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INVERSE EIGENVALUE PROBLEMS ON DIRECTED GRAPHS

ROBERT CARLSON

Abstract. The differential operators iD and −D2 − p are constructed on
certain finite directed weighted graphs. Two types of inverse spectral problems
are considered. First, information about the graph weights and boundary
conditions is extracted from the spectrum of −D2. Second, the compactness
of isospectral sets for −D2 − p is established by computation of the residues
of the zeta function.

1. Introduction

This work contains a number of inverse spectral results for differential operators
on graphs. There are a number of physical settings where one might wish to consider
differential operators on a graph: heat flow in a wire mesh, mechanical vibrations
of networks of elastic strings, propagation of radiation in networks of optical fibers,
and electron flow in quantum mechanical circuits. With a few recent exceptions
[9, 10], the main mathematical studies relating operator theory and graphs are
limited to difference operators [3, 4, 6, 15, 19].

The point of view here is that a differential operator on a graph is like a differ-
ential operator on a one dimensional manifold. In addition to the combinatorial
structure of the graph, weights are assigned to the edges to provide a metric struc-
ture. In order to have a well defined first derivative, the graph is directed. Of
course the vertices are exceptional points in our topological space. Here boundary
conditions are used to define the domain of the operator.

In this work we are interested in considering inverse eigenvalue problems for the
second derivative and Schrödinger operators on graphs. These inverse problems
have rich theories in both the classical one dimensional case and in the manifold
context. Moreover, even in the one dimensional setting such basic results as com-
pactness of isospectral classes depend on a suitable choice of boundary conditions.
One of the main aims of this work is to generalize the isospectral compactness
results for one dimensional periodic problems. As a consequence, we have chosen
boundary conditions leading to a skew adjoint first derivative operator.

The next section contains a precise description of the operator iD for certain
directed graphs with weighted edges and boundary conditions at the vertices. With
the appropriate domain, the operator iD will be self adjoint if the conditions at the
vertices are given by unitary matrices.

The third section contains inverse spectral results for the operator −D2, which
may be roughly described as follows. Typically, all eigenvalues of −D2 are simple.
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4070 ROBERT CARLSON

If the eigenvalues and the edge weights are known, then the real parts of the eigen-
values of the boundary matrix may be determined. For rather trivial reasons the
weights may not be determined from the eigenvalues. What may be determined
typically is the sum of the edge weights for loops in the graph. These may be in-
terpreted as the lengths of the loops, and the relationship between the eigenvalues
of −D2 and the lengths of the loops may be viewed as an analog of results relating
the spectrum of the Laplacian on a manifold to the lengths of closed geodesics [7,
p. 170].

The fourth section considers the zeta function ζp of −D2 − p. Within our class
of operators, the singular parts of the zeta function do not depend on the boundary
conditions. For the purposes of studying the residues of ζp, this reduces the problem
to a diagonal system of operators on circles. The standard theory then implies that
isospectral classes of Schrödinger operators are compact.

Before beginning, we mention some notational conventions. The derivative with
respect to x is denoted ∂x. The real and complex numbers areR and C respectively.
The Hilbert space inner product is 〈, 〉.

It a pleasure to thank M. Harmer, B. Pavlov and the referee for helpful comments.

2. Directed graphs and the operator iD

There is a fruitful interplay between certain graphs and differential operators.
The graph G is assumed to be finite and directed. Multiple edges between vertices
are allowed. Each vertex v has δ(v) > 0 input (entering) edges and an equal
number of output (exiting) edges. The edges, denoted en, n = 1, . . . , N , have
weights wn > 0. In addition, each vertex v has an invertible linear transformation

T (v) : Cδ(v) → Cδ(v)

which will be used in describing boundary conditions.
Thinking of a directed edge en as an interval [0, wn], we consider differential

operators which act by f → if ′(x) for functions in their domain, which will be
a subset of

⊕
n L

2[0, wn]. While this description facilitates geometric thinking,
computations are simplified by making a linear change of variables so that each edge
becomes [0, 1]. Our Hilbert space becomes the weighted space

⊕
n L

2([0, 1], wn)
with inner product

〈f, g〉 =
∑

n

∫ 1

0

fn(x)gn(x) wn dx, f =

 f1
...
fN

 , g =

 g1
...
gN

 .

On its domain, the operator iD will act by f1
...
fN

 → i

 ∂xf1/w1

...
∂xfN/wN

 .

The local coordinate mapping of edges to intervals is chosen so that edges exit
a vertex at 0 and enter at 1. The domain of iD will be determined by boundary
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INVERSE EIGENVALUE PROBLEMS ON DIRECTED GRAPHS 4071

conditions at the vertices. Let Fi(v) be the δ(v)− tuple of input values of f at v:

Fi(v) =

 fn(1)(1)
...

fn(δ(v))(1)

 .

The δ(v) − tuple of corresponding output values will be Fo(v). An ordering of
the inputs and outputs is provided by the ordering of the edges. Functions in the
domain of iD will be required to satisfy the vertex conditions

Fi(v) = T (v)Fo(v).(2.a)

Perhaps the simplest way to initiate the study of iD as a Hilbert space operator
is to start with the maximal operator iDmax, whose domain consists of all f :
[0, 1] → CN with absolutely continuous components and whose derivatives are in
L2[0, 1]. An easy extension of standard results shows that iDmax is a Fredholm
operator of index N . The operator iD has domain consisting of those functions in
the domain of iDmax which satisfy the boundary conditions (2.a). (See for instance
[12, pp. 145,169,188,272].)

Let 〈F,G〉v denote the usual complex inner product on Cδ(v). Then for functions
f, g in the domain of iD

〈iDf, g〉 − 〈f, iDg〉 =
∑

n

∫ 1

0

[ i

wn
(∂xfn)gn − fn

i

wn
∂xgn

]
wn dx(2.b)

= i
∑

v

[〈Fi(v), Gi(v)〉v − 〈Fo(v), Go(v)〉v ]

= i
∑

v

[〈T (v)Fo(v), T (v)Go(v)〉v − 〈Fo(v), Go(v)〉v]

= i
∑

v

〈(T ∗(v)T (v)− I)Fo(v), Go(v)〉v .

Here T ∗(v) denotes the conjugate transpose of T (v).
Since the domain of iD is defined by N boundary conditions, iD is Fredholm

with index at least 0. Suppose that T ∗(v)T (v) − I = 0 for all vertices v. The
computation (2.b) shows that iD has no eigenvalues with nonzero imaginary part,
so the index is 0 and iD is self adjoint. Henceforth the matrices T (v) are assumed
to be unitary.

This discussion is summarized in the following result.

Proposition 2.1. Suppose that the matrix T (v) is unitary for each vertex v ∈ G.
Let iD be the operator  f1

...
fN

 → i

 ∂xf1/w1

...
∂xfN/wN


on

⊕
n L

2([0, 1], wn), whose domain consists of all f : [0, 1] → CN whose compo-
nents are absolutely continuous with derivatives in L2[0, 1] and which satisfy the
boundary conditions (2.a). Then iD is self adjoint.
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It will be convenient to let W denote the diagonal matrix diag[wn]. Any eigen-
function for ±iD must satisfy the system of equations

± iW−1∂xY = λY, Y (x, λ) =

 y1(x, λ)
...

yN (x, λ)

 .(2.c)

The solution matrix

Y = exp(∓iWλx)

has columns forming a basis of solutions to (2.c). The conditions (2.a) defining the
domain of iD may be written as a single linear system

fm(1)−
N∑

n=1

Tmnfn(0) = 0, m = 1, . . . , N,

and λ will be an eigenvalue of ±iD exactly when the condition

det[Y(1, λ)− TY(0, λ)] = det[exp(∓iWλ)− T ] = 0, T = (Tmn),
(2.d)

is satisfied.
An explicit description of the resolvent

R1(λ) = [iD − λI]−1

will be useful. Solutions of

iW−1∂xY − λY = f, Y =

 y1
...
yN

 , f =

 f1
...
fN


have the form

Y (x, λ) = exp(−iλxW )K(λ)− i

∫ x

0

exp(iλ[t− x]W )Wf(t) dt, K(λ) ∈ CN .

Satisfaction of the boundary conditions TY (0)− Y (1) = 0 requires

K(λ) = i[exp(−iλW )− T ]−1

∫ 1

0

exp(iλ[t− 1]W )Wf(t) dt.

For notational convenience let

M(λ) = [I − exp(iλW )T ]−1.

Thus

[R1(λ)f ](x) = i exp(−iλxW )M(λ)
∫ 1

0

exp(iλtW )Wf(t) dt(2.e)

− i

∫ x

0

exp(iλ[t− x]W )Wf(t) dt.
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3. Spectral theory for −D2

This section contains an analysis of the generic structure of the spectrum for
iD and −D2. Constructive procedures are presented for recovering information
about the graph G from the eigenvalues of −D2 = [iD]2. The information to be
obtained consists of the real parts of the eigenvalues of the boundary matrix T and
the lengths of loops in G. Our initial focus is on the function

P (λ) = det[exp(−iWλ)− T ]

whose zeroes are the eigenvalues of iD.

3.1. Generic behaviour. The justification of the inverse spectral procedures
makes use of a number of assumptions about the operator −D2. These assumptions
include the following:

(i) each eigenvalue λk of iD has a corresponding eigenspace of dimension 1,
(ii) each eigenvalue λk of iD is a simple root of P (λ).

For some results, arithmetic conditions on the weights wn will be assumed. The
various assumptions about the operator −D2 are generically valid in senses which
will be made precise.

For the first result the connectivity of G is ignored.

Proposition 3.1. For every set of weights {wn} there is a unitary matrix T whose
associated operator iD satisfies conditions (i) and (ii).

Proof. The examples are found in the trivial case when our system is completely
decoupled, the matrix T having the form

T = diag[exp(iθn)].

In this case eigenvalues of iD have the form

θn/wn + 2πk/wn, n = 1, . . . , N, k = 0,±1,±2, . . . .

Condition (i) will be satisfied unless

θm/wm + 2πj/wm = θn/wn + 2πk/wn

or
θm =

wm

wn
[θn + 2πk] mod 2π.

The values of θm may be chosen inductively. The first value θ1 ∈ [0, 2π) is arbitrary.
Subsequent choices are only excluded from a countable set of values, which shows
that (i) may be satisfied.

If T has the specified form,

P (λ) =
N∏

n=1

[exp(iwnλ)− exp(iθn)].

If σm,k is one of the eigenvalues λj of the form

σm,k = θm/wm + 2πk/wm, m = 1, . . . , N, k = 0,±1,±2, . . . ,

then

∂λP (σm,k) = iwm exp(iwnσm,k)
∏

n6=m

[exp(iwnσm,k)− exp(iθn)] 6= 0.

It will also be important to observe that Proposition 3.1 can be satisfied with
matrices T (v) respecting the connectivity of G.
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Proposition 3.2. For every set of weights {wn} there is a collection of unitary
matrices

T0(v) : Cδ(v) → Cδ(v)

whose associated operator iD satisfies conditions (i) and (ii).

Proof. This more restrictive case may be reduced to the previous one.
Start at any vertex and follow a directed edge path until a vertex v is repeated.

Since each vertex of G has the same number of input and output edges, the edges
of the path from v to v may be removed from G, leaving another graph of the same
type. Thus G may be decomposed into an edge disjoint collection of closed paths.

Let γ be one of these closed paths, and select one vertex v from γ. At each of
the other vertices w of γ there is one entering edge ei and one exiting edge ej . Let
T be partially defined by the condition fi(1) = fj(0), that is

Tij = 1, Tlj = 0, l 6= i.

These closed paths may now be considered intervals with weights
∑
wm, the sum

taken over the edges in the path. The proof of Proposition 3.1 implies that val-
ues exp(iθv) may be selected for boundary conditions at v giving the eigenvalue
conditions (i) and (ii) as before.

Propositions 3.1 and 3.2 can be extended to generic operators of the form iD
by using some results on analytic families of operators. Let T0 and T1 be unitary
matrices with logarithms iA0 and iA1:

Tj = exp(iAj), Aj = A∗j , j = 0, 1.

The real analytic path of unitary matrices

T (s) = exp(i[(1− s)A0 + sA1]), −∞ < s <∞,

satisfies T (0) = T0 and T (1) = T1. Denote by iDs the operator iD with domain de-
fined by the boundary conditions using the unitary matrix T (s). The corresponding
resolvents are denoted Rs(λ).

Lemma 3.3. The eigenvalues λk(s), appearing with the appropriate multiplicity,
are well defined real analytic functions of s. There is also a corresponding complete
orthonormal real analytic family {ψk(s)} of eigenvectors for iDs.

Proof. From the explicit formula (2.e) we see that if s ∈ (a, b) and λ is real and in
the resolvent set of iDs, then the operators Rs(λ) form a self adjoint holomorphic
family [12, p. 385] of compact operators. The eigenvalues λk(s) of iDs and the
eigenvalues νk(s) of Rs(λ) are related by

νk(s) =
1

λk(s)− λ
.(3.a)

For each s0 ∈ R there are a real λ in the resolvent set ρ(iDs0) of iDs0 and an
interval (a, b) containing s0 such that for all s ∈ (a, b) we have λ ∈ ρ(iDs). Since the
operators Rs(λ) are resolvents, 0 is never an eigenvalue of Rs(λ). The discussion
in [12, p. 393] shows that each νk(s) is a real analytic function for s ∈ (a, b). By
(3.a) the same is true for λk(s).

If t0, t1 ∈ R there is a finite open cover of [t0, t1] by intervals (aj , bj) such that
(aj , bj) ∩ (aj+1, bj+1) 6= ∅ and such that the eigenvalues of iDs are real analytic
in (aj , bj). Now index the eigenvalues λk(s) according to their index in the first
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interval (a1, b1) and extend these functions from (aj , bj) to (aj+1, bj+1) by requiring
the definition to be consistent on (aj , bj) ∩ (aj+1, bj+1).

The eigenvectors are handled analogously.

Suppose that G hasM vertices. The M−tuple of transition matrices defining the
domain of iD is an element of the product of unitary groups U =�M

m=1 U(δ(vm)).
The next result considers the size of the set in this product where conditions (i)
and (ii) do not hold.

Theorem 3.4. Suppose that the graph G has arbitrary weights {wn} with in and
out degrees δ(v) at the vertices v. Then conditions (i) and (ii) hold except for a set
of transition matrices having measure zero in U =�M

m=1U(δ(vm)).

Proof. The proof begins by showing that conditions (i) and (ii) hold at most points
along certain curves in U . According to Proposition 3.2 there is some choice of
unitary transition matrices

T0(v) : Cδ(v) → Cδ(v)

satisfying conditions (i) and (ii). There are self adjoint matrices A0(v) and A(v)
such that

T0(v) = exp(iA0(v)), T (v) = exp(iA(v)).
Define Ts(v) = exp(i[(1− s)A0(v) + sA(v)]).

By Lemma 3.3 the eigenvalues (with multiplicity) and orthonormal eigenvectors
of iDs may be chosen to be real analytic functions of s. Now condition (i) fails if
and only if λj(s) − λk(s) = 0 for some j 6= k. Since none of these differences is 0
for all s, each may vanish only finitely many times between s = 0 and s = 1. Thus
there are at most countably many points s where (i) does not hold.

A similar argument works for condition (ii). The function ∂λP (λj(s)) is analytic
in s. At s = 0 we have ∂λP (λj(0)) 6= 0, so that ∂λP (λj(s)) 6= 0 for all j except at
countably many values of s.

The remainder of the proof consists of extending the result obtained so far to a
measure theoretic statement on U . Only a sketch of the argument is provided.

First note that the self adjoint δ(vm)×δ(vm) matrices may be considered a com-
plex Euclidean space by ignoring the entries below the diagonal. The exponential
map A → exp(iA) is a local diffeomorphism from the self adjoint matrices onto
U(δ(vm)). Let K be a positive integer. It is possible to find a finite open covering
{Vα} and numbers rα with K < rα < K + 1 such that ±rα are in the resolvent set
for all operators iD defined by transition matrices in Vα. Since the set of transition
matrices {T (v)} for which (i) and (ii) hold is dense, we may take Vα to be the
image, under the exponential map, of a Euclidean ball, and the center point of the
ball gives an operator for which (i) and (ii) hold.

Using the ideas in the proof of Lemma 3.3, and in [12, pp. 109, 116], the
eigenvalues λ1, . . . , λk with absolute value smaller than rα are continuous functions
in Vα. Two of these eigenvalues agree when

∏
i6=j(λi − λj) = 0, and this zero

set E(α,K) is measurable in Vα. To get the measure of this set, integrate its
characteristic function in polar coordinates. By the first part of the proof the
integral is zero along each radial line, so the set E(α,K) has measure 0. Finally,
the set of unitary matrices for which condition (i) fails is

⋃
K

⋃
αE(α,K), which

has measure 0.
Again a similar argument works for condition (ii).
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Having considered the generic behaviour of iD for T = (T (v1), . . . , T (vM )) ∈ U ,
we now derive a basic result for the general case.

Theorem 3.5. Suppose that λk(T ) are the eigenvalues of iD, listed with multiplic-
ity given by the dimension of the corresponding eigenspace. Let m be the dimension
of the null space of iD. Then there are complex numbers β and C, with C 6= 0,
such that

P (λ) = Cλmeβλ
∞∏

k=1

(1− λ/λk)eλ/λk .

In particular, the multiplicities given by the dimension of the eigenspaces agrees
with the analytic multiplicities of λk as a root of P (λ).

Proof. It will be necessary to have a coarse estimate for the distribution of eigenval-
ues for iD. If the boundary conditions defining the domain of iD were fn(0) = fn(1)
for n = 1, . . . , N , then a direct computation would show that the eigenvalues are
2πk/wn for integer k and n = 1, . . . , N . Since the examples of interest differ from
this trivial one only in the set of N boundary conditions, it is elementary ([2],
Lemma 1.2) to show that the number of eigenvalues appearing in any open inter-
val, counting with multiplicity, cannot change by more than N .

For notational simplicity assume that m = 0. The entire function P (λ) has
order 1, so by Hadamard’s theorem [1, p. 207] its genus is either 0 or 1. Since∑

1/|λk| = ∞ and
∑

1/|λk|2 < ∞, the genus [1, p. 195] is 1 and P (λ) has a
product representation

P (λ) = Ceβλ
∞∏

k=1

(1− λ/σk)eλ/σk .

In this representation the set of numbers {σk} is the same as the set {λk}, but
the multiplicities might be different. According to Theorem 3.4 these multiplicities
agree for a dense set in U . We will write T ∈ U as the limit of a sequence Tn ∈ U
satisfying (i) and (ii), and use a continuity argument to show that the multiplicities
must agree for all T .

From the definition

P (λ, T ) = det[exp(−iWλ)− T ]

it is evident that P (λ, Tn) → P (λ, T ) uniformly on compact subsets of C. It is a
consequence of Rouche’s theorem [1, p. 152] that each root σ of P (λ) of multiplicity
M is the limit of exactly M eigenvalues λk(Tn).

On the other hand, (2.e) shows that the resolvents for iD corresponding to
Tn converge uniformly in operator norm to the resolvent corresponding to T on
compact subsets of the resolvent set corresponding to T . Suppose that λ(T ) is an
eigenvalue of iD with eigenspace of dimension M . Then since iD is self adjoint, the
eigenprojection [12, p. 181] associated to λ(T ) has rank M and [12, pp. 213-214]
is the limit of exactly M eigenvalues λk(Tn).

From the observations of the previous two paragraphs, we see that the multiplic-
ities given by the dimension of the eigenspaces agree with the analytic multiplicities
of λk as a root of P (λ). Consequently, we may take σk = λk in the formula for
P (λ).
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3.2. Inverse problems. Now we consider recovering graph information from the
eigenvalues µk of operators −D2. In the general case it will be necessary to assume
that the multiplicities of the eigenvalues, that is the dimensions of the eigenspaces,
are also known. However Theorem 3.4 shows that the generic case has all eigenval-
ues simple.

Of course having the values µk is the same as knowing the magnitudes |λk| of the
eigenvalues for iD. Although the signs of the eigenvalues are unknown, we do know
that the set of values ±|λk| comprises the union of the spectra of ±iD. By (2.d)
these values are the roots of det[exp(−iWλ)− T ] = 0 and det[exp(iWλ)− T ] = 0.
Since

det[exp(iWλ)− T ] = det[T ] det[T−1 − exp(−iWλ)] det[exp(iWλ)],(3.b)

this second equation may be replaced with the equivalent condition

det[T−1 − exp(−iWλ)] = 0.

Thus we consider the entire function

Q(λ) = det[exp(−iWλ)− T ][T−1 − exp(−iWλ)]

= − det[I − T exp(−iWλ)− exp(−iWλ)T−1 + exp(−2iWλ)].

Lemma 3.6. The eigenvalues µk of −D2 together with their multiplicities deter-
mine the function

Q(λ) = det[exp(−iWλ)− T ][T−1 − exp(−iWλ)].

Proof. By Theorem 3.5 and (3.b), Q(λ) has the product representation

Q(λ) = Cλmeαλ
[ ∞∏

k=1

(1− λ/|λk|)eλ/|λk|
][ ∞∏

k=1

(1 + λ/|λk|)e−λ/|λk|
]
, |λk| 6= 0.

(3.c)

Let Q1(λ) be the entire function

Q1(λ) = λm
[ ∞∏

k=1

(1 − λ/|λk|)eλ/|λk|
][ ∞∏

k=1

(1 + λ/|λk|)e−λ/|λk|
]
, |λk| 6= 0,

constructed from the values µk.
Restrict λ to the imaginary axis, λ = iσ. From the form of Q(λ) it follows that

lim
σ→−∞Q(iσ) = −1.(3.d)

From the product representation (3.c) and the limiting behaviour (3.d) it follows
that there is a value of α such that

lim
σ→−∞ eiασQ1(iσ)

has a nonzero complex value. It is easily seen that this choice of α is unique, so
that the condition (3.d) determines α, and then C.

Consider the case when the weights have a known common value wn = w. Then
Lemma 3.6 says we know the function

q(λ) = − det[I − T exp(−iwλ) − exp(−iwλ)T−1 + exp(−2iwλ)I]

= − exp(−2iwNλ) det[exp(2iwλ)I − exp(iwλ)T − T−1 exp(iwλ) + I].
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In this case 2Nw can be determined by the asymptotics as λ → i∞ and so N is
determined. Construct

− exp(iNwλ)q(λ)/2N = det[cos(wλ)I −Re(T )].

Let the eigenvalues of T be φ1, . . . , φN . By taking λ = cos−1(x)/w for −1 ≤ x ≤ 1
we obtain the characteristic polynomial

det[xI −Re(T )] = (x−Re(φ1)) · · · (x −Re(φN )).

This establishes the following result.

Theorem 3.7. If the weights have a known common value wn = w, then the eigen-
values µk of −D2 together with their multiplicities determine N and the real parts
of the eigenvalues φn of the unitary matrix T .

The case of known distinct weights can be reduced to the previous case if a mild
arithmetic condition [13, pp. 37–40] is satisfied.

Theorem 3.8. Suppose that the eigenvalues µk of −D2 together with their multi-
plicities are known. If in addition the weights wn are given and the line

λ(w1, . . . , wN ) mod 2πZN

is dense in the torus RN/[2πZN ], then the real parts of the eigenvalues φn of the
unitary matrix T may be determined.

Proof. Since the weights are known, Lemma 3.6 implies that the function

q1(λ) = −2−N det[exp(iWλ/2)]Q(λ) det[exp(iWλ/2)]

= det[cos(λW )I − exp(iWλ/2)T exp(−iWλ/2)/2

− exp(−iWλ/2)T−1 exp(iWλ/2)/2]

can be constructed. Pick a number x ∈ [−1, 1] and choose a sequence of points λr

such that

λr(w1, . . . , wN ) → (cos−1(x), . . . , cos−1(x))mod 2πZN .

Then
q1(λr) → det[xI −Re(T )].

Since x was arbitrary we again recover the characteristic polynomial of Re(T ).

Finally we consider extracting information about the weights from the eigenval-
ues µk. This analysis begins with the forward problem of describing the function
P (λ) = det[exp(−iWλ) − T ], assuming that we know the weights wn. Recall that
the matrix T has entries Tij which can only be nonzero when i and j are respec-
tively the indices of an input edge and an output edge at some vertex v. Following
the terminology of topology rather than graph theory, define a cycle to be the sum
of closed (directed) paths [1, p. 138].

Lemma 3.9. Suppose that the diagonal terms Tii are all zero. Then P (λ) is a
linear combination of exponentials

P (λ) = det[exp(−iWλ)− T ] =
∑

k

ck exp(−iλ
N(k)∑
n=1

wn)

where each nonzero sum of weights is taken over a cycle of at most N edges.
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Proof. Let aij(λ) denote the entries of the matrix exp(−iWλ) − T . The function
P (λ) may be written as a sum of products, each summand having the form Sσ(λ) =
sgn(σ)

∏
aiσ(i) where σ is a permutation of the indices 1, . . . , N .

Select a vertex v with δ(v) input edges m1, . . . ,mδ and output edges n1, . . . , nδ.
The condition Tii = 0 means that no input edge index at v is also an output edge
index at v. Let Sσ(λ) be a nonzero summand whose permutation σ fixes exactly
r of the input edge indices at v, i.e. σ(mk) = mk. Then Sσ(λ) has the r factors
exp(−iwmk

λ).
Next we consider the columns whose indices nl are output edge indices at v. Since

Tinl
= 0 unless i ∈ {m1, . . . ,mδ}, and the r row indices mk are already accounted

for, there can be at most δ(v) − r factors ainl
in Sσ with i ∈ {m1, . . . ,mδ}. The

only other nonzero entries aij are on the diagonal, so that for at least r values of
the output edge indices nl, σ(nl) = nl.

The roles of input and output edges are interchangeable, so each product has an
equal number of distinct diagonal contributions from inputs and outputs at each
vertex. Of course each output edge at v is the input at another vertex. Decomposing
G into edge disjoint loops as in the proof of Proposition 3.2 gives the result.

Rather than P (λ), it is the function Q(λ) which can be determined from the
eigenvalues µk by Lemma 3.6. Recall that G hasM vertices and U =�M

m=1U(δ(vm)).

Theorem 3.10. Suppose that the diagonal terms Tii are all zero. Then Q(λ) is a
linear combination of exponentials

Q(λ) = det[exp(−iWλ)− T ][T−1 − exp(−iWλ)] =
∑

k

ck exp(−iλ
N(k)∑
n=1

wn)

where each nonzero sum of weights is taken over a cycle of at most 2N edges.
For an open dense set of unitary matrices (T (v1), . . . , T (vM )) ∈ U , each frequency
which is the length of a loop in G with no repeated edges appears with a nonzero
coefficient ck.

Proof. Since T−1 = T ∗ Lemma 3.9 applies to both factors det[exp(−iWλ)−T ] and
det[T−1 − exp(−iWλ)] of Q(λ). This shows immediately that Q(λ) is the desired
linear combination of exponentials.

To describe the generic behaviour we first consider some special examples. Par-
tition G into edge disjoint loops with no repeated edges. If v is a vertex in one
of the loops, with input edge i and output edge j, let T be defined by requiring
fi(1) = fj(0), except at the initial vertex where the condition will be fi(1) = −fj(0).
In this case we may reindex the edges so that P (λ) is the determinant of a block
diagonal matrix with blocks of the form

exp(−iw1λ) −1 0 0 . . . 0
0 exp(−iw2λ) −1 0 . . . 0

0 0
...

... . . . 0
0 0 0 . . . exp(−iwm−1λ) −1
1 0 0 0 . . . exp(−iwmλ)

 .

Thus after the reindexing P (λ) is a product of terms of the form

exp(−iλ
∑

wn) + (−1)m−1(−1)m−1 = exp(−iλ
∑

wn) + 1.
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The second factor det[T−1 − exp(−iWλ)] of Q(λ) is, except for a factor −1, a
product of terms of the same form. For this example each frequency which is the
length of a loop in the partition of G with no repeated edges appears with a nonzero
coefficient.

In the general case the coefficient ck of a term exp(−iλ
∑

n wn) with frequency∑
n wn is a polynomial in the entries of the matrices T (vm) and T ∗(vm). As in

Theorem 3.4, local coordinates for U(δ(v)) may be chosen by using the exponential
map A → exp(iA) where A = A∗. In these coordinates the real and imaginary
parts of the coefficient ck are real analytic functions of the real and imaginary
parts of the entries of the matrices A. Our examples show that each loop length
with no repeating edges has an associated nonzero coefficient ck for some choice
of (T (v1), . . . , T (vM )). By the real analyticity, this particular coefficient must be
nonzero on an open dense set in U . But then all coefficients coming from lengths
of loops without repeating edges are nonzero on the intersection of finitely many
open dense sets, which completes the proof.

If λ is restricted to real values, Q(λ) is almost periodic. The distinct frequencies∑N(k)
n=1 wn and the corresponding nonzero coefficients may be identified by consid-

ering the integrals [13, p. 14]

1
2T

∫ T

−T

Q(λ) exp(iνλ) dλ.

4. The Zeta Function for Schrödinger’s Operator

In this section attention shifts from −D2 to the operator −D2 − p, where p is a
real valued function on G with several continuous derivatives. This operator has a
zeta function ζp(s) much as in the smooth manifold case [18]. In the graph setting
the resolvent of −D2 can be exactly computed. Up to negligible corrections, all
of the boundary conditions we have considered lead to the same diagonal for the
kernel of the resolvent. This observation means that the singular part of ζp(s) can
be computed by considering boundary conditions for which the graph reduces to
edge disjoint loops. The local formulas for the residues of ζp(s) in such a periodic
case have been known for a long time [8]. A well-known argument [14, p. 226]
shows that the isospectral classes are compact.

4.1. The resolvent of −D2. The goal for this section is to establish the following
description of the resolvent of −D2. Recall that M(λ) = [I − exp(iλW )T ]−1. For
notational convenience, let λ = −ω2.

Lemma 4.1. The resolvent R(λ) of −D2 is an integral operator satisfying

[R(λ)f ](x)(4.a)

= − 1
2ω

∫ 1

0

exp(−xωW )M(−iω)[exp(2ωW )− I]M(iω) exp(−ωtW )Wf(t) dt

+
1
2ω

∫ 1

0

exp(−xωW )M(−iω)[exp(2ωW )− exp(2tωW )] exp(−ωtW )Wf(t) dt

+
1
2ω

∫ 1

0

exp(−ωxW )[exp(2xωW )− I]M(iω) exp(−ωtW )Wf(t) dt

− 1
2ω

∫ x

0

exp(−ωxW )[exp(2xωW )− exp(2tωW )] exp(−tωW )Wf(t) dt.
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For all j, k = 0, 1, 2, . . . and ε > 0 the diagonal of the resolvent kernel has the
following behaviour as ω →∞:

∂j
x∂

k
λR(x, x, λ) = ∂j

x∂
k
λ

1
2ω
W +O(exp(−min

n
[wn/2− ε]ω)).

Proof. Using (2.e) and

R(−ω2) = [−D2 + ω2]−1 = (iD + iω)−1(iD − iω)−1

leads to
[R(λ)f ](x) = [R1(−iω)R1(iω)f ](x)

= exp(−xωW )M(−iω)
∫ 1

0

i exp(sωW )W

×
[
exp(sωW )M(iω)

∫ 1

0

i exp(−tωW )Wf(t) dt−
∫ s

0

i exp(−[t−s]ωW )Wf(t) dt
]
ds

−
∫ x

0

i exp([s− x]ωW )W

×
[
exp(sωW )M(iω)

∫ 1

0

i exp(−tωW )Wf(t) dt−
∫ s

0

i exp(−[t−s]ωW )Wf(t) dt
]
ds.

Interchanging the orders of integration gives (4.a).
After a bit of manipulation, the resolvent kernel for t ≤ x, is

R(x, t, λ)

=
1
2ω

exp(−xωW )M(−iω) exp(2ωW )[I −M(iω)] exp(−tωW )W

+
1
2ω

exp(−xωW )[M(−iω)− I]M(iω) exp(−tωW )W

+
1
2ω

exp(−xωW )[I −M(−iω)] exp(tωW )W

+
1
2ω

exp(xωW )[M(iω)− I] exp(−tωW )W.

The functions
M(±iω) = [I − exp(∓ωW )T ]−1

have series representations valid as ω →∞ (or λ→ −∞). These are

M(iω) =
∞∑

k=0

(
exp(−ωW )T

)k

' I + exp(−ωW )T,

M(−iω) = −T−1 exp(−ωW )
∞∑

k=0

(
T−1 exp(−ωW )

)k

' −T−1 exp(−ωW ).

Inserting these series into the expression for the diagonal of the resolvent kernel
gives

2ωR(x, x,−ω2)W−1 = J1 + · · ·+ J4 + E(x, ω),
where the Jj use terms up to k = 1 in the series and E represents the remainder.
More explicitly,

J1 = exp(−2xωW ), J2 = − exp(−2xωW ) + E1(x, ω),

J3 = I+exp(−xωW )T−1 exp(−[1−x]ωW ), J4 = exp(−[1−x]ωW )T exp(−xωW ).
Notice that J4, and J3−I, and all of their derivatives with respect to x and ω, are

O(exp(−minnwn/2ω)) as ω →∞. The same is true for E(x, ω) and E1(x, ω).
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4.2. The trace of Rp(λ). If p is a bounded real valued function on G, then the
operator −D2 − p is self adjoint [12, p. 287] on the domain of −D2. Its resolvent
will be denoted by

Rp(λ) = [−D2 − p− λ]−1.

These resolvents may be represented as N ×N matrices of integral operators,

Rp(λ)f =


∑N

m=1

∫ 1

0 Rm1(x, t, λ)fm(t) dt
...∑N

m=1

∫ 1

0
RmN (x, t, λ)fm(t) dt

 ,

where the matrix entries Rmn(x, t, λ) are continuous functions of (x, t) ∈ [0, 1]×[0, 1]
for λ in the resolvent set. This result may be developed by mimicking the classical
proof [5, p. 192] in case N = 1. An alternative is to first consider the decoupled
problem with periodic boundary conditions fn(0) = fn(1). In this case the resolvent
may be represented as a diagonal matrix of integral operators, and the change of
boundary conditions has a minor effect which may be analyzed as in [12, p. 188].

The distribution of eigenvalues µk of −D2 − p will look roughly like that of the
squares of integers k2. Let N (λ) be the eigenvalue counting function

N (λ) = #{µk ≤ λ}.

The counting function will satisfy the coarse estimate [2, p. 174]

c1λ
1/2 ≤ N (λ) ≤ c2λ

1/2, λ > 1, c1, c2 > 0,

which suffices for our needs.

Lemma 4.2. The eigenfunctions φk(x) of −D2 − p satisfy an estimate

|φk,n(x)| ≤ C‖φk‖2, φk =

φk,1

...
φk,N

 ,

where C is independent of k.

Proof. The components of eigenfunctions satisfy the equations

−φ′′k,n(x) − w2
npn(x)φk,n(x) = w2

nµkφk,n(x), x ∈ [0, 1].

Each component may be written as a linear combination

φk,n(x) = ay1(x, µk) + by2(x, µk)

where the yj satisfy the same equations and have the initial data

y
(i−1)
j = δij , i, j = 1, 2.

When p = 0 the solution with the same initial data is

a cos(wn
√
µkx) + b

sin(wn
√
µkx)

wn
√
µk

= c cos(wn
√
µkx− α),

where

c2 = a2 +
b2

w2
n|µk|

.
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Thus ∫ 1

0

|b
sin(wn

√
µkx)

wn
√
µk

+ a cos(wn
√
µkx)|2 dx

=
[
a2 +

b2

w2
n|µk|

][1
2

+
1

4wn
√
µk

sin(2wn
√
µkx−α)

]
→ 1

2

[
a2 +

b2

w2
n|µk|

]
, µk →∞.

We also have the standard estimates [16, p. 13]

|y1(x, µk)− cos(wn
√
µkx)| ≤

C

wn
√
µk
,(4.b)

|y2(x, µk)−
sin(wn

√
µkx)

wn
√
µk

| ≤ C

w2
nµk

,

for some constant C independent of k and µk ≥ 1.
If ‖ · ‖ denotes the L2 norm on [0, 1], then for µk sufficiently large an application

of the triangle inequality yields

‖ay1(x, µk) + by2(x, µk)‖ ≥ 1
2
(a2 +

b2

w2
nµk

)1/2 − C(
|a|

wn
√
µk

+
|b|

w2
nµk

).

This inequality shows that

max(a,
b

wn
√
µk

) ≤ C‖ay1(x, µk) + by2(x, µk)‖.

Another application of the estimates (4.b) gives the result.

The resolvents and certain other functions of −D2 − p will belong to the trace
class (see [17, pp. 206–212], [12, pp. 523–525] or [18, pp. 249–260]). For operators
A in the trace class, the trace is defined by∑

k

(Aφk, φk)

for any orthonormal basis {φk}. The trace norm is ‖A‖1 = tr([A∗A]1/2). The
bounds on eigenfunctions of −D2 − p can be used to justify a more convenient
representation of the trace. This result, presented in the next lemma, is well known
in similar contexts [18, p. 259].

Lemma 4.3. Suppose that a function h : σ(−D2 − p) → C satisfies
∑

k |h(µk)| <
∞. The operator

A = h(−D2 − p) :
⊕

n

L2([0, 1], wn) →
⊕

n

L2([0, 1], wn)

is trace class, and may be represented as a matrix integral operator with kernel
Am,n(x, t). The functions Am,n(x, t) may be chosen continuous in (x, t), and with
this choice

tr(A) =
N∑

n=1

∫ 1

0

An,n(x, x) dx.

Proof. Use an orthonormal basis of eigenfunctions φk to write f ∈
⊕

n L
2([0, 1], wn)

as f =
∑

k akφk. Since Af =
∑

k akh(µk)φk,

Af(x) =
∫ 1

0


∑N

n=1A1,n(x, t)fn(t)
...∑N

n=1AN,n(x, t)fn(t)

 dt,
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where the kernel of A has the representation

A(x, t) =
(
Am,n(x, t)

)
, Am,n(x, t) =

∑
k

h(µk)φk,m(x)wnφk,n(t).(4.c)

By virtue of our assumptions on h and the bounds on orthonormal eigenfunctions
in Lemma 4.2, the series in (4.c) converges uniformly to a continuous function.
Note in particular that the coarse eigenvalue estimates for −D2− p imply that the
resolvents Rp(λ) are in this class.

The trace takes the form∑
k

(Aφk, φk) =
∑

k

N∑
n=1

∫ 1

0

(Aφk)n(x)φk,n(x)wn dx

=
∑

k

N∑
n=1

∫ 1

0

h(µk)φk,n(x)φk,n(x)wn dx =
N∑

n=1

∫ 1

0

An,n(x, x) dx.

To proceed further it will be convenient to assume that derivatives p(j) of the
function p are continuous on the graph G. This means that the various compo-
nents pn of p have j continuous derivatives on (0, 1), that these derivatives extend
continuously to the closed interval [0, 1], and that at the endpoints

lim
x→0

[
1
wn

∂x]jpn(x) = lim
x→1

[
1
wm

∂x]jpm(x)

for all edges em, en respectively entering and exiting a common vertex. Continuity
of enough derivatives p(j) on the graph, and particularly across the vertices, will
imply that multiplication by p leaves the domain of −D2 invariant. This will
result in a simple commutation formula (4.j) for p and the resolvent R(λ). The
commutation formula will lead to an expansion for Rp(λ) and expressions for the
residues of the zeta function ζp(s) in which the matrix T does not appear. The
symbol Hn,k(p) will denote a polynomial in derivatives of p.

Lemma 4.4. Suppose that p(j) extends continuously to the graph for j ≤ J , J ≥ 2.
Then for Re(λ) < −‖p‖∞,

Rp(λ) =
J∑

n=2

[ 2n∑
k=dn/2e

Hn,k(p)D2k−nRk
]

+ EJ ,

where the error EJ satisfies the estimates

‖EJ ‖ = O(ω−J−4), ‖EJ ‖1 = O(ω−J−3), ω2 = −λ.
The polynomials Hn,k(p) are the same for all unitary matrices T (v) defining the
domain of iD.

Proof. Since p is bounded, the perturbation series

Rp(λ) = R
∞∑

n=0

[pR]n = R+RpR+RpRpR+ . . .

will converge if the distance from λ to the spectrum of −D2 exceeds ‖p‖∞.
For the nth edge the product rule gives

(−∂2
x/w

2
n − λ)pnf = pn(−∂2

x/w
2
n − λ)f − 2

∂xpn

w2
n

∂xf −
∂2

xpn

w2
n

f.
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If f = R(λ)h where h is continuous on each edge, then

(−∂2
x/w

2
n − λ)pnR(λ)h =

[
pn(−∂2

x/w
2
n − λ) − 2

∂xpn

w2
n

∂x −
∂2

xpn

w2
n

]
R(λ)h

= pnh−
[
2
∂xpn

w2
n

∂x +
∂2

xpn

w2
n

]
R(λ)h.

This equation extends by continuity to all h ∈ L2(G).
If p(j), j = 0, 1, 2, extend continuously across the vertices, multiplication by p

maps the domain of −D2 into itself, so that

R(λ)pn = pnR(λ) + 2R(λ)
∂xpn

w2
n

∂xR(λ) +R(λ)
∂2

xpn

w2
n

R(λ).

Interpreting these equations globally on the graph, we will write

R(λ)p = pR(λ) + 2R(λ)p′DR(λ) +R(λ)p′′R(λ), p′ = Dp.(4.d)

Now start with the identity

Rp(λ) = R[
J−1∑
n=0

[pR]n + (pR)J (1− pR)−1].

Since multiplication by p leaves the domain of [−D2]k invariant, the term

R(pR)J (1− pR)−1

maps L2(G) into the domain of [−D2]J+1 and satisfies the norm estimate

‖R(pR)J (1 − pR)−1‖ ≤ KJ |λ|−J−1, λ < 0.

Thanks to the trace norm estimate ([17, p. 218] or [18, p. 256])

‖AB‖1 ≤ ‖A‖1‖B‖

and Lemmas 4.1 and 4.3,

‖R(pR)J (1− pR)−1‖1 ≤ KJ |λ|−J ‖R‖1 ≤ KJ |λ|−J−1/2, λ < 0.

Note that an operator of the form DjRk with j + 1 < 2k will map L2(G) into
the domain of D2k−j with the norm estimate

‖DjRk‖ ≤ ω2k−j , ω2 = −λ > 0,

and the trace norm estimate

‖DjRk‖1 ≤ ω2k−j−1.

Thus the commutation formula (4.d) allows us to rewrite R
∑J−1

n=0 [pR]n by pushing
powers of R to the right until the desired form,

Rp(λ) =
J∑

n=2

[ 2n∑
k=dn/2e

Hn,k(p)D2k−nRk
]

+ EJ ,

and error estimates are achieved. Finally, the unitary matrices T (v) defining the
domain of iD did not enter into the generation of the polynomials Hn,k(p).
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4.3. The zeta function for −D2 − p. Having established Lemmas 4.1, 4.3, and
4.4, it is now possible to obtain a description of the zeta function ζp(s) associated
to a Schrödinger operator L = −D2 − p on a graph G. For completeness we briefly
sketch the development. A systematic treatment for the case of a manifold, which
is quite similar, may be found in [18, pp. 82 – 114].

On one hand, ζp(s) has the simple description

ζp(s) =
∑

k

µs
k, Re(s) < −1/2,

where {µk} is the sequence of (nonzero) eigenvalues of L, taken with multiplic-
ity. This function is the same as tr(Ls), which has an alternate contour integral
description.

Theorem 4.5. Suppose that p(i) extends continuously to the graph for i ≤ J ,
J ≥ 2. The function ζp(s) has a meromorphic extension to Re(s) < (J + 1)/2,
with poles located at the points s = (2j − 1)/2 for j = 0, 1, 2, . . . . The poles are all
simple, and the residues have the form

J∑
n=1

∫ 1

0

Hj,n(pn) dx,

where Hj,n(p) is a polynomial in pn and its derivatives. The residues are indepen-
dent of the particular choice of unitary matrices T (v) : Cδ(v) → Cδ(v).

Sketch of Proof. Slit the complex plane along the negative real axis, so that log(λ)
is analytic in the complement of the slit, and consider the contour Γ = Γ1 ∪Γ2∪Γ3

which contains the slit, where

Γ1 = teiπ, ∞ > t > r, Γ3 = te−iπ, r < t <∞, Γ2 = re−iθ , −π ≤ θ ≤ π.

If all eigenvalues of L are greater than r, then (taking the logarithm real for
λ > 0)

Ls =
1

2πi

∫
Γ

λsR(λ) dλ =
1

2πi

∫
Γ

es log(λ)R(λ) dλ, Re(s) < 0,

and

tr(Ls) =
1

2πi

∫
Γ

λs tr(R(λ)) dλ.(4.e)

If L has nonpositive eigenvalues, choose r so that Γ2 lies in the resolvent set of L
and encloses the nonpositive eigenvalues. Then the contour integral (4.e) will give∑

µk>r

µs
k,

which differs from ζp(s) by an entire function.
The expansion ofRp(λ) from Lemma 4.4. is now inserted into (4.e). The estimate

‖EJ ‖1 = O(ω−J−3) implies that
1

2πi

∫
Γ

λs tr(EJ ) dλ

defines an analytic function of s for Re(s) < (J + 1)/2. The remaining terms have
the form

1
2πi

∫
Γ

λs tr(Hn,k(p)D2k−nRk) dλ.(4.f)
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The powers of the resolvent satisfy

R(λ)j+1 =
1

2πi
1
j!
∂j

λR(λ),

so that by Lemma 4.1 the only terms from (4.f) contributing to the singularities of
ζp(s) are those with no positive powers of D.

By Lemmas 4.1 and 4.3 the significant terms from (4.f) may be rewritten as[∑
n

∫ 1

0

wnHn,n/2(p) dx
] 1
2πi

∫
Γ

λs 1
(k − 1)!

∂k−1
λ (2ω)−1 dλ.

One calculates that the singular part of the contour integral is
1 · 3 · · · (2k − 3)

2k(k − 1)!
sin(πs)
π

−1
s− [2k − 3]/2

, s < [2k − 3]/2.

This establishes the existence of a meromorphic continuation for ζp(s), and the
description of the singular part.

Finally, notice that the particular unitary vertex matrices T (v) played no role in
the description of the singular part of ζp(s).

One may use the method of proof to calculate the residues, although the compu-
tations quickly become tedious. The first few residues are recorded in the following
table.

pole residue

s = −1/2
∑

n wn/[2π]

s = 1/2 −[
∑

n(
∫ 1

0
wnpn)]/[4π]

s = 3/2 3[
∑

n(
∫ 1

0 wnp
2
n)]/[16π]

s = 5/2 −5[
∑

n(
∫ 1

0 wn[p3
n − (1/2)(∂xpn/wn)2])]/[32π]

.

A simpler approach is to make a judicious choice of the matrices T (v). Partition
G into edge disjoint loops with no repeated edges, as in Proposition 3.2. If v is a
vertex in one of the loops, with input edge i and output edge j, let T be defined
by requiring fi(1) = fj(0). In this case after a change of coordinates the operator
−D2 − p may be recognized as a diagonal operator

1
2π

−∂2
s − p̃1 0 . . . 0
0 −∂2

s − p̃2 . . . 0
0 0 . . . −∂2

s − p̃M


acting on

⊕
m L2(S1

r(m)), where S1
r(m) denotes the circle of radius r(m) and s is arc

length. Thus residue computations may take advantage of the previously developed
art [8, 14].

Our main interest in the development of ζp(s) was to see that the set of operators
−D2 − p having the same eigenvalues is compact. The argument is familiar. If the
eigenvalues are given, then ζp(s) is determined, and in particular the residues are
fixed. One shows from the explicit form of the residues that both p and its derivative
are bounded in L2. The details of a more general version of this argument may be
found in [14, p. 226], where the equivalent heat kernel invariants [11, p. 56], [18,
pp. 113–114] are used. Thus the following result is obtained.
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Corollary 4.6. Consider potentials p, q with at least 5 continuous derivatives on
G. The isospectral sets

Mp = {q | µk(q) = µk(p), k = 1, 2, 3, . . .}
are compact in

⊕
n L

2([0, 1], wn).
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