
Geophys. J. R. asfr. SOC. (1980) 62,41-48 

Inverse eigenvalue problems for the mantle 

Ole H. Hald Department of Mathematics, University of California, 
Berkeley, California 94720, USA 

Received 1979 September 19; in original form 1979 April 16 

Summary. It is shown that if Adams-Williamson’s equation is used in the 
lower mantle and if the ,mass of the core and the density at the core-mantle 
boundary are given then the density, the rigidity and the incompressibility 
are uniquely determined throughout the mantle and in the crust by the 
velocities of the P- and S-waves and by one torsional spectrum. The velocity 
of the S-waves in the upper mantle and in the crust can be replaced by an 
additional torsional spectrum. 

Lnoduction 

verse problem for the Earth amounts to determining the density p ,  the incompressi- 
k and the rigidity p in the interior of the Earth. We represent the Earth as a sphere 

s R and assume that p ,  k and p depend only on the distance r to the centre. If 
consists of a perfect elastic isotropic material then the velocities a! and 0 of the 

P- and the S-waves can be expressed in terms of the elastic parameters, specifically a*= 
a3 ~ 3 p ) / p  and p 2 = p / p  where A =  k -(2/3)p. Thus if a! and are known then the Lam6 
- m e t e r s  h and p are determined if the density can be determined independently. 

In this paper we will assume that the lower part of the mantle is chemically homogeneous 
devoid of phase changes. The density distribution of the lower mantle can therefore be 

h n d  by the Adams-Wdliamson’s equation provided the mass m,  of the core and the 
k i s i t y  p c  at the core-mantle boundary are given. In Section 1 we will show that the 
h s i t y  in the upper part of the mantle and in the crust is uniquely determined by the 
wlocity of the S-waves and by one torsional spectrum. The elastic parameters are then 
-mnpletely determined. In Section 2 we will show that the density and the rigidity in the 
w r  part of the mantle can be determined from two torsional spectra. In this case the 
wlocity of the S-waves in the upper mantle is not needed. The reader should be warned that 
212 terms upper and lower mantle is used in a very specific way. The terminology is defined 
xi Section 1 and agree approximately with the usual convention. 

Since we use Adams-Williamson’s equation in the lower mantle, our earth model is 
:losely connected to model A of Bullen. There is one difficulty, namely that the mass of the 
a r e  and the density at the core-mantle boundary r = R ,  are not observable. However, there 
n a y  be a one to one correspondence between these values and the mass of the Earth and the 
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42 0. H. Hald 

density at the surface. This can be checked - at least locally - by numerical experiments. 
The moment of inertia for the Earth cannot be used as a constraint since the moment of 
inertia for the core is unknown. 

It has been pointed out by Anderssen & Chandler (1978) that if /3= 71-l log (R/R,)lim 
( q / Z )  - r  then the density is not determined even if all torsional modes {a;} are given, see 
also Hald (1 977). It is therefore the homogeneity assumption in the lower mantle that leads 
to uniqueness. If this assumption is not used then additional information must be provided 
to ensure uniqueness. Thus Sabatier (1978) has shown that the density and the rigidity in 
the mantle are uniquely determined by the eigenvalues and the normalizing constants of 
two torsional spectra. In his theory p may even tend to zero at the core-mantle boundary. 

The proofs are based on two ingredients. First we transform the differential equation for 
the torsional modes to Liouville normal form. To do this we assume that p,  p and A are twice 
differentiable. This assumption is not fulfilled in most earth models. The second ingredient is 
a slight extension of a theorem by Hochstadt & Lieberman (1978). They have shown that if 
the potential is known over half the interval and the boundary conditions are given, then the 
potential is uniquely determined by one spectrum. To determine the potential over half the 
interval we use the Adams-Williamson's equation. Our extention concerns the boundary 
conditions and is presented in Section 3.  

1 Onespectrum 

In this Section we will show that if Adams-Williamson's equation holds in the lower mantle, 
then the density p and the elastic parameters h and p are uniquely determined throughout 
the mantle and the crust by the velocity of the P- and S-waves and by one torsional 
spectrum. 

T H E O R E M  1 

Let R ,  and R be given and assume that p ,  p and h are positive in the interval R ,  G r Q R .  
Consider the eigenvalue problem 

(n + 2) (n - 1) 

r 2  
- (r4puf) '  t ~- r4pu = w2r4pu 

u'(R,) = u'(R) = 0. 

Assume that a2= (h + 2 p ) / p  and P2=p/p are given and determine the constant ro in the 
interval R ,  < r < R such that 

Let @ = a' - (4/3)/3' and assume that p and m satisfy the differential equations 

for R ,  < r G ro with initial conditions p = pc and m = m, a t  r=R,. Then one spectruiq 
{ determine p ( r ) ,  p ( r )  and h(r)  uniquely provided the functions are twice differentiable. 
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Inverse eigenvalue problems for the mantle 43 

R E M A R K  

Equation (1) is obtained by substituting U = ru in the equation for the torsional modes of a 
spherically symmetric non-rotating earth, see Alterman, Jarosh & Pekeris (1959). The 
constant n is called the angular order. It is a positive integer and has its origin in the 
separation of variables in the equation of motions. The value of ro corresponds to a depth of 
approximately 1200 km. The part of the mantle which lies below ro is here called the lower 
mantle and we denote the remainder as the upper mantle and the crust. Thus the domain in 
which we assume the validity of the Adams-Williamson's relation, i.e. equation (3), is 
contained in region D, which conventionally extends from the depth of approximately 
1000 km and down to the core-mantle boundary. Finally G is the gravitational constant 
and m(r) is the mass included in a sphere of radius r .  

PROOF 

By using the Liouville transformation we can transform equation (1) to Liouville normal 
form. Let r = R - z .  We introduce the new independent variable 

Since p and p are positive, 9 has an inverse function which we denote by z = @(x). Because 
3 is given we see that the constant K and the functions $ and q5 are uniquely determined by 
the data. Instead of u we introduce the dependent variable y by 

Y (4 = f ( x ) u  (r) 

f ( x ) = r *  V P m )  
where r = R - @(x). Thus the Liouville transformation leads to the eigenvalue problem 

on the interval 0 G x G n and with boundary conditions 

y'(0) - hy(0) =y'(n) +Hyjn) = 0. 

Here h =f'(O)/f(O) and H = -f'(n)/f(n). The constant K can also be determined by the 
asymptotic behaviour of the eigenvalues since w:KZ = I 2  t O(1). 

Let q(x) be the potential [. . .] in equation (6). We will show that q is uniquely de- 
termined in [0, n]. We observe first that the function r-'p/p = P2/r2 is evaluated at r=  
R - @(x) and thus known for 0 s x G IT. From equation ( 3 )  follows that p(r )  is uniquely 
determined in the interval R ,  Q r G ro. The point ro has been chosen such that it corresponds 
to x = 7r/2. Indeed by using equations (2), (4) and (5) we see that 
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44 0. H. Hald 

This shows that the interval R, G r Q ro is mapped onto the interval n/2 G x G K in a one to 
one manner. Since f(x) can be written as r 2 d m )  with r = R - @(x) we conclude that 
the function f(x) and consequently also the potential 4 (x) are uniquely determined in the 
interval n/2 d x Q K. Finally the constant H in the boundary condition at x = K is equal to 
f’(n)/f(~) and thus uniquely determined. We can now use Lemma 1, which will be proved 
in Section 3. It says that the constant h and the potential 4(x) are uniquely determined by 
one spectrum {w;). corresponding to a fixed value of n. We observe now that the function 
f ( x )  involves p,  which is unknown, and 0, which is known. To determine f ( x )  in the interval 
0 Q x G 1712 we solve the differential equation 

with f and f‘ given at x = n/2. Since f ( x )  = r2@ we can recover p(r) in the interval 
r o < r < R b y  

Finally p(r )  and X(r) are obtained by p = $p  and X = (a2 - 2 $ ) p .  This completes the proof. 
The above proof is valid as long as p’ and p’ are piecewise continuously differentiable. 

Even these weaker assumptions are not fulfilled in many earth models. In practice the 
velocities a and /3 of the P- and S-waves are not known. They are derived from the travel- 
time curves and may not be uniquely determined, even in principle. Our result is based on 
Adams-Williamson’s equation. This is not essential. Any generalization of this equation can 
be used as long as it determines p in terms of (Y and /3 or some other data. The proof of 
Theorem 1 indicates a numerical algorithm, but the data must satisfy one constraint. The 
asymptotic behaviour of the torsional modes must be in agreement with the determination 
of 6 and the depth to the core-mantle boundary. So far a numerical method for re- 
constructing a potential, which is known over half the interval, from one spectrum has not 
been developed. 

2 Twospectra 

In this section we will show that if Adam-Williamson’s equation holds in the lower mantle, 
then the density and the rigidity are uniquely determined in the upper mantle and in the 
crust by two torsional spectra. The incompressibility k can then be determined by the 
velocity of the P-waves. 

T H E O R E M  2 

Let R, and R be given and assume that p,  p and X are positive and twice differentiable in the 
interval R, G r Q R .  Consider the eigenvalue problem (1). Let K = lim (l/wl) where {o;(n)} 
is the spectrum for a fvred value of n. Assume that a’ = (X + 2p)/p is given for R, G r Q R 
and that 0’ = p/p is given for R, G r Q yo. Here ro is determined by 

rro p-’ (r)  dr = (7r/2)K. 
JRC 

If p and m satisfy equation (3) for R ,  Q r G ro then p ( r ) ,  p ( r )  and h(r) are uniquely de- 
termined throughout the interval R ,  Q r Q R by two spectra {wt(n ,)! and {of(nz)) . 
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Inverse eigenvalue problems for  the mantle 45 
R E M A R K  

By transforming equation (1) to Liouville normal form we see that for each n ,  K2w: = 1’ t 
O(1). The value of K is therefore independent of the choice of n.  

P R O O F  

By using the Liouville transformation (4) and ( 5 )  we are lead to equation (6) with n = n 1  
and n,. Let ql(x) be the potential corresponding to n = n ,  and let q2(x) be the potential 
corresponding to n = n,. Since p2 = p / p  is not given in the interval ro < r d R we must 
determine the functions @ and $ indirectly. We will determine @(x)  as the solution of a 
differential equation. From equations (4) and (5) follow that @(rr)  = R - R,. This is the 
initial condition. Since @ is the inverse function of $, $ [@(x)]  = x .  By differentiating both 
sides of this equation with respect to x and using equation (4) we see that @ satisfies the 
differential equation 

@‘(x) =KO [R - @ ( x ) ] .  (9) 

Since 0 is given for R ,  G r G ro we can determine @(x)  as long as R - @(x)  Q ro. Assume now 
that # ( x )  = R - ro. We will show that x = n/2. From equation (4) follows that 

By combining equations ( 5 )  and (8) we see that even though 0 is not yet determined, 

Thus we conclude from equation (10) that x = n / 2 .  We have therefore determined the 
function @(x)  in the interval n/2 Q x Q n. 

Let p(r)  be determined by the differential equation ( 3 ) .  Since f ( x )  = r ’ d m w h e r e  
r = R - @(x)  we see that the potentials q 1  and q2 are uniquely determined in the interval 
7~/2 G x G rr. The constant H = -f’(rr)/f(n) is also uniquely determined. By using Lemma 1 
twice we conclude that q l ( x )  and q2(x)  are uniquely determined by the spectra { w:(nl ) }  
and { u f ( n 2 ) i  . 

We will now show how the functions p(r) and p(r)  can be reconstructed. It follows from 
the definitions of q1 and 4 ,  that 

&(x) - qi (x)=(nz  - n i l  (n2 tn i+ l ) f12 ( r ) / r2  (1 1) 

where r = R - @(x).  At this point there could be several functions 0 and @ such that equation 
(1 1) holds. However, by combining equations (1 1) and (9) we see that 

with @(O) = 0. Since ql  and q2 are uniquely determined we conclude that @ is uniquely 
determined by the data. Thus, by using equation (11) we find that p(r) is also uniquely 
determined. The function p(r) can now be reconstructed as in the proof of Theorem 1 by 

1 cing q and n in equation ( 7 )  by q1 and n, .  This completes the proof. 
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46 0. H. Huld 

As mentioned after the proof of Theorem 1, our smoothness assumptions for p ,  p and h 
can be weakened considerably. The data used in Theorem 2 to establish the uniqueness 
is presumably slightly overdetermined. The inverse problem for the cylinder is in some ways 
similar to the one presented here. However, it can be shown that for the cylinder, the lowest 
eigenvalue in one of the torsional spectra is not needed to determine the density and the 
rigidity uniquely, see Hald (1977). The author has been unable to establish a similar result 
for the problem considered here. It is not known whether the inverse problem for the mantle 
is well-posed if two torsional spectra are used. The inverse problem for a cylinder is ill-posed 
if the eigenvalues are slightly perturbed in the least square sense, see Hald (1 977). However, 
it may be well-posed for perturbations which are small in some other norm. 

3 An inverse Sturm-Liouville problem 

In this section we will present and prove the uniqueness result which has been used in the 
proofs of Theorems 1 and 2. 

L E M M A  1 

Consider the eigenvalue problems 

- u" t q(x)u = xu 

- u" -I- q"(x)u = xu 

hu(0) - u'(0) = 0, Zu(7f) t u'(n) = 0 

hu(0) - u'(0) = 0, Hu(n) + u'(n) = 0 

where 4 and 4" are integrable on [0, n]. Let hi and xi be the eigenvalues of equations (12) 
and (13) and assume that Xi = xi for all j .  If 4 ( x )  = ?(x) for almost all x in the interval 
n/2 G x Q n and if H = r?, then 4(x )  = q(x) almost everywhere and h = $. 

R E M A R K  

This lemma is a strengthened version of a theorem due to Hochstadt & Lieberman (1978). 
They assume that h =h" and H=E?: The new result is sharp. If 4 is given and the eigenvalues hi 
are slightly perturbed then there exist a potential 4' and a constant such that Xi 
corresponds to the perturbed eigenvalues. The constant h" will in general not be equal to h.  
The proof below is based on the theory of translations operators. However, the proof by 
Hochstadt & Lieberman can also be modified to accommodate the new assumptions. 

P R O 0  F 

Let ui and Gj be the eigenfunctions corresponding to the eigenvalues Ai and hi and 
normalized such that their value at x = 0 is 1. If we multiply equation (12) by Gi and 
equation (13) by ui and subtract, we obtain after integrating that 

Here we have used the boundary conditions for ui and .li. It is well known that the eigen- 
functions of a Sturm-Liouville problem are of the form cos ( j x )  t O ( l / j ) ,  see, e.g. Jorgens 
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Inverse egenvalue problems for the mantle 47 
(1964). We replace now ui and ii in equation (14) by their asymptotic expansion. Letting 
j tend to CQ we infer from the Riemann-Lebesque lemma that 

h - K + -  (q - c ) d x = O .  a c 
This result can also be derived from the asymptotic expansion of the eigenvalues. Since 
q = cover half the interval we conclude from equation (14) that 

for all j .  We can now show that q = a.e. It is known that if a function f is orthogonal over 
the interval [0, 77/21 to the products for all j then f ( x )  is zero a.e., see Levitan (1964) 
Theorem 6.2, p. 78. The remainder of our proof is practically identical to Levitan's proof. 
It can be shown, by using the theory of translation operators, that if 0 G x G n/2 then 

2% 
1 + U j ( 2 X )  + S, K(x, t)uj(t) dt] , 

see Levitan (1964) p. 75. The kernel K is continuous and can be characterized as the 
solution of a certain Goursat problem. Let f = q  - g. By combining equations (15) and (16) 
we find after interchanging the order of integration that 

for all j .  Since the eigenfunctions form a complete set we conclude that 

for almost all x in [0, IT]. But this is a homogeneous Volterra equation and its solution is 
identically zero. Thus q = a.e. and from equation (14) follows that h = h". This completes 
the proof. 

In the theory of inverse Sturm-Liouville problems a result like Lemma 1 is often 
accompanied by a theorem in which it is not necessary to  use the lowest eigenvalue to infer 
uniqueness provided the boundary conditions are fixed, see Borg (1 946), Hochstadt (1 973) 
and Hald (1978). The author has been unable to establish a similar result in this context. 
The smoothness of the potentials play a crucial role. If both q and are continuous then 
Lemma 1 is still true under the weaker assumption that hi = xi for all j except possibly one. 
The exception need not be the lowest eigenvalue. To prove this result we observe that if 

= for all j # k then 

for al l  x in [O, IT]. However, because q and @ are continuous, f(77/2) = 0, and since uk(n-) 
is different from zero we see that the constant must be equal to zero. The proof is now 
ample t ed  as before. This indicates that if the eigenvalues coriesponding to a smooth 
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48 0. H. Hald 

potential are slightly perturbed, then the potential corresponding to the perturbed eigen- 
values can have a jump discontinuity at x = n/2. This observation may be of some help 
in the development of a numerical technique to solve the inverse problems presented in this 
paper. 
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