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We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent

flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show

that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer:

from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong

rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy

flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system

with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse

energy cascade may be detected and rationalize the role played by helicity in the energy transfer process,

showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional

numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves

the road for future studies on the influence of helicity on small-scale intermittency and the nature of the

nonlinear interaction in magnetohydrodynamics.

DOI: 10.1103/PhysRevLett.108.164501 PACS numbers: 47.27.�i

Inviscid invariants of the Navier-Stokes (NS) equations

are crucial in determining the direction of the turbulent

energy transfer [1]. In some cases, as for fully isotropic and

homogeneous turbulence in 2D, the presence of two posi-

tively defined invariants (energy and enstrophy) does not

allow a stationary transfer of both quantities, neither to

small nor to large scales [2]. In the presence of two fluxes,

they must necessarily flow in opposite directions [3–7] and

this remains true even for turbulent systems in noninteger

dimensions obtained by fractal Fourier decimation [8]. The

fluid equations also possess two inviscid invariants in 3D:

energy and helicity (i.e., the scalar product of velocity and

vorticity). The inviscid conservation of helicity was dis-

covered relatively recently [9,10]. At variance with energy,

helicity is not positively defined. This allows for a simul-

taneous small-scale transfer of energy and helicity, as

confirmed by the results of two-point closures [10–12]

and direct numerical simulations [13,14]. Nevertheless, a

reversal of the flux of energy has been observed in geo-

physical flows subject to the Earth’s rotation [15,16] as

well as in shallow fluid layers [17–22]. In both cases, this

phenomenon is accompanied by strong anisotropic effects

and by a substantial two-dimensionalization of the flow,

induced either by the rotation or by the effects of confine-

ment. Moreover, rotations inject fluctuations into the hel-

ical sector while a perfect two-dimensional flow has

vanishing pointwise helicity, vorticity always being or-

thogonal to velocity. Here, we rationalize these findings,

showing that inverse energy transfer is much broader than

previously thought and is present in all flows in nature. In

order to highlight this mechanism, we investigate in detail

the transfer properties of NS equations in 3D homogeneous

systems at changing the nature of the triadic nonlinear

interactions. We show that an inverse energy cascade oc-

curs also in 3D isotropic flow whenever parity invariance is

broken and helicity acquires a well-defined sign at all wave

numbers. The key new idea is to make a suitable surgery of

the NS equations, such as to disentangle triad by triad the

properties of the nonlinear energy transfer. In particular,

we show that the energy flux is always reversed by keeping

only triadic interactions between sign-defined helical

modes, preserving homogeneity and isotropy and breaking

reflection invariance. The role played by helicity in the

energy transfer mechanism of 3D flows has attracted a

broad scientific interest (see, e.g., [14] and references

therein). Dynamical systems have been developed to study

in detail energy and helicity transfer at high Reynolds

numbers [23,24]. Further, speculations connecting the ex-

istence of intermittent bursts in the energy cascade induced

by a ‘‘local’’ helicity blocking mechanism have been pro-

posed [23]. Despite these important contributions, the

understanding of the phenomenology of helicity remains

‘‘mysterious,’’ as summarized in the conclusion of a recent

state-of-the-art numerical study [14]. Here, we present

theoretical and numerical evidence of a new phenomenon

induced by helicity conservation: a statistically stationary

backward energy transfer can be sustained even in 3D fully

isotropic turbulence. The starting point of our analysis is

the well-known helical decomposition [12] of the velocity

field vðxÞ, expanded in a Fourier series, uðkÞ:

u ðkÞ ¼ uþðkÞhþðkÞ þ u�ðkÞh�ðkÞ; (1)
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where h� are the eigenvectors of the curl operator ik�

h� ¼ �kh�. In particular, we choose h� ¼ �̂ � k̂� i�̂,
where �̂ is an arbitrary versor orthogonal to k which

satisfies the relation �̂ðkÞ ¼ ��̂ð�kÞ (necessary to ensure

the reality of the velocity field). Such a requirement is

satisfied, e.g., by the choice �̂ ¼ z� k=kz� kk, with z

an arbitrary vector. In terms of this exact decomposition of

each Fourier mode energy, E ¼
R

d3xjvðxÞj2, and helicity,

H ¼
R

d3xv � w, where w is the vorticity, are simulta-

neously diagonalized and written as

E ¼
X

k

juþðkÞj2 þ ju�ðkÞj2;

H ¼
X

k

kðjuþðkÞj2 � ju�ðkÞj2Þ:
(2)

Similarly, the nonlinear term of the NS equations can be

exactly decomposed in four independent classes of triadic

interactions, determined by the helical content of the com-

plex amplitudes, uskðkÞ, with sk ¼ � (see [12] and right

panel of Fig. 1). Among three generic interacting modes

uskðkÞ, uspðpÞ, and usqðqÞ, one can identify eight different

helical combinations (sk ¼ �, sp ¼ �, sq ¼ �). Among

them, only four are independent because of the symmetry

that allows us to change all signs of helicity simulta-

neously. Let us now consider the dynamics of an incom-

pressible flow r � v ¼ 0, which is determined by a

decimated NS equation in which all interactions between

modes have been switched off, except for those with a

well-defined sign of helicity, e.g., positive (sk ¼ þ,

sp ¼ þ, sq ¼ þ) (class I in Fig. 1). We define the projec-

tor on positive or negative helicity states as

P � �
h� � h�

h� � h�
; (3)

where �� stands for the complex conjugate. Then, we project

the velocity field into its positive helicity component

vþðxÞ �
X

k

eikxPþuðkÞ (4)

and we consider the decimated NS equations

@tv
þ ¼ ð�vþ � rvþ � rpÞþ þ ��vþ þ fþ; (5)

where � is the viscosity, p is the pressure, and f is the

external forcing stirring the fluid around a wave vector kf.

The nonlinear term and the forcing are projected on the

positive helicity states, with the same procedure followed

for the velocity field (4). The resulting system has two

positive definite invariants—see Eq. (2)—the energy and

the helicity, H ¼
P

kkju
þðkÞj2, and contains only interac-

tions between positive helicity modes. Helicity becomes a

coercitive quantity. Those interactions cannot sustain a

simultaneous forward cascade of energy and helicity, for

the same arguments which forbid the existence of a simul-

taneous forward cascade of energy and enstrophy in 2D

turbulence [2,12]. Therefore, the dynamics of Eq. (5)

should display a double cascade phenomenology, charac-

terized by an inverse energy cascade with Kolmogorov

spectrum EðkÞ � k�5=3 for k � kf and a direct helicity

cascade with a k�7=3 spectrum for k 	 kf. It is interesting

to note that, at variance with usual 3D NS dynamics, such a

flow should not display a dissipative anomaly for kinetic

energy; i.e., energy dissipation should vanish in the limit

FIG. 1 (color online). Left: Comparison between vorticity fields for normal NS turbulence (top row) and for inverse cascade 3D

turbulence (bottom row). Right: A pictorial scheme of all classes of triadic interactions in NS according to the helical Fourier

decomposition and dynamical analysis proposed in [12]. Dashed (red) arrows denote backward energy transfer, while solid (blue)

arrows stem for direct energy transfer. Thickness denotes different intensities of the energy flux. In particular, class I, the one

investigated in this Letter, has backward events that dominate the dynamics, suggesting it as a candidate for the inverse cascade

observed in different realistic 3D or quasi-3D flows configurations [13,15,19–21]; classes III and IV have only forward events, and

class II has mixed events.
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� ! 0. Indeed, the direct helicity cascade carries also a

residual, nonconstant flux of kinetic energy toward small

scales which decays as k�1 and therefore vanishes in the

high Reynolds number limit. As a consequence, one may

speculate that the decimated NS equations possess a less

singular spatiotemporal evolution and can be amenable to

show the uniqueness and existence of solutions for all

times. Numerical simulations have been performed with

a fully dealiased, pseudospectral code at resolution 5123 on

a triply periodic cubic domain of size L ¼ 2�. The flow

is sustained by a random Gaussian forcing, with

hfiðk; tÞfjðq; t
0Þi ¼ FðkÞ�ðk� qÞ�ðt� t0ÞQi;jðkÞ, where

QijðkÞ is a projector assuring incompressibility and FðkÞ

has support only in the high wave number range jkj 2
½kmin ¼ 25:kmax ¼ 32
.

A visual inspection of the vorticity fields offered in

Fig. 1 shows the differences between the forward cascade,

which develops in standard 3D NS equations forced at

large scales, and the novel 3D inverse cascade regime

obtained from the decimated NS Eq. (5) forced at small

scales. The latter does not possess any filamentary struc-

ture in the vorticity field, witnessing the fact that the vortex

stretching mechanism, which is responsible for the forward

cascade in standard 3D systems, is here absent.

In Fig. 2, we show a typical evolution of the energy

spectrum obtained from Eq. (5) by initializing the flow

with energy only at high wave numbers. The development

of an inverse cascade with a Kolmogorov spectrum EðkÞ �

k�5=3 is unambiguous.

In the absence of a large-scale dissipative mechanism,

the inverse cascade would accumulate the kinetic energy in

the lowest available mode, originating a condensed state

[20]. In order to avoid this phenomenon, we made a second

series of numerical simulations, adding a hypoviscosity at

large scales / ��1v. In such a case, the total kinetic energy
becomes stationary, as shown in Fig. 3, and is equally

distributed among the three velocity components, showing

that the flow is fully isotropic. This allows us to study

scaling properties without having to cope with anisotropic

subleading contributions [25]. In the inset of Fig. 3, we

show the stationary energy flux in Fourier space, defined as

�ðkÞ � ðd=dtÞ
R

1
k EðpÞdp, where the time derivative is

computed by taking into account only the nonlinear terms

of Eq. (5). The negative plateau in the inertial range of

wave numbers is a clear indication of the large-scale

energy transfer.

The inverse cascade which arises from Eq. (5) is not

intermittent. The probability distribution functions (PDFs)

of the longitudinal velocity increments �rv ¼ ½vðxþ rÞ �
vðxÞ
 � r̂ at a distance r within the inertial range are self-

similar and almost Gaussian (see the inset of Fig. 4). The

scaling of the second- and the fourth-order moments of

velocity increments S2ðrÞ ¼ hð�rvÞ
2i and S4ðrÞ ¼ hð�rvÞ

4i

follow the dimensional scaling SpðrÞ � rp=3 (see Fig. 4).

This is a signature of all known inverse cascades (see, e.g.,

[26] for the case of a 2D NS equation) when fluctuations

are transferred from faster to slower degrees of freedom

[27]. Previous studies have shown the possibility to pro-

duce large-scale motion by nonparity invariant small-scale

forcing only at small Reynolds numbers or in the quasi-

linear regime [28]. Conversely, our results do not trivially

originate from the projection of the forcing on the positive

helicity states but are genuine effects of the nonlinear

dynamics. To assess this issue, we performed a test simu-

lation of the complete NS equation with the same projected

forcing used in Eq. (5). After an initial transient, in which

part of the energy accumulates at the forcing scale, a direct

cascade sets in and all the energy injected is transferred

toward small scales. This excludes the possibility that the

forcing alone could be responsible for the inverse energy

transfer observed in the decimated NS equation.

FIG. 2 (color online). Nonstationary spectrum in the inverse

energy cascade regime. The straight dashed line represents the

k�5=3 slope.

FIG. 3 (color online). Evolution of the three components of the

turbulent kinetic energy as a function of time, hðviÞ
2i, with i ¼ x

[solid (red) line], i ¼ y [dashed (green) line], and i ¼ z [dotted

(blue) line]. Inset: energy flux,�ðkÞ, in the Fourier space. Notice
the clear negative plateau in the inertial range k < kf.
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In conclusion, we have presented theoretical and nu-

merical evidence that a decimated version of the NS equa-

tions, such that only modes with a given sign of helicity are

retained, displays an inverse energy transfer mechanism.

This phenomenon, which has been previously observed

only in 2D turbulence or in strongly anisotropic 3D flows

under bidimensionalization effects, is here observed for the

first time in a fully isotropic 3D system and is intrinsically

connected to the nonlinear dynamics of all flows in nature.

Our findings show that all 3D flows in nature possess

nonlinear interactions that may lead to a statistically sta-

tionary inverse energy cascade.

The scientific impact of our findings is manifold. First, it

allows us to highlight those backward events in the energy

transfer mechanism which are known to exist also in un-

truncated NS equations and that are one of the main

theoretical and applied challenges; see, e.g., [29] for the

case of subgrid modeling in large eddy simulations.

Second, the link between backward energy events with

the helical nature of triad interaction shows the key role

of the coupled energy-helicity dynamics. Third, by clearly

detecting which triadic interaction is responsible for for-

ward and backward energy transfer, we pave the road for

closure and analytical approaches aimed at understanding

the whole energy transfer distribution.

This Letter also opens the way to further investigations.

An obvious extension would be to integrate Eq. (5) with a

large-scale forcing. In this case, a pure forward helicity

cascade must develop as recently observed in flows of

geophysical interest [13], provided that energy is removed

at the forcing scale to avoid a pileup of fluctuations. More

interesting, one could consider the case of a complementary

decimation with respect to the one discussed here, i.e.,

eliminating only those triads that transfer energy backward

(classes III and IV in Fig. 1). It is very tempting to speculate

that such a system could display a direct energy cascade

with reduced—or even vanishing—intermittency because

one has removed all the obstacles, i.e., those events inwhich

the forward energy transfer is stopped and/or reversed by

the interaction with the helicity flux [23]. A surgery of

interactions is potentially a tool to gauge the degree of

small-scale intermittency as a function of the nature of the

triads; it opens a new methodology for theoretical and

numerical studies of statistical turbulence. Finally, similar

decomposition may shed lights also in the evolution of

conducting fluids, where three invariants, kinetic plus mag-

netic energy, cross helicity, and magnetic helicity, are

known to produce a complex phenomenology [30].
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