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Inverse dlfferentmhlhty contractors and equations
in Banach spaces

by
M. ALTMAN (Baton Rouge, La.)

Abstract. Introducing the notions of inverse differentiability and contraetors
wo -obtain a unified epproach to various different in character iteration procedures
including the Banach fixed peint principle and the Newton-Eanterovich method.
An applieation to evolution equations and = generalization of Krasnoselskii’s fized
point theorem are also given.
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Introduction. Recently Nashed [11] gave a systematic and very
comprehensive exposition of ‘abstract differential calculus in normed
and topological linear spaces showing the important role of differentials
in. noniinear functional analysis. In this paper we are concerned with
one aspect of thiz concept as a tool to investigate iteration procedures
for solving equations in Banach spaces. It is the nature of many applied
problems leading to operator equations that the inverse operator is re-
quired to exist and to be even continuous. Thus, the regularity conditions
are in the space of images. For this reason for instance the iteration pro-
cedure in the well known implicit function theorem uses the inverse of
the Fréchet (GAteaux) derivative. The same fact is seen in the Newton—
Kantorovich procedure (see [5], [6], [12]). This observation leads us
to an independent definition w g derivative such that can be
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used in place of the inverse of the derivative. Moreover, it turns out that
for the same purposes much less can be required and what iz the concept
of a confractor. As a matber of fact if the mapping is a contraction itself
then the eontractor exists and: ig simply the identity mapping. The concept
of a eontractor generalizes the notion of an inverse derivative. The Heration
procedure based on this concept iy actually a perturbation method of the
independent vector of the domain of the operator.

1. Inverse derivatives. Let P : X - ¥ be a nonlinear operator from
a Banach space X to a Banach space Y. Consider the difference P (@ -+k)—
—Pu = @ (2)h and suppose that I'(#) is a linear bounded operator associated
with #eX acting from ¥ to X, 1. e. I'(): ¥ - X,

If I'(x) has the property: for ye ¥

(L.1) \IyH“IHQ (@) (@)y —y) -0 as y -0,

then I'(x) is called the inverse derivative ai ¢ of P. Condition (1 1) can be
written in the form

(1.2) I 12 (e + @)y}~ Po—y - 0 as y 0.

Properties of inverse derivatives.
(i) If T'(2) exists, then d/@iP (v +11'(@) y) |, = ¥, 1 e. P has a directional
derivative in the direction I'(2)y.
Property (i) shows that
(i) I(x)y = 0 implies ¥ =0, i. e. I'(#) i8 a one-to-one mapping.
(iif) It the Fréchet derivative P’(x) exist, then P’(2) is an extension
of [I'@)]
{itv) X [P'(@)]-* exists, then I'(#} is uniquely defined and I'(x)
= [F'(#)]
(v) B I'(z) is onto, then P’(#) exists and has the inverse [P {w)]-t
= D(z).

. Proposrrion. If P’ (x) and I'(@) exist, then P'(®) maps X omto ¥ and
ihere i3 a projection of X onto the hernel of P/ (w), i. 6. X == NDX v (direct
sum), wheve N = [h: P’ (@)h = 0, he X and Xy is the range of I'(w).

Proof. Bince P'(z)I(v)y =y for arbitrary ye ¥, by (iil), P’ (%) is
onto. Tt iz easily seen that Xy is closed. In fact, I(z)y, — », implies

Yo = P (@) I(@)§n > P’ ()25 = y,, by (iii). Hence, T(m V= L(w)y = .
) For an arbitrary b of X let y = P'(2)k and b, = I'(@)y. Then, by
(i), P’ (@) hy = [I'(&)]-'h, = y. Hence, P’ (&)(h—h ) =0,i e h—hycN,
where b sXN = I'(@)(¥). Clearly, ¥ n X, = {0}.

Note that this concept of an inverse derivative is considered in the
strong (Fréchet) sense. However, it is also possible to introduce the notion
of an inverse derivative in & Weaker sense of Giteanx,
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Remark 11. Calling I'(z) a right inverse derivative we eould also
introduce in a similar way a left inverse derivative I'(z) using the following
formula in place of (1.1):

B~ ()@ (@) h — B~ 0 as k>0, he X.

2. Tteration procedures with inverse derivatives. Our problem is to
find a solution to the operator equation

(2.1) Pa =0,

where P: X+ ¥, X and ¥ are Banach spaces. We assume the existence
of inverse derivatives I'(z) of P in a neighborhood S(z,,7) = [&: |&— |l
<7, #e X], where z, is a given approximate solution to (2.1). For solving
(2.1) we use the following iteration procedure:

(2.2) Tppq = B — (0, ) Py, m = 0,1,2, ...

The following theorem gives sutficient conditions for the convergence
of the iteration procedure (2.2) to a solution of equation (2.1).

TrmoREM 2.1. Suppose that there exist posilive numbers 0 < q < 1,
7, 1 end B such thet the inverse derivative satisfies the uniformity condition.

(2:3) W IP(a-+I(2)y) ~Po—yl < q  for meS(ay,7) and |yl < n

(2.4) 1P@l< B for weS(wy, 7).
(2.5) I (o)1 <
(2.6) Ba(l—g)tgr.

2.7) P iz closed on 8@y, 7).
Then there exists a solution «”< 8(w,, *) and the sequence of w, defined
by (2.2) comverges toward =, i. e.

By —a¥*,  Po¥ =0,  g*e8(ng,7)

and
(2'8) ”wn_“m*”

Bg*(r—gq)~*
Proof. Putting y = —Pg, in (2.3) we obtain
(2.9) 1Pz, |l n=10,1,2..
Hence, it follows from (2.2) and (2.4)
(2.10) %l < B|Pa,|| < Byg™

By induection it is easy to see that «,e 8 (mo, ) for v =0,1,2,..
Thus the sequence of , converges toward some a*e § (%4, 7). Since Pz, — 0
by (2.9), and Pz is closed in 8(=z,, #), it follows that Pz* = 0. The error
estimate (2.8) results from (2.10) in the usual way. ’

S 2 ”Pmn”l

”mu-;. 1~
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Remark 2:1. If I'(») is onto, then the iteration procedure‘(2.2)
hecomes the well known Newton-Kantorovich method (see [5], [61,[12])

(2.11) Tppr = B — [P (mn)]_lpmn'

In this ease under the hypotheses of Theorem 2.1 the solution o* is
unique in § (%, r) if, in addition, condition (2.3) is satisfied for all ye ¥
guch that |1 (2)y] < 2r, where we 8(2,, #). This results from the following
inequality .

(2.12) (1) Iyl < IP o+ D (@)y] =Pl

obtained from (2.3). For if @*, ™ ¢ 8(w,, r) are two solutions, then #* can
be written. ag 2™ = a*+ I'(2*)y and we have

1@yl = " —a") < 2r

and we ean apply the inequality (2.12).

Consider now. the equation ¥ (x) = 0, where F: X — R (reals) is
a nonlinear functional on X. If the gradient F' (@) exists and 7' (x)h 0,
where he X, then we have 1! |F(z+t[F (2)h]"*h)—F(0)—1 - 0 as
t-> 0, where te R, i. e. according to (1.2), I'(#)t = ¢([F"(@)])'h: R—> X
ig an inverse derivative of I at o, if & is fixed and F' (w)h # 0. ;

Consider now the following generalization of Newton’s method for
nonlinear functionals ‘whieh is given in {1}
(2.13) By, = P — [F’ (wn) hn]wlF(m%) hn; Ty h’n€ X. _

Remark 2.2. The generalized Newton method. (2.18) for nonlinear
functionals in also a special case of an iteration procedure (2.2) with
inverse derivatives.

Although the methods {2.11) and (2.13) are enfirely different, both
tan be considered as particular cases of the procedure (2.2).

We say that I'(w,) is & uniform inverse derivative of P at a, il the
following condition is satisfied (provided I'(#,) is an inverse derivative)

™ P {4+ Diwo)y) — P —yl < g

for [y] < v and for.z in some neighborhood of »,. Using this notion we

consider the following modification of procedure (2.2)
(2.14) By = Bp—L(0) Py, n=0,1,2,...

TaEoREM 2.2. Suppose that there exisls positive numbers 0 < g <1,
v, 7 and B such that the uniform inverse derivalive I'(x,) satisfies the con-
dition
@15 IR e+ T(@oy) ~Po—yl <a " for weS(ao, )
and [yl < g0 @) < B and [Pay| < 1. '
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Then there exisis o solution 1™ < §{w,, r) ond the sequence of x,, determined
by (2.14) converges toward @, i. e. m, > a’, Pa™ = 0, &< 8(t,, ¥) and the
error estimate (2.8) holds. If T'(s,) is onto and (2.15) s sabisfied for all ye Y
such that @)y < 2, then the solution a* i3 unigue n S(wy, 7).

The proof of this theorem is exactly the same as that of Theorem 2.1.

3. Contractors. Analyzing the proof of Theorem 2.1 we can see that
condition (2.3) plays the basic role in our argument. This observation
leads to the concept of a contractor. Let P: X — ¥ be a nonlinar mapping
and let I'(®); ¥ — X be a bounded linear operator associated with a.

DEFINITION. We say P has a contractor I'(x) if there is a positive
number ¢ < 1 such that

P lw+ I'oyy) —Po—yl < qliyl,
where z¢ X and ye ¥ are to be adjusted to the problem.

" For instance, if P has a Fréchet derivative P (») satisfying
(8.1%) 12" @) Tte)y —ylt < 4 Il

then I'(z) is a contractor and eondition (3.1) is satistied with ¢ = (1+ q)/2
and |yl << 8|7(®))|~", where 8 is chosen so as to sabisfy ||P{z-+h) —Po—
— P2 b < (1—¢ )22 |h]] for [R] < 6. Then for » = I'(®)y we have

0<q <1,

IP (w-+ I(@)y) —Po —yll ,
<P [0+ T'(@)y) —P'(@) I(@)yl|+ 1P (@) o)y —yll < [(1—¢)27 + g Tiwly

and |yl < 8" (@)I™" implies A] = |Mz)yll < 8.
Obviously, an inverse derivative is a contractor. We say that P: X — ¥
has a bounded contractor I'(w) if |I'(z)|| < B for all » of a certain region.
Suppose now that P has & contractor I'{w) satisfying condition (3.1)
for all ¥ of Y. Then it is easily seen that the following inequality can be
derived from (3.1)

(3.2) (1~ )yl < IIP [z + F'(2)y} —Pel

It follows from (3.1) that the contractor I'(s) is a one-to-one mapping
and if P is continuous, then (3.2) yields the continuity of the inverse
[T{(#)T}, i e. then I'(#) is a homeomorphism of ¥ onto a elosed subspace
of X. A contractor I'(z) is called regular, if (3.1) is satistied for all y« ¥
and D(P) = I'(#)(¥), where D(P) is the domain of P. We say that
is a regular point of P, i P (Pz} = {&} and Pz, — Pr implies @, — 2.
Luvva 3.2. If a contractor I'(z) exisis for ae D(P) and is regular,
then @ 48 a regular point of P. If I'(z) is regular- and onio, i. ¢. I'(2){¥) = X,
then X is a vegular point of P and P 4s continuous at x. If I'(x) is regular
for every we D(P), then P has a continuous inverse mapping P If I(w)

for ye Y.
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is regular and owto for every we D(P), then P is a homeomorphism of X
onto P(X).

- Proof. The proof follows from inequality (3.2}, since #, ¢ D(P) implies
#,— 2 = I'(w)y, for some y,« ¥. If I'(z) is onto, then the continuity of
P results from the continuity of the invers operator [I'(#)]~' and from
(3.1).

TaEOREM 3.1. Theorem 2.1 remains true if we replace there the inverse
derivative by a bounded contractor I'(w).

The proof is the same a8 that of Theorem 2.1. We say that the linear
bounded cperator I'(w): ¥ — X i3 a uniform contractor of P at &, if
?here exist positive numbers 0 < ¢ < 1, 7 and 5 such that condition (2.15)
is satistied for @e S(w,,7) and |y|| < 5. If the Fréchet derivative P’ (m)

existy and is Lipschitz continuous with constant X in some neighborhood '

of #, and P’ (w,) is invertible, then I'{m,)=
derivative, gince

12 (m_-l—]’(w,,)y)—l’w—yll = [P {z+ I () y) — P — P (w,) () !
K IP (2T (mo)y) — P — P' () 7(wo)yl| + WP (@) T (w0)y — P* () T (g)yl
S 2TV R (@)l i + Kl — 20l 1 (2o 1l

' Evidently, I'(z,) is a uniform contractor.

THEEOREM 3.2. Theorem 2.2 remains true if we replace there the uwriform
inverse derivative by the uniform contractor I'{z,).

The proof of this theorem is exactly the same as that of Theorem 2.2.

[P/ (#,)]7" 18 a uniform inverse

4. Implicit function theorems using contractors. Qn the basiz of
Theorems 3.1 and 8.2 we can generalize the well known implicit function
theorem. Let X, Z and ¥ Dbe Banach spaces. Consider the operator
Pz, 2): XXZ-> Y. Put § = [, 2): lo—ao| <7, [oe—2)l < o] and sup-
pose that for every ¢ such that (s, 2)¢ S, Phasacontra,ctor T, 2); Y X
which. is strongly centinuous in (a, 2).

TEeorEM 4.1. Suppose thai there ewist positive numbers 0 < ¢<1,
ty 0y v and B such that

(41 IP fo T, )y, 2) — P (w, )=yl < gyl Jor (@, 2)e 8 and Iyl < 4
(.2) C Wm A <B for (m2)es

(¢3) 12 (20, 2] <

(4.4) By(L—g)*

(&5) P(m, 2) is dlosed in 8 for every fized z restricted to 8, b e (@,, 7)< 8,
o, —>o and Po,,2) >y imply y = Plo, 2).

iom®
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(4.6) Pz, 2)
to S.

(4.7 Py, ) = 0.

8 continuous in S with respect to z for every fiwed x restricted

Then theve evists o continuous function » = g(2) such that P (g(2), z) = 0,
(g(2), 2} 8

Proof. The proof is based on Theorem 3.1. Consider the iteration
procedure #,,,(2) = @,(2) — (%, 2) P(#,, #) for » = 0,1,2,... and every
fized 2 restricted to 8. In virtue of Theorem 3.1, the sequence of x,(2)
converges to an element z = g{z) such that (x,2)e S and P(x,2) = 0.
The funetions #,(z) are continuous and it is easily seen that the conver-
gence of w,(2) is uniform in 2. Thus, #(2) is eontinuous.

Remark 4.1. If P(z, 2) is jointly confinuons in (%, 2), then conditions
(4.1), (4.2) and (4.7) are sufficient for the theorem and numbers #, ¢ can
be chosen 5o as to satify (4.3) and (4.4), If I'(z, ) is onto, then the function.
g(#) is unique in 8 provided that condition (4.1) is satisfied for all ye ¥
such | I{z, 2)y|l < 27.

THEOREM 4.2. Theorem 4.1 remains true if we replace there the contractor
I'(z, 3) by a uniform comiractor I'(z,, #), 1. e. if we replace condition (£.1)
by

1P (@+ (@0, )y, &) — Py 2) — 9] < gllyll-
Remark 4.1 remains also true.

The proof is exactly the same as that of Theorem 4.1, but we use
here the following iteration procedurs

~ Iz, 2)P{1,,2) form=0,1,2,...

mn+1(z) = &, (2)
5. A generalization of the Banach contraction principle. Consider
the operator equation Pz = & where P: D(P}c X— ¥ is a closed
nonlinear operator.
TEEOREM 5.1. Suppose that the closed operator P has a bounded contractor
(%) such that

(8.1) |Plo+T(a)y) —Pe—y| < glyl for allye T,

where 0 < g <1 and |[[(x}i| < B for oll ze D(P). Then the equation Pz =y
has @ solulion for arbitrary ye X. If I'(z) is regular (and onto) for every
we D(P), then the inverse P emists and is Lipschite continuous with the
eonstant B(L—g)~" (and P is continuous).

Proof. For arbitrary fixed £e ¥ consider the operator determined ‘
by Pz — & This operator has the same contractor I'(z) and we apply the
iteration procedure

(5'2) Tpyy = wn_r(w'n) (Pmn'— &),
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where mye D(P) is arbitrarily chosen. The sequence of &, converges to an
element # = R& and Pa, — £ as # — co. Since P is closed, P(RE)

Suppose now that I'(z) is regular. Let P(RE,) = &, and P(RE,) - £s.
Then we ean write Rf, = R& +T'(RE)y. Hence, using inequality (3.2)
. we obtfain .

IS, — B < ID(RENlyll < B(1— ) ||£,— &,

From Lemma 3.1, follows that if I'(z) is onto, then P is continuous,
The global constant B can be replaced by a local one B(w,, £) such
that \I'(@)] < B(aq, £) for ool < v and B(my, & |Po,— &) (L— <
Then we ean prove only the continuity of P
Consider now equations of the second kind Pr = g— T = &, where
F: X+ X. Condition (5.1) yields here

(8:3)  |Fo—Fle+I(@)y) —(I-T'@)y] <gly

for all ye X,

where [ is the identity mapping.

TuBOREM B.2. Theorem 5.1 remains true Jor the equation o— T = ¢,

&, e X, if we replace there condition (8.1) by (5.3). : :
' The proof follows from Theorem 5.1.

Remark 5.1. If : X — X is a contraction with the constant g<1,
then, obviously, a contractor I'(w), satisfying all conditions of Theorem. 8,
exists and it is the identity mapping, i. e. I'(@) == I. Thug, Theorem 5.2
generalizes the well known Banach contraction principle.

The following remark will be uged in the next section.

Remark 5.2. Congider the equation

(5.4)
£%

P2 =w—Fo) =¢§ o f<X.

Then Theorem 5.2 remaing true if condition (5.3) is replaced by the
following inequality i

(5.5) ”17'!95 +y -+ Tayy) —mef(m)yf] Selyl forallye X and 0 < ¢« 1,
where |\I'(z)|| < B.

For we replace in (5.2) the operator I I'(z) by F(x). 1f (T + P (x)
= D(F) for all s« IH(F) then the inverse of @~ F(n) exists and i defined
on the whols of X and is Lipschitz continuous with the constant (1 1) x
X{(L—¢)"% The iteration Procedure in this case iy determined ag follows
(5.6)

iy = Ty — [+ D) g~ Ty — &), n = 0,1,2,...

The initial approximate solution %y can be chosen arbitravily and the
Procedure converges toward a solution. For equations of second kind

it is eonvinient to have the contractor in the form. L4 Plw), me D)
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6. Noulinear evolution equations, a generalization of the Piccard
theorem in Banach spaces. Consider the initial value problem
A

T F(ﬁa m):_

(6-1) dat

0, w(0) =&,

where the unknown @ = @(#) is a function defined on the real interval
[0, T] with values in the Banach space X, and F: [0,T]x X > X is
a continuous mapping. Instead of (6.1) we consider the integral equation

t

(6.2) o)~ [ F(s, m(s))ds = &.
0

Denote by X the space of all éontinuous fanctions o = % (¢) defined on
[0, T] with values in X and with the norm [jwlly = max[|z(f)]: 0 < ¢
< T']. Considering equation (6.2) as an operator eguation in Xy we can
apply our generalization of the Banach contraction principle discugsed
in Section 5, especially Remark 5.2.

For arbitrary fixed z« X and #e [0, T]let I'({, #): X - X be a bounded
linear operator, strongly continuous with respect to (f, #) in the sense
of the operator norm. Suppose that there exist positive numbers K B
such that the inequality

4
(6.3) max HF(t, o) +y 0+ [ Iis, o())y(s) ds) — B{t, a () — I’ w(t))y(t)”
(=R H
< K ylg

is satisfied for arbitrary continuous Iunctions z = z(t), ¥ = y(@)e Xy,
where [I'(t, )| < B for all e X and te [0, T]. Then we say that F(, o)
[

hag a bounded integral contractor {I+ [I"}. A bounded integral contractor
0

is said to be regular if the integral 'equamion

¢ .
v+ [T s o) y(o)ds = 2(t), 0<i<T

0

(6.4)

has & continuous solution y(¢) for arbitrary fixed and continuous functions
#{t) and #(t) e X Obviously, if F(¢, ») satisfies Lipschitz condition uniform-
11

Iy in¢, than {I+ [ I'}, where I" == 0, is aregular bounded integral contractor.
0

THEOREM 6.1. Suppose that F (i, z) has a bounded integral contractor
and T is such that THK — g < 1. Then for arbitrary £< X equation (6.2)
has o continuous solution @(t). If the bounded integral contractor is regular
then the solution we Xp 48 unique and Lipschile continuous with respect
1o &. ‘
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Proof. Cénsider in Xy the iteration procedurs
(6.5) Bprq = Ty — [Yn+ ff(s, D) Yl 8] for n = 0,1,2,...,
[
where o, = @,(8), ¥, = Ynll) = 2, (1) —flﬂ (2, 2,(8)) ds— £
‘We haive, by (6.5) '
Yo _—_j[lﬂ(s, wn)mlﬂ(s, mn—*yn—nf I'(z, wn)yndr)wl"’(s, )Yy ds.

Hence, replacing y by —y in (6.3), we obtain that [¥,..llo € ¢|¥,lle. Thus,
the sequence of y, is convergent in X, toward zero. Since [I'(f, )| < B,

it follows from (6.3) that 3 [, —#,le < (1+ TBY yyllo(l —g)%, and
n=0

that %, = ,(f) is continnous for # =0,1,2,..., where @, = wy(t)e Xy .

can be arbitrarily chosen. Therefore, the sequence of @, hag a limit we X,
which is a solution to (6.2). In the same way as in the proof of Theorem
5.2, we derive from (6.4) that the solution # is unique and Lipschitz contin-
uous with respeet to &.

Tt is interesting to observe that the contractor for (6.2) at each fixed
{t, @) is naturally defined as a linear integral operator of the same kind
a§ the operator in the equation (6.2). )

Theorem. 6.1 generalizes the well known Piccard theorem for evolution
equations in Banach spaces (see [7]). For as we mentioned above, if 7(t, x)
is #-uniformly Lipschitz continuous, then with I = 0 it satisfies the
assumptions of Theorem 6.1.

7. A coincidence theorem and a generalization of Krasnoselskii’s
fixed point theorem. The purpose of this section is to show how to combine
the contractor method and the Schander [13] fixed point prineciple.

Let W be a closed bounded convex sét of s Banach space X. Given
two operators aecting in X:P: D(P) X and @: W-+X.

TeeorEM 7.1. Suppose that P is a closed operator having a bounded
regular coniractor {I'(m)} satisfying the ineguality

(71) [P le+T(0)y) —Po—g| < gyl  with 0 <g<1
Jor all < D(P), ye X,

where D(P) = ['a)(¥) aend |I'(@)] < B. Suppose that @ s completely
continuous and .

(7.2) Qe—PyeW ond go-+I'(w)yeW for m"b@'thwy T, Ye W.‘

Then P and Q have o coincidence point w*e W, i. 6. Po* = Qo™

icm®

Inverse differentiobility cowtraciors and equations in Banach SPa0es 11

Proof. On virtue of Theorem 5.1, for arbitrary @e W the equation
Py = (o has a unique solution y which is a limit of the iteration procedure
By = GpT(@,) [P0 —Q]. Tt follows from (7.2) that a,¢ W for
n=0,1,2,... Hence, ye W and y = P~ 'Qs ig completely continuous,
gince the inverse P~* exists and iy continuous, by Theorem 5.1. The
Schauder fixed point theorem yields the existence of a point #*¢ W such
that #* = P71Qa™, i. e. Pa* = Qo

Consider now the case where Py = p— Fz.

THEOREM 7.2. Suppose that F: D(F)— X, is a cosed operator hav-
ing o bounded regular contractor {I+-I'(z)} such that the imequality
|7 (= 4+ (@) y) — F(@) — ') ]| < qllyll, © < ¢ < 1 45 satisfied for all we D(F)
and ye X, where [[2)| <B and D(F) = I'z)(¥). Suppose that Q is
completely conlinuous and
(1.3) Fy+QeeW and otT@)[y—sleW for arbitrary o, y< W.

Then there exists & fimed point a"« W such that o = Fu* +Qo*.

Proof. On virtue of Theorem 5.2 and Remark 5.2, for arbitrary
@we W the equation y—Fy = Q2 has a unique solution y which is a limit
of the iteration procedure ,,; = &,—[I-+I'(z,)][z,— Fr,—Qx]. Con:
ditions (7.2) imply that @, Wior n = 0,1, 2, ... and, consequently, y< W.
It follows from the existence and conmtinuity of the inverse P~ that
P Qu is completely continuous, where Py = g — Fa. Applying Schauder’s
fixed point theorem we obtain the existence of #*e W such that a* — Fr*
= QJa*,

Both Theorems 7.1 and 7.2 can be considered as a generalization
of the following theorem of Karsnoselskii [10]:

Ii Fis a contraction (i. e. Lipschitz continuous with a constant g < 1)
and @ is completely econtinuous and #y-Qwe W for arbitrary @, ye W,
then there exists a fixed point 2*e W such that #* = Fz*-Qa*. If the
assumptions of Krasnoselskii’s theorem are satisfied, then by putting
in Theorem 7.2 I'(x) = 0 the identity mapping 7 will be a bounded regular
contractor satisfying conditions (7.2).

8. Stationary points of nonlinear fumetionals. Let F: X > R be
a nonlinear functional differentiable in some sphere S(z,,7) of X and
denote by I («) the Fréchet derivative (gradient) of F at #. The problem
of unconstraint optimization of Fx reduces practically to finding stationary
points & of 7, i. e. satisfying the equation

(8.1) Feg=0 a<X.

Considering F': X-» X as a nonlinear (gradient) operator from the
Banach space X into its dual Banach space X', we can apply the contractor
method to solve equation (8.1).
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© THROREM 8.1 Supposc that the gradient ¥ has o cowtracior I'(z): X'~ X
for every we S(my, v) such that ‘

(8.2)]

where D@ < B, W (wll <y and By (1—g) " Kr for some constants
0<qg<1, Bandsy If I is closed on S(zy, 1), then 4 has o stationary poini
@ e 8(mg, )y 4. 6. F'a® =0, which is o Uimit of the sequence {x,} defined
as follows @, =@, ~D@)F 2, n =0,1,2,... and the error esiimate
is given by the formula |w, —&"|| < Bg*{d~q)™%

Proof. The proof is exactly the same as that of Theorem 2.1.

Remark 8.1. If the contractor is additionally onto and satisfies
(8.2) for all ye X sueh that [Ix)y]l < 27 for z« 8(m,, #), then I has in
8 (@, 7) & unique stationary point «*.

This assertion follows from the argument in Remark 2.1.

Remark 8.2: It is sufficient to assume that F is defined on a subset
DUF) = 8(wq, v} 0-T'(@)(X'), where the intersection i the same for all
se D(F'Y and w,e D(T'). In this case the uniqueness for * follows if
condition (8.2) holds for all ye X' such that |I'w)y{ < 2r, oe D(F).

I o+ w)y) - Fo—yl| < gllyll  for aceﬁ(w(,, ), e X', Iyl < g,

9. Various iteration procedures as special cages of the contractor
method.

9.1. It is shown in Section 2, that the Newton—Kantorovich method
(2.11) is a special cage of the contractor method and the same ig true for
the generalization of Newton’s method (2.13) for nonlinear functionals.
The following modifieation of the Newton-Kantorovich method is given
by Bartle [4].

(8.1) D1 == 2, — [P (zn)]"ll’mm

provided that the initial guess 4, and the arbitrarily sclected points 2,
are sufficiently close to the solution desived. It is easy to see that the
contractor for the method (9.1) is ['(z) = [P (#)]~. Under the agssuplions
made in [4] the contractor satisfies the following inequality :

I[P (@ [P ()] y) — Par— ]| < (LJ22) ILP ()] 0]l << (1/22) Al

where 4 and § are chosen o a8 to satisfy |[P'(s)]" < A it [z — ool % A,
e —aoll < and e+ [P ()] y —aoll < B (506 Lomma 2 [47).

9.2. It is shown in [3] that the method of steepost descont developed
by Kantorovich [6], the minimum residual method. investigated by Krasno-
selskit and Erein [9] and other gradient methods (see 121, 18], [107) arve
special cases of Newton’s method (2.13) for nonlinesr functionals. Thus,
these methods can'also be considered as special cages of the contractor
method. Thig is the case from variational point of view, i. e. when we
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reduce the operator equation to the minimum problem of a non-negative
nonlinear functional F, where for instance, ¥ () = [|Pu|? = 0 is required.
However, we can see that these and other methods ean also be considered.
as contractor methods in the direet sense of {2.2).

9.3. Let 4: H— H Dbe a linear self-adjoint and positive - definite
operator in the real Hilbert space H such that m{x, 4) < (dz, ) < M(x, @),
where 0 < m < M < oo, Congider the equation

(9.2) dz =b, wbeH.

The operator Py == Az —b is differentiable in the sense of Fréchet and
P'z) = A. It i3 easy to verify that |lad —If < 1 if 0 < a < 2/M. Thus,
putting in (3.1*) I'(#) = ol we obfain & contractor and the corresponding
contractor method will be the method of suceessive approximation with
parameter a:

(9.3) Byyy = Ty—a(Az,—D), m=0,1,2,...

Replacing in (9.3) o by a(w) = (r, Ar)/(Ar, Ar), where r = () = dw—b
we obtain the minimum residual method investigated by Krasnoselskii
and Krein [9]:

(9.4) Tpgy = By — ¥y, % = 0,1,2, ..., where a, = a{z,) and
T, =7(®y).

The coniractor here is a(#)I and the econtractor inequality (3.1) yields
in this case

|4 o+ ala)y) — Az —y]| < (L —m) (I +m) Iyl

This inequality is satisfied for o = # (@), in virtue of the following inequality
(seo [10] p. 109)

(9.5) |4 o — o (w)r (@) — b]] < (M +om) (M —am) ™ r ()]

To prove last inequality let us observe that

4 (2= a(@)r@)—b

[ = min |4 (o — (@) —b|} = m!m ¥ (&) — tde (@)
t

2
M+m

But for ¢ = 2(M+m)"* we have [|I- All== (I —m) (M +m)~

and, consequently, we obtain (9.5). :
9.4. The method of steéepest descent developed by Kantorovich [6]
for soloving (9.2) is defined as follows:

(9.6} Bpoy = By — Puluy  Where §, = (ry, ) (A7, ) h
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Congider the Hilbert space H,, obtained from H by introducing a new

sealar produect [, v] = (47", v), u, ve H. Then it is clear that the steepest

descent method (9.6) is the minimum residual method (9.4) congidered
in the Hilbert space H ;. Thus, the steepest descent method (9.6) is a con-
tractor method in the Hilbert space H ,. It is easily seen that 4 is self
adjoint and positive definit in H .

9.4. Oonsider the monlinear operator equation

Py =0, where P: S{w,,r)—~H,

P being continuously differentiable in the sense of Tréchet in the sphove
8(wy, ¥) = H and P (») satisties the inequality

(9.8) |2 (@) = B~ Iyl
The following iteration procedure [2] is also a contractor method:
(99) mn+1 = mu_ “‘PwnHz ”Q(%)sz_lg (w'n)ﬁ

where @ (z) = [P (#)]'Pa (* = adjoint). Since P is differentiable, we can
expect that I'(z) = |Pal*IQ(2)| 27 [£ (#)]* will be a contractor, in
virtue of (3.1*). Condition (9.8) implies that (@)l is bounded for
#e 8(%, r). The existence of a solution of (9.7) as well as the convergence
of (9.9) to this solution can be obtained from Theorem 3.1. Tt follows
from the assumptions made in [2] that Theorem 3.1 can be applied. It
is mot difficult to see that the hypotheses made by Kivistik (see [10]
p- 136) are also sufficient in order to apply the contractor method to his
procedure ’

(9.7)

for all me S{w,, v), ye H.

wo=10,1,..,

Gnpr = @ — (P (2,) P, P, \P (@,) Py |2 P, 0= 0,1,2, ...

Note that other procedures similar to (9.9) can also be put in the unified
scheme of the contractor method.

Remark 9.1. In all theorems which are global in nature, the re-
quirement that the contractor I'(w) is bounded, i. e. [I"(#)]| < B for w< D(P),

can be replaced by the assumption that I(w) iz Lipschitz continuous
with eonstant K.

Proof. We have, by (2.2),
@]l < T (@) 1+ BN P < |0, (LA Eoq [Pyl < 1T, (L)
for large n. Hence .
”T(mm-;l)” [Pyl << (14 DM@ | Py,  where 7 < gt—-1.

Then P! will be continuous but not Lepschitzian.

An. applieation of the contractor ides to Banach algebras will be
given in a separate paper.
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