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An inverse dynamics approach for trajectory optimization is proposed. This technique

can be useful in many difficult trajectory optimization and control problems. The appli-

cation of the approach is exemplified by ascent trajectory optimization for an aerospace

plane. Both minimum-fuel and minimax types of performance indices are considered.

When rocket augmentation is available for ascent, it is shown that accurate orbital insertion

can be achieved through the inverse control of the rocket in the presence of disturbances.
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1. Introduction

The National Aerospace Plane (NASP) is a concept for a hypersonic vehicle that will

take off horizontally and fly into low-earth orbit. The power plant of the NASP will consist

of an airbreathing propulsion system such as a ramjets/scramjets, possibly augmented by

a rocket. For the past few years the fuel-optimal ascent problem has been the center of

research on trajectory optimization and guidance for the NASP. In Refs. 1-3, the energy

state approximation and a singular perturbation method have been employed to obtain

near-optimal solutions. They prove to be effective in developing guidance and propulsion

control laws. Feedback linearization and variable structure control techniques are used in

Refs. 4 and 5 to develop a guidance logic. Near-optimal guidance is obtained by tracking

a near-optimal trajectory which is a reduced-order solution of the vehicle dynamics. It

has been observed, however, that the validity of time scale decomposition needs careful

examination for some portions of the flight envelope. Fuel-optimal trajectories are studied

in Ref. 6 using a trajectory program, POST 7, and some issues in guidance and flight

control are addressed. Due to the complex nature of the optimization problem, it appears

that enormous difficulty will be encountered if indirect methods based on the necessary

conditions for optimality are to be used. When a realistic model of the NASP is used, direct

methods based on nonlinear programming (NLP) are most promising for accurate off-line

trajectory optimization. In addition, discontinuities due to propulsion system switchings,

state-inequality constraints and possible singular control arcs are conveniently handled by

such methods. But it has been found that even a conventional NLP approach in trajectory

optimization in which controls are parametrized directly by certain functions encounters

difficulty s. This is because the NASP trajectory has high sensitivity to the controls. As

a result, the optimization problem is poorly conditioned. A collocation algorithm (e.g.,

Ref. 9) appears to be a better choice for this problem 5 because of its robustness. This

paper considers an alternative, namely, an inverse dynamics approach. In this approach,

the control is implicitly parameterized. This greatly improves the conditioning of the

optimization problem, and allows us to obtain optimal trajectories and controls reliably

via the nonlinear programming approach.

The remainder of this paper is organized as follows. The equations of motion and

the model of an aerospace plane are described in Section 2. The trajectory optimization

problem is formulated in Section 3. An inverse dynamics approach is proposed for general

trajectory optimization problems. Inverse aerodynamic control, and rocket control laws,

when rocket-assistance is used for ascent, are developed based on inverse dynamics con-

cept. Using this approach, we obtain solutions of both minimum-fuel and minimum-peak



dynamic pressurefor the aerospaceplane in Section4. In Section 5, the inverserocket con-
trol laws together with two guidancelaws areshownto guaranteeaccurateorbital insertion

in the presenceof disturbances.

2. Dynamics and Model of Aerospace Plane

2.1 Equations of Motion"

Assuming a spherical, nonrotating earth and gravitational field with g = p/r 2, we

have the 2-D point mass equations of motion for the aerospace plane

dr

d--t = vsin7 (1)

dO v cos 7
-- (2)

dt r

dv T cos(o - e) - D p sin 7
d--t = rn r 2 (3)

--=d7 Tsin(_r-c)+L+(v # )cos7 (4)
dt my r vr 2

dm T

dt = goI_p (5)

In above equations, r is the radius from the center of the earth to the vehicle; 0 the polar

angle; v the velocity; 7 the flight path angle and m the total mass. T is the thrust and

Isp is the specific impulse of the propulsion system, a denotes the angle of attack, e is the

thrust vector angle and will be assumed to be constant or zero for airbreathing engines.

L and D are aerodynamic lift and drag, respectively. The atmospheric density is assumed

to be an exponential function of altitude,

--_(r--r0)
p= poe

where r0 = 6378 km is the radius of the earth.

2.2 Vehicle Model

The model of the aerospace plane used in this paper is based on Ref. 10, known

as the "Langley Accelerator". It is a winged-cone configuration with a reference area of

Sref = 334.73 m 2 (3603 ft 2) and length of 60.96 m (200 it). The gross takeoff mass is

136,077 kg (300,000 lbf). The thrust of the airbreathing propulsion system is given by

T= CTq (6)

where q is the dynamic pressure, and CT is the thrust coefficient. CT and Isp are given in

tabular form as functions of Mach number, dynamic pressure and fuel-equivalence ratio,
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designatedby ¢ hereafter. Engine throttling is controlled by ¢. An equivalenceratio of

unity correspondsto maximum fuel efficiency; valuesgreater than unity give more thrust

but usedisproportionately more fuel.

The airframe lift and drag coefficientsCL and CD are also given as functions of Mach

number and the angle of attack in tabulated data. Throughout this paper CL for the basic

vehicle is approximated by

CL = CLla + CL3a _ (7)

where eL1 and eL3 are functions of Mach number, obtained by least-squares fittings to

the tabulated data for given a, and then interpolated by cubic splines over Mach number.

The speed of sound is approximated by a cubic polynomial of altitude h = r - r0:

Vs = ao + alh + a2h 2 + a3h 3

The coefficients ai's are least-squares fittings to the 1976 US standard atmosphere 11

3. Trajectory Optimization

3.1 Problem Statement

Assume the following horizontal takeoff conditions:

h(0) =0

_(0) =0

v(0) = 170 m/s (Mach 0.5)

=0

m(0) = 133,809 kg (295,000 bf)

The terminal conditions are specified as follows

h(ts)= hs

 (tl) = 0

(8)

(9)

V/ /l (ts) = r0 +

These equations correspond to the conditions for insertion into a circular orbit at altitude

of h I if h I is above sensible atmosphere. Operational constraints on the trajectory must

be imposed. Two of the most important constraints are

q<qmaz (10)



Q<_Q..,x (11)

Equations (10) and (11) place constraints on dynamic pressure q and heating rate Q at

a specified point of the vehicle. The trajectory optimization problem for minimum-fuel

ascent can be stated as: Find the optimal control a*(t) and ¢*(t), 0 < t < t}, such that

Eqs. (8)-(11) are satisfied by the solution of the dynamic equations (1)-(5) and the final

mass m(t*l) is maximized.

It was pointed out in the introduction that to solve this optimal control problem with-

out further simplifications, direct methods using the nonlinear programming approach

have obvious advantages. But earlier work has shown that even a conventional direct

parametrization algorithm has difficulty in achieving convergence because of high sensitiv-

ity of hypersonic flight s'12. This motivates us to develop an alternative approach in the

next section.

3.2 An Inverse Dynamics Approach

The concept of inverse dynamics has recently gained considerable popularity in

aerospace controls, e.g., Refs. 13-16 . The inverse dynamic problem (IDP) considered

here can be formally stated as the following:

Given a dynamic system

,_ = f(x(t), u(t),t) (12)

where x E R n and u E R m. Initial conditions and terminal constraints are

x(t0) = x0 (13)

S(x(tf),tf)=O (14)

Find a control u(t) such that the solution of (12) with initial condition (13) satisfies Eq.

(14) and the algebraic constraint

g(x(t),c(t),t) =0, t E [to,Q] (15)

whereg:R n xR l×R _ R tissufficientlydifferentiable, c(t) ER lfort0 <t <tf isa

given smooth function, c(t) usually represents desired outputs and (15) specifies the output

relationship. By repeatedly differentiating each component of (15) until components of u

appear explicitly, we have additionally

G(x(t), u(t), c(t), 5(t), ..., t) = 0 (16)

Equations (15) and (16) constitute constraints on the state variables and controls. Most

work in this area has so far centered on finding the required control for a given output
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e(t) (e.g., Ref. [16]). In this paper, we extend this idea to trajectory optimization. The

thought is simple: If an optimal output e*(t) is found, the corresponding control u*(t) can

be determined from Eq. (16). For a given trajectory optimization problem, one needs to

define the relation Eq. (15) in order to implement the idea. While many possibilities may

exist in doing so, the general guidelines are that the most influential variable(s) are chosen

as the output(s), and the process of solving for controls from Eq. (16) is kept relatively

simple.

3.3 Inverse Aerodynamic Control

To apply the concept of inverse dynamics more effectively to the current problem,

we first change the independent variable from t to 0. The system equations (1)-(5) now

become

dr

dO - r tan 3'

dt r

dO v cos 7

dv T cos a --D

d--_= ( r_

d7 Tsina + L

d-_= ( mv
dm T r

dO go Isp v cos 7

# sin 7 r

- r_ )_--_o_v

+ (v _ _)cos 7)_
r vr 2 v cos 7

(17)

(is)

(19)

(20)

(21)

where we have assumed that ¢ = 0 for the airbreathing propulsion system, although this

is not necessary for the following development. Analogous to (15), we define

g = _(e) - c(e) = 0 (22)

In (22) c(O) is a sufficiently smooth function that represents a specified altitude history.

Differentiating (22) once with respect to 0 gives

C !

tan-), = -- (23)
r

Differentiating (23) once again, we have

V COS 3 7 V

L(_) = rnv[(c"- rtan 2 7) _ (r
T sin a ]# ) cos 7 (24)

vr 2 mY

The prime in (23) and (24) stands for differentiation with respect to 0. Equation (23)

determines the required "y for r to follow c(0). Equation (24) specifies the necessary lift
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control. For a specifiedthrust levelT and the current values of the state variables, Equation

(24) constitutes an algebraic equation for a. With a solved from (24), Equations (19) and

(21) can be integrated for v and m at next instant. So the solution of the system as

well as the value of the performance index (fuel consumption, for instance) is completely

determined by the choice of the pair of command altitude c and fuel-equivalence ratio

¢. If we choose to represent c(O) and ¢(0) by certain smooth parametrized functions, the

optimization problem reduces to a parameter optimization problem in which the best c and

¢ histories are iteratively sought through solving a sequence of inverse dynamic problems.

Note that in the parametrization of c, one can always choose the boundary conditions

c(Ol) = ro + hc (25)

c'(0s) =0 (26)

Then the first two of the three terminal constraints in Eq. (9) are automatically satisfied

according to (22) and (23), leaving only the constraint on v s to be met. With CL repre-

sented by Eq. (7), we can solve for a from Eq. (24) very effectively by Newton iterations

with an accuracy of 10 -8 frequently after only one iteration. Because of this and the fact

that the r and "_ equations need not be integrated, the computation of a does not pose an

extra burden to the computer.

One of the main advantages of this inverse dynamics approach is that the trajectory

is under more direct control of the parametrization process. Consequently, the sensitivity

of the optimization problem is greatly reduced. In fact, with minimum efforts, one can

easily construct various feasible trajectories that satisfy the terminal conditions (9) and

state constraints (10) and (11) by choosing c(O) and ¢(0). This feature is not only essential

to the success of the trajectory optimization, but may also be useful for quick design of

hypersonic cruising trajectories (not necessarily optimal in any sense). Compared with

the collocation method reported in Ref. 9, the current approach has the same merits such

as improving conditioning of the problem and robustness of the algorithm. Because the

state variables are not parametrized but obtained through integration, fewer optimization

parameters may be used, which directly contributes to a faster convergence.

3.4 Inverse Rocket Control

When the orbital altitude is higher, the scramjets become ineffective during the final

phase as the atmosphere gets thinner. A rocket will be needed. Calise et al show that along

an optimal trajectory the scramjets may still stay on for the remaining flight after the rocket

is turned on, although their contribution to thrust is insignificant 1-2. From a practical

point of view, the scramjets may be cut off at a selected point. If a throttleable rocket is



used, the remaining rocket-assistedtrajectory could consist of a combination of coasting,

singular thrust and full-throttle arcs. We found that the fuel-consumption is not sensitive
to the rocket throttle program at all. The reasonis that after a long coast the rocket is

turned on at approximately the orbital altitude. The optimal thrust angle_* then is almost

zeroand the major role of the rocket is to increasethe velocity to orbital speed. Sincedrag

D is very small at that altitude, the situation is similar to a rocket with fixed _ in vacuum-

the velocity increment is only dependent on the rocket fuel expenditure, independent of

the throttle program. For this reason, we will not investigate the combination of singular

and full-throttle arcs. Instead, we shall concentrate on variable-throttle control via the

inverse dynamics approach.

Let a = 0 during the rocket thrusting (since aerodynamic lift is negligible at that

altitude). Let the command altitude c(_) and desired history of velocity v(8) be specified

for the rocket-assisted' portion of the trajectory. In a similar way as Eq. (24) is derived

(but now a = 0 and c # 0), we have

Tsin¢ = (Vr - _/r 2)mvc°s7

?7-/Y 2 COS 3 _[(ct t A
r2 --rtan 27) = U

(27)

mv cos -_ v' +Tcos¢ =
r

Two resulting feedback control laws are

# sin

r 2
+ D $ Y (2s)

1 _U 2 + V 2 (29)
- Tm_,

U

tan¢ = _ (30)

where 7? represents the throttle of the rocket, and T,,ax the maximum available thrust.

Instead of optimizing c(_) and v(_), we find it sufficient to let

c(_) =a+bS+d8 2 +e_ a (31)

v(8) = n + p/9 (32)

The duration of the rocket thrusting phase is an optimization parameter. The coefficients

a, b, d and e in (31) are determined by continuities of r and 7 at the instant 8r when the

rocket is turned on, and by Eqs. (25) and (26) for the first two terminal constraints in

Eqs. (9). Coefficients n and p are defined by continuity of v at 0r and the final velocity

constraint in (9). Since these calculations can be easily done onboard, the parametrizations
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(31) and (32) have a distinct advantage:The orbital insertion conditions (9) will remain
satisfied even if the actual trajectory deviates from the nominal at 0r. This is because

(31) and (32) always lead the trajectory from the states at 0r, whatever the values are,

to the target point defined by Eqs. (9) when the coefficients are calculated with the

actual values of the states at 0r. The corresponding inverse controls (29) and (30) are

hence disturbance-accommodating, provided that they are not in violation of the control

constraints Iel <_ _max and 7? < 1. An application of this feature is demonstrated in Section

5.

The complete ascent trajectory with rocket-assistance can be parametrized in the

following sequence: Airbreathing-engine powered ascent portion as described in Section

3.3; a coasting arc following the cutoff of the scramjets with _ = 0; rocket-assisted flight

into orbit. The optimization parameters include all those used in Section 3.3 plus the

durations of coast and rocket-assisted flight. Once the optimization process converges,

such a trajectory can be qualified as a near-optimal solution.

4. Optimal Solutions

For numerical solutions, equivalence ratio ¢ and command c are parametrized by

cubic splines. Twenty nodes are used for the c-history and ten for ¢. CD, CT and/_p are

interpolated by a table look-up scheme. To gain some insight into the problem, let us first

consider the state inequality constraint (10) only. A new variable wq is introduced such

that

-(q-qma_), q > qmaz; (33)Wq(O) = O, _Dq = O, q <_ qmaz.

Constraint (10) is equivalent to the terminal constraint

wq(0S) > 0 (34)

A similar transformation can be done to constraint (11). The optimal control problem is

thus converted into a nonlinear programming problem. A sequential quadratic program-

ming (SQP) code 17 is employed to find the optimal solution.

4.1 Minimum-Fuel Solutions

Extensive computations have been performed for ascent trajectories to a target alti-

tude at h I = 55 km using the airbreathing propulsion only. This altitude is chosen such

that the thrust given by Eq. (6) is still adequate to control the vehicle to meet the terminal

conditions (9). The constraint (10) is found to be absolutely necessary for a realistic fuel-

optimal trajectory, because along the unconstrained optimal trajectory the peak dynamic



pressurecan reach4.25x 106N/m 2 (8.87x 104psf). It is no surprise in view of the propul-

sion model (6). The unconstrained optimal trajectory will seek high dynamic pressure to

accelerate the vehicle to the required final speed in a short time so as to reduce the drag

loss. The final masses for the optimal trajectories corresponding to different constraint

levels are listed in Table 1.

Table 1. Summary of Minimum-Fuel Solutions

q _< qmax

qma, (N/m 2 cx_ 239,400 191,520 143,640 95,760

i re(t f) (kg) 69,859 68,781 68,525 68,101 66,351
i

Figure 1 depicts the ascent history h(t) for qmax = 95,760 N/m 2 (2000 psf). Shown in

Fig. 2 are a(t) and 7(t) for the same trajectory The optimal trajectory can be divided into

three obvious segments: initial climb out, midcourse cruise during which the constraint

q < q,_, is active, and final zoom to the target altitude. The midcourse portion generally

exhibits characteristics similar to those reported in the literature 1-6. It features small

angle of attack, small flight path angle, and active state constraint q = qm_,. References

3 and 6 also use the same vehicle model as in this paper but the aerodynamic control is

through elevon deflection. Yet the angle of attack history in Ref. 6 is very similar to ours

in Fig. 2: the initial climb requires large a to generate the needed lift, then a quickly

becomes small. Also in Fig. 2, we see that large initial 7 helps achieve a quick climb and

keep the trajectory within the region where q < q,,,_,. What has not been seen reported

is an interesting feature of the optimal equivalence ratio ¢. Figure 3 shows equivalence

ratio histories along three optimal trajectories. Observe that for the two trajectories with

the dynamic pressure constraint, the optimal equivalence ratio is unity for a dominant

portion which corresponds to the best fuel efficiency. For the unconstrained (qmaz = C_)

and less constrained (qmaz = 191,520 N/m 2) case, the final maneuver for satisfaction of

the terminal constraints uses larger ¢. When the constraint on q gets tighter, ¢ stays

almost unity after the initial adjustment.

In the constrained case, the terminal constraint (34) prevents violation of the dynamic

pressure constraint q < qmax. This work and previous work TM show that more nodes in

the parametrization of c(8) result in better tracking of the constraint boundary q = qm_z.

Alternatively, since the optimal ascent trajectory is known to climb on the boundaries of

the constraints (10) and (11) subsequently 1'2, the nonlinear controllers developed in Refs.

1-5 may be used to track these boundaries accurately.



4.2 Minimax Dynamic Pressure Solution

It is seen from Table 1 that as the state constraint q < qma, gets tighter with smaller

qma,, the fuel consumption increases noticeably. Therefore, it is of practical interest to

know what is the minimum constraint level qmax under which the aerospace plane can still

achieve the specified final speed. This information certainly is valuable in evaluating the

performance of the vehicle. It is also important to its structural design since this minimum

qma, reflects a minimum structural strength requirement. The problem of finding minimum

q,,a, falls into the category of so-called minimax optimal control problems. The statement

of this problem is

min J= min _ max q(t)} (35)
,_(t), 4,(0 _(t), ¢(t) "to<t<tj

subject to system equations (1)-(5), boundary conditions (8)-(9), and additional constraint

m(ty) > mini,, (36)

where mmin is the mass of the aerospace plane excluding fuel. For our model, rnmin =

63,503 kg (140,000 lbf). Necessary conditions for optimality exist for such a type of

minimax problems 19. Because the necessary conditions generally lead to a multi-point

boundary value problem, the application of the necessary conditions is not deemed realistic

for this complex system. However, within the framework of our current approach, the

problem can be readily transformed into the following one:

rain q,n_ (37)

subject to system equations (16)-(20), boundary conditions (8)-(9), constraint (36), and

q <_ qmaz (38)

Constraint (38) is handled by the transformation shown in (33)-(34). qmax is treated

as one more component of the parameter vector to be optimized. The inverse dynamics

approach described above again proves effective in solving this problem. For our model

and the given takeoff and final conditions (9) at hf = 55 kin, the minimum qmax turned

out to be 71,772 N/m 2 (1,499 psf), and the final mass is equal to retain. The variation of

the minimax q-history is plotted in Fig. 4. The State and control histories have the same

characteristics as mentioned in Section 4.1. It is seen from Fig. 4 that in order to build

up the required final velocity with this lower qma_, the flight time is increased by 40% as

compared to the case where qma_ = 95,769 N/m 2, and about 80% of the trajectory stays

on the boundary q = qmax. All these can be directly attributed to the fact that the thrust
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of the airbreathing enginesis proportional to dynamic pressure [Eq. (6)]. On the other

hand, for our aerospaceplane model, satisfaction of q < qmaz for q,-na_ lower than 71,772

N/m 2 will require more fuel than it carries to achieve the specified final velocity.

5. Guaranteed Orbital Insertion with Rocket-Assistance

In Section 3.4 inverse control laws were developed for the rocket, and the planning of

the near-optimal ascent trajectory was described. Let the heating rate constraint (11) be

modeled by

Q = (4.919 x 10-S)p°'Sv 3"° (39)

In (39) density p is in kg/m3; velocity v in m/sec and Q in Watt/cm 2. Equation (39)

corresponds to equilibrium conditions on the surface of a wing leading edge 10 cm in

radius 1-3. For hf = 92.6 km (50 nm), the near-optimal trajectory is plotted in Fig. 5.

The points of interest are marked. In particular, the scramjets are found to be turned off

at 70 km. Following a coast of 452 seconds, a throttleable rocket with Tma_ = 266,893 N

(60,000 lbf) and Isp = 440 seconds starts firing at 92.3 km with an intermediate throttle of

about 0.21. Orbital insertion is achieved 88.5 seconds after the rocket ignition. The final

mass is 64,931 kg, which is comparable to mf = 65,370 previously obtained for hf = 55

km without rocket-assistance. It should be noted that the long coasting arc is found to

be very beneficial to saving fuel (more than 3,000 kg) as compared to the case where no

coasting is allowed.

Once a nominal (optimal) trajectory for the aerospace plane is established, guidance

laws are used to restore the flight path should deviations occur in the actual flight. Two

guidance laws are proposed as follows

r_=&-ka(h-h*)-k_(q,-'),'), ka >0, k- t>O (40)

¢=¢*-kv(v-v*), k.>0 (41)

where the asterisk denotes the nominal values, values without asterisk are the actual values,

measured or estimated. _ in Eq. (40) is obtained by solving the following equation on-line

(c*c*"-c*'2)vcos7 (v # )cos7 Tsin&] (42)= my[ (c.2+ r r mv

We note that Eq. (42) is the same as Eq. (24) if all the quantities are equal to the nominal

values, that is, when there are no perturbations, a = 5 = a*.

Equation (41) provides a negative feedback to the throttle which tends to reduce the

error in velocity. The rationale for Eq. (40) is explained in the following. Let a = 5 +/ka.
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Linearizing the right hand side of the flight path angle dynamics [Eq. (20)] with respect

to a produces

(T cos rAa7,=(Tsin&+L(&) +(v # )cos"/) r + 5+qSrelOCL/Oa) _ (43)
my r vr 2 v cos 7 mv v cos 7

With L(&) given by Eq. (42), the first term in Eq. (43) reduces to the term (c'c*" -

c*'2)/(e .2 + c *'2) which by Eqs. (22) and (23) can be shown to be equal to 7*'. So, Eq.

(43) becomes

AT' = (Tcos& + qSrelOCn/Oc_)r___f___A a _ wAa (44)
mv v cos 7

where w > 0 is time-varying. By Eq. (40) Aa = -khAh - k_A 7.

Thus,

A 7' = -wkhAr - wk_A 7 (45)

where Ar = Ah has been used. When some system parameters have variations known to

the onboard computer, Eq. (45) indicates that 6 computed from Eq. (42) with the true

values of the system parameters will result in AT_ = 0 thus 7 = 7* and r = r* if there are

no initial errors. Next, assuming tan 7* _ 7", we consider the linearized altitude dynamics

At' = 7*At + r'A7 (46)

It is known that 7*' _ 0 and 7* is small for most part of the trajectory 1-5's. Using this

approximation and differentiating Eq. (46) once with respect to 0, we have

At" - 27"A/- r'AT' = 0 (47)

If we let kh = (27* + kl)/w and k._ = (kaT* + k2)/wr*, where ha > 0 and k2 > 0 are two

constants, Eqs. (45) and (47) lead to

At" + klA/+ kzAr = 0 (48)

Then Ar _ 0 asymptotically.

The above analysis establishes asymptotic tracking of altitude by using control law

(40) if kh and k-_ are properly chosen to be functions of state variables. The key is 5

determined from Eq. (42) which leads to Eq. (44) without using linearization of the flight

path angle dynamics with respect to the state and throttle.

To demonstrate the guaranteed accurate orbital insertion with the aid of the guidance

laws (40) and (41), and the inverse control of the rocket in the presence of disturbances,

we introduce two types of atmospheric density fluctuations. One is a vertical variation
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27rh.

p= (1 + 0.2 sin --g_-)p (49)

In (49) p* is the nominal density, h is altitude in km. The maximum fluctuation of 20%

as given by (49) is a modest variation of the density compared with the flight data of the

Space Shuttle _°. The other is a horizontal fluctuation

2ltd.,
p = (I + 0.2sin i--0-_)p (50)

where in (49) d = r08 is the down range distance (km). The nominal trajectory is the near-

optimal rocket-assisted trajectory in Fig. 5. The airbreathing propulsion portion of the

trajectory is controlled by the guidance laws (40) and (41). These measures greatly reduce

the deviations of the perturbed trajectories, which prevents the trajectories from crashing

or entering regions where no feasible maneuvers of the rocket can restore the flight path (In

fact, without compensation of (40) and (41), the trajectories would have crashed during

the climb-out). Then after the coast the inverse rocket control laws (29) and (30) take over.

Despite the deviations at this point from the nominal due to the atmospheric disturbances,

the control laws still steer the aerospace plane to an accurate orbital insertion, assuming

that the coefficients in Eqs. (29) and (30) are calculated onboard. Figure 6 depicts the

nominal and the two perturbed trajectories. The final masses of the perturbed trajectories

are 64,635 kg and 64,202 kg, respectively. Clearly, the longitudinal fluctuation in p affects

the trajectory more adversely than the vertical fluctuation. This is no surprise if one

compares the down range distance the aerospace plane travels (about 14,300 km) with

the altitude gained (92.6 kin). The nominal and perturbed rocket throttle settings r1 and

thrust angles _ are shown in Figs. 7 and 8. The effects of the controls responding to

disturbances are clearly seen.

6. Concluding Remarks

The trajectory optimization problem for an aerospace plane has been formulated as an

inverse dynamic optimization problem. The method has proven quite effective in solving

this otherwise very difficult problem. The approach of using inverse dynamics concept for

trajectory optimization may be Considered a valuable addition to the existing tool box for

trajectory optimization, and used in other problems.

The performance indices considered in this paper are minimum fuel consumption and

minimum peak dynamic pressure. A transform technique is used to solve the nonclassical

minimax problem effectively within the framework of parameter optimization. Both prob-

lems are solved reliably using the inverse dynamics approach. The results lead to a better

understanding of the characteristics of hypersonic flight. Rocket-assisted trajectories are
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alsoinvestigated. Rocket control laws basedon inverse dynamics are developed that, to-

gether with two ascent guidance schemes, guarantee accurate orbital insertion even in the

presence of disturbances and perturbations.

Acknowledgment

This research was supported by NASA Langley Research Center under Contract No.

NAG-l-1255 for which Dr. Daniel D. Moerder is the the technical monitor.

References

1 Calise, A. J., Corban, J. E., and Flandro, G. A., "Trajectory Optimization and Guidance

Law Development for National Aerospace Plane Applications", Final Report, NASA CR

Number NAG-I-784, Dec., 1988.

2 Corban, J. E., Calise, A. J, and Flandro, G. A., "Rapid Near-Optimal Aerospace Plane

Trajectory Generation and Guidance", Journal of Guidance, Control, and Dynamics, Vol.

14, No. 6, November-December, 1991, pp. 1181-1190.

a Moerder, D. D., Pamadi, B., and Dutton, K., "Constrained Energy State Suboptimal

Control Analysis of a Winged-Cone Aero-Space Plane Concept", AIAA-91-5053, Third

AIAA International Aerospace Planes Conference, Orlando, FL, 3-5, December, 1991.

4 Van Buren, M. A., and Mease, K. D., " Aerospace Plane Guidance Using Geometric

Control Theory", Proceedings of the 1990 American Control Conference, vol. 2, San Diego,

CA, May, 1990.

Van Buren, M. A., and Mease, K. D., "Aerospace Plane Guidance Using Time-Scale

Decomposition and Feedback Linearization", AIAA Journal of Guidance, Control, and

Dynamics, Vol. 15, No. 5, Sept.-Oct., 1992, pp. 1166-1174.

Powell, R. W., Shaughnessy, J. D., Cruz, C. I., and Naftel, J. C., "Ascent Performance of

an Air-Breathing Horizontal-Takeoff Launch Vehicle", Journal of Guidance, Control, and

Dynamics, Vol. 14, No. 4, July-August, 1991, pp. 834-839.

T Brauer, G. L., Cornick, D. E., and Stevenson, R., "Capabilities and Applications of the

Program to Optimize Simulated Trajectories (POST)', NASA CR-2770, Feb., 1977

s Lu, P., "Trajectory Optimization and Guidance for a Hypersonic Vehicle", AIAA-91-

5068, Third AIAA International Aerospace Planes Conference, Orlando, FL, 3-5, Decem-

ber, 1991.

14



9 Hargraves C. R., and Paris S. W., " Direct Trajectory Optimization Using Nonlinear

Programming and Collocation", Journal of Guidance, Control, and Dynamics, Vol. 10,

No. 4, pp. 338-342, 1987.

10 Shaughnessy, J. D., Pinckey, S. Z., McMinn J. D., Cruz, C. I., and Kelley M-L., "Hyper-

sonic Vehicle Simulation Model: Winged-Cone Configuration", NASA TM 102610, Novem-

ber 1990.

la U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, 1976.

12 Gilbert, E. G., Howe, R. M., Lu, P. and Vinh, N. X., "Optimal Aeroassisted Intercept

Trajectories At Hyperbolic Speeds", Journal of Guidance, Control, and Dynamics, Vol.

14, No. 1, Jan.-Feb., 1991, pp. 123-131.

13 Sentoh E., and Bryson, A.E., "A Comparison of Inverse Control with Optimal Con-

trol", Proceedings of AIAA Guidance, Navigation, and Control Conference, Portland, OR,

August, 1990

14 Lane, S. H., and Stengel, R. F., "Flight Control Design Using Nonlinear Inverse Dy-

namics", Automatica, Vol. 24, No. 4, July, 1988, pp. 471-483.

15 Menon, P. K. A., Badgett, M. E., and Walker, R. A., "Nonlinear Flight Test Trajec-

tory Controllers for Aircraft", Proceedings of AIAA Guidance, Navigation, and Control

Conference, Snow Mass, CO, August, 1985.

16 Vukobtatovic, M., and Stojic R., Modern Aircra_ Flight Control, Springer-Verlag, New

York, 1988.

17 Pouliot, M. R., "CONOPT2: A Rapidly Convergent Constrained Trajectory Optimiza-

tion Program for TRAJEX", Report NO. GDC-SP-82-008, General Dynamics, Convair

Division, San Diego, CA, 1982.

18 Lu, P., "Trajectory Optimization and Guidance for an Advanced Launch Vehicle",

AIAA-92-0732, AIAA 30th Aerospace Sciences Meetings & Exhibit, Jan. 6-9, Reno, NV.

19 Lu, P. and Vinh, N. X., "Optimal Control Problems with Maximum Functional", Journal

of Guidance, Control, and Dynamics, Vol. 14, No. 6, November-December, 1991, pp.

1215-1223.

2o Findlay, J.T., Kelly, G.M., McConnell, J.G., and Compton, H.R., "Shuttle 'Chal-

lenger' Aerodynamic Performance From Flight Data Comparison with Predicted Values

and 'Columbia' Experience", AIAA paper 84-0485, Jan., 1984.

15



List of Captions

Fig. 1

Fig. 2

Fig. 3

Optimal ascent history (q'S_95,760 N/m 2)

Variations of optimal fuel-equivalence ratios

Histories of flight path angle T and angle of attack o_ (q'S_95,760 N/m 2)

Fig. 4 Variation of dynamic pressure along the min-qmax solution

Fig. 5 Ascent altitude history of a rocket-assisted

trajectory (q'Z:_95,760 N/m2, Q'A_800 W/cm 2)

Fig. 6 Comparison of nominal and perturbed trajectories
in the presence of vertical atmospheric density
fluctuation (perturbed I) and horizontal fluctuation
(perturbed II).

Fig.7 Comparison of nominal and perturbed rocket throttle
settings in the presence of vertical atmospheric density
fluctuation (perturbed I) and horizontal fluctuation
(perturbed H).

Fig.8 Comparison of nominal and perturbed rocket thrust
angles in the presence of vertical atmospheric density
fluctuation (perturbed I) and horizontal fluctuation
(perturbed 1I).



o I£

I | I I |

d d d

(W_l)Lt

_0

d
0

d
0

d

d



i ""

0
CO

04
,Ic
,Ic

E
Z
0
04
l,,r)

04
,,II

'II

E
Z
0

V _
13"

0")

O"

I

0

I I I

I

C"

0 0
0

Op,eJ 'Abe-lenj

d
0
04

d
0
CO

d
-0

d

0

d

v

.I-'



L_

d
CO

/

f

d

(seeJ6ep)

d
0
o4

d
0
O0

d
-0

d
I

d

o

o_
v

4-"



d
0
o
0
c_j

J

I I I I I

d
0
0
0
00

d
0
0
0

d
0
cO
T"

d
-0
CO

d

d

0



½

d
, O

O

I I I

d d
cO '_"

d

@,J

6
O

d
O
00

d

q_
v

.@,.,..



0

d
0
oO

o')
v

d

(w_) 4

!

d

d

d



0
d

I
I
I
I
I
I

I
I
I
I

III

_._/
/

/
/

/
/

/
/

/

I
I
I
I
I

/

0
e,i

(Sap) elSue lsnJql

0 0

0
00
d

E

c-
O

oE

0

0
0

0



0
CO
(XI

0

I
I

/
I

/
I

I
I

/
/

/
/

/
/

I

I
I
I
!
#
/
/
/
/
/

/
/

/
/

/
= /
-o /
.e i -_

I .=-
0 _

/
/

/
/

/

! ! !

0 pj

_ C_l

d allloJql la_lOOJ o

I
I
I
I
I
I
I
I
i
I
I
I
I
I
I

"0

-e

Q.

0
CO
0

0
0

d
0

0
O4
d




