1) sinλn(ν1)ωt− λn(ν2) sinλn(ν2)ωt|| ≤ max
t

|[λn(ν1)− λn(ν2)] sinλn(ν2)ωt|

+
∣
∣
∣λn(ν1)max

t
[sinλn(ν1)ωt− sinλn(ν2)ωt]

∣
∣
∣ ≤ C13 |ν1 − ν2| ,

where C9, C10, ..., C13 are constants. Similarly, we can show that the following estimate is also valid

||θijn(t, ν1, ω)− θijn(t, ν2, ω)|| ≤ C14 |ν1 − ν2| , C14 = const, i = 1, 2, j = 1, 2, 3.

Therefore, for series (45) and (46) we obtain

||U1(t, x, ν, ω) − U2(t, x, ν, ω)||C(Ω)

≤ C15

[∣
∣
∣

∣
∣
∣ϕ(IV )(x)

∣
∣
∣

∣
∣
∣
C[0;l]

+
∣
∣
∣

∣
∣
∣ψ

(IV )
1 (x)

∣
∣
∣

∣
∣
∣
C[0;l]

+
∣
∣
∣

∣
∣
∣ψ

(IV )
2 (x)

∣
∣
∣

∣
∣
∣
C[0;l]

]

|ν1 − ν2|
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< C15

[∣
∣
∣

∣
∣
∣ϕ(IV )(x)

∣
∣
∣

∣
∣
∣
C[0;l]

+
∣
∣
∣

∣
∣
∣ψ

(IV )
1 (x)

∣
∣
∣

∣
∣
∣
C[0;l]

+
∣
∣
∣

∣
∣
∣ψ

(IV )
2 (x)

∣
∣
∣

∣
∣
∣
C[0;l]

]

δ,

where C15 is constant. If we put

ε = C15

[∣
∣
∣

∣
∣
∣ϕ(IV )(x)

∣
∣
∣

∣
∣
∣
C[0;l]

+
∣
∣
∣

∣
∣
∣ψ

(IV )
1 (x)

∣
∣
∣

∣
∣
∣
C[0;l]

+
∣
∣
∣

∣
∣
∣ψ

(IV )
2 (x)

∣
∣
∣

∣
∣
∣
C[0;l]

]

δ,

then we obtain
||U1(t, x, ν, ω) − U2(t, x, ν, ω)||C(Ω) < ε.

The Theorem 5 is proved. �

7. IRREGULAR VALUES OF SPECTRAL PARAMETER ω

We note that Δm(ω, ν) = 0 for irregular values of the spectral parameter ω and m = k1, ..., ks
(γ �= 1). Then, for the solvability of systems (18) and (19), it is necessary and sufficient that the
orthogonality conditions are satisfied

ϕm =

l∫

0

ϕ(x)ϑm(x)dx = 0. (55)

In this case, by virtue of (27), the solutions of direct problem are represented as the sum of the series

U(t, x) =

∞∑

m=1

Cmϑm(x)
[
tγ−1Eα,γ

(
−λ2

m(ν)tα
)
+ g1mh1m(t, ν)

]
, (t, x) ∈ Ω1, (56)

U(t, x) =

∞∑

m=1

Cmϑm(x) [sinλm(ν)ωt+ cos λm(ν)ωt+ g2mh2m(t, ν)] , (t, x) ∈ Ω2, (57)

where m = k1, ..., ks, Cm are arbitrary constants.
For irregular values of the spectral parameter ω and for some m = k1, ..., ks direct problem has an

infinite number of solutions in the form of series (56) and (57). The solvability condition is formula (55).
Substituting Fourier series (56) and (57) into (6) and (7), respectively, we obtain

ψ1(x) =
∞∑

m=1

Cmϑm(x)

×
b∫

0

Θ1(t)t
1−γ

[
tγ−1Eα,γ

(
−λ2

m(ν)tα
)
+ g1mh1m(t, ν)

]
, (t, x) ∈ Ω1, (58)

ψ2(x) =
∞∑

m=1

Cmϑm(x)

×
0∫

−a

Θ2(t) [sinλm(ν)ωt+ cos λm(ν)ωt+ g2mh2m(t, ν)] , (t, x) ∈ Ω2, (59)

where m = k1, ..., ks.
By virtue of (34), from (58) and (59) we derive coefficients of redefinition functions

g1m = σ1m =

ψ1m − Cm

b∫

0

Θ1(t)Eα,γ

(
−λ2

m(ν)tα
)
dt

Cm

b∫

0

Θ1(t)t1−γh1m(t, ν)dt

, (60)
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g2m = σ2m =

ψ2m − Cm

0∫

−a
Θ2(t) (sinλm(ν)ωt+ cosλm(ν)ωt) dt

Cm

0∫

−a
Θ2(t)h2m(t, ν)dt

, (61)

where
b∫

0

Θ1(t)t
1−γh1m(t, ν)dt �= 0,

0∫

−a

Θ2(t)h2m(t, ν)dt �= 0. (62)

Substituting Fourier coefficients (60) and (61) into series (12), (56) and (57) we obtain Fourier series
for redefinition functions g1(x), g2(x) and for main unknown function U(t, x):

gi(x) =
∞∑

m=1

σimϑm(x), i = 1, 2; (63)

U(t, x) =
∞∑

m=1

Cmϑm(x)

×
[
tγ−1Eα,γ

(
−λ2

m(ν)tα
)
+ σ1mh1m(t, ν)

]
, (t, x) ∈ Ω1, (64)

U(t, x) =
∞∑

m=1

Cmϑm(x)

× [sinλm(ν)ωt+ cos λm(ν)ωt+ σ2nh2n(t, ν)] , (t, x) ∈ Ω2, (65)

where m = k1, ..., ks and Cm are arbitrary constants.

The absolutely and uniformly convergence of obtained series (63)–(65) is clear. Because Cm are
arbitrary numbers. Them we can select so that these series (63)–(65) converge. The coefficients ψ1m

and ψ2m in (60) and (61) are satisfy the properties (42) and (44).

8. CONCLUSIONS

We studied the inverse boundary value problem ITν,ω with following assumption

ϕ(x) ∈ C3[0; l], ϕ(IV )(x) ∈ L(0; l), ϕ(0) = ϕ(l) = 0,

ψi(x) ∈ C3[0; l], ψ
(IV )
i (x) ∈ L(0; l), i = 1, 2.

If these conditions and (38) are fulfilled, then the inverse boundary value problem ITν,ω is uniquely
solvable for regular values of the spectral parameter ω ∈ ℵ and this solution is represented in the form of
the Fourier series (39), (40) and (45), (46) in the domain Ω.

For irregular values of the spectral parameter ω ∈ 	 and for some m = k1, ..., ks inverse problem
ITν,ω has an infinite number of solutions in the form of series (63)–(65), if there the condition (62) is
fulfilled. The solvability condition is formula (55).

For regular values of the spectral parameter ω we studied also the questions of the stability of the
solution of the inverse boundary value problem ITν,ω with respect to the redefinition functions g1(x),
g2(x) and with respect to parameter ν.
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