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Abstract: We present a proof-of-concept technique for

the inverse design of electromagnetic devices motivated

by the policy gradient method in reinforcement learn-

ing, named PHORCED (PHotonic Optimization using

REINFORCECriteria for EnhancedDesign). This technique

uses a probabilistic generative neural network interfaced

with an electromagnetic solver to assist in the design of

photonic devices, such as grating couplers. We show

that PHORCED obtains better performing grating coupler

designs than local gradient-based inverse design via the

adjoint method, while potentially providing faster conver-

gence over competing state-of-the-art generative methods.

As a further example of the bene�ts of this method, we

implement transfer learning with PHORCED, demonstrat-

ing that a neural network trained to optimize 8◦ grating

couplers can then be re-trained on grating couplers with

alternate scattering angles while requiring >10× fewer

simulations than control cases.
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1 Introduction

There has been a recent, massive surge in research

syncretizing topics in photonics and arti�cial intelligence/

machine learning (AI/ML), including photonic ana-

log accelerators [1–8], physics emulators [9–15], and

AI/ML-enhanced inverse electromagnetic design tech-

niques [15–35]. While inverse electromagnetic design

via local gradient-based optimization with the adjoint

method has been successfully applied to a multitude of

design problems throughout the entirety of the optics and

photonics communities [36–60], inverse electromagnetic

design leveraging AI/ML techniques promise superior

computational performance, advanced data analysis and

insight, or improved e�ort towards global optimization.

For the lattermost topic in particular, Jiang and Fan

recently introduced an unsupervised learning technique

called GLOnet which uses a generative neural network

interfaced with an electromagnetic solver to design

photonic devices such as metasurfaces and distributed

Bragg re�ectors [24–26]. In this paper we propose a con-

ceptually similar design technique, but with a contrasting

theoretical implementation motivated by a concept

in reinforcement learning called the policy gradient

method – speci�cally a one-step implementation of the

REINFORCE algorithm [61, 62]. We will refer to our

technique as PHORCED = PHotonic Optimization using

REINFORCE Criteria for Enhanced Design. PHORCED is

compatible with any external physics solver including

EMopt [63], a versatile electromagnetic optimization

package that is employed in this work to perform 2D

simulations of single-polarization grating couplers.

In Section 2, we will qualitatively compare and

contrast three optimization techniques: local gradient-

based optimization (e.g., gradient ascent), GLOnet, and

PHORCED. We are speci�cally interested in a proof-of-

conceptdemonstrationof thePHORCEDoptimization tech-

nique applied to grating couplers, which we present in

Section 3. We �nd that both our implementation of the
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GLOnet method and PHORCED �nd better grating cou-

pler designs than local gradient-based optimization, but

PHORCED requires fewer electromagnetic simulation eval-

uations thanGLOnet. Finally, in Section 4we introduce the

concept of transfer learning to integrated photonic opti-

mization, where in our application we demonstrate that a

neural network trained to design 8◦ grating couplers with

the PHORCED method can be re-trained to design grating

couplers that scatter at alternate angles with greatly accel-

erated time-to-convergence.We speculate that a hierarchi-

cal optimization protocol leveraging this technique can

be used to design computationally complex devices while

minimizing computational overhead.

2 Extending the adjoint method

with neural networks

Local gradient-based optimization using the adjoint

method has been successfully applied to the design of a

plethora of electromagnetic devices. Detailed tutorials of

the adjoint method applied to electromagnetic optimiza-

tion may be found in Refs. [36–39, 43, 46, 60]. Here, we

qualitatively illustrate a conventional design loop utiliz-

ing the adjoint method in Figure 1(a). This begins with

the choice of an initial electromagnetic structure param-

eterized by vector p, which might represent geometrical

degrees-of-freedom like thewidth andheight of the device.

This is fed into an electromagnetic solver, denoted by

a function g. The resulting electric and magnetic �elds,

x = g(p), can be used to evaluate a user-de�ned electro-

magneticmerit function f (x) – the metric that we are inter-

ested in optimizing (e.g., coupling e�ciency). Gradient-

based optimization seeks to improve the value of the

merit function by updating the design parameters, p, in a

direction speci�ed by the gradient of the electromagnetic

merit function, �( f ⚬ g)

�p
. The value of the gradient may be

obtained very e�ciently using the adjoint method, requir-

ing just two electromagnetic simulations regardless of the

number of degrees-of-freedom (called the forward simu-

lation and adjoint simulation, respectively). A single iter-

ation of gradient-based optimization is depicted visually

in the center of Figure 1(a), where p is a single-dimension

point sampled along a toy merit function (f ⚬ g)(p) repre-

senting the optimization landscape (which is unknown,

a priori). The derivative (gradient) of the merit function

is illustrated by the arrow pointing from p in the direc-

tion of steepest ascent (assuming this is a maximization

problem). During an optimization, we slowly update p in

this direction until a local optimum is reached.

The adjoint method chain-rule derivative of the elec-

tromagnetic merit function resembles the concept of back-

propagation in deep learning, where a neural network’s

weights can be updated e�ciently by application of the

chain-rule with information from the forward pass. Nat-

urally, we might extend the functionality of the adjoint

methodbyplacinganeuralnetwork in thedesign loop. The

neural network takes the place of a deterministic update

algorithm (such as gradient ascent), potentially learning

information or patterns in the design problem that allows

it to �nd a better optimum. Belowwe present twomethods

to implement inverse designwithneural networks: GLOnet

(introduced by Jiang and Fan [24, 25]) and PHORCED (this

work). Both methods are qualitatively similar, but di�er in

the representation of the neural network. In the main text

of this manuscript we will qualitatively describe the dif-

ferences between these techniques; a detailed mathemat-

ical discussion may be found in Supplementary Material

Section 1.

The GLOnet optimization method is depicted qualita-

tively in Figure 1(b). The neural network is represented as

a deterministic function h� that takes in noise z from some

known distribution D and outputs design parameters p.

Importantly, the neural network is parameterized by pro-

grammable weights � that we intend to optimize in order

to generate progressively better electromagnetic devices.

Similar to regular gradient ascent, we may evaluate the

electromagnetic merit function of a device generated by

the neural network (f ⚬ g)(p) using our physics solver, and

�nd its gradient with respect to the design parameters

using the adjoint method, �( f ⚬ g)

�p
. However, the GLOnet

design problem is inherently stochastic because of the

presence of noise, and therefore the optimization objec-

tive becomes the expected value of the electromagnetic

merit function, �z[( f ⚬ g ⚬ h�)(z)] – sometimes called the

reward in the reinforcement learning literature.1 Inpractice

this expression can be approximated by taking a simple

average over the electromagnetic merit functions of sev-

eral devices generated by the neural network per iteration.

The gradient that is then backpropagated to the neural

network is given by the expected value of the chain-rule

gradient of the reward function. The �rst term, �( f ⚬ g)

�p
,

can once again be computed very e�ciently using the

1 Note that we have written a generalized version of the reward func-

tion de�ned in the original works by Jiang and Fan [24, 25]. In that

case, the reward function is chosen to weight good devices exponen-

tially, i.e. f → exp(f∕�) where � is a hyperparameter and f is the

electromagnetic quantity of interest. The full function is de�ned in

Eq. (S.18) of Supplementary Materials Section 1.
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Figure 1: Neural networks provide a natural extension to conventional inverse design via the adjoint method. A typical gradient-based

design loop is shown in (a) where the derivatives are calculated using the adjoint method. The GLOnet method (b), originally proposed by

Jiang and Fan [24, 25], replaces a conventional gradient-based optimization algorithm with a deterministic neural network. In this work we

propose PHORCED (c), which uses a probabilistic neural network to generate devices. (b) and (c) are qualitatively similar, but require

different gradients in backpropagation because of the representation of the neural network (deterministic versus probabilistic). In

particular, notice that PHORCED does not require an evaluation of the adjoint method gradient of the electromagnetic merit function,
�( f ⚬ g)

�p
.

adjoint method, requiring just two electromagnetic sim-

ulations per device. Meanwhile the latter term, �p

��
|p=h�(z),

can be calculated internal to the neural network using con-

ventional backpropagationwith automatic di�erentiation.

Visually, one iteration of the GLOnet method is shown in

the center of Figure 1(b). In each iteration, the neural net-

work in theGLOnetmethod suggests parameters, pi, which

are then individually simulated. Similar to gradient-based

optimization from Figure 1(a), we �nd the gradient of the

merit function valuewith respect to each generated design

parameter, represented by the arrows pointing towards the

direction of steepest ascent at each point. The net gradient

information from many simulated devices e�ectively tells

the neural network where to explore in the next iteration.
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With adense search, the global optimumalong the domain

of interest can potentially be found.

Our technique, called PHORCED, is provided in

Figure 1(c). Qualitatively speaking, it is very similar to

GLOnet, but is motivated di�erently from a mathematical

perspective. PHORCED is a special case of the REINFORCE

algorithm [61, 62] from the �eld of reinforcement learn-

ing (RL), applied to electromagnetic inverse design. In

particular, the neural network is treated as purely prob-

abilistic, de�ning a continuous conditional probability

density function over parameter variables p conditioned

on the input vector z – denoted by��(p|z). In other words,

insteadof outputtingpdeterministically given inputnoise,

the neural network outputs probabilities of generating p.

We then randomly sample a parameter vector p for simu-

lation and evaluation of the reward. Note that ��(p|z) is

called the policy in RL, and in this work is chosen to be a

multivariate Gaussian distribution with mean vector and

standard deviation of random variable p as outputs. The

reward for PHORCED is qualitatively the same as GLOnet

– namely, we intend to optimize the expected value of the

electromagnetic merit function. However, because both p

and z are random variables, we take the joint expected

value: �p,z[( f ⚬ g)(p)]. Furthermore, because of the proba-

bilistic representation of the neural network, the gradient

of the reward with respect to the neural net weights for

backpropagation ismuch di�erent than the corresponding

GLOnet case. In particular, we �nd that the backpropa-

gated chain-rule gradient requires no evaluation of the

gradient of the electromagnetic merit function, �( f ⚬ g)

�p
.

Consequently, the electromagnetic adjoint simulation is

no longer required, implying that fewer simulations are

required overall for PHORCED compared to GLOnet under

equivalent choices of neural network architecture and

hyperparameters.2 PHORCED is visually illustrated in the

center of Figure 1(c). The neural network de�nes Gaussian

probability density functions conditioned on input noise

vectors zi, shown in the light red bell curves represent-

ing ��(p|zi), from which we sample points pi to simulate.3

2 However, because the representation of the neural network is dif-

ferent in either case, it would rarely make sense to use equivalent

choices of neural network architecture and hyperparameters. There-

fore, we make this claim tepidly, emphasizing only that we do not

require adjoint simulations in the evaluation of the reward.

3 Note that while we explored a uniform distribution at the input

as well, our best results with PHORCED applied to grating coupler

optimization in this work were attained with z drawn from a Dirac

delta distribution, i.e. a constant vector input rather than noise. This

has the e�ect of collapsing the multiple distributions depicted in

Using information from themerit function values, the neu-

ral network learns to update themean and standard devia-

tionof theGaussians.Consequently,weemphasize that the

Gaussian policy distribution is not static because its statis-

tical parameters are adjusted by the trainable weights of

the neural network, and is therefore capable of exploring

throughout the feasible design space. For adequate choice

of distribution and dense enough search, the PHORCED

method can potentially �nd the global optimum in the

domain of interest.

Before proceeding it should be remarked that the algo-

rithms implemented by GLOnet and PHORCEDhave prece-

dent in the literature, with some distinctions that we will

outline here. Optimization algorithms similar to GLOnet

were suggested in Refs. [64, 65], where the main algo-

rithmic di�erence appears in the de�nition of the reward

function. In particular, the reward de�ned in Ref. [64]

was the same generalized form that we have presented

in Figure 1(b), while Jiang and Fan emphasized the use of

an exponentially-weighted reward to enhance global opti-

mization e�orts [25]. On the other hand, PHORCED was

motivated as a special case of the REINFORCE algorithm

[61, 62], but also resembles some versions of evolutionary

strategy [64–67]. The main di�erence between PHORCED

and evolutionary strategy (ignoring several heuristics) is

the explicit use of a neural network to model the mul-

tivariate Gaussian policy distribution, albeit some recent

works have used neural networks in their implementa-

tions of evolutionary strategy [65, 67] for di�erent appli-

cations than those studied here. Furthermore, PHORCED

does not require a Gaussian policy; any explicitly-de�ned

probability distribution can be used as an alternative if

desired. Beyond evolutionary strategy, a recent work in

�uid dynamics [68] uses an algorithm akin to PHORCED

called One-Step Proximal Policy Optimization (PPO-1) – a

version of REINFORCE with a single policy, ��, operat-

ing on parallel instances of the optimization problem. The

main distinction between PPO-1 and PHORCED is that we

have implemented the option to use an input noise vec-

tor z to condition the output policy distribution, ��(x|z),

which can e�ectively instantiate multiple distinct policies

acting on parallel instances of the optimization problem.

This potentially enables multi-modal exploration of the

parameter space, bypassing a known issue of Bayesian

optimization with Gaussian probability distributions [65].

However, note that the best results for the applications

studied in this work used a constant input vector z, thus

Figure 1(c) into a single distribution from which we draw multiple

samples.
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making our implementation similar to PPO-1 in the results

below. Regardless of the intricacies mentioned above, we

emphasize that both GLOnet and PHORCED are unique in

their application to electromagnetic optimization, to the

authors’ knowledge. In the next section we will compare

all threealgorithms fromFigure 1applied togratingcoupler

optimization.

3 Proof-of-concept grating coupler

optimization

A grating coupler is a passive photonic device that is

capable of e�ciently di�racting light from an on-chip

waveguide to an external optical �ber. Recent works have

leveraged inverse design techniques in the engineering

of grating couplers, resulting in state-of-the-art charac-

teristics [21, 42, 44, 52, 56]. In this section we will show

how generative neural networks can aid in the design of

ultra-e�cient grating couplers.

The grating coupler geometry used for our proof-of-

concept is depicted in Figure 2(a). We assume a silicon-

on-insulator (SOI) wafer platform with a 280 nm-thick

silicon waveguide separated from the silicon substrate

by a 2 μm buried oxide (BOX) layer. The grating coupler

consists of periodically spaced corrugations to the input

silicon waveguide with etch depth 190 nm. These grating

coupler dimensions are characteristic of a high-e�ciency

integrated photonics platform operating in the C-band

(1550 nm central wavelength) as suggested by a transfer

matrix based directionality calculation [55, 69], and are

provided as an example in the open-source electromag-

netic optimization package EMopt [63] that was used to

perform forward and adjoint simulations in this work.

For our optimizations, we will consider 60 total des-

ignable parameters that de�ne the grating coupler: the

width of and spacing between 30 waveguide corrugations.

For a well-designed grating coupler, input light to the

waveguide scatters at someangle relative tovertical toward

an external optical �ber. In this work we choose to opti-

mize the grating coupler at �xed wavelength and scatter-

ing angle assuming speci�c manufacturing and assembly

requirements for amodular optical transceiver application

[52, 70]. In our case, the merit function for optimization is

the coupling e�ciency of scattered light with wavelength

� = 1550 nm propagating 8◦ relative to normal, mode-

matched to an output Gaussian beammode �eld diameter

10.4 μm – characteristic of a typical optical �ber mode.

The explicit de�nition of this electromagnetic merit func-

tionmay be found in Refs. [44, 52, 71]. Note that we did not

include fabrication constraints nor other speci�cations of

interest in grating couplers in ourparameterization choice,

e.g. the BOX thickness and the Si etch depth, which will be

desirable in future optimizations of experimentally-viable

devices. Furthermore, the simulationdomain is discretized

with a dx = 25 nm grid step which may result in some

inaccuracy for very �ne grating coupler features. This sim-

ulation discretization was chosen for feasibility of the

optimization since individual simulations require about

4 s to compute on a high-performance server with over 30

concurrent MPI processes, and as we will show GLOnet

and PHORCED can require as many as 20,000 simulation

evaluations for convergence. Nevertheless,weutilized per-

mittivity smoothing [43] to minimize the severity of this

e�ect and obtain physically meaningful results.

We apply the Broyden–Fletcher–Goldfarb–Shanno

(BFGS), GLOnet, and PHORCED algorithms to grating cou-

pler optimization with two di�erent initial designs (Initial

Seed 1 and Initial Seed 2) in Figure 2(b) and (c). Initial

Seed 1 corresponds to the grating depicted in Figure 2(a)

and the top of Figure 2(b), where we used a parameter

sweep to choose a linear apodization of the etch duty cycle

before optimization. Initial Seed 2 corresponds to the grat-

ing shown at the top of Figure 2(c) where we use a uniform

duty cycle of 90%. Both initial designs have pitch that sat-

isfy the grating equation [44, 52] for 8◦ scattering. These

initial seeds serve to explore the robustness of the opti-

mizationalgorithms to “good” and“poor” choices of initial

condition. Indeed, Initial Seed 1 satis�es physical intuition

for a good grating coupler, because chirping the duty cycle

is well-known to improve Gaussian beammode-matching,

and thus the initial grating coupler e�ciency is already

a reasonable value of 56%. Meanwhile, Initial Seed 2 has

the correct pitch for 8◦ scattering, but has a low e�ciency

of 1% owing to poor mode-matching and directionality. In

essence, we are using these two cases as a proxy to explore

whether PHORCED and GLOnet can reliably boost electro-

magnetic performance in a high-dimensional parameter

space, even in cases where the intuition about the optimal

initial conditions is limited.

BFGS is a conventional gradient-based optimization

algorithmsimilar to that depicted inFigure 1(a), and imple-

mented using default settings from the open-source SciPy

optimize module. After optimization with BFGS, the �nal

simulated grating coupler e�ciency of Initial Seed 1 and

Initial Seed 2 are 86.4 and 69.9% respectively, which are

shown in the black dashed lines of Figure 2(b) and (c).

Note that the number of simulation calls for BFGS is not

shown because it is vastly smaller than that required for
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Figure 2: PHORCED and GLOnet outperform conventional gradient-based optimization, with different simulation evaluation requirements.

The grating coupler simulation geometry for optimization is shown in (a), consisting of an SOI wafer platform with 280 nm waveguide,

190 nm etch depth, and 2 μm BOX height. We optimized 60 device parameters in total, namely the width and spacing between 30 etch

corrugations. The results of the BFGS, GLOnet, and PHORCED algorithms applied to Initial Seed 1 and Initial Seed 2 are presented in (b) and

(c) as a function of the number of simulation calls. The initial seeds (grating designs) are illustrated above each optimization plot. The insets

depict zoomed-in views of the peak efficiencies attained by PHORCED and GLOnet, along with respective BFGS refinement steps performed

on the best design generated by each algorithm.

GLOnet and PHORCED (144 and 214 total simulations for

Initial Seed 1 and Initial Seed 2, respectively).

The implementation of GLOnet and PHORCED for the

grating coupler optimizations in Figure 2(b) and (c) are

described below; other details and speci�cations, such

as a graphical illustration of the neural network mod-

els used in either case, may be found in Supplementary

Materials Section 2. GLOnet is described qualitatively

in Figure 1(b) where we use a deterministic neural

network and an exponentially-weighted electromagnetic

merit function originally recommended by Jiang and Fan

[24, 25] with a chosen hyperparameter � = 0.6. PHORCED

is described qualitatively in Figure 1(c) where we use

a probabilistic neural network modeling a multivari-

ate, isotropic Gaussian output distribution. The electro-

magnetic merit function used in the reward is just the

unweighted grating coupler e�ciency, except we used a

“baseline” subtraction of the average merit function value

in the backpropagated gradient (which is a common tac-

tic in reinforcement learning for reducing model variance

[72]). In both methods, we use a stopping criterion of 1000

total optimizer iterations, with 10 devices sampled per
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iteration. Note that because GLOnet requires an adjoint

simulation for each device and PHORCED does not, the

e�ective stopping criteria are 1000 × 10 × 2 = 20,000 sim-

ulation calls for GLOnet and 1000 × 10 × 1 = 10,000 sim-

ulation calls for PHORCED. The neural networkmodels for

GLOnet and PHORCED were implemented in PyTorch, and

are illustrated in Figure S1 of the Supplementary Material.

For GLOnet, we used a convolutional neural network with

ReLU activations and linear output of the design vector.

For PHORCED, we used a simple fully-connected neural

network with ReLU activations and linear output de�n-

ing the statistical parameters (mean and variance) of

the Gaussian policy distribution. We applied initial con-

ditions by adding the design vector representing Initial

Seed 1 and Initial Seed 2 to either the direct neural net-

work output or the mean of the Gaussian distribution

for GLOnet and PHORCED, respectively. Hyperparame-

ters such as the number of weights and learning rate of

the neural network optimizer were individually tuned for

GLOnet and PHORCED (speci�cations can be found in

Figure S2 of the Supplemental Material). For both neu-

ral networks, we used an input vector z of dimension 5.

However, for GLOnet zwas drawn from a uniform distribu-

tion  (−1, 1), while for PHORCED we used a simple Dirac

delta distribution centered on 1. In other words, the input

for PHORCED was a constant vector of 1’s. In this work

we achieved our best results with this choice, but simi-

lar results (within 1% absolute grating coupler e�ciency)

couldbeattainedwithalternative choicesof inputdistribu-

tion. Anecdotally, we found that using a noisy input could

improve training stability and performance in toy prob-

lems studied outside of this work, but further investigation

is required.

We �nd that PHORCED and GLOnet outperform regu-

lar BFGS for both initial conditions studied in Figure 2. For

Initial Seed 1 (Figure 2(b)), we generated optimized grat-

ing coupler e�ciencies of 86.9 and 87.2% for PHORCED

and GLOnet, respectively. For Initial Seed 2 (Figure 2(c))

we �nd optimized grating coupler e�ciencies of 86.8 and

85.6% for PHORCED and GLOnet, respectively. Further-

more, as shown in the insets of Figure 2(b) and (c), we

were able to marginally improve each of the results by

applying a BFGS “re�nement step” to the best performing

design output from GLOnet and PHORCED. This re�ne-

ment step was limited to a maximum of 200 iterations,

or until another default convergence criterion was met.

For Initial Seed 1 we obtained improvements of {86.9%

→ 87.8%}/{87.2%→ 87.4%} for PHORCED/GLOnet, res-

pectively. For Initial Seed 2, we �nd improvements

of {86.8%→ 87.0%}/{85.6%→ 86.4%} for PHORCED/

GLOnet, respectively. Since PHORCED and GLOnet are

inherently statistical and noisy, the re�nement step is use-

ful for �nding the nearest optimum without requiring one

to runanexhaustivesearchof theneuralnetworkgenerator

in inference mode.

In summary,we �nd that the PHORCED+BFGS re�ne-

ment optimization achieved the best performance for both

Initial Seed 1 and Initial Seed 2 with �nal grating coupler

e�ciency of 87.8 and 87.0%, respectively. These results

agree with a transfer matrix based directionality analysis

of these grating coupler dimensions [55, 69], where we

�nd that approximately 88% grating e�ciency is possi-

ble under perfect mode-matching conditions – meaning

that our result for Initial Seed 1 is close to a theoretical

global optimum. Notably, GLOnet had better performance

than PHORCED in Initial Seed 1 before the re�nement step

was applied, and it is possible that better results could

have been achieved with further iterations of both algo-

rithms (as indicated by the slowly rising slopes of the

optimization curves in the insets of Figure 2(b) and (c)).

However, we emphasize that PHORCED required approx-

imately 2× fewer simulation than GLOnet with the same

number of optimization iterations because of the lack of

adjoint gradient calculations.

Perhaps the most important result of these optimiza-

tions is that both PHORCED and GLOnet proved to be

resilient against our choice of initial condition. Indeed,

while BFGS provided a competitive result for Initial Seed

1, it failed to �nd a favorable local optimum given Initial

Seed 2. PHORCEDandGLOnet, on the other hand, attained

�nal results within 1% absolute grating coupler e�ciency

for both initial conditions. This outcome ispromisingwhen

considering the relative sparsity of each algorithm’s search

in a high-dimensional design space. Indeed, asmentioned

previously, we only sampled 10 devices per iteration of

the optimization, meaning that there were fewer samples

than dimension of the resulting parameter vectors (60). As

an additional reference, we compared our results to CMA-

ES (implemented with the open-source package pycma),

a popular “blackbox” global optimization algorithm that

is known to be e�ective for high-dimensional optimiza-

tion [66]. Under the same number of simulation calls as

PHORCED (10,000), CMA-ES reached e�ciencies of 87.3

and 86.7% for Initial Seed 1 and Initial Seed 2, respectively.

Therefore our implementations of PHORCED and GLOnet

are competitivewith current state-of-the-art blackboxalgo-

rithms.While the simulation requirements for convergence

of PHORCED and GLOnet remain computationally pro-

hibitive for more complex electromagnetic structures than

those studied here, in contrast to local gradient-based
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search, our results o�er the possibility of global optimiza-

tion e�ort in electromagnetic design problems, where we

are capable of limiting the tradeo� of performance with

search density as well as the need for human interven-

tion in situations where physical intuition is more di�cult

to ascertain. Furthermore, we believe that our implemen-

tations of GLOnet and PHORCED have signi�cant room

for improvement, and have advantages that go beyond

alternative global optimization algorithms like CMA-ES. In

particular, leveraging advanced concepts in deep learning

and reinforcement learning can further improve computa-

tional e�ciency and performance. For example, whereas

our implementations of PHORCED and GLOnet used sim-

ple neural networks, a ResNet architecture can improve

neural network generalizability while simultaneously red-

ucing over�tting [27]. Moreover, one could take advan-

tage of complementary deep learning and reinforcement

learning based approaches such as importance sampling

[65, 72], or “model-based” methods that could utilize

an electromagnetic surrogate model or inverse model to

reduce the number of full electromagnetic Maxwell sim-

ulations needed for training [13, 19, 28, 32]. Alternatively,

whereas we optimized our grating for a single objective

(single wavelength, 8◦ scattering) Jiang and Fan showed

that generative neural network based optimization can

be extremely e�cient for multi-objective design problems

(e.g., multiple wavelengths and scattering angles in meta-

surfaces [24]). Along the same vein, in the next section

we will show how a technique known as transfer learn-

ing can be used to repurpose a neural network trained

with PHORCED for an alternative objective, meanwhile

boosting computational e�ciency and electromagnetic

performance dramatically.

4 Transfer learning with the

PHORCED method

Transfer learning is a concept in machine learning encom-

passing any method that reuses a model (e.g. a neural

network) trained on one task for a di�erent but related

task. Qualitatively speaking and veri�ed by real-world

applications, we might expect the retraining of a neural

network to occur faster than training a new model from

scratch. Transfer learning has been extensively applied

in classical machine learning tasks such as classi�cation

and regression, but has only recently been mentioned in

the optics/photonics research domains [17, 27, 28, 33]. In

this work we apply transfer learning to the inverse design

of integrated photonics for the �rst time (to the authors’

knowledge), revealing that a neural network trained using

PHORCED for the design of 8◦ grating couplers can be

retrained to design grating couplers with varied scattering

angle and increased rate of convergence.

Transfer learning applied to grating coupler optimiza-

tion is qualitatively illustrated in Figure 3(a) and (b).

Figure 3(a) shows a shorthand version of the PHORCED

optimization of Initial Seed 1 that was performed in

Figure 2(b), where a neural network was speci�cally

trained to design an 8◦ grating coupler. In the case of

transfer learning in Figure 3(b), we reuse the trained neu-

ral network from Figure 3(a) but now exchange the 8◦

angle in the grating coupler e�ciency merit function with

an alternate scattering angle. In particular, we retrain the

neural network on six alternative grating coupler angles:

{2◦, 4◦, 6◦, 10◦, 12◦, 14◦}. Note that we maintained the exact

same neural network architecture and optimization hyper-

parameters during these exchanges, including the opti-

mization stopping criterion of 10,000 total simulation calls

per training session; the only change in a given opti-

mization was the grating coupler angle. As depicted in

Figure 3(c),we show theoptimizationprogressionsof these

transfer learning sessions (blue/red curves) in comparison

to the original PHORCED optimization of the 8◦ grating

coupler from Figure 2(b) (reproduced in the black curve

in the middle panel). Also shown are control optimiza-

tions for each grating coupler angle using the PHORCED

method without transfer learning (in gray). We �nd that

transfer learning to grating couplers with nearby scatter-

ing angles (e.g. 6◦ and 10◦) exhibit extremely accelerated

rate of convergence relative to the original optimization

and control cases. However, transfer learning is less e�ec-

tive or ine�ective for more distant angles (e.g. 2◦, 4◦, and

14◦). This observation is shownmore clearly in Figure 3(d)

where we plot the number of simulations required to reach

80% e�ciency in optimization versus the scattering angle

for retraining.4While the original optimization and control

optimizations (black star andgraydiamonds) required sev-

eral thousand simulation calls before reaching this thresh-

old, the6◦ and 10◦ transfer learningoptimizations required

only about 100 simulations a piece – a >10× reduction

in simulation calls, making transfer learning comparable

with local gradient-based optimization in terms of compu-

tation requirements. On the other hand, the distant grating

coupler angle transfer learning optimizations (2◦, 4◦, and

14◦) required similar simulation call requirements to reach

the same threshold as the original optimization. Evidently,

4 80% grating coupler e�ciency was chosen because it equates to

roughly 1 dB insertion loss – an optimistic target for state-of-the-art

silicon photonic devices.
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Figure 3: Transfer learning applied to grating coupler design yields accelerated convergence rate in optimization. The original PHORCED

optimization from Figure 2(b) is qualitatively depicted as a block diagram in (a) for comparison with the transfer learning approach in (b).

Here, we exchange the 8◦ grating coupler merit function with an alternative grating coupler angle for retraining. Optimization progressions

as a function of the number of simulation calls for each of the retraining sessions are shown in the blue/red curves of (c). Control

optimizations where transfer learning was not applied are plotted in gray for comparison. In (d) we plot the number of simulation calls for

each optimization from (c) to reach 80% grating coupler scattering efficiency, with blue/red colored arrows and dots indicating applications

of transfer learning and gray diamonds indicating the control cases.

there is a bias towards less e�ective transfer learning for

small scattering angles. Grating couplers become plagued

by parasitic back-re�ection for small di�raction angles

relative to normal [44, 52], and thus it is possible that the

neural network has di�culty adapting to the new physics

that were not previously encountered. We conclude that

the transfer learning approach is most e�ective for devices

with very similar physics to the device originally optimized

by the neural network.

The results of Figure 3 lead to a natural follow-

up query: can we apply transfer learning multiple times

progressively in order to maintain the convergence rate

advantage for optimizations at more distant grating

coupler angles? We explore this question of sequential

transfer learning in Figure 4. In Figure 4(a) and (b) we

qualitatively compare sequential transfer learning to the

original PHORCED optimization from Figure 2(b). As indi-

cated, we replace the original 8◦ grating coupler scat-

tering angle in the electromagnetic merit function with

an alternative scattering angle in the same manner dis-

cussed in Figure 3(b). Then, after that optimization has

completed, we continue to iterate and exchange the grat-

ing coupler angle again. By sequentially applying trans-

fer learning, we hope to slowly introduce new physics
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Figure 4: Transfer learning applied sequentially improves convergence for grating coupler scattering angles that are distant relative to the

original optimization’s scattering angle. The original PHORCED optimization from Figure 2(b) is qualitatively depicted in (a) for comparison

with the ‘‘sequential’’ transfer learning approach in (b). Here, we sequentially re-train the neural network (originally trained to generate 8◦

grating couplers) with progressively different scattering angles, with the intention of slowly changing the physics seen by the neural

network. Grating coupler efficiency as a function of the number of simulation calls for each of the retraining sessions are shown in the

blue/red curves of (c), where the arrows on the right-hand side show the sequence of each application of transfer learning. The results of the

one-shot (non-sequential) transfer learning approach from Figure 3(c) are shown in gray for comparison. In (d) we plot the number of

simulation calls needed for the grating coupler optimizations from (c) to reach an 80% efficiency using the sequential transfer learning

approach, similar to the corresponding plot in Figure 3(d). The blue/red arrows and dots indicate applications of sequential transfer

learning, and the gray diamonds correspond to non-sequential transfer learning cases.

to the neural network such that we can maintain faster

convergence at more physically distant problems from the

initial optimization. We conduct two sequential transfer

learning sessionswherewe evolve the grating coupler scat-

teringangle in the following steps:{8◦ → 10◦ → 12◦ → 14◦}

and{8◦ → 6◦ → 4◦ → 2◦}. The results of theseprogressions

are shown in Figure 4(c) where we plot the grating coupler

e�ciency as a function of the number of simulation calls

in each (re-)training session. The 6◦, 8◦, and 10◦ cases are

the same as those shown previously in Figure 3(c); the

new results may be seen in the 2◦, 4◦, 12◦, and 14◦ cases,

where blue/red lines indicate the new optimization data

and gray lines indicate the non-sequential transfer learn-

ing cases from Figure 3(c) for comparison. We observe that

sequential transfer learning improves the optimization

convergence rate for the distant grating coupler scatter-

ing angles, in accordance with our initial prediction. This

observation is made more explicit in Figure 4(d) where
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we plot the simulation call requirement to reach an 80%

grating coupler e�ciency threshold for each of the trans-

fer learning optimizations. Blue/red arrows and points

indicate sequential transfer learning progressions, while

gray diamonds indicate the one-shot transfer learning

cases reproduced from Figure 3(d). Evidently, sequential

transfer learning improves simulation call requirements

by approximately an order of magnitude relative to the

single-step cases. While we �nd that there is still a notice-

able bias towards longer (but less severely long) training

at smaller scattering angles, sequential transfer learn-

ing had the added bene�t of providing the most e�cient

devices overall at every scattering angle in the progres-

sion. Note that the plotted simulation call requirements do

not include the simulation calls from the previous itera-

tion in the sequential transfer learning progression (each

application of transfer learning used 10,000 simulation

calls, where the �nal neural network weightset after those

10,000 simulation calls was used as the initial weightset

for the next iteration of transfer learning). Furthermore,

note that each optimization in these sequential transfer

learning cases used the same neural network architecture

and hyperparameters as the original PHORCED optimiza-

tion (8◦ case), except for the {12◦ → 14◦} and {4◦ → 2◦}

cases which required a slightly smaller learning rate in

optimization for better performance. The smaller learning

rate negligibly a�ected the 80% e�ciency simulation call

requirement shown in Figure 4(d).

5 Conclusions

In thisworkwe introducedPHORCED,aphotonicoptimiza-

tion package leveraging the policy gradient method from

reinforcement learning. This method interfaces a proba-

bilistic neural network with an electromagnetic solver for

enhanced inverse design capabilities. PHORCED does not

require an evaluation of adjoint method gradient of the

electromagnetic merit function with respect to the design

parameters, therefore eliminating the need to perform

adjoint simulations over the course of an optimization. We

anticipate that this fact can be particularly advantageous

formultifrequency electromagneticmerit functions,where

multipleadjoint simulationswouldnormallyberequired in

a simple frequency-domain implementation of the adjoint

method (e.g. see Ref. [52]).

We applied both PHORCED and the GLOnet method to

the proof-of-concept optimization of grating couplers. We

found that both algorithms could outperformconventional

gradient-based BFGS optimization, resulting in state-of-

the-art simulated insertion loss for single-etch c-Si grating

couplers and resilience against poor choices of initial con-

dition. In future work we intend to implement fabrication

constraints, alternative choices of geometrical parame-

terization, and other criteria to guarantee feasibility and

robustness of experimental devices.

As an additional contribution we introduced the con-

cept of transfer learning to integrated photonic opti-

mization, revealing that a trained neural network using

PHORCEDcouldbe re-trainedonalternativeproblemswith

accelerated convergence. In particular, we showed that

transfer learning could be applied to the design of grat-

ing couplers with varied scattering angle. Transfer learn-

ing was extremely e�ective for grating coupler scattering

angles within ≈ ±4◦ to the original optimization angle,

improving the convergence rate by >10× in some cases.

However, this range could be e�ectively extended to≈ ±6◦

or more using a sequential transfer learning approach,

where transfer learning was applied multiple times pro-

gressively to slowly change the angle seen by the neural

network. Because neural network based design methods

such as PHORCED are generally data-hungry, we believe

that transfer learning could greatly reduce the electromag-

netic simulation and compute time that would otherwise

be required by these techniques in the design of complex

electromagnetic structures. For example, transfer learning

could be used in multiple hierarchical stages to evolve an

optimization from a two-dimensional structure to a three-

dimensional structure, or from a surrogatemodel (e.g., the

grating coupler model in Ref. [10]) to real physics.

Looking forward, we would like to emphasize that

PHORCED takes advantage of fundamental concepts in

reinforcement learning, but there is a plethora of burgeon-

ing contemporary research in this �eld, such as advanced

policy gradient, o�-policy, and model-based approaches.

We anticipate that further cross-pollination of the inverse

electromagnetic design and reinforcement learning com-

munities could open the �oodgates for new research in

electromagnetic optimization.

Acknowledgment: The authors thank S. K. Vadlamani for

reinforcement learning discussions.

Author contribution:All the authorshave accepted respon-

sibility for the entire content of this submitted manuscript

and approved submission.

Research funding: Hewlett Packard Enterprise.

Conflict of interest statement: The authors declare no

con�icts of interest regarding this article.



3854 | S. Hooten et al.: Inverse design of grating couplers with PHORCED

References

[1] Y. Shen, N. C. Harris, S. Skirlo, et al., ‘‘Deep learning with

coherent nanophotonic circuits,’’ Nat. Photonics, vol. 11,

pp. 441−446, 2016..

[2] T. Inagaki, Y. Haribara, K. Igarashi, et al., ‘‘A coherent Ising

machine for 2000-node optimization problems,’’ Science,

vol. 354, no. 6312, pp. 603−606, 2016..

[3] N. C. Harris, G. R. Steinbrecher, M. Prabhu, et al., ‘‘Quantum

transport simulations in a programmable nanophotonic

processor,’’ Nat. Photonics, vol. 11, no. 7, pp. 447−452, 2017..

[4] Y. Yamamoto, K. Aihara, T. Leleu, et al., ‘‘Coherent Ising

machines−optical neural networks operating at the quantum

limit,’’ npj Quantum Inf., vol. 3, no. 1, pp. 1−15, 2017..

[5] E. Khoram, A. Chen, D. Liu, et al., ‘‘Nanophotonic media for

artificial neural inference,’’ Photon. Res., vol. 7, no. 8,

pp. 823−827, 2019..

[6] T. W. Hughes, I. A. D. Williamson, M. Minkov, and S. Fan,

‘‘Wave physics as an analog recurrent neural network,’’ Sci.

Adv., vol. 5, no. 12, pp. 1−6, 2019..

[7] B. J. Shastri, A. N. Tait, T. Ferreira de Lima, et al., ‘‘Photonics for

artificial intelligence and neuromorphic computing,’’ Nat.

Photonics, vol. 15, no. 2, pp. 102−114, 2021..

[8] X. Xu, M. Tan, B. Corcoran, et al., ‘‘11 TOPS photonic

convolutional accelerator for optical neural networks,’’ Nature,

vol. 589, no. 7840, pp. 44−51, 2021..

[9] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics

informed neural networks: a deep learning framework for

solving forward and inverse problems involving nonlinear

partial differential equations,’’ J. Comput. Phys., vol. 378,

pp. 686−707, 2019..

[10] D. Gostimirovic and W. N. Ye, ‘‘An open-source artificial neural

network model for polarization-insensitive silicon-on-insulator

subwavelength grating couplers,’’ IEEE J. Sel. Top. Quant.

Electron., vol. 25, no. 3, pp. 1−5, 2019..

[11] Y. Guo, X. Cao, B. Liu, and M. Gao, ‘‘Solving partial differential

equations using deep learning and physical constraints,’’

Appl. Sci., vol. 10, no. 17, p. 5917, 2020..

[12] Y. Chen, L. Lu, G. E. Karniadakis, and L. D. Negro,

‘‘Physics-informed neural networks for inverse problems in

nano-optics and metamaterials,’’ Opt. Express, vol. 28, no. 8,

pp. 11618−11633, 2020..

[13] R. Pestourie, Y. Mroueh, T. V. Nguyen, P. Das, and S. G.

Johnson, ‘‘Active learning of deep surrogates for PDEs:

application to metasurface design,’’ npj Comput. Mater.,

vol. 6, no. 1, pp. 1−7, 2020..

[14] A. Ghosh, D. J. Roth, L. H. Nicholls, W. P. Wardley, A. V. Zayats,

and V. A. Podolskiy, ‘‘Machine learning-based diffractive

image analysis with subwavelength resolution,’’ ACS

Photonics, vol. 8, no. 5, pp. 1448−1456, 2021..

[15] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G.

Johnson, ‘‘Physics-informed neural networks with hard

constraints for inverse design,’’ arXiv:2102.04626 [physics],

2021.

[16] R. Trivedi, L. Su, J. Lu, M. F. Schubert, and J. Vuckovic,

‘‘Data-driven acceleration of photonic simulations,’’ Sci. Rep.,

vol. 9, no. 1, pp. 1−7, 2019..

[17] Y. Qu, L. Jing, Y. Shen, M. Qiu, and M. Soljačić, ‘‘Migrating

knowledge between physical scenarios based on artificial

neural networks,’’ ACS Photonics, vol. 6, no. 5, pp. 1168−1174,

2019..

[18] D. Melati, Y. Grinberg, M. Kamandar Dezfouli, et al., ‘‘Mapping

the global design space of nanophotonic components using

machine learning pattern recognition,’’ Nat. Commun., vol. 10,

no. 1, pp. 1−9, 2019..

[19] M. H. Tahersima, K. Kojima, T. Koike-Akino, et al., ‘‘Deep

neural network inverse design of integrated photonic power

splitters,’’ Sci. Rep., vol. 9, no. 1, p. 1368, 2019..

[20] A. Demeter-Finzi and S. Ruschin, ‘‘S-matrix absolute

optimization method for a perfect vertical waveguide grating

coupler,’’ Opt. Express, vol. 27, no. 12, pp. 16713−16718,

2019..

[21] M. K. Dezfouli, Y. Grinberg, D. Melati, et al., ‘‘Design of fully

apodized and perfectly vertical surface grating couplers using

machine learning optimization,’’ in Proc. SPIE, Integrated

Optics: Devices, Materials, and Technologies XXV, vol. 11689,

San Francisco, USA, International Society for Optics and

Photonics, 2021, p. 116890J.

[22] M. M. R. Elsawy, S. Lanteri, R. Duvigneau, G. Briére, M. S.

Mohamed, and P. Genevet, ‘‘Global optimization of

metasurface designs using statistical learning methods,’’ Sci.

Rep., vol. 9, no. 1, p. 17918, 2019..

[23] A. M. Hammond and R. M. Camacho, ‘‘Designing integrated

photonic devices using artificial neural networks,’’ Opt.

Express, vol. 27, no. 21, pp. 29620−29638, 2019..

[24] J. Jiang and J. A. Fan, ‘‘Global optimization of dielectric

metasurfaces using a physics-driven neural network,’’ Nano

Lett., vol. 19, no. 8, pp. 5366−5372, 2019..

[25] J. Jiang and J. A. Fan, ‘‘Simulator-based training of generative

neural networks for the inverse design of metasurfaces,’’

Nanophotonics, vol. 9, no. 5, pp. 1059−1069, 2020..

[26] J. Jiang and J. A. Fan, ‘‘Multiobjective and categorical global

optimization of photonic structures based on ResNet

generative neural networks,’’ Nanophotonics, vol. 10, no. 1,

pp. 361−369, 2020..

[27] J. Jiang, M. Chen, and J. A. Fan, ‘‘Deep neural networks for the

evaluation and design of photonic devices,’’ Nat. Rev. Mater.,

vol. 6, no. 8, pp. 679−700, 2021..

[28] R. S. Hegde, ‘‘Deep learning: a new tool for photonic

nanostructure design,’’ Nanoscale Adv., vol. 2, no. 3,

pp. 1007−1023, 2020..

[29] M. Minkov, I. A. Williamson, L. C. Andreani, et al., ‘‘Inverse

design of photonic crystals through automatic differentiation,’’

ACS Photonics, vol. 7, no. 7, pp. 1729−1741, 2020..

[30] S. So, T. Badloe, J. Noh, J. Rho, and J. Bravo-Abad, ‘‘Deep

learning enabled inverse design in nanophotonics,’’

Nanophotonics, vol. 2234, pp. 1−17, 2020..

[31] Z. Ma and Y. Li, ‘‘Parameter extraction and inverse design of

semiconductor lasers based on the deep learning and particle

swarm optimization method,’’ Opt. Express, vol. 28, no. 15,

p. 21971, 2020..

[32] K. Kojima, M. H. Tahersima, T. Koike-Akino, et al., ‘‘Deep

neural networks for inverse design of nanophotonic devices,’’

J. Lightwave Technol., vol. 39, no. 4, pp. 1010−1019, 2021..

[33] W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, W. Cai, and Y. Liu,

‘‘Deep learning for the design of photonic structures,’’ Nat.

Photonics, vol. 15, no. 2, pp. 77−90, 2021..

[34] D. Melati, M. Kamandar Dezfouli, Y. Grinberg, et al., ‘‘Design of

compact and efficient silicon photonic micro antennas with



S. Hooten et al.: Inverse design of grating couplers with PHORCED | 3855

perfectly vertical emission,’’ IEEE J. Sel. Top. Quant. Electron.,

vol. 27, no. 1, pp. 1−10, 2021..

[35] R. Hegde, ‘‘Sample-efficient deep learning for accelerating

photonic inverse design,’’ OSA Continuum, vol. 4, no. 3,

pp. 1019−1033, 2021..

[36] J. S. Jensen and O. Sigmund, ‘‘Topology optimization for

nano-photonics,’’ Laser Photon. Rev., vol. 5, no. 2,

pp. 308−321, 2011..

[37] J. Lu and J. Vučković, ‘‘Objective-first design of high efficiency,

small-footprint couplers between arbitrary nanophotonic

waveguide modes,’’ Opt. Express, vol. 20, no. 7,

pp. 7221−7236, 2012..

[38] C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E.

Yablonovitch, ‘‘Adjoint shape optimization applied to

electromagnetic design,’’ Opt. Express, vol. 21, no. 18, pp. 21,

2013..

[39] Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, ‘‘Time

domain topology optimization of 3D nanophotonic devices,’’

Photonics Nanostructures: Fundam. Appl., vol. 12, no. 1,

pp. 23−33, 2014..

[40] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M.

Babinec, and J. Vučković, ‘‘Inverse design and demonstration

of a compact and broadband on-chip wavelength demulti-

plexer,’’ Nat. Photonics, vol. 9, no. 6, pp. 374−377, 2015..

[41] L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen,

‘‘Topology optimized mode multiplexing in silicon-on-insulator

photonic wire waveguides,’’ Opt. Express, vol. 24, no. 15,

pp. 16866−16873, 2016..

[42] L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruysse, and

J. Vučković, ‘‘Fully-automated optimization of grating

couplers,’’ Opt. Express, vol. 26, no. 4, pp. 2614−2617, 2017..

[43] A. Michaels and E. Yablonovitch, ‘‘Leveraging continuous

material averaging for inverse electromagnetic design,’’ Opt.

Express, vol. 26, no. 24, pp. 31717−31737, 2018..

[44] A. Michaels and E. Yablonovitch, ‘‘Inverse design of near unity

efficiency perfectly vertical grating couplers,’’ Opt. Express,

vol. 26, no. 4, pp. 4766−4779, 2018..

[45] S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W.

Rodriguez, ‘‘Inverse design in nanophotonics,’’ Nat. Photonics,

vol. 12, no. 11, pp. 659−670, 2018..

[46] T. W. Hughes, M. Minkov, I. A. D. Williamson, and S. Fan,

‘‘Adjoint method and inverse design for nonlinear

nanophotonic devices,’’ ACS Photonics, vol. 5, no. 12,

pp. 4781−4787, 2018..

[47] Y. Liu, W. Sun, H. Xie, et al., ‘‘Very sharp adiabatic bends

based on an inverse design,’’ Opt. Lett., vol. 43, no. 11,

pp. 2482−2485, 2018..

[48] N. M. Andrade, S. Hooten, S. A. Fortuna, K. Han, E.

Yablonovitch, and M. C. Wu, ‘‘Inverse design optimization for

efficient coupling of an electrically injected optical

antenna-LED to a single-mode waveguide,’’ Opt. Express,

vol. 27, no. 14, pp. 19802−19814, 2019..

[49] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, and J. Vučković,

‘‘Analytical level set fabrication constraints for inverse

design,’’ Sci. Rep., vol. 9, no. 1, pp. 1−7, 2019..

[50] Y. Augenstein and C. Rockstuhl, ‘‘Inverse design of

nanophotonic devices with structural integrity,’’ ACS

Photonics, vol. 7, no. 8, pp. 2190−2196, 2020..

[51] E. Bayati, R. Pestourie, S. Colburn, Z. Lin, S. G. Johnson, and A.

Majumdar, ‘‘Inverse designed metalenses with extended depth

of focus,’’ ACS Photonics, vol. 7, no. 4, pp. 873−878, 2020..

[52] S. Hooten, T. V. Vaerenbergh, P. Sun, S. Mathai, Z. Huang, and

R. G. Beausoleil, ‘‘Adjoint optimization of efficient

CMOS-compatible Si-SiN vertical grating couplers for DWDM

applications,’’ J. Lightwave Technol., vol. 38, no. 13,

pp. 3422−3430, 2020..

[53] W. Jin, S. Molesky, Z. Lin, K. M. C. Fu, and A. W. Rodriguez,

‘‘Inverse design of compact multimode cavity couplers,’’ Opt.

Express, vol. 26, no. 20, pp. 26713−26721, 2018..

[54] W. Jin, W. Li, M. Orenstein, and S. Fan, ‘‘Inverse design of

lightweight broadband reflector for relativistic lightsail

propulsion,’’ ACS Photonics, vol. 7, no. 9, pp. 2350−2355,

2020..

[55] A. Michaels, M. C. Wu, and E. Yablonovitch, ‘‘Hierarchical

design and optimization of silicon photonics,’’ IEEE J. Sel. Top.

Quant. Electron., vol. 26, no. 2, pp. 1−12, 2020..

[56] P. Sun, T. V. Vaerenbergh, M. Fiorentino, and R. Beausoleil,

‘‘Adjoint-method-inspired grating couplers for CWDM O-band

applications,’’ Opt. Express, vol. 28, no. 3, pp. 3756−3767,

2020..

[57] Z. Lin, C. Roques-Carmes, R. Pestourie, M. Soljačić, A.

Majumdar, and S. G. Johnson, ‘‘End-to-end nanophotonic

inverse design for imaging and polarimetry,’’ Nanophotonics,

vol. 10, no. 3, pp. 1177−1187, 2021..

[58] Z. Omair, S. M. Hooten, and E. Yablonovitch, ‘‘Broadband

mirrors with >99% reflectivity for ultra-efficient

thermophotovoltaic power conversion,’’ in Proc. SPIE, Energy

Harvesting and Storage: Materials, Devices, and Applications

XI, vol. 11722, Orlando, USA, International Society for Optics

and Photonics, 2021, p. 1172208.

[59] D. Vercruysse, N. V. Sapra, K. Y. Yang, and J. Vučković,

‘‘Inverse-designed photonic crystal devices for optical beam

steering,’’ arXiv:2102.00681 [physics], 2021.

[60] Z. Zeng, P. K. Venuthurumilli, and X. Xu, ‘‘Inverse design of

plasmonic structures with FDTD,’’ ACS Photonics, vol. 8, no. 5,

pp. 1489−1496, 2021..

[61] R. J. Williams, ‘‘Simple statistical gradient-following

algorithms for connectionist reinforcement learning,’’Mach.

Learn., vol. 8, no. 3, pp. 229−256, 1992..

[62] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, ‘‘Policy

gradient methods for reinforcement learning with function

approximation,’’ in Advances in Neural Information Processing

Systems, vol. 12, S. Solla, T. Leen, and K. Müller, Eds.,

Cambridge, USA, MIT Press, 2000.

[63] A. Michaels, EMopt, 2019 [Online]. Available at: https://github

.com/anstmichaels/emopt.

[64] L. Faury, F. Vasile, C. Calauzénes, and O. Fercoq, ‘‘Neural

generative models for global optimization with gradients,’’

arXiv:1805.08594 [cs], 2018.

[65] L. Faury, C. Calauzenes, O. Fercoq, and S. Krichen, ‘‘Improving

evolutionary strategies with generative neural networks,’’

arXiv:1901.11271 [cs], 2019.

[66] N. Hansen, ‘‘The CMA evolution strategy: a tutorial,’’

arXiv:1604.00772 [cs, stat], 2016.

[67] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever,

‘‘Evolution strategies as a scalable alternative to

reinforcement learning,’’ arXiv:1703.03864 [cs, stat], 2017.

https://github.com/anstmichaels/emopt
https://github.com/anstmichaels/emopt


3856 | S. Hooten et al.: Inverse design of grating couplers with PHORCED

[68] H. Ghraieb, J. Viquerat, A. Larcher, P. Meliga, and E. Hachem,

‘‘Single-step deep reinforcement learning for openloop control

of laminar and turbulent flows,’’ Phys. Rev. Fluids, vol. 6, no. 5,

p. 053, 2021..

[69] A. Michaels, GCSlab, 2019 [Online]. Available at: https://

github.com/anstmichaels/gcslab.

[70] S. Mathai, P. Rosenberg, G. Panotopoulos, et al., ‘‘Detachable

1x8 single mode optical interface for DWDMmicroring silicon

photonic transceivers,’’ in Proc. SPIE, Optical Interconnects XX,

vol. 11286, San Francisco, USA, International Society for Optics

and Photonics SPIE, 2020, pp. 62−71.

[71] T. Watanabe, M. Ayata, U. Koch, Y. Fedoryshyn, and J. Leuthold,

‘‘Perpendicular grating coupler based on a blazed

antiback-reflection structure,’’ J. Lightwave Technol., vol. 35,

no. 21, pp. 4663−4669, 2017..

[72] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, Cambridge, MA, MIT press, 2018.

SupplementaryMaterial: Theonline versionof this article offers sup-

plementary material (https://doi.org/10.1515/nanoph-2021-0332).

https://github.com/anstmichaels/gcslab
https://github.com/anstmichaels/gcslab
https://doi.org/10.1515/nanoph-2021-0332

	1 Introduction
	2  Extending the adjointtnqxa0;method with neural networks
	3 Proof-of-concept grating coupler optimization
	4 Transfer learning with the PHORCED method
	5 Conclusions

