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Inverse design of truss lattice materials with superior buckling
resistance
Marco Maurizi 1✉, Chao Gao1 and Filippo Berto1

Manipulating the architecture of materials to achieve optimal combinations of properties (inverse design) has always been the
dream of materials scientists and engineers. Lattices represent an efficient way to obtain lightweight yet strong materials, providing
a high degree of tailorability. Despite massive research has been done on lattice architectures, the inverse design problem of
complex phenomena (such as structural instability) has remained elusive. Via deep neural network and genetic algorithm, we
provide a machine-learning-based approach to inverse-design non-uniformly assembled lattices. Combining basic building blocks,
our approach allows us to independently control the geometry and topology of periodic and aperiodic structures. As an example,
we inverse-design lattice architectures with superior buckling performance, outperforming traditional reinforced grid-like and bio-
inspired lattices by ~30–90% and 10–30%, respectively. Our results provide insights into the buckling behavior of beam-based
lattices, opening an avenue for possible applications in modern structures and infrastructures.
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INTRODUCTION
Architecting the structure of materials as a lattice (i.e., arrange-
ment of solids and voids) from the micro- to the macro-scale has
been proven to be an efficient way to obtain lightweight yet
strong and stable structural materials1–13. Wood, bone, and glass
sponge skeleton are paradigmatic examples of the nature of
mechanical efficiency obtained by a variety of geometrical (i.e.,
shape and relative size of the constituents) and topologically (i.e.,
how and which constituents are connected) diverse lattices14–17.
In the attempt to engineer robust lattices, periodicity (i.e.,
tessellation of a unit cell in the space) has been harnessed to
gain stiffness and strength over stochastic arrangement (e.g.,
random foams) at the same relative density (i.e., a fraction of
material in a bulk volume)18, leveraging the more efficient material
allocation, which leads to more uniform stress distributions. At the
same time, for complex phenomena such as buckling, geometric
or topological features (e.g., length of a single beam or local
connectivity) at the unit cell level could entirely govern the global
mechanical response of a lattice either triggering local instability
or due to periodicity generating long-wave buckling phenomena
(namely, global buckling)19. Although controlling local features of
periodic lattice designs would in principle allow for fully tuning
the mechanical response, rather simple unit cell designs, such as
diagonally reinforced square grids, are usually employed in
modern structural applications. Here, we inverse design periodic
truss lattices for complex phenomena (such as structural
instability) by non-uniformly assembling smaller building blocks,
thus exploiting periodicity and local features control in order to
obtain mechanically efficient yet fully controllable lattices. Guided
by machine learning (ML) in a bottom-up fashion, small different
building blocks (Fig. 1b) are connected together to shape a more
complex unit cell (Fig. 1d), which in turn is tessellated to build a
periodic architecture (Fig. 1g).
With the recent advances in ML and additive manufacturing,

tailoring the structure of lattice materials for a targeted property,
namely inverse design, has become progressively more feasible,
mainly thanks to the possibility of efficiently exploring larger

design spaces and manufacturing complex geometries. From the
computational side, deep-learning models20, specifically, repre-
sent a promising alternative to physics-based models for materials
design, providing much faster (several orders of magnitude) yet
accurate structure-property relationship predictions, thus allowing
efficient design space exploration21–28. From composites29–33,
through complex symmetric architectured materials34, stretchable
kirigami-inspired-cut materials35,36, spinodoid metamaterials37, up
to polycrystalline solids38, several studies have attempted to solve
the inverse design problem exploiting the powerful computa-
tional and predictive capabilities provided by deep-learning
techniques, mainly deep neural networks, used either as
generative31,36,39,40 or surrogate forward models coupled with
other optimization methods32,41 (e.g., evolutionary algorithms).
Yet, only a few studies have provided solutions for the inverse
design of truss lattice materials, mainly focusing on (i) pre-existing
architectures conveniently modified to obtain lattices with desired
properties, such as tunable stiffness anisotropy42 and stronger
micro-lattices with arranged defects43; (ii) single complex 3D novel
unit cells with load carrying applications, such as stronger lattice
cores for sandwich structures44,45; (iii) basic architectures (such as
a square lattice), on which reinforcements are non-uniformly
added in order to match the desired mechanical response from a
database46; (iv) targeted linear properties (in solid mechanics
terms), such as lattice’ stiffness39,41,42,47 and Poisson’s ratio48. To
solve the inverse-design problem of lattice materials, we propose
a bottom-up approach using a fully connected deep neural
network (DNN) (as a decider) in conjunction with a genetic
algorithm (as a sampler) to search for optimal architecture
candidates, whose engineering applications are later verified by
finite element (FE) simulations and experiments on 3D-printed
lattices. It is worth underlying that the idea of combining an ML
model with a genetic algorithm to solve inverse problems is not
new in general24,32,41,49. In solid mechanics, specifically, strong yet
tough polycrystalline materials subject to complex fracture
mechanisms38,50 (e.g., crack branching) as well as stiff and strong
digital composites32 have been inverse-designed by exploiting
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deep learning models as efficient surrogate solvers combined with
genetic algorithms. We hence take advantage of the demon-
strated ability of this combined model to discover high-
performing designs in complex mechanics applications and
simplicity, applying it in a bottom-up framework to inverse-
design truss lattices undergoing high nonlinear phenomena (see
next). Our simple yet effective approach aims first to overcome the
previous issues: without relying on human intuition for choosing
pre-existing structures as in (i), allowing the possibility to harness
really simple building blocks instead of complex unit cells as in (ii)
and to simultaneously exploit the advantages of periodicity and
local features control without the need to simulate the whole
design space as in (iii). The universal approximation capabilities of
fully-connected DNN51 are fully exploited via Bayesian optimiza-
tion of its architecture (see the “Materials and methods” section),
using the DNN as a predictor of nonlinear buckling strength in the
inverse design process, involving much more complex physical
phenomena (geometrical and material nonlinearities; details
next and in the “Materials and methods” section) than those
determining the stiffness of lattices at small strains as in (iv).

Owing to the favorable vectorial (numerical) representation of the
assembled unit cells together with the loading direction (numbers
represent individual building block types and loading angle; see
next for details) and its low training cost, a fully connected DNN is
preferred over convolutional and graph DNNs. As a suggestion for
future works, a compound of convolutional and fully-connected
layers may be designed to deal with both the matrix data
representing the unit cell and the scalar value representing the
loading direction, possibly leading to higher accuracy; alterna-
tively, harnessing the natural graph representation of lattice
structures, graph DNNs may be employed, at the cost of more
expensive training. However, it is not clear yet which network
architectures guarantee higher prediction performance for truss
lattice materials subject to complex phenomena. This work overall
demonstrates that ML-based approaches can defeat human
engineering intuition (historically, based on trial-and-error meth-
ods) and bio-inspiration in designing robust lattice architectures,
comparing the discovered solutions to standard and bio-inspired
grid-like designs. In addition, based on the ML-discovered
solutions and their benchmark against bio-inspired designs, this

Fig. 1 Non-uniformly assembled lattices. a Initial squared framework with one node per edge (i.e., boundary nodes), identified by N0, N1,
N2, N3 for building block generation. b Unique beam-based building blocks generated by combinatorially connecting the boundary nodes.
c Typical stress–strain curves of non-uniform unit cells under uniaxial compression at five different loading directions (θ∈ [0°, 23°, 45°, 67°,
90°]). Note that PBCs are imposed with a maximum applied effective strain of 6%. d Examples of n × n non-uniform unit cells with n= 3
composed of two different combinations of building blocks i.e., design G and H, and design G and its 90°-rotated version (identified by a
darker green). e Upper panel: normalized effective buckling strength of the basic building blocks (in b) as a function of the loading angle θ.
The superior quasi-isotropic buckling performance of design G are clear. Central panel: probability that a 4 × 4 non-uniform unit cell exhibits a
normalized effective buckling strength within discretized levels (amplitude 0.1 × 10−2). The data with Ω⩾ 2% are filtered out. Buckling values
for sponge-inspired design are added as well as corresponding unit cells. Lower panel: effect of global buckling of uniform (in f) vs. non-
uniform (in g) design on the buckling strength (colors refer to f and g). Lines are plotted only to facilitate the interpretation. f Post-buckled
shape of a basic uniform design obtained tessellating a single building block (G in this case). Long-wave buckling instability is clearly
exhibited. g Post-buckled shape of a non-uniform design obtained by combining two building blocks (G and its 90°-rotated version). Sponge-
inspired designs (a: constant mass ratio of 0.5 between diagonal and non-diagonal beams; b: constant slenderness ratio). All values are
obtained by FE simulations (see “Methods” section for details).
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work attempts to provide insights into the mechanical stability of
lattice materials, confirming also previously formulated hypoth-
eses on the evolutionary advantage of the skeleton’s architecture
of deep-sea glass sponges17.
We propose a bottom-up deep-learning-based approach for the

inverse design of non-uniformly assembled lattice materials, using
the buckling strength as an example targeted property. This study is
motivated by the impact that super-buckling-resistant architectures
may have on practical engineering applications. Specifically, we aim
at finding non-uniformly assembled 2D unit cell designs that
maximize the effective buckling strength (i.e., homogenized value
over the lattice); nevertheless, applications of our approach could be
extended to 3D structures. Firstly, for simplicity we consider squared
building blocks with one boundary node per edge (identified by N0,
N1, N2, N3 in Fig. 1a), connected through beams; however, different
boundary connectivity (e.g., two nodes per edge) could be arbitrarily
adopted. To reduce the bias introduced by human decisions, our
building blocks are formed by considering all the possible
combinations obtained by connecting each boundary node to the
other such that no nodes are left unconnected; eight building blocks
are therefore obtained (indicated from A to H in Fig. 1b), without
including reflection and rotation symmetries in the count (see
Supplementary Fig. 1). It is worth noting that (1) one additional
lattice node at the building block’s center is created when the
boundary node pairs N0–N2, N1–N3 are connected and (2) the
boundary node connectivity changes between building blocks. From
(1) follows that building blocks B and C have 4 nodes instead of 5 like
the others, while (1) and (2) together lead to a different topology
between building blocks. Our goal is thus to combine these building
blocks to obtain buckling-resistant architectures. To pursue this
objective, we first analyze the nonlinear post-buckling behavior of
our building blocks under uniaxial compression by FE simulations
(see the “Materials and methods” section for details). Since many
applications require mechanical isotropy34, quasi-isotropic architec-
tures are preferred; thus, anisotropy is taken into account by
evaluating the lattice’s buckling response at five different loading
directions (θ) 0°, 23°, 45°, 67°, 90°. To have a fair comparison between
different designs, we assume a constant relative density, equivalent
to that of the buckling super-resistant Eupectella glass sponge-
inspired design suggested by M.C. Fernandes et al.17, which proved
to outperform traditional square-based reinforced architectures.
Motivated by the basic physics of buckling of a single beam, we
also assume a constant slenderness ratio (next identified with k) for
each beam of each building block. At a given relative density and
topology, the slenderness ratio will be consequently deduced,
leading to different values among the basic building blocks
(see Supplementary Section 1). The performance of the different
architectures is therefore evaluated by a fitness function
f ¼ ðP5

i¼1 σθi=μ0Þð1� ΩÞ, which takes into account the average
effective buckling strength (σθ) along the different loading directions
and the degree of isotropy Ω ¼ Δσθ/σθ;mean, where Δσθ ¼ ðσθ;max �
σθ;minÞ=2 and σθ;mean ¼ ðσθ;max þ σθ;minÞ=2, defined analogously as
in ref. 34 but for buckling; μ0 is the initial shear modulus of the
incompressible hyperelastic (nonlinear) base material model adopted
(see next, and “Materials and methods” section for details). The
smaller the value of Ω, the more isotropic is the material in terms of
buckling. Based on their fitness values (Fig. 1e and Supplementary
Fig. 2b), the top-performing building block/s is/are then selected to
be combined to form a n× n unit cell (Fig. 1d), which in turn can be
tessellated to generate periodic patterns, as shown in Fig. 1f, g
(or not if finite-size structures are needed). Encoding the n × n
combination of building blocks into a numerical representation (for
example, a binary representation of two building blocks is used), we
then employ a DNN in conjunction with a genetic algorithm (GA) to
find optimal combinations, based on the previous fitness function.
The DNN is trained on a 4 × 4 dataset, composed by randomly
picking geometries from the design space. In general, for a n × n unit
cell and m building blocks, a total of mn2 combinations exist, quickly

leading to astronomically large design spaces. Form= 2, 16, 512 and
65,536 possible unit cells can be easily generated for the 2 × 2, 3 × 3,
and 4 × 4 design space, respectively. As suggested by C. Ma et al.46,
the horizontal and vertical reflection, and 180°- rotation symmetries
are then excluded from the possible patterns to simulate, having
identical mechanical response under uniaxial compression to their
counterparts; nonetheless, they are included in the training dataset
to inform the DNN, which could not otherwise distinguish symmetric
transformations. Our design space comprises thus 16,576 unit cells
with unique buckling responses. Figure 2 shows the inverse design
optimization scheme. A classic genetic algorithm (GA) searches into
the design space by cross-over and mutation, starting from a
random population extracted from the 4 × 4 datasets, while the pre-
trained DNN evaluates σðθÞ=μ0 for each individual of the population,
by which the fitness function is then computed and used to
discriminate the architectures’ performance (next further details and
in the “Materials and methods” section). Our optimal lattice
architectures exhibit similar and even superior (depending on
the loading direction) effective buckling strength compared to the
recently suggested buckling super-resistant glass sponge-inspired
design17 (reported for clarity in the central panel of Fig. 1e; details
explained next and in Supplementary Section 2), providing also an
opportunity to re-think the design of classic grid-like structures,
based on engineering intuition. While these latter are rather
geometrically simple (e.g., square lattice with cross reinforcements),
the discovered designs exhibit quite complex resulting periodic
patterns, demonstrating that standard structures are not optimal
designs for buckling strength (see the section “Testing the high-
performing lattices” and see the section “Discussion”). Finite-size
versions of the optimal lattices are also fabricated by stereolitho-
graphy and tested under uniaxial compression, confirming the super
buckling resistance of the ML-discovered candidates (comparable to
high-performing bio-inspired solutions) and the advantage of non-
uniformly assembling unit cells.

RESULTS
Non-uniformly assembled architectures
Beam-based lattices are essentially ordered, often complex,
arrangements of struts connected to each other at some locations,
called nodes. Inverse designing them could be challenging if one
wants to preserve their inherent graph structure, without using
image-based representations34,39, through which topological
features, such as the number of nodes and connectivity (i.e.,
number of struts per node), cannot be explicitly controlled
(implicitly, would be controllable, but with high computational
costs). In dealing with the graph-based representation of lattices,
we recognize two main inverse design approaches: top-down and
bottom-up. In the first category, we classify those methods which
mainly start from a basic periodic architecture and modify it to
tune some mechanical properties, such as stiffness anisotropy42.
Instead, we define bottom-up approaches those in which basic
building blocks are employed to construct a more complex and
performing architecture43. If the local modifications of struts’
shape and dimensions, and base material properties (typical of
top-down approaches) allow for locally tuning the mechanical
response of known lattices, on the other hand, the design space is
limited by the adopted architecture’s topology. Instead, bottom-
up approaches allow wider control of geometry and topology, at
the cost of increasing the complexity and dimension of the design
space in which searching for optimal architectures.
In this work, we adopt a bottom-up inverse design approach

that allows us to arbitrarily compose geometries, also with variable
topology, with the only constraint of boundary nodes matching
(see Fig. 1a, b). In this context, we prove how non-uniformly
assembled architectures provide higher buckling strength and
allow the destruction of global effects, such as long-wave buckling
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phenomena, which strongly reduce buckling resistance19. Figure 1f
and g shows a comparison between the basic uniform design
generated by tessellating a single building block (G in Fig. 1b) and
a non-uniform design obtained by the composition of the same
building block (G) with its 90°-rotated version (indicated as U in
Supplementary Fig. 1). Comparing the two post-buckling
deformed shapes suggests that the non-uniform design does
not exhibit global buckling. This result is confirmed by comparing
the effect of increasing the number of unit cells (obtaining a
’super-cell’) for the basic and non-uniform design, as reported in
the lower panel of Fig. 1e. It is worth underlying we adopt periodic
boundary conditions (PBCs) (see the section “Materials and
methods”) to avoid boundary effects and speed up the simula-
tions in view of using these latter as training and test data for the
DNN. The periodicity assumption does not restrict the general
validity of the proposed inverse-design approach: finite-size lattice
structures could be also generated either assuming the dimension
L in Fig. 1d to match that of the finite architecture or iteratively
tessellating the space with two or more unit cells (created at the
previous iteration), generating a new unit cell at a greater scale,
and so on until the finite targeted size is reached.
Based on the physics of buckling of beams (Supplementary

Section 1), we generate our architectures assuming a constant
slenderness ratio for each beam of each building block, defined as
k= ti/Li, where ti and Li are the thickness and node-to-node length
of the single ith strut, respectively (see Fig. 1b, and Supplementary
Section 1 for detailed values). This assumption represents the only
yet important physics knowledge we input into the inverse-design

algorithm. It is worth indeed observing that building block G can
alone reach high buckling strength and fitness values (Supple-
mentary Fig. 2b), compared to classic (building blocks A and C)
and bio-inspired designs, as shown in the upper and middle
panels of Fig. 1e. Comparing design G with the other building
blocks’ buckling behavior thus suggests that a combined effect
between topology and number of beams exists. We postulate that
under the assumption of constant volume fraction and slender-
ness ratio there should be a threshold in the number of beams/
connectivity over which the compressive buckling strength does
not increase anymore, and tensile strength is promoted; being
outside the scope of this work, we left further analyses for future
research. While our targeted property for inverse design is the
buckling strength, we report for completeness in Supplementary
Fig. 2c the effective normalized stiffness of the single building
blocks, which overall show slight anisotropic behavior as typical
grid-like structures17. Note that design G exhibits similar average
stiffness values compared to sponge-inspired designs (see
Supplementary Figs. 2c and 7b; later explained in detail). Our
inverse-design approach could in principle be extended to
perform multi-objective optimizations (i.e., using two or more
targeted properties), paving the way for future research directions.
The central panel in Fig. 1e shows the probability that a 4 × 4

non-uniform design (obtained by tessellating the building block G
and its 90°-rotated version) exhibits a buckling strength in one of
the highlighted ranges for each of the five considered loading
directions. The diagram is constructed by selecting geometries
from the 4 × 4 dataset (later used for DNN training and test) with a

Fig. 2 Inverse design of buckling-resistant lattice materials. a Schematic information flow during property (buckling strength) prediction
using DNN. b Example of predicted vs. target (ground truth) property of a generic non-uniform 4 × 4 unit cell. Lines are plotted only to
facilitate the interpretation. c Dataset used for training and testing the DNN. d Predicted vs. target fitness values for the whole dataset and for
12 inverse-designed architectures. e Best 6 design candidates output by the inverse-design algorithm. f Simulated post-buckled shape of the
first best design candidate loaded at θ= 0°. PBCs are imposed on a 10 × 10 super-cell. g Simulated stress-strain curves of the first design
candidate and sponge-inspired designs at five different loading angles. h Normalized effective buckling strength of the first design candidate
at different loading directions compared to that of the sponge-inspired designs. Lines are plotted only to facilitate the interpretation. To
compare the DNN predictions with the FE-simulated values, in g and h a single unit cell with PBCs is considered; a slight decrease in
performance is exhibited due to global buckling effects, as shown in Supplementary Fig. 8.
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degree of isotropy Ω < 2% (quasi-isotropy). Unambiguously, most
of the buckling quasi-isotropic geometries fall into the same range
of the sponge-inspired designs; however, ~40% of the architec-
tures in the selected dataset have higher buckling strength values
than the sponge-inspired design-a (later explained in detail), up to
a 30% increase. Important to underline that our designs have both
a constant slenderness ratio (as sponge-inspired-b) and uniform
material allocation between diagonal and non-diagonal beams (as
sponge-inspired-a).

Nonlinear buckling resistance prediction
In this work, we employ an easily-to-train DNN (compared to
generative neural networks34,36,39,52) to predict the effective
buckling strength of uniaxially compressed lattices. The trained
DNN will then be used as a decider for the inverse design of non-
uniformly assembled architectures. To avoid preferable collapsing
loading directions in the inverse design algorithm, we let the DNN
learn the relationship between lattice patterns and buckling
strength at different loading angles (θ= 0°, 23°, 45°, 67°, 90°). From
the performance of the single building blocks (upper panel Fig. 1e
and Supplementary Fig. 2b) and their combinations (Supplemen-
tary Fig. 3), evaluated by the fitness function f (later employed in
the inverse design algorithm), we select design G and its 90°-
rotated version as optimum candidates for non-uniform assembly
(more details in Supplementary Section 1). Specifically, we first
simulate the nonlinear post-buckling behavior of the 4 × 4 non-
uniform unit cells by (1) conducting an eigenvalue buckling
analysis, (2) applying the lowest compressive eigenmode as a
perturbation to the original structure, and (3) performing a
nonlinear static analysis introducing large deformations and
material nonlinearities (see the “Materials and methods” section
for further details). To compare the performance of our optimal
geometries with those of the incredibly robust sponge-inspired
design, we adopt the analogous incompressible neo-Hookean
material model as in ref. 17, describing a hyperelastic (nonlinear)
behavior, with a shear modulus μ0= 14.5 MPa. We identify the
effective buckling strength from the corresponding stress-strain
curves (see Fig. 1c) as the maximum stress reached before the final
imposed strain of 6%, assuming only one buckling event occurs
within this range of deformation. Using then the normalized value
σðθÞ=μ0 as output and the mean squared error (MSE) as loss
function, we train a DNN (details on the architecture in the
“Materials and methods” section and Supplementary Section 3) on
the previously simulated unit cells, which consist of 2000
geometries (i.e., ~12% of the total combinations) randomly
extracted from the 4 × 4 design space (next, performance
sensitivity on training data). Note that the horizontal and vertical
reflections, and the 180°- rotations, having an identical mechanical
response, are further included in the dataset, leading to a ~three-
fold data augmentation (i.e., increase of training data), helping to
improve the prediction accuracy. As shown in Fig. 2a, to identify
the input architectures with unique mechanical responses, the
unit cells are firstly represented as matrices of integers, which
identify the specific employed building blocks (i.e., 1 and 2 for two
building blocks design); later, the matrices are vectorized to be
input into the DNN. To further distinguish between different
loading directions, the corresponding angle is thus concatenated
to the vector representation. To find an optimal DNN architecture,
we then perform a Bayesian optimization of the main network’s
hyperparameters i.e., number of layers, neurons in each layer, and
learning rate (using the KerasTuner framework53); for details on
the optimization and optimal hyperparameters see the section
“Materials and methods”.
A comparison between the DNN-predicted and numerical (i.e.,

ground truth) buckling strength of a randomly selected unit cell is
shown in Fig. 2b. Although only five loading angles are considered
(to limit the computational cost), the trend is essentially captured,

with a maximum 5% of mismatch on each direction for this
particular case. To globally evaluate the regression performance of
our DNN, we then employ a set of metrics, as in our previous
work54: the MSE, which is also the adopted loss function; the mean
absolute error (MAE); the ratio between the MAE and the ground
truth, namely the mean absolute percentage error (MAPE); the
ratio between the MAE and the ground truth range, identified as
RMAE; the coefficient of determination R2 between the predicted
values and the ground truth. A prediction accuracy is also used,
defined as the fraction of values for which the RMAE < c, where c is
an arbitrary threshold with values 0 < c < 1; we assume here
c= 0.1 is an acceptable value. In Fig. 3a–c we report some of these
performance indicators only for the test data i.e., data never ’seen’
by the DNN, while in Fig. 3d–f the corresponding metrics but for
the average buckling strength values over the loading angles for
all the simulated data, which will be called average data. Although
providing a rough performance estimate for generic anisotropic
behavior, average buckling values tend to be a good proxy for
quasi-isotropic structures’ performance. Specifically, despite the
difficult task of predicting instability in nonlinear post-buckling
analyses, satisfactory predictions are obtained both for the test
data and average data with R2= 0.846 ± 0.010 and 0.952 ± 0.011,
respectively (one run shown in Fig. 3a and d). In addition,
representing the absolute frequency in which each normalized
buckling strength value occurs by a colored scale, independently
of the loading angle, Fig. 3a confirms that most of the simulated
data are well predicted by our DNN (being around the bisector
line), and fall mainly around 0.85–0.9 × 10−2 (confirming the
central panel of Fig. 1e). The average data furthermore show
better accuracy than the single angular values (see Supplementary
Table 2), as expected from an ML regression algorithm.
In ML-based inverse design frameworks, the sensitivity of the

predictor to the training density (i.e., a fraction of data used for
training) is not negligible, especially for large design spaces.
Here, to find an optimal amount of training data, we evaluate
the DNN’s performance change with training density ranging
from 1% to 90 %. The relative error distribution for the test and
average data is reported in Fig. 3b and e, respectively. Increasing
the training density, the variance of the distribution decreases,
with the best performance around 80%, corresponding to ~1600
training architectures. These results are confirmed by the MAPE
and prediction accuracy change, which display a similar
convergence (Fig. 3c and f); we, therefore, set the optimal
training density to ~80%. Suitable performances are thus
reached by our DNN, whose function together with GA is to
find a set of high-performing candidates that are then validated
by simulations and experiments. Supplementary Table 2 reports
all the metrics measured for a training density of 80%. Despite
the relatively small design space (~16,576 unique architectures),
we want to emphasize that highly nonlinear anisotropic post-
buckling phenomena in lattice materials are captured by a
rather simple DNN, which is able to predict the buckling
strength at different loading directions.

Inverse design of buckling-resistant lattices
Combining DNN and GA, we provide a rather simple yet powerful
property-oriented inverse design approach for truss lattice
materials. Figure 2 shows a schematic of the design algorithm,
while further details can be found in the section “Materials and
methods” section. Briefly, the DNN is first trained and validated on
the previously simulated datasets, corresponding to
structure–property vector pairs (Fig. 2c). GA is then implemented
to explore the design space, searching for optimal architectures
i.e., ’individuals’ (geometries) with higher fitness. It is worth noting
that our fitness function takes into account the average buckling
strength along different loading directions and the degree of
buckling isotropy. Given the inherent random nature of the GA
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algorithm, we run optimization rounds for 100 iterations until 12
distinct design candidates are obtained, as shown in Fig. 2d. Based
on the fitness value, a natural ranking is then deduced for the 12
candidates, and the best-performing 6 design candidates are
selected (see Fig. 2e). Figure 2f reports the deformed buckled
shape (for θ= 0°) of the best candidate (left-upper corner in Fig. 2e),
highlighting the generated periodic pattern along the 45°-
direction, which repeats itself alternately with a phase-delay.
Hardly imaginable by humans, interesting high-performing
patterns emerge by periodically tessellating the non-uniform
designed unit cells. The periodic patterns of the best 6 design
candidates are reported in Supplementary Fig. 6. We want to
emphasize that the found architectures exhibit on an average
better performance than those used for training and testing our
DNN (Fig. 2d), suggesting that the proposed inverse design
algorithm is able to discover new high-performing geometries.
To benchmark our results with other known architectures, we

compare the best design candidate with the sponge-inspired
design (control design), which has been found to exhibit an
exceptional buckling strength, even greater than classic grid-like
designs (square unit cells with 45°-reinforcements). To have a fair
comparison, we consider two different versions of the sponge-
inspired design (see Fig. 1e): (a) in which the volume ratio
between diagonal and non-diagonal beams is constant and equal
to 0.5; (b) in which the slenderness ratio is constant for each beam
of the lattice; note that our inverse-designed architectures fulfill
both constraints by construction. Figure 2g displays the effective
stress-strain curves at five loading directions for the selected
architecture and the sponge-inspired designs. While our geometry
tends to buckle at larger effective stress values (except at θ= 45°),
the control designs (a) and (b) exhibit similar or higher stiffness

(see Supplementary Fig. 7b). With thicker non-diagonal beams
(along 0° and 90°), the sponge-inspired-a design, which resembles
the real allocation of material in glass sponges, seems not to be
globally optimized for buckling strength, but rather to fulfill a
multiple-criteria optimization problem i.e., maximizing stiffness
and buckling strength at the same time along the vertical and
horizontal direction. On the contrary, as a result of a single-
criterion optimization problem, the ML-designed unit cell exhibits
higher buckling performance (~10% than (b), and ~30% than (a)),
demonstrating that target-specific ML-based solutions can out-
perform bio-inspired solutions, which are usually not only subject
to multiple structural but also biological constraints. These results
hold also for different relative densities. Supplementary Fig. 9
reports the effect of relative density on the buckling performance
of the three designs: using (a) as the control design and the fitness
function as the performance indicator, the ML-designed architec-
ture exhibits ~15–45% higher performance for relative densities in
the range ~6–45%.
Relatively complex biological systems (such as deep-sea glass

sponges) are subjected to biological and physiological constraints,
such as growth, feeding, and locomotion, which may make some
optimal structural solutions disadvantageous from a natural
selection viewpoint or hard to obtain due to a different ’design
space’. In the case of glass sponges, in the early stages of growth, to
accommodate radial expansion the diagonal, horizontal, and vertical
struts are not structurally joined together17. In addition, our
hypothesis of constant slenderness ratio is unlikely to occur in glass
sponges probably due to the advantage of having thicker horizontal
and vertical struts, which provide higher stiffness along the
tangential (corresponding to our θ= 0°) and longitudinal (corre-
sponding to our θ= 90°) direction, respectively, as shown in Fig. 2g.

Fig. 3 Nonlinear buckling resistance prediction using DNN. a Predicted vs. target (simulated) normalized buckling strength values (on test
data, never seen by the DNN). The number of times a value occurs is indicated as Counts (90 bins are selected in the 2D histogram).
b Probability density of the percentage relative error between predicted and test data. A Gaussian density is assumed. c MAPE and accuracy
values on test data plotted against training density. Lines are plotted only to facilitate the interpretation. d Predicted vs. target (simulated)
normalized mean buckling strength values, averaged over the loading directions. e Probability density of the percentage relative error
between predicted and average data. A Gaussian density is assumed. f MAPE and accuracy values on average data plotted against training
density. One run, optimized network’s hyperparameters and training density of 80% is considered, if not otherwise specified. Lines are plotted
only to facilitate the interpretation. Error bars correspond to one standard deviation computed over 5 runs.
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These structural constraints are most likely responsible for the
sponge’ skeleton architecture. Nevertheless, a recent study55 has
provided evidence for the hydrodynamic function of the skeletal
features of deep-sea glass sponges. It has demonstrated that the
presence of fenestrae (apertures in the skeletal structure) tends to
reduce the drag, ’which mitigates the stress experienced by the
sponge and improves its mechanical stability’55. Structural and
hydrodynamic advantages could thus jointly explain why the
sponge’s skeleton architecture largely differs from our optimal ML-
derived buckling-resistant designs.

Testing the high-performing lattices
To significantly reduce the required computational time for
training data generation, taking advantage of the assumed
geometric periodicity of our lattices, the developed inverse-
design algorithm relies on PBCs applied to individual unit cells (i.e.,
1 × 1 super-cell), (see the “Materials and methods” section).
However, for practical applications, finite-size structures have to
be considered. To confirm the applicability of our inverse-design
results, we thus fabricate (3D-printing stereolithography) and test
(uniaxial compression) our ML-designed finite-size (M ×M
repeated unit cells) architectures and the sponge-inspired-b
design as an optimal bio-inspired benchmark (see the section
“Materials and methods” for details on manufacturing and
testing). For further comparison, we simulate these architectures,
the sponge-inspired-a, and other grid-like structures, namely, 45°-
reinforced square and sponge-inspired lattice with a single
diagonal beam (green and gray in Fig. 4d, respectively), with size
and boundary conditions resembling those of the experimental
tests (see the section “Materials and methods” section).
Motivated by asymmetric boundary effects (see Supplementary

Fig. 13) in finite-size structures, we construct a crystallographic

pmm-symmetric (see ref. 34 for details on 2D symmetry groups)
version of our best design candidate by reflecting the single unit
cell around the vertical and horizontal axis (Supplementary Fig.
14); experimental tests and simulations of the finite-size ML-
designed structure are performed on this design.
To allow high-quality manufacturing (i.e., accordingly to the 3D-

printer’s resolution), we 3D print samples with nominal relative
density ρ ¼ 0:20 (effect of relative density in Supplementary
Section 6) and unit cell size L= 20mm, except for the symmetric-
inverse-designed architecture, whose cell measures 2L by
construction. Based on these dimensions, to limit the maximum
load reached during uniaxial compression below that of the
machine’s load cell, the structures comprise 2 × 2 and 4 × 4
tessellations of the symmetric-inverse-designed and sponge-
inspired-b architecture, respectively (Fig. 4a). In addition, to
demonstrate that the buckling performance gain of our archi-
tecture over other designs is likely independent of the material
model, we use an elasto-plastic material (see the “Materials and
methods” section) to fabricate the lattices (similar performance
gain is numerically demonstrated by using the same hyperelastic
material model adopted for the inverse-design, see Supplemen-
tary Fig. 24). We then compare the mechanical response of the
considered structures under uniaxial compression along θ= 0°;
however, to investigate possible asymmetries in the buckling
response, our architecture is also tested and simulated along
θ= 90° (pmm-symmetry does not have 90°-rotation symmetry).
We first compare the experimental responses of the ML-

designed and sponge-inspired-b structures (Fig. 4d). From the
normalized stress–strain curves, ~15% overall average increase in
load-carrying capacity is exhibited by the ML-designed architec-
ture compared to the sponge-inspired design, confirming the
previous results in Fig. 2g. It must be noted that our architecture

Fig. 4 Uniaxial compression experiments and simulations of 3D-printed finite-size lattices. a Experimentally tested unit cells. Snapshots of
b un-deformed and c deformed (just before failure) 3D-printed samples at ~3.3% applied strain. d Normalized experimental and numerical
stress-strain curves for the symmetric-inverse-designed architecture (at two different loading angles), sponge-inspired designs, and typical
grid-like structures. The effective stress is normalized by the base material’s Young’s modulus (see the “Materials and methods” section) and
relative density. n= 4 samples are tested for the symmetric-inverse-designed architecture (2 for each loading angle), while n= 3 samples for
the sponge-inspired-b design. Curves are color-coded according to the unit cells depicted in (a) and (d). Scale bar 20mm for (b) and (c).

M. Maurizi et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)   247 



shows small deformations just before catastrophic failure com-
pared to the sponge-inspired-b design, whose local deformation is
more pronounced (see Fig. 4c and Supplementary Videos 1–2). In
addition, the ML-designed structure seems to have higher
effective stiffness and strength along the θ= 0° loading direction
compared to the θ= 90° direction.
To validate these results as well as to compare the buckling

performance of our design with other traditional grid-like
structures, we then analyze the numerical stress-strain curves
(for details on the material model, see the “Materials and
methods” section and Supplementary Section 9). Contrary to
what was expected based on the experimental results, the ML-
designed structure is theoretically isotropic along the two loading
directions. Because of the optimized buckling strength, our
architecture is indeed less prone to buckle than the other designs,
suggesting that it tends to fracture before buckling (as confirmed
by the experiments in Fig. 4c). This result suggests that the larger
difference between the stress-strain curves along θ= 0° and
θ= 90° exhibited by the ML-designed tested samples can be
considered as scatter due to the random nature of the brittle
fracture. The 90∘-symmetric buckling response of our design
obtained by simulations is further confirmed by the similarity of
the critical modes for θ= 0° and 90°, as reported in Supplemen-
tary Figs. 17–20. The numerical results confirm first the experi-
mental buckling performance gain of our design over the bio-
inspired structures. Second, the ML-designed lattice exhibits
~30–90% higher maximum loading capacity compared to
traditional grid-like designs (right plot in Fig. 4d), with a decrease
in the effective stiffness. A trade-off between stiffness and
strength hence appears evident, as found for the single unit cell
subject to PBCs (see Fig. 2g). Future works may address the multi-
objective optimization problem, where, for example, both stiffness
and buckling strength is maximized. More analyses on the finite-
size lattices can be found in Supplementary Section 10, such as
the effect of buckling modes on the response (Supplementary Fig.
21), and the comparison between the experimental and numerical
deformed shapes together with the local stress distribution at
failure (Supplementary Fig. 22).

DISCUSSION
This work demonstrates in wider terms the powerful potentialities
of a bottom-up ML-based approach to solve inverse design
problems. More in detail, it mainly proves (1) the benefits of
designing a more complex architecture by combining basic
building blocks, whose performance can be individually easily
evaluated; (2) the fruitful collaboration between DNN as decider
and GA as a sampler to inverse design lattices; (3) the advantages
of combining periodicity and local feature control in lattice
materials. Selectively and quickly exploring the considered design
space, our approach aims at dramatically speeding up the inverse
design process, compared to traditional methods such as
Edisonian trial and error (using simulations and experiments),
bio-inspiration, and topology optimization (using simulations).
Additionally, in the realm of beam-based lattice materials,
topology undoubtedly plays an important role in determining
mechanical properties. Despite the powerful capabilities shown by
image-based ML inverse-design algorithms34, they cannot expli-
citly control topological features of lattices, such as the number of
nodes and connectivity. Our bottom-up ML-based approach
attempts also to solve this problem, harnessing the possibility to
control the topology of individual building blocks, with the
constraint of matching boundary nodes (see Fig. 1a). Investigating
the effects of non-uniform topology (as that obtainable by our
approach) on the mechanical and fracture properties of lattices
may represent one of the future challenges to address, with the
goal to design and discover novel structurally performing
materials.

With regard to buckling strength, some rather simple yet useful
observations can be made by carefully analyzing the structure of
building block G, which turned out to be (together with its 90°-
rotated version) the most performing candidate for inverse
designing optimal lattices. Its double 45°-reinforcement makes it
on average (over the loading angles) stiffer (see Supplementary
Fig. 2c) and stronger (see upper panel Fig. 1e and Supplementary
Fig. 2b) than any other building block. Adding more diagonal
reinforcements, such as in the blocks F and H (Fig. 1b), with the
constraint of constant relative density and slenderness ratio, a
decrease of beams’ thickness is induced (leading on average to
softer and weaker geometries); while, using fewer reinforcements
as in the block D, the connectivity of the tessellated lattice is
reduced (from 4 to 3, in this case), leading to weaker geometries.
Another geometrical parameter, strictly related to the others,
governing the buckling strength is the node-to-node length (i.e., Li
for the individual building block), which varies even if the
topology of the tessellated lattice is unchanged. For example,
the simple grid obtained by tessellating A has the same
connectivity (i.e., 4) as that generated by tessellating G; however,
the node-to-node length in the first lattice is twice that in the
second one. This brings us to conclude that, under the assumption
of constant relative density and slenderness ratio, the buckling
strength of lattices is locally governed only by the interplay
between connectivity, number of nodes, and node-to-node
length. Global buckling additionally contributes to decreasing
the buckling strength, emerging from the global tessellated
pattern rather than the individual block’s morphology.
By engineering intuition, traditional grid-like load-bearing

structures are mainly designed starting from a square lattice,
which guarantees easy construction and high vertical stiffness and
adding cross reinforcements to avoid global instabilities due to
vertical loads17. Bio-inspired designs, like glass sponge-inspired
architecture, have demonstrated that engineering intuition is not
actually effective in finding optimal lattice architectures, mainly
due to the large design space offered by truss lattice materials.
Based on this latter consideration, our ML-based approach
attempts to go beyond human intuition and bio-inspiration.
Comparing the traditional grid-like structures to the sponge-
inspired design, an evident difference in the node-to-node lengths
appears: the latter shows smaller lengths compared to the former
(Fig. 4). As long as local buckling is the dominant instability
mechanism, and the relative density and slenderness ratio are
constant, the node-to-node lengths hence seem to govern the
buckling strength of truss lattices, as intuitively expected based on
the physics of buckling of simple beams (see Supplementary
Section 1). However, our ML-designed architecture (Fig. 4a),
although exhibiting similar or even higher buckling strength
compared to the sponge-inspired design, is characterized by
higher node-to-node lengths; this geometric feature can be
captured by comparing an individual square cell of the ML-
designed unit cell to that of the sponge-inspired one (comprising
only one square) assuming they have the same size (Supplemen-
tary Fig. 23). This is somewhat surprising merely by physics
intuition. It thus suggests that local buckling of lattices cannot be
evaluated just by considering the individual lattice beams’
instability; rather, the whole structure contributes to redistributing
the deformation, leading to complex critical buckling shapes
(Supplementary Figs. 17–20). Other existing optimization meth-
ods, such as topology optimization or image-based generative ML
models, would not easily find such solutions due to their
impossibility of (1) explicitly controlling the topology (e.g., number
of nodes and connectivity) of the lattice, and (2) constraining the
slenderness ratio of the individual beams to be throughout
constant. Instead, our bottom-up approach allows us to decouple
the topology from geometry: for example, varying the beams’
geometry of each building block does not induce any change to
the lattice connectivity. Based on (1) and (2), and on the strong
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dependence of the topology-optimized solutions from the initial
guess, we expect, even for relatively simple problems as the one
treated here, the solutions proposed by our ML-guided approach
to be hardly discoverable by classic optimization methods56. To
test the potential of alternative optimization algorithms, we also
implement a Bayesian framework for inverse design, whose details
and results are reported in Supplementary Section 7. Although a
high-performing design is found, our discovered solution is not
predicted by the implemented Bayesian algorithm. As a promising
alternative inverse-design framework, an in-depth investigation of
the surrogate model, search and acquisition function, required for
the specific problem, is left for future research.
Functionally graded materials, often found in natural systems

such as bone or bamboo, represent an example of non-uniformity,
in which composition (e.g., volume fraction) and/or microstructure
gradually change along some spatial directions. However,
geometrical and topological non-uniformities have not yet been
completely exploited for tuning the structural properties of man-
made lattice materials. Our bottom-up ML-based approach could
thus represent a starting point for future investigations of novel
high-performing graded architected materials. Specifically, in Fig. 5
we show that our building-block-based method could be used to
construct graded truss lattice materials by harnessing a string-
based approach. By stacking finite-length (N) strings of letters (or
numbers), representing combinations of individual building
blocks, this method allows progressive changes in the architecture
along one direction, generating a gradient of microstructures.
Owing to the flexibility of the approach, either elementary
building blocks (as in Fig. 1) or inverse-designed unit cells (as in
Fig. 2) could be used as building blocks to shape materials with
microstructure-driven graded properties (Fig. 5a and b, respec-
tively), such as buckling resistance, stiffness or failure mechanisms.
Graded architected materials could thus be hierarchically
designed by our ML-guided algorithm: by composing distinct
previously inverse-designed unit cells (Fig. 5b), an iterative
application of the algorithm might much faster lead to optimal
graded solutions compared to shaping the graded material
starting from the elementary building blocks (of Fig. 1b). The
flexibility of our building-block-based method though comes at a
cost: smoother gradients (Fig. 5c) require higher computational

costs. To inverse-design high-performing materials, we believe
future works will have to search for novel efficient ways to
evaluate the performance of architected materials subject to
complex nonlinear phenomena (such as buckling or path-
dependent plasticity) at different length scales. Alternative
solutions can be found in the natural truss lattice-to-graph
mapping, by which graph neural networks might be exploited
as a powerful predictive tool, taking into account topology
changes, otherwise hardly controllable.
Harnessing our bottom-up ML-based inverse design approach,

we have thus demonstrated that not only non-uniformly
assembled lattices can exhibit high buckling resistance, even
higher than bio-inspired and traditional architectures, opening an
avenue for possible applications in modern structures and
infrastructures, but also more complex architected materials could
be generally designed with microstructure-driven graded
properties.

MATERIALS AND METHODS
Finite element simulations
To create a dataset for training and testing our DNN and for
validating the design candidates' output by our property-oriented
inverse-design algorithm, FE simulations are performed using the
commercial software Abaqus/Standard through Python scripting.
All the models are meshed with 20 quadratic three-node 1-D
Timoshenko-beam elements (identified as B22 in Abaqus) per
strut, found to be an optimal mesh-insensitive value. Through the
all-inverse-design process, an incompressible Neo-Hookean mate-
rial model with initial shear modulus μ= 14.5 MPa is adopted.
Using this material model allows us first to validate our numerical
results: resembling the simulations performed in ref. 17 on the
sponge-inspired-a design indeed demonstrates that our simula-
tions agree with the previous literature. Second, it provides a solid
benchmark to compare our ML-designed lattices. Nonetheless, to
prove that the hyperelastic model assumption does not limit the
general validity of our approach, we also simulate unit cells
(randomly extracted from the dataset) using a linear elastic
material model (with equivalent Young’s modulus
E= 2μ0(1+ ν)= 43.5 MPa, and Poisson’s ratio ν= 0.5, to the

Fig. 5 Graded truss lattice materials using a building-block-based method. a Gradient of microstructures generated by symmetrically
composing two elementary building blocks (from Fig. 1b) with N= 6 finite-length strings. The dashed red line represents the axis of symmetry.
b Gradient of microstructures generated by composing two previously inverse-designed unit cells (from Fig. 2e) with N= 6 finite-length
strings. A symmetric generation is not here shown for the sake of clarity in the visualization. c Example of gradient smoothness induced by
increasing N to 50. A and B represent two different microstructures.
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hyperelastic model); the stress–strain curves of a randomly
extracted geometry along the five loading directions
(θ= [0°, 23°, 45°, 67°, 90]°) are reported in Supplementary Section
4. In addition, to reduce the computational cost, in an effort to find
optimal periodic designs we impose periodic boundary conditions
(PBCs) to each n × n unit cell. Note that outside the inverse design
process for evaluating global buckling we also impose PBCs to
M ×M unit cells, where M is an integer value representing the
number of times the single unit cell is repeated along the x- and y-
direction. Occurring at larger length scales (i.e., long-wave
phenomena), global buckling may not be captured by a single
unit cell subject to PBCs. Therefore, analyzing the influence of M in
M ×M unit cells (forming a super-cell) subject to PBCs can help to
identify possible long-wave phenomena. Roughly speaking, if the
estimated buckling strength of a periodic lattice is reduced by
increasing M, the lattice exhibits global buckling. Moreover, PBCs
are also utilized when simulating individual building blocks. PBCs
are applied to the unit cell’s boundary through a set of virtual
nodes, imposing the following 2D macroscopic deformation
gradient:

F ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E11 þ 1

p
0

0 UNSET

" #
(1)

corresponding to uniaxial compression conditions, in which E11 is
the uniaxial component of the Green–Lagrangian strain tensor,
used as a measure for finite strains. The first Piola–Kirchoff stress
tensor is then computed using the principle of virtual work57,
considering that it is work-conjugate to the deformation gradient
F. To evaluate the buckling strength at different loading directions,
we rotate the model by an angle θ with respect to the uniaxial
compression direction (i.e., x-direction), thus using the rotated
coordinates for applying PBCs. For all buckling analyses, we first
perform a linear eigenvalue buckling analysis and then perturbing
the mesh of the model with the lowest compressive eigenmode,
we conduct a nonlinear post-buckling analysis. For the linear
analysis, five eigenvalues are computed and the lowest positive
(i.e., which refers to compression instability in this case) value is
adopted as the critical eigenvalue. To verify the applicability of the
inverse-designed lattice, additional simulations of finite-size
structures are also performed (checked against experimental
results). To investigate the effect of a more complex material
model in realistic finite-size structures, we adopt the material
model calibrated to CLEAR resin (Formlabs). To capture the
behavior of the uniaxially tested base material (Formlabs, CLEAR
resin) up to failure, three material models are adopted: (1) linear
elasticity with E= 2200 MPa and ν= 0.3; (2) power-law hardening
model σ � Sy ¼ Hεnp to capture initial yield and hardening with
Sy= 28MPa, H= 100MPa, n= 0.25; (3) linear damage evolution
law defined by final fracture εf= 0.28 (see Supplementary Section
9 for further details on the material model calibration). Depth for
all the models is selected to avoid out-of-plane deformations, with
a value of 20 mm. The effective stiffness of infinite lattices is
computed by performing small-strain linear elastic analyses.
Simulations are all performed on a 4-core IntelⓇ XeonⓇ CPU E3-
1270 V5 @3.60 GHz PC with 64 GB RAM.

DNN architecture
A classic fully connected deep neural network is adopted due to
its powerful capabilities to approximate highly nonlinear relation-
ships (i.e., effective buckling strength as a function of the
architecture and loading direction), finding hidden patterns in
data, to the possibility to deal with integer representation of
inputs (i.e., representing the type of building block in this work),
and to its simplicity for training. Hyperparameter tuning is first
performed to find an optimal DNN’s architecture, using Bayesian
optimization in the KerasTuner framework53; the training density is

kept constant and equal to 90% during the whole process. The
base skeleton of the DNN’s structure consists of an input layer that
receives the vectorial representation of the lattice designs and the
loading direction, appositely normalized to have zero mean and
unitary variance, L successive layers each with ni (i= 1, . . . , L)
neurons and ReLu nonlinear activation function, and a single-
output linear layer for regression; the first layer is associated with
batch normalization to stabilize the learning process. During the
hyperparameter optimization we let L and ni vary between 2 and
6, and 32 and 288 with a step of 32, respectively. At the same time,
the learning rate is also tuned between three values: 0.01, 0.005,
and 0.001. The objective function for the Bayesian optimization is
the validation loss function (i.e., the MSE), with a maximum
number of trials (i.e., tested model configurations) of 20, each run
for 100 epochs, with a batch of 64 samples, and a validation split
corresponding to 10% of the training data. The resulting best
parameters are L= 6, n1= n2= n4= 288, n3= 32, n5= 192 and
n6= 160, learning rate of 0.005. Note that the output (i.e., σðθÞ=μ0)
of the network is normalized into the range [0,1], and then re-
scaled to obtain the original values during prediction. For the
training density sensitivity, the best DNN architecture is trained to
limit the number of epochs to 150 while using the early stopping
technique to interrupt training after 30 epochs of no further
validation loss reduction. For each training density value, 5 runs
(including training and testing the network) are performed,
randomly shuffling the data and utilizing the same batch size
and validation split as before for each run.

Inverse-design algorithm
Searching for design candidates with high buckling strength, our
inverse-design algorithm consists of a property predictor,
identified by the DNN, and an explorer, identified by a GA. The
pre-trained DNN serves as a surrogate solver to predict σðθÞ=μ0 at
each iteration of the GA algorithm, which generates new designs
based on the task-specific fitness function, which takes into
account the effective normalized buckling strength (σðθÞ=μ0) and
the degree of isotropy (Ω). GA is an evolutionary optimization
algorithm that can be summarized into the following steps:

1. A random initial population (consisting of randomly picked
designs from the database) is defined. Here it is set to
be 2000.

2. The fitness function value is computed based on the DNN-
predicted property value.

3. The individuals (designs) with the highest fitness are
selected as parents for mating, producing the next
generation of individuals (offspring). Here the number of
parents is set to be 100.

4. Crossover is used to generate offspring. Here a center one-
point crossover is adopted, leading to offspring with half of
the genetic code of the first and second parent.

5. Mutation is then applied to the new offspring, allowing to
change of the type of building block in each position of the
unit cell (choosing between those used to build the
database) with a low arbitrary probability. Here the mutation
probability is set to be 0.01.

6. The new offspring with their parents form the new
population.

7. The process is repeated for a prefixed number of genera-
tions, which here is set to be 100.

The algorithm is run until 12 unique designs are output. A
further selection is made by selecting the best six architectures
(highest fitness) of which FE simulations are performed to confirm
the DNN predictions on the single unit cell. The highest-
performing unit cell is then more deeply studied by FE simulations
and experiments on 3D-printed finite-size structures.
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Samples fabrication and testing
Finite-size structures are manufactured by stereolithography (SLA)
using a 3D-printer Form 3 (Formlabs Inc., USA). The samples are
3D-printed along the out-of-plane lattice direction (namely, depth)
with a layer thickness of 100 μm. After printing, the samples are
cured with UV light (405 nm) at 60° for 60 min. To balance the
trade-off between the 3D printer’s resolution (25 μm on the plane)
and the testing machine’s maximum load, the lattices are
fabricated with nominal relative density ρ ¼ 0:20 and unit cell
size L= 20mm. Quasi-static (strain rate of 0.001 s−1) uniaxial
compression tests are performed under displacement-control
loading conditions on an Instron ElectroPuls1000 (Instron Inc.,
USA) with a 10 kN load cell. Details on the 3D-printed finite
structures’ dimensions can be found in Supplementary Section 10.
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