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1. Introduction

In this paper we study the resurgence of inverse factorial-series solutions of the second-
order linear difference equation

w(z + 2) + f(z)w(z + 1) + g(z)w(z) = 0, (1.1)

where f(z)/z and g(z)/z2 are analytic for |z| � A > 2. The special case where f(z) is
a linear function of z and where g(z) is a quadratic function of z is studied in [9]. This
paper can be seen as a generalization of that paper.

The usual large z asymptotic expansions of this difference equation are of the form∗

ρz
∞∑

s=0

cs

zs+µ
(1.2)

(see, for example, [5]). In [5] it is shown that the Borel transform of the formal series
(1.2) has infinitely many singularities in the complex Borel plane, and these give rise to
infinitely many exponentially small terms in the complete asymptotic expansion that has

∗ The solutions of (1.1) grow like factorials. Asymptotic expansion (1.2) is the expansion for the
function y(z) = w(z)/Γ (z).
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(1.2) at its highest level. For an example of infinitely many exponentially small terms
in a complete asymptotic expansion see [2] and [11], where the exponentially improved
asymptotic expansion of the gamma function is discussed.

The original reason that we study inverse factorial-series solutions of the form

wj(z) ∼ ρz
j

∞∑
s=0

as,jΓ (z − αj − s), j = 1, 2, (1.3)

is that these expansions show up in the asymptotic expansions of late coefficients in
asymptotic expansions for differential equations and integrals. In [7] and [8] it is shown
that inverse factorial series are the natural asymptotic basis in these problems, and in the
second example we show that they are the natural basis for asymptotics of hypergeometric
functions with large parameters, that is, the coefficients in the expansions are very simple.
Note that an expansion of the form (1.2) can always be converted in an expansion of
the form (1.3), and vice versa. The (normal) factorial-series solutions of (1.1) are of the
form (2.1) and are discussed in [3] and [4]. These factorial series converge (slowly) in
half-planes.

We will study the Borel transform of (1.3) and show that it has only three singularities
in the complex Borel plane, located at 1/ρ1, 1/ρ2 and the origin. The singularities at 1/ρj

are simple in that they correspond to the two formal series solutions of the form (1.3)
of (1.1). The singularity at the origin is more complicated.

In the case in which 1/ρ1 is closer to 1/ρ2 than it is to the origin, we give an asymp-
totic expansion for the coefficients as,1, as s → ∞. The coefficients in this expansion
are an,2. This phenomenon is called resurgence. In this case the divergent inverse facto-
rial series (1.3), with j = 1, can also be optimally truncated and re-expanded in a new
series. The coefficients in the re-expansion are again an,2. This exponentially improved
asymptotic expansion determines the solution uniquely. The case in which 1/ρ1 is closer
to the origin than it is to 1/ρ2 is more complicated and will be discussed in a future
paper.

The structure of this paper is as follows. In § 2 we state the main results, which are

(i) formulae to compute all the coefficients on the right-hand side of (1.3);

(ii) Theorem 2.1, which states that solutions of the form (1.3) exist;

(iii) the large s asymptotics of the coefficients as,j in Theorem 2.2; and

(iv) Theorem 2.3, which contains the exponentially improved version of expansion (1.3).

The Borel transform is introduced in § 3, where we prove that the complex Borel plane
contains only three singularities. Two of these singularities are relatively simple, that is,
we are able to obtain local expansions near these singularities. For the Borel transforms
that are defined near one of these ‘simple’ singularities, we determine the local behaviour
near the other ‘simple’ singularity, and the growth at infinity.

The proofs of Theorems 2.1–2.3 are based on the results of § 3 and are given in § 4.
Some remarks on the excluded cases are given in § 5, and since the proofs of all of the
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results of this paper are very technical, we also include § 6, which contains two examples.
The second example is the large a asymptotics of the Gauss hypergeometric function
2F1(a, b; c; x). In this case the inverse factorial series are convergent in certain x-regions.
However, the sum of the convergent series is in general not equal to the special solutions
of the difference equation that are defined via the Borel transform, that is, the complete
asymptotic expansion of the sum of the convergent inverse factorial series contains more
terms than just the convergent series itself!

2. The main results

Recall that we assume that f(z)/z and g(z)/z2 are analytic for |z| � A > 2. The
factorial-series expansions for these functions are

f(z) = f0z + f1 +
f2

z + 1
+

f3

(z + 1)(z + 2)
+

f4

(z + 1)(z + 2)(z + 3)
+ · · · , (2.1 a)

g(z) = g0(z − 1)z + g1z + g2 +
g3

z + 1
+

g4

(z + 1)(z + 2)
+

g5

(z + 1)(z + 2)(z + 3)
+ · · · .

(2.1 b)

These series converge absolutely for Re z > A. The integral representations for the coef-
ficients are

fk =
1

2πi

∮
C(A)

Γ (z + k − 1)
Γ (z + 1)

f(z) dz, gk =
1

2πi

∮
C(A)

Γ (z + k − 2)
Γ (z + 1)

g(z) dz, (2.2)

k = 0, 1, 2, . . . , where the contour of integration is the circle |z| = A. We will need the
estimates

|fk| � Γ (A + k − 1)
Γ (A)

M(f,A), |gk| � Γ (A + k − 2)
Γ (A)

M(g,A), (2.3)

where M(f,A) = max{|f(z)| | |z| = A}. Note that the condition A > 2 guarantees that
(2.3) holds for k = 0, 1.

Difference equation (1.1) has a formal solution of the form (1.3), where ρ is a solution
of

ρ2 + f0ρ + g0 = 0 (2.4)

and
α = 1 − f1ρ + g1

f0ρ + 2g0
. (2.5)

We call these solutions ρ1 and ρ2, and we assume that g0 �= 0 and ρ1 �= ρ2. Let α1, α2

correspond, respectively, to ρ1, ρ2. Then by using (2.4) we obtain

α1 = 1 +
f1ρ1 + g1

ρ1(ρ1 − ρ2)
, α2 = 1 +

f1ρ2 + g1

ρ2(ρ2 − ρ1)
. (2.6)

In the proofs of Theorems 2.2 and 2.3 we will assume that for j = 1, 2, Re αj > 1 and
αj is a non-integer. If this is not the case, then we can replace the independent variable
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z by z − q, where we choose q such that for j = 1, 2, Re(αj + q) > 1 and αj + q is a
non-integer.

The coefficients are given by the recurrence relations

ρ1(ρ1 − ρ2)(s + 1)as+1,1 = (g0(α1 + s − 1)(α1 + s) + g1(α1 + s) + g2)as,1

+
s∑

q=0

ρ1fq+2

s−q∑
k=0

(−)kas−k−q,1

(
k + q

k

)
Γ (s + α1 + 1)

Γ (s − k + α1 + 1)

+
s−1∑
q=0

gq+3

s−1−q∑
k=0

(−)kas−1−k−q,1

(
k + q

k

)
Γ (s + α1 + 1)

Γ (s − k + α1 + 1)

(2.7 a)

and

ρ2(ρ2 − ρ1)(s + 1)as+1,2 = (g0(α2 + s − 1)(α2 + s) + g1(α2 + s) + g2)as,2

+
s∑

q=0

ρ2fq+2

s−q∑
k=0

(−)kas−k−q,2

(
k + q

k

)
Γ (s + α2 + 1)

Γ (s − k + α2 + 1)

+
s−1∑
q=0

gq+3

s−1−q∑
k=0

(−)kas−1−k−q,2

(
k + q

k

)
Γ (s + α2 + 1)

Γ (s − k + α2 + 1)
.

(2.7 b)

Usually, the recurrence relations for the coefficients in (inverse) factorial series are very
complicated. A consequence of taking factorial-series expansions (2.1) for the functions
f(z) and g(z) is that here we have a relatively simple recurrence relation.

Theorem 2.1. The difference equation (1.1) has solutions w1(z) and w2(z) with the
properties

w1(z) ∼ ρz
1

∞∑
s=0

as,1Γ (z − α1 − s), (2.8 a)

w2(z) ∼ ρz
2

∞∑
s=0

as,2Γ (z − α2 − s), (2.8 b)

as z → +∞, provided that ρ1 �= ρ2.

Theorem 2.2. As s → ∞,

as,1 ∼ K1

(
ρ2

ρ1 − ρ2

)s+α1 ∞∑
j=0

aj,2Γ (s − j + α1 − α2)
(

ρ1 − ρ2

ρ1

)j+α2

(2.9)

provided that ∣∣∣∣ 1
ρ1

− 1
ρ2

∣∣∣∣ <

∣∣∣∣ 1
ρ1

∣∣∣∣, (2.10)
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and

as,2 ∼ K2

(
ρ1

ρ2 − ρ1

)s+α2 ∞∑
j=0

aj,1Γ (s − j + α2 − α1)
(

ρ2 − ρ1

ρ2

)j+α1

(2.11)

provided that ∣∣∣∣ 1
ρ2

− 1
ρ1

∣∣∣∣ <

∣∣∣∣ 1
ρ2

∣∣∣∣. (2.12)

The Kj , j = 1, 2, are constants.

Theorem 2.3. Provided that (2.10) holds, the difference equation (1.1) has a unique
solution w1(z), determined by

w1(z) ∼ ρz
1

N1−1∑
s=0

as,1Γ (z − α1 − s) + K1ρ
z
1Γ (z − α1 − N1 + 1)

(
ρ2

ρ1 − ρ2

)N1+α1

×
∞∑

j=0

aj,2Γ (N1 − j + α1 − α2)
z − α2 − j

(
ρ1 − ρ2

ρ1

)j+α2

× 2F1

(
1, N1 − j + α1 − α2

z − α2 − j + 1
;

ρ1

ρ1 − ρ2

)
, (2.13)

as z → ∞. The optimum number of terms in the first sum of (2.13) is

N1 =
(

1 +
∣∣∣∣ ρ2

ρ1 − ρ2

∣∣∣∣
)−1

|z|. (2.14)

Provided that (2.12) holds, the difference equation (1.1) has a unique solution w2(z),
determined by

w2(z) ∼ ρz
2

N2−1∑
s=0

as,2Γ (z − α2 − s) + K2ρ
z
2Γ (z − α2 − N2 + 1)

(
ρ1

ρ2 − ρ1

)N2+α2

×
∞∑

j=0

aj,1Γ (N2 − j + α2 − α1)
z − α1 − j

(
ρ2 − ρ1

ρ2

)j+α1

× 2F1

(
1, N2 − j + α2 − α1

z − α1 − j + 1
;

ρ2

ρ2 − ρ1

)
, (2.15)

as z → ∞. The optimum number of terms in the first sum of (2.15) is

N2 =
(

1 +
∣∣∣∣ ρ1

ρ2 − ρ1

∣∣∣∣
)−1

|z|. (2.16)

The constants Kj , j = 1, 2, are the same as in Theorem 2.2.

In this paper we shall make repeated use of the integral representation for the beta
integral:

B(x, y) =
Γ (x)Γ (y)
Γ (x + y)

=
∫ ∞

0

tx−1

(1 + t)x+y
dt, Re x > 0, Re y > 0. (2.17)
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3. The Borel transform

In this section we introduce the Borel transform. Locally it can be defined via dividing
each term of the divergent asymptotic series by a suitable factorial (see (3.5)). For a
more global representation we use integrals. In the case of differential equations, one
usually uses a Laplace transform to define the Borel transform (see, for example, [7]).
For difference equations it is more natural to use a Mellin transform.

We write the solutions of (1.1) as a Mellin transform

wj(z) = − z!
2πi

∫ (+1/ρj)

∞
Yj(t)t−z−1 dt, (3.1)

where the contour of integration starts at ∞, encircles the point t = 1/ρj once in the pos-
itive sense, and returns to its starting point. The difference equation for wj(z) translates
to the differential–integral equation

(1 − ρ1t)(1 − ρ2t)Y ′′
j (t) + (g1t + f1)Y ′

j (t) +
(

g2 +
f2

t

)
Yj(t)

+
∞∑

s=0

t−s−2

s!
(gs+3t + fs+3)

∫ t

1/ρj

(t − τ)sYj(τ) dτ = 0. (3.2)

Estimates (2.3) show us that the sum in (3.2) converges in the half-plane

Pj =
{

t

∣∣∣∣
∣∣∣∣1 − 1

tρj

∣∣∣∣ < 1
}

. (3.3)

In this half-plane we can interchange the integration and summation and use integral
representations (2.2). We obtain

(1 − ρ1t)(1 − ρ2t)Y ′′
j (t) + (g1t + f1)Y ′

j (t) +
(

g2 +
f2

t

)
Yj(t)

+
1

2πi

∫ t

1/ρj

Yj(τ)
∮

C(A)

tz

τz+1

(
g(z) +

z + 1
τ

f(z)
)

dz dτ = 0. (3.4)

This differential–integral equation can be used in the entire complex t-plane.
It is easy to check that

Yj(t) =
∞∑

s=0

as,jΓ (−αj − s)(1 − ρjt)s+αj (3.5)

is a formal solution for these differential–integral equations.
Let P̃1 be the half-plane P1, with, in the case that 1/ρ2 ∈ P1, a branch cut from 1/ρ2

to ∞ exp(i ph(1/ρ2 − 1/ρ1)). The definition for P̃2 is similar.

Theorem 3.1. Differential–integral equation (3.2) has a unique solution Yj(t) in P̃j

such that Yj(t) ∼ a0,jΓ (−αj)(1 − ρjt)αj as t → 1/ρj . For this solution (3.5) is a conver-
gent series expansion that converges in a neighbourhood of t = 1/ρj , and there exists a
constant Mj such that Yj(t) = O(tMj ) as |t| → ∞ in P̃j .
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Proof. Let Y1(t) = (1 − ρ1t)α1(1 + h(1 − ρ1t)) and β = 1 − (ρ1/ρ2). Then

g0t(t − β)h′′(t) + g0(α1 + 1)(t − β)h′(t)

= −ψ0(t)(1 + h(t)) − ψ1th
′(t)

+
∞∑

s=0

gs+3 + (ρ1fs+3/(1 − t))
(1 − t)s+1s!

∫ t

0
(x − t)s

(
x

t

)α1

(1 + h(x)) dx, (3.6)

where

ψ0(t) = α1(α1 − 1)g0 + α1g1 + g2 +
ρ1f2

1 − t
and ψ1 = (α1 − 1)g0 + g1.

We get

h(t) =
∫ t

0

K(t, τ)
τ − β

[
− ψ0(τ)(1 + h(τ)) − ψ1τh′(τ)

+
∞∑

s=0

gs+3 + (ρ1fs+3/(1 − τ))
(1 − τ)s+1s!

∫ τ

0
(x − τ)s

(
x

τ

)α1

(1 + h(x)) dx

]
dτ,

(3.7)

where

K(t, τ) =
1 − (τ/t)α1

g0α1
.

The τ -integration in (3.7) will be along straight lines. Since Reα1 > 0 we have

|K(t, τ)| � 2
|g0α1|

and
∣∣∣∣ ∂

∂t
K(t, τ)

∣∣∣∣ � 1
|tg0|

. (3.8)

Note that ∣∣∣∣
∞∑

s=0

gs+3 + (ρ1fs+3/(1 − τ))
(1 − τ)s+1s!

∫ τ

0
(x − τ)s

(
x

τ

)α1

dx

∣∣∣∣ � ψ2(τ), (3.9)

where

ψ2(τ) =
∞∑

s=0

Γ (Re α1 + 1)
Γ (Re α1 + s + 2)

(
|gs+3| +

|ρ1fs+3|
|1 − τ |

)(
|τ |

|1 − τ |

)s+1

. (3.10)

The final sum converges for Re τ < 1
2 .

Let

Ψ0(t) =
∫ t

0

|ψ0(τ)| + ψ2(τ)
|1 − τ | |dτ |, Ψ1(t) =

∫ t

0

|ψ1|
|1 − τ | |dτ | and K(t) = sup

τ∈(0,t)

∣∣∣∣ 1 − τ

τ − β

∣∣∣∣.
(3.11)

We take h0(t) = 0 and, for p = 0, 1, 2, . . . ,

hp+1(t) =
∫ t

0

K(t, τ)
τ −β

[
−ψ0(τ)(1+hp(τ))−ψ1τh′

p(τ)

+
∞∑

s=0

gs+3 +(ρ1fs+3/(1−τ))
(1−τ)s+1s!

∫ τ

0
(x−τ)s

(
x

τ

)α1

(1+hp(x)) dx

]
dτ.

(3.12)
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The reader can check that for p = 0, 1, 2, . . .

|hp+1(t) − hp(t)| � 2K(t)
|g0α1|

Ψ0(t)
1
p!

(
2K(t)
|g0α1|

Ψ0(t) +
K(t)
|g0|

Ψ1(t)
)p

,

|t| |h′
p+1(t) − h′

p(t)| � K(t)
|g0|

Ψ0(t)
1
p!

(
2K(t)
|g0α1|

Ψ0(t) +
K(t)
|g0|

Ψ1(t)
)p

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

Now let

h(t) =
∞∑

p=0

(hp+1(t) − hp(t)). (3.14)

Then

|h(t)| � 2K(t)
|g0α1|

Ψ0(t) exp
(

2K(t)
|g0α1|

Ψ0(t) +
K(t)
|g0|

Ψ1(t)
)

. (3.15)

Let P (t) be the half-plane Re t < 1
2 , with, in the case where Re β < 1

2 , a branch cut from
β to ∞ exp(i phβ). The sum in (3.14) converges uniformly in any compact set in P (t).
Hence, h(t) is a solution of (3.6) that is analytic in P (t). From (3.10) and (2.3) it follows
that in the case Re α1 > A+1 and t restricted to the half-plane Re t � 1

2 , function ψ2(t)
is bounded. Since |ψ0(t)| is also bounded in this half-plane, it follows from the definition
of Ψj(t) that Ψj(t) = O(ln |t|) as |t| → ∞ in P (t). Thus there exists a constant M such
that

h(t) = O(tM ), as |t| → ∞ in P (t). (3.16)

To obtain this result we needed the assumption Reα1 > A + 1. If this is not the case,
then we take an integer m such that Re α1 + m > A + 1. Let

v(z) =
w(z)

z(z − 1) · · · (z − m + 1)
.

This new function is a solution of the difference equation

v(z + 2) + f̃(z)v(z + 1) + g̃(z)v(z) = 0,

where

f̃(z) =
z − m + 2

z + 2
f(z) and g̃(z) =

(z − m + 2)(z − m + 1)
(z + 2)(z + 1)

g(z).

Hence, f̃(z)/z and g̃(z)/z2 are analytic for |z| � A > 2.
The new difference equation has formal solution

ρz
1

∞∑
k=0

bk,1Γ (z − α1 − m − k),

where the coefficients bk,1 are related to as,1:

as,1 =
m∑

q=0

(
m

q

)
(α1 + s)!

(α1 + s − q)!
bs−q,1.
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Let

Y1,m(t) =
∞∑

k=0

bk,1Γ (−α1 − m − k)(1 − ρ1t)k+α1+m.

It follows from the analysis that gave us (3.16) that there exists a constant M1 such that

Y1,m(t) = O(tM1), as |t| → ∞ in P (t).

The reader can check that
Y1(t) = tmY

(m)
1,m (t).

Hence, also in the case Re α1 � A + 1 we have the estimate

Y1(t) = O(tM1), as |t| → ∞ in P (t).

When we compute the ‘Taylor’ series expansion of Y1(t) at t = 1/ρ1 we see that (3.5),
with j = 1, is the unique series expansion. �

Theorem 3.2. The function Yj(t) of Theorem 3.1 is analytic in the entire complex
t-plane, except for the branch points at t = 0, t = 1/ρ1 and t = 1/ρ2. The function Y1(t)
is bounded as t approaches t = 1/ρ2 and the function Y2(t) is bounded as t approaches
t = 1/ρ1.

Proof. We integrate the τ -integral in (3.4) by parts, and use the fact that Y1(1/ρ1) =
0. The result can be written as

d
dt

[(1 − ρ1t)1−α1(1 − ρ2t)1−α2Y ′
1(t)]

=
−1
2πi

(1 − ρ1t)−α1(1 − ρ2t)−α2

∫ t

1/ρ1

Y ′
1(x)

∮
C(A)

(
t

x

)z(
g(z)
z

+
f(z)
x

)
dz dx. (3.17)

Write Y ′
1(t) = (1 − ρ1t)α1−1(1 + h(1 − ρ1t)) and again β = 1 − (ρ1/ρ2). The condition

h(0) = 0 gives us the integral equation

h(t) = (β − t)α2−1
∫ t

0
(β − τ)−α2

[
1 − α2 +

τ−α1

ρ1ρ22πi

∫ τ

0
(1 + h(x))xα1−1

×
∮

C(A)

(
1 − τ

1 − x

)z(
g(z)
z

+
ρ1f(z)
1 − x

)
dz dx

]
dτ.

(3.18)

The domain Ω is C minus the half-lines [1, +∞), [β,∞ exp(i phβ)), and let D be a
compact convex domain in Ω containing the origin. We also define

MD = sup
{∣∣∣∣

(
x

τ

)α1−1∣∣∣∣ 1
|ρ1ρ2|2π

∮
C(A)

∣∣∣∣
(

1 − τ

1 − x

)z∣∣∣∣
×

(∣∣∣∣g(z)
z

∣∣∣∣ +
∣∣∣∣ρ1f(z)

1 − x

∣∣∣∣
)

|dz|
∣∣∣∣ t ∈ D, τ ∈ [0, t], x ∈ [0, τ ]

}
, (3.19 a)

ND = sup
{

|β1−α2 |
∫

C
|(β − t + st)α2−2| |ds|

∣∣∣∣ t ∈ D

}
, (3.19 b)
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where C is the contour τ(β − t)/(β − tτ), τ ∈ [0, 1]. We use in the following derivation
the substitution τ = sβ/(β − t + st) and obtain

|(β − t)α2−1|
∫ t

0
|(β − τ)−α2 | |dτ | = |t| |(β − t)α2−1|

∫ 1

0
|(β − τt)−α2 | dτ

=
β

|βα2 | |t|
β − t

|β − t|

∫
C

|(β − t + st)α2 | ds

(β − t + st)2

� |t|ND. (3.20)

Again, we take h0(t) = 0 and, for p = 0, 1, 2, . . . ,

hp+1(t) = (β − t)α2−1
∫ t

0
(β − τ)−α2

[
1 − α2 +

τ−α1

ρ1ρ22πi

∫ τ

0
(1 + hp(x))xα1−1

×
∮

C(A)

(
1 − τ

1 − x

)z(
g(z)
z

+
ρ1f(z)
1 − x

)
dz dx

]
dτ.

(3.21)

We use (3.20) and obtain

|h1(t)| � |(β − t)α2−1|
∫ t

0
|(β − τ)−α2 |

(
|1 − α2| +

MD

|τ |

∫ τ

0
|dx|

)
|dτ |

� (MD + |1 − α2|)ND|t|, (3.22)

and

|h2(t) − h1(t)| � MD|(β − t)α2−1|
∫ t

0
|(β − τ)−α2 | 1

|τ |

∫ τ

0
|h1(x)| |dx| |dτ |

� (MD + |1 − α2|)MDND|(β − t)α2−1|
∫ t

0
|(β − τ)−α2 | 1

|τ |

∫ |τ |

0
xdx|dτ |

= (MD + |1 − α2|)MDND|(β − t)α2−1|
∫ t

0
|(β − τ)−α2 | 12 |τ | |dτ |

� 1
2 |t|(MD + |1 − α2|)MDND|(β − t)α2−1|

∫ t

0
|(β − τ)−α2 | |dτ |

� 1
2 |t|2(MD + |1 − α2|)MDN2

D. (3.23)

The reader can check that for p = 0, 1, 2, . . .

|hp+1(t) − hp(t)| � 1
(p + 1)!

|t|p+1(MD + |1 − α2|)Mp
DNp+1

D . (3.24)

Now let

h(t) =
∞∑

p=0

(hp+1(t) − hp(t)). (3.25)

Then

|h(t)| � MD + |1 − α2|
MD

(eMDND|t| − 1). (3.26)

Hence, h(t) is analytic in Ω.
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To show that h(t) is bounded as t → β we take D = [0, β). Then

ND = sup
t∈(0,β)

|β1−α2 |
∫ 1

0
|(β − t + st)α2−2| ds

= sup
|t|∈(0,|β|)

|β|1−Re α2

∫ 1

0
(|β| − |t| + s|t|)Re α2−2 ds

= sup
|t|∈(0,|β|)

1
|t|(Re α2 − 1)

(
1 −

(
|β| − |t|

|β|

)Re α2−1)
=

1
|β| . (3.27)

Thus

|h(t)| � MD + |1 − α2|
MD

(eMD|t|/|β| − 1). (3.28)

Hence, h(t) is bounded as t → β, that is, Y1(t) is bounded as t → 1/ρ2. �

Theorem 3.3. Differential–integral equation (3.2) has a solution Ỹj(t) that is analytic
for t in a neighbourhood of 1/ρj . This function is uniquely determined when we take
Ỹj(1/ρj) = 1.

The proof of this theorem is very similar to the proof of Theorem 3.5. The main
difference is that the right-hand side in (3.34) is zero. Thus all the cs in the proof of
Theorem 3.5 are zero. We omit the details.

Theorem 3.4. Let Y (t) be a solution of differential–integral equation (3.4). Then
there are constants A and B such that Y (t) = AYj(t) + BỸj(t), where Yj(t) and Ỹj(t)
are given in Theorems 3.1 and 3.3.

Proof. Let Y1(t) and Ỹ1(t) be the functions given in Theorems 3.1 and 3.3. We write
Y (t) = A(t)Y1(t) and substitute this in (3.4) and obtain

(1 − ρ1t)(1 − ρ2t)Y1(t)A′′(t) + (2(1 − ρ1t)(1 − ρ2t)Y ′
1(t) + (g1t + f1)Y1(t))A′(t)

+
1

2πi

∫ t

1/ρ1

(A(τ) − A(t))Y1(τ)
∮

C(A)

tz

τz+1

(
g(z) +

z + 1
τ

f(z)
)

dz dτ = 0.

(3.29)

We integrate the τ -integral by parts and obtain

(1 − ρ1t)(1 − ρ2t)Y1(t)A′′(t) + (2(1 − ρ1t)(1 − ρ2t)Y ′
1(t) + (g1t + f1)Y1(t))A′(t)

− 1
2πi

∫ t

1/ρ1

A′(τ)
∫ τ

1/ρ1

Y1(x)
∮

C(A)

tz

xz+1

(
g(z) +

z + 1
x

f(z)
)

dz dxdτ = 0.

(3.30)
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Note that A′(t) = y(t) := (d/dt)(Ỹ1(t)/Y1(t)) is a solution. We substitute with respect
to A′(t) = B(t)y(t) and obtain

(1 − ρ1t)(1 − ρ2t)Y1(t)y(t)B′(t)

− 1
2πi

∫ t

1/ρ1

(B(τ) − B(t))y(τ)
∫ τ

1/ρ1

Y1(x)
∮

C(A)

tz

xz+1

(
g(z) +

z + 1
x

f(z)
)

dz dxdτ = 0.

(3.31)

Again, we integrate by parts and obtain

(1 − ρ1t)(1 − ρ2t)Y1(t)y(t)B′(t)

= − 1
2πi

∫ t

1/ρ1

B′(τ)
∫ τ

1/ρ1

y(x)
∫ x

1/ρ1

Y1(x̃)
∮

C(A)

tz

x̃z+1

(
g(z) +

z + 1
x̃

f(z)
)

dz dx̃dxdτ.

(3.32)

Note that

(1 − ρ1t)(1 − ρ2t)Y1(t)y(t) = O(1) as t → 1
ρ1

,

and∫ τ

1/ρ1

y(x)
∫ x

1/ρ1

Y1(x̃)
∮

C(A)

tz

x̃z+1

(
g(z)+

z + 1
x̃

f(z)
)

dz dx̃dx = O(1−ρ1τ) as τ → 1
ρ1

.

Hence, for t in a small neighbourhood of 1/ρ1 the only solution of (3.32) is B′(t) = 0.
Thus B(t) = B, a constant, and A(t) = A + BỸ1(t)/Y1(t), where A is a constant. �

Theorem 3.5. Let Yj(t), j = 1, 2, be the functions given in Theorem 3.1. Then there
exist constants K1 and K2 such that

Y1(t) = K1
2πi

1 − e2πiα1
Y2(t) + reg(t − 1/ρ2), (3.33 a)

Y2(t) = K2
2πi

1 − e2πiα2
Y1(t) + reg(t − 1/ρ1), (3.33 b)

where reg(t − 1/ρj) denotes a function that is analytic in a neighbourhood of t = 1/ρj .

Proof. Since Y1(τ) is bounded as τ → 1/ρ2, the right-hand side of

(1 − ρ1t)(1 − ρ2t)Y ′′(t) + (g1t + f1)Y ′(t) +
(

g2 +
f2

t

)
Y (t)

+
1

2πi

∫ t

1/ρ2

Y (τ)
∮

C(A)

tz

τz+1

(
g(z) +

z + 1
τ

f(z)
)

dz dτ

=
1

2πi

∫ 1/ρ1

1/ρ2

Y1(τ)
∮

C(A)

tz

τz+1

(
g(z) +

z + 1
τ

f(z)
)

dz dτ (3.34)
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is well defined. Note that Y (t) = Y1(t) is a solution. The solutions of the homogeneous
version of (3.34) are all of the form Y (t) = AY2(t) + BỸ2(t). We will construct a solution
of (3.34) that is analytic in a neighbourhood of t = 1/ρ2.

First, we note that the right-hand side of (3.34) is analytic in a neighbourhood of
t = 1/ρ2. The Taylor series expansion

1
2πi

∫ 1/ρ1

1/ρ2

Y1(τ)
∮

C(A)

tz

τz+1

(
g(z) +

z + 1
τ

f(z)
)

dz dτ =
∞∑

s=0

cs(1 − tρ2)s, (3.35)

where

cs =
1

2πi

∫ 1/ρ1

1/ρ2

Y1(τ)
∮

C(A)

Γ (s − z)ρ−z
2

s!Γ (−z)τz+1

(
g(z) +

z + 1
τ

f(z)
)

dz dτ (3.36)

converges for |1 − tρ2| < 1.
For t in a neighbourhood of 1/ρ2 we can expand the z-integral on the left-hand side

of (3.34), compare (3.2) and (3.4). We write (3.34) as

(1 − ρ1t)(1 − ρ2t)Y ′′(t) + (g1t + f1)Y ′(t) +
(

g2 +
f2

t

)
Y (t)

+
∞∑

p=0

t−p−2

p!
(gp+3t + fp+3)

∫ t

1/ρ2

(t − τ)pY (τ) dτ =
∞∑

s=0

cs(1 − tρ2)s. (3.37)

We substitute the series expansion

Y (t) =
∞∑

s=0

bs(1 − tρ2)s, (3.38)

and obtain for the coefficients the recurrence relation

ρ2(ρ1 − ρ2)(s + 1)(s + 1 − α2)bs+1

= (ρ1ρ2s(s − 1) + g1s + g2 + ρ2f2)bs

+
s−1∑
m=0

bm

(s−m−1∑
p=0

(
s − m − 1

p

)
m!

(m + 1 + p)!
(−)p+1gp+3

+
s−m∑
p=0

(
s − m

p

)
m!

(m + p)!
(−)pρ2fp+2

)
− cs. (3.39)

Note that from (2.3) we obtain the estimate

s−m−1∑
p=0

(
s − m − 1

p

)
m!

(m + 1 + p)!
|gp+3| � M(g,A)

Γ (A)

s−m−1∑
p=0

(
s − m − 1

p

)
Γ (A + p + 1)m!

(m + 1 + p)!
.

(3.40)
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Since

s−m−1∑
p=0

(
s − m − 1

p

)
Γ (A + p + 1)
(m + 1 + p)!

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ (m + 1 − A)

∫ 1

0
tA(1 − t)m−A(1 + t)s−m−1 dt if A < m + 1,

Γ (A − m)
∫ 1

0
(1 + e2πiθ)Ae2πiθ(m−A+1)(2 + e2πiθ)s−m−1 dθ if A > m,

(3.41)

we obtain the estimate

s−m−1∑
p=0

(
s − m − 1

p

)
m!

(m + 1 + p)!
|gp+3|

�

⎧⎪⎪⎨
⎪⎪⎩

M(g,A)
A

m + 1
2s−m−1 if A < m + 1,

M(g,A)
m!Γ (A − m)

Γ (A)
2A3s−m−1 if A > m.

(3.42)

Similarly,

s−m∑
p=0

(
s − m

p

)
m!

(m + p)!
|fp+2| �

⎧⎨
⎩

M(f,A)A2s−m if A < m,

M(f,A)
m!Γ (A − m + 1)

Γ (A)
2A3s−m if A > m − 1.

(3.43)
Since the Taylor series expansion (3.35) converges for |1−tρ2| < 1, we can find a constant
K such that |cs| < K3s, for all s. Now, let βs = |bs| for s � |α2|−1, and, for s > |α2|−1,

|ρ2| |ρ1 − ρ2|(s + 1)(s + 1 − |α2|)βs+1

= (|ρ1ρ2|s(s − 1) + |g1|s + |g2| + |ρ2f2|)βs

+
min(s−1,[A−1])∑

m=0

βmM(g,A)
m!Γ (A − m)

Γ (A)
2A3s−m−1

+
s−1∑

m=min(s,[A])

βmM(g,A)
A

m + 1
3s−m−1

+
min(s−1,[A])∑

m=0

βm|ρ2|M(f,A)
m!Γ (A − m + 1)

Γ (A)
2A3s−m

+
s−1∑

m=min(s,[A+1])

βm|ρ2|M(f,A)A3s−m

+ K3s, (3.44)
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0

1/  1ρ

1/  2ρ

Figure 1. Contour L1 with an indentation to the right of 1/ρ2.

where [A] denotes the integer part of A. Then βs � |bs| for all s. When s �
max(|α2|, [A] + 2), then we re-sum (3.44) and obtain

|ρ2| |ρ1 − ρ2|(s + 1)(s + 1 − |α2|)βs+1 − 3|ρ2| |ρ1 − ρ2|s(s − |α2|)βs

= (|ρ1ρ2|s(s − 1) + |g1|s + |g2| + |ρ2f2|)βs

− 3(|ρ1ρ2|(s − 1)(s − 2) + |g1|(s − 1) + |g2| + |ρ2f2|)βs−1

+
(

A
s

M(g,A) + 3A|ρ2|M(f,A)
)

βs−1. (3.45)

The dominant part of this recurrence relation is

|ρ2| |ρ1 − ρ2|βs+1 − (|ρ1ρ2| + 3|ρ2| |ρ1 − ρ2|)βs + 3|ρ1ρ2|βs−1 = 0.

The final recurrence relation has solutions 3s and |ρ1/(ρ1 − ρ2)|s. Thus the series∑
βs(1 − tρ2)s converges on the disc |1 − tρ2| < min(1

3 , |(ρ1 − ρ2)/ρ1|). Hence, (3.38)
converges on the same disc.

We have shown that (3.34) has a solution Ŷ (t) that is analytic in a neighbourhood of
t = 1/ρ2. Since Y (t) = Y1(t) is also a solution, we can find constants A and B such that
Y1(t) = AY2(t) + BỸ2(t) + Ŷ (t). Hence, (3.33 a) holds. �

4. The proofs of Theorems 2.1–2.3

In this section we will use the notation ∞β for ∞ei ph β .

Proof of Theorem 2.1. Let L1 be the contour that starts at ∞/ρ1, encircles the
point t = 1/ρ1 once in the positive sense, and returns to its starting point. In the case
that this contour encounters 1/ρ2, that is ρ1/ρ2 > 1, we have to indent the contour on
the left or right of 1/ρ2. We leave the choice to the reader. See figure 1.

Let

w1(z) = − z!
2πi

∫
L1

Y1(t)t−z−1 dt. (4.1)
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First we have to show that w1(z) is a solution of (1.1). To ensure that all the sums
converge uniformly, we take Re z � A + δ, where δ is a positive constant, and obtain

w1(z +2)+f(z)w1(z +1)+g(z)w1(z)

= w1(z +2)+
(

f0z +f1 +
f2

z +1
+ · · ·

)
w1(z +1)+(g0(z −1)z +g1z +g2 + · · · )w1(z)

= − z!
2πi

∫
L1

[left-hand side of (3.2)]t−z−1 dt = 0. (4.2)

Second we have to show that (2.8 a) is an asymptotic expansion. We substitute into
(4.1) by means of a truncated version of (3.5), with j = 1, and obtain

w1(z) = ρz
1

N−1∑
s=0

as,1Γ (z − α1 − s) + RN (z), (4.3)

where

RN (z) = − z!
(2πi)2

∫
L1

∮
{t,1/ρ1}

(
t − 1/ρ1

τ − 1/ρ1

)N+α1 t−z−1Y1(τ)
τ − t

dτ dt. (4.4)

The τ -contour of integration is a closed contour that encircles t and 1/ρ1 once in the
positive sense. We collapse L1 on to [1/ρ1,∞/ρ1) and obtain

RN (z) = (1 − e2πiα1)
z!

(2πi)2

∫ ∞/ρ1

1/ρ1

∮
{t,1/ρ1}

(
t − 1/ρ1

τ − 1/ρ1

)N+α1 t−z−1Y1(τ)
τ − t

dτ dt. (4.5)

Again, in the case ρ1/ρ2 > 1, we have to indent the t-contour of integration.
Let d be a fixed positive constant such that d < |1 − (ρ1/ρ2)|. Then

RN (z) = (1 − e2πiα1)
z!

(2πi)2

×
∫ (1+d)/ρ1

1/ρ1

∮
{t,1/ρ1}

(
t − 1/ρ1

τ − 1/ρ1

)N+α1 t−z−1Y1(τ)
τ − t

dτ dt + SN (z, d), (4.6)

where

SN (z, d) = (1 − e2πiα1)
z!

(2πi)2

∫ ∞/ρ1

(1+d)/ρ1

∮
{t,1/ρ1}

(
t − 1/ρ1

τ − 1/ρ1

)N+α1 t−z−1Y1(τ)
τ − t

dτ dt

=
(

ρ1

1 + d

)z

z!O(1), (4.7)
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1/  1ρ

1/  2ρ

0

C1

C1

C2

Figure 2. Contours C1 and C2 (the ‘bold’ contour).

as z → +∞. For the first term on the right-hand side of (4.6) we have the estimate

z!
(2πi)2

∫ (1+d)/ρ1

1/ρ1

∮
{t,1/ρ1}

(
t − 1/ρ1

τ − 1/ρ1

)N+α1 t−z−1Y1(τ)
τ − t

dτ dt

= ρz
1

z!
(2πi)2

∫ d

0

∮
[0,d]

(
t

τ

)N+α1 (1 + t)−z−1Y1((1 + τ)/ρ1)
τ − t

dτ dt

= ρz
1z!

∫ ∞

0
tN+Re α1(1 + t)− Re z−1 dt O(1)

= ρz
1Γ (Re(z − α1) − N)O(1), (4.8)

as z → +∞. In the second line of (4.8) the τ -contour of integration encircles the interval
[0, d]. Thus for fixed positive integers N we have

RN (z) = ρz
1Γ (Re(z − α1) − N)O(1), as z → +∞. (4.9)

�

Proof of Theorem 2.2. We use the integral representation

as,1 =
−ρ1

Γ (−α1 − s)2πi

∮
{1/ρ1}

Y1(t)
(1 − ρ1t)s+α1+1 dt

=
−ρ1

Γ (−α1 − s)2πi

∫
C2

Y1(t)
(1 − ρ1t)s+α1+1 dt − ρ1

Γ (−α1 − s)2πi

∫
C1

Y1(t)
(1 − ρ1t)s+α1+1 dt,

(4.10)
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where C1 and C2 are depicted in figure 2. Let ε be a small positive constant such that
ε < 1 − |1 − (ρ1/ρ2)|. For the small loop encircling 0 in figure 2 we take radius ε/|ρ1|.
Then Y1(t)(1−ρ1t)−α1−1 is bounded along C1 and |1 − ρ1t|−s � (1 − ε)−s for all t ∈ C1.
Finally, for the C2 integral we use (3.33 a) and obtain

as,1 =
ρ1K1

(e2πiα1 − 1)Γ (−α1 − s)

∫
C2

Y2(t)
(1 − ρ1t)s+α1+1 dt +

(1 − ε)−s

Γ (−α1 − s)
O(1), (4.11)

as s → ∞.
Now we substitute into the integral of (4.11) by means of a truncated version of (3.5),

with j = 2, and obtain

ρ1K1

(e2πiα1 − 1)Γ (−α1 − s)

∫
C2

Y2(t)
(1 − ρ1t)s+α1+1 dt

=
N−1∑
n=0

ρ1K1an,2Γ (−α2 − n)
(e2πiα1 − 1)Γ (−α1 − s)

∫
C2

(1 − ρ2t)n+α2

(1 − ρ1t)s+α1+1 dt + RN (s), (4.12)

where

RN (s) =
ρ1K1

2πi(e2πiα1 − 1)Γ (−α1 − s)

×
∫

C2

∮
{t,1/ρ2}

1
(1 − ρ1t)s+α1+1

(
1 − ρ2t

1 − ρ2τ

)N+α2 Y2(τ)
τ − t

dτ dt. (4.13)

By taking the radius of the outer circle in figure 2 large enough we obtain for the terms
in the sum of (4.12)

ρ1K1an,2Γ (−α2 − n)
(e2πiα1 − 1)Γ (−α1 − s)

∫
C2

(1 − ρ2t)n+α2

(1 − ρ1t)s+α1+1 dt

= −ρ1K1an,2
Γ (−α2 − n)(e2πiα2 − 1)
Γ (−α1 − s)(e2πiα1 − 1)

∫ ∞(1/ρ2−1/ρ1)

1/ρ2

(1 − ρ2t)n+α2

(1 − ρ1t)s+α1+1 dt

+
(1 − ε)−s

Γ (−α1 − s)
O(1)

= K1an,2
Γ (−α2 − n)(e2πiα2 − 1)
Γ (−α1 − s)(e2πiα1 − 1)

(
ρ2 − ρ1

ρ1

)n+α2
(

ρ2

ρ2 − ρ1

)s+α1 ∫ ∞

0

τn+α2

(1 + τ)s+α1+1 dτ

+
(1 − ε)−s

Γ (−α1 − s)
O(1)

= K1

(
ρ2

ρ1 − ρ2

)s+α1

an,2Γ (s − n + α1 − α2)
(

ρ1 − ρ2

ρ1

)n+α2

+
(1 − ε)−s

Γ (−α1 − s)
O(1),

(4.14)

as s → ∞. In this analysis we assumed that Re(s − n + α1 − α2) > 0.
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ρ1/  2ρ

0
C1

C2

−1
− 1ε

∼

∼

C1
∼

C1
∼

− 1

Figure 3. Contours C̃1 and C̃2 (the ‘bold’ contour).

The proof of

RN (s) =
(

ρ2

ρ1 − ρ2

)s+α1

Γ (s − N + Re(α1 − α2))O(1) +
(1 − ε)−s

Γ (−α1 − s)
O(1), (4.15)

as s → ∞, is very similar to the proof of (4.9) and we omit the details. Thus we have
shown that in the case |1 − (ρ1/ρ2)| < 1, that is (2.10), we have

as,1 = K1

(
ρ2

ρ1 − ρ2

)s+α1 N−1∑
n=0

an,2Γ (s − n + α1 − α2)
(

ρ1 − ρ2

ρ1

)n+α2

+
(

ρ2

ρ1 − ρ2

)s+α1

Γ (s − N + Re(α1 − α2))O(1) +
(1 − ε)−s

Γ (−α1 − s)
O(1), (4.16)

as s → ∞. Since ∣∣∣∣ ρ2

ρ1 − ρ2

∣∣∣∣ >
1

1 − ε
,

we can absorb the final terms in (4.16) in the penultimate term in (4.16). Hence, we have
shown that (2.9) is an asymptotic expansion. �

Proof of Theorem 2.3. In this proof we assume that (2.10) holds. We also assume
that 0, 1/ρ1 and 1/ρ2 are not collinear, that is ρ1/ρ2 �> 0. If this is not the case, then
we have to make indentations in some of the contours of integration, and show that the
contributions from the indentations are of the correct size.
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In the proof of Theorem 2.1 we obtained integral representation (4.5) for the remainder.
We replace the τ -contour of integration by the union of C1 and C2, given in figure 2,
and then, in the double integral with C1 as the τ -contour, we use the substitutions
t = (t̃ + 1)/ρ1 and τ = (τ̃ + 1)/ρ1, transforming C1 into C̃1, given in figure 3. The result
is

RN (z) = (1 − e2πiα1)
z!

(2πi)2

∫ ∞/ρ1

1/ρ1

∫
C2

(
t − 1/ρ1

τ − 1/ρ1

)N+α1 t−z−1Y1(τ)
τ − t

dτ dt

+ ρz
1(1 − e2πiα1)

z!
(2πi)2

∫ ∞

0

∫
C̃1

(
t̃

τ̃

)N+α1 (t̃ + 1)−z−1Y1((τ̃ + 1)/ρ1)
τ̃ − t̃

dτ̃ dt̃.

(4.17)

In this proof we assume that N = λz + O(1), as z → +∞, where λ is a constant. We
estimate the second term on the right-hand side of (4.17) by

ρz
1(1 − e2πiα1)

z!
(2πi)2

∫ ∞

0

∫
C̃1

(
t̃

τ̃

)N+α1 (t̃ + 1)−z−1Y1((τ̃ + 1)/ρ1)
τ̃ − t̃

dτ̃ dt̃

= ρz
1(1 − ε)−NΓ (N + Re α1 + 1)Γ (Re(z − α1) − N)O(1), (4.18)

as z → +∞. For the first term of the right-hand side of (4.17) we use (3.33 a) and
substitute a truncated version of (3.5), with j = 2, and obtain

(1 − e2πiα1)
z!

(2πi)2

∫ ∞/ρ1

1/ρ1

∫
C2

(
t−1/ρ1

τ −1/ρ1

)N+α1 t−z−1Y1(τ)
τ − t

dτ dt

=
K1z!
2πi

∫ ∞/ρ1

1/ρ1

∫
C2

(
t−1/ρ1

τ −1/ρ1

)N+α1 t−z−1Y2(τ)
τ − t

dτ dt

=
K1z!
2πi

J−1∑
j=0

aj,2Γ (−α2 − j)
∫ ∞/ρ1

1/ρ1

∫
C2

(
t−1/ρ1

τ −1/ρ1

)N+α1 t−z−1(1 − ρ2τ)j+α2

τ − t
dτ dt

+
K1z!
(2πi)2

∫ ∞/ρ1

1/ρ1

∫
C2

∮
{τ,1/ρ2}

(
t−1/ρ1

τ −1/ρ1

)N+α1
(

τ − 1/ρ2

τ̃ − 1/ρ2

)J+α2 t−z−1Y2(τ̃)
(τ − t)(τ̃ − τ)

dτ̃ dτ dt

= I1 − I2 + I3, (4.19)

where

I1 =
K1z!
2πi

(1 − e2πiα2)
J−1∑
j=0

aj,2Γ (−α2 − j)
∫ ∞/ρ1

1/ρ1

∫ ∞(1/ρ2−1/ρ1)

1/ρ2

(
t − 1/ρ1

τ − 1/ρ1

)N+α1

× t−z−1(1 − ρ2τ)j+α2

τ − t
dτ dt,

(4.20)
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I2 =
K1z!
2πi

(1 − e2πiα2)
J−1∑
j=0

aj,2Γ (−α2 − j)
∫ ∞/ρ1

1/ρ1

∫ ∞(1/ρ2−1/ρ1)

1/ρ2+P (1/ρ2−1/ρ1)

(
t − 1/ρ1

τ − 1/ρ1

)N+α1

× t−z−1(1 − ρ2τ)j+α2

τ − t
dτ dt,

(4.21)

I3 =
K1z!
(2πi)2

(1 − e2πiα2)
∫ ∞/ρ1

1/ρ1

∫ 1/ρ2+P (1/ρ2−1/ρ1)

1/ρ2

∮
{τ,1/ρ2}

(
t − 1/ρ1

τ − 1/ρ1

)N+α1

×
(

τ − 1/ρ2

τ̃ − 1/ρ2

)J+α2 t−z−1Y2(τ̃)
(τ − t)(τ̃ − τ)

dτ̃ dτ dt,

(4.22)

where we have collapsed the contour C2 onto [1/ρ2, 1/ρ2 +P (1/ρ2 −1/ρ1)], where 1/ρ2 +
P (1/ρ2 − 1/ρ1) is the point where C2 meets C1. We can choose P as large as we want.

For I2 we give the estimate

I2 = ρz
1

(
ρ2

ρ1 − ρ2

)N+α1 K1z!
2πi

(1 − e2πiα2)
J−1∑
j=0

aj,2Γ (−α2 − j)
(

ρ2 − ρ1

ρ1

)j+α2

×
∫ ∞

0

∫ ∞

P

(
t

τ + 1

)N+α1 (t + 1)−z−1τ j+α2

τ + 1 − tρ2/(ρ1 − ρ2)
dτ dt

= ρz
1

(
ρ2

ρ1 − ρ2

)N

Γ (Re(z − α1) − N)Γ (N + Re α1 + 1)(P + 1)−NO(1), (4.23)

as z → +∞, and for I3 we give the estimate

I3 = ρz
1

(
ρ2

ρ1 − ρ2

)N+α1 K1z!
(2πi)2

(1 − e2πiα2)

×
∫ ∞

0

∫ P

0

∮
{τ,0}

(
t

τ + 1

)N+α1

×
(

τ

τ̃

)J+α2 (t + 1)−z−1Y2(1/ρ2 + τ̃(1/ρ2 − 1/ρ1))
(τ + 1 − tρ2/(ρ1 − ρ2))(τ̃ − τ)

dτ̃ dτ dt

= ρz
1

(
ρ2

ρ1 − ρ2

)N

Γ (Re(z − α1) − N)Γ (N − J + Re(α1 − α2))O(1), (4.24)

as z → +∞.
Finally, for the terms in the sum in I1 we use the change of variables

t =
1
ρ1

(x + 1)(y + 1), τ =
1
ρ1

+
(

ρ1 − ρ2

ρ2

)
t − 1/ρ1

x
, (4.25)
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and obtain

K1z!
2πi

(1 − e2πiα2)aj,2Γ (−α2 − j)
∫ ∞/ρ1

1/ρ1

∫ ∞(1/ρ2−1/ρ1)

1/ρ2

(
t − 1/ρ1

τ − 1/ρ1

)N+α1

× t−z−1(1 − ρ2τ)j+α2

τ − t
dτ dt

= ρz
1

(
ρ2

ρ1 − ρ2

)N+α1
(

ρ2 − ρ1

ρ1

)j+α2 K1z!
2πi

(1 − e2πiα2)aj,2Γ (−α2 − j)
∫ ∞

0

yj+α2

(y + 1)z+1 dy

×
∫ ∞

0

xN−j+α1−α2−1(x + 1)−z+j+α2

1 + xρ2/(ρ2 − ρ1)
dx

= ρz
1

(
ρ2

ρ1 − ρ2

)N+α1
(

ρ2 − ρ1

ρ1

)j+α2 K1

2πi
(1 − e2πiα2)aj,2Γ (−α2 − j)Γ (α2 + j + 1)

× Γ (N − j + α1 − α2)Γ (z − α1 − N + 1)
z − α2 − j

2F1

(
1, N − j + α1 − α2

z − α2 − j + 1
;

ρ1

ρ1 − ρ2

)

= K1ρ
z
1Γ (z − α1 − N + 1)

(
ρ2

ρ1 − ρ2

)N+α1 aj,2Γ (N − j + α1 − α2)
z − α2 − j

(
ρ1 − ρ2

ρ1

)j+α2

× 2F1

(
1, N − j + α1 − α2

z − α2 − j + 1
;

ρ1

ρ1 − ρ2

)
,

(4.26)

where we have obtained the hypergeometric function via the integral representation
(3.6.3) in [6]. Since we assume that (2.10) holds, we can combine the estimates (4.18),
(4.23) and (4.24) to produce the result

RN (z) = K1ρ
z
1Γ (z − α1 − N + 1)

(
ρ2

ρ1 − ρ2

)N+α1

×
J−1∑
j=0

aj,2Γ (N − j + α1 − α2)
z − α2 − j

(
ρ1 − ρ2

ρ1

)j+α2

× 2F1

(
1, N − j + α1 − α2

z − α2 − j + 1
;

ρ1

ρ1 − ρ2

)

+ ρz
1

(
ρ2

ρ1 − ρ2

)N

Γ (Re(z − α1) − N)Γ (N − J + Re(α1 − α2))O(1),

(4.27)

as z → +∞. In this result J is a fixed positive integer. Recall that we assume that
N = λz + O(1). The reader can check that

λ =
(

1 +
∣∣∣∣ ρ2

ρ1 − ρ2

∣∣∣∣
)−1

(4.28)

minimizes the final term in (4.27).
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With this choice for λ and J large enough the final term in (4.27) is o(ρz
2Γ (z − α2)).

Hence, w1(z) is uniquely determined by (2.13). �

5. Some remarks on the excluded cases

For (2.9) and (2.13) to hold, we need (2.10). The Borel transform Y1(t) is via (3.5) defined
in a neighbourhood of t = 1/ρ1, and it has distant singularities at t = 1/ρ2 and t = 0.
Condition (2.10) means that t = 1/ρ2 is the nearest singularity. In the case in which the
origin is the nearest singularity we need to know the singular behaviour of Y1(t) near
t = 0. This case is much more complicated. The singular behaviour of Y1(t) near t = 0
depends on the singularities of f(z) and g(z) in the disc |z| � A.

In the case in which these singularities are only poles, then we can evaluate the z-
integral in (3.4), with j = 1. In this way we can obtain for Y1(t) a higher-order linear
ordinary differential equation for which t = 0 is a regular singularity. Hence, the dominant
singular behaviour of Y1(t) near t = 0 will be of the form

Y1(t) ∼ Ktβ(ln t)M , as t → ∞, (5.1)

where K, β ∈ C and M is a non-negative integer. Again, we will be able to obtain an
asymptotic expansion for as,1 as s → ∞ and a re-expansion of the form (2.13) for w1(z).
The main difference will be that in these expansions the coefficients will not be as,2.
Hence, it seems that we lose the resurgence property.

In the case in which either f(z) or g(z) has an essential singularity in the disc |z| � A
we have no information on the possible singular behaviour of Y1(t) near t = 0.

6. Two examples

Example 6.1. We take ρ1 = 1 and ρ2 = 3
2 . Hence, f0 = − 5

2 and g0 = 3
2 . For the other

coefficients we take

fk =
−2
3k

, gk =
1
3k

, for k = 1, . . . , 5, (6.1)

and fk = gk = 0, for k � 6. Thus α1 = 5
3 and α2 = 1

9 . To compute the constant K1 that
appears in (2.9) and (2.13) we take s = 40, compute

a40,1 = 6.498 951 116 498 708 068 4 × 1067,

(
ρ2

ρ1 − ρ2

)40+α1 20∑
j=0

aj,2Γ (40 − j + α1 − α2)
(

ρ1 − ρ2

ρ1

)j+α2

= 3.470 227 511 697 557 373 2 × 1068 − 2.911 866 625 166 670 549 6i × 1068,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.2)
via (2.7), and obtain from (2.9)

K1 = 0.109 898 877 075 266 717 90 + 0.092 216 107 220 653 536 44i. (6.3)
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Figure 4. The relative size of the terms in (2.13).

In this example we want to approximate w1(60) via (2.8 a) and (2.13). The optimum
number of terms on the right-hand side of (2.8 a) is, according to (2.14), 15 terms. We
take 15 terms in (2.8 a) and obtain for w1(60) the approximation

1.465 652 254 306 984 730 9 × 1077. (6.4)

For our second approximation we take in (2.13) N1 = 15 and 10 terms in the j-sum and
obtain

1.465 650 555 270 188 171 3 × 1077. (6.5)

The relative size of the terms in (2.13) is displayed in figure 4. Note that we truncate the
original asymptotic expansion at its smallest term.

To compute the ‘exact’ value for w1(60) we use 41 terms on the right-hand side of
(2.8 a) and obtain

w1(161) = 9.783 773 690 518 290 058 7 × 10280,

w1(160) = 6.178 267 433 484 865 222 2 × 10278,

}
(6.6)

and use (1.1) in the backwards direction. In this way we obtain for w1(60) the approxi-
mation

1.465 650 555 270 195 806 2 × 1077. (6.7)

Example 6.2. As a second example we study the large a asymptotics of the Gauss
hypergeometric function, but first we introduce this function. The Gauss hypergeometric
function is defined via the series

2F1

(
a, b

c
; x

)
=

∞∑
s=0

(a)s(b)s

(c)ss!
xs, (6.8)

where Pochhammer’s symbol (a)s is defined by (a)s = Γ (a + s)/Γ (a). The Gauss series
(6.8) converges for all |x| < 1, and is defined elsewhere by analytic continuation. The
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right-hand side of (6.8) can also be seen as an asymptotic expansion of the left-hand side
for large |c|, and in that case the x domain of validity is much larger. Thus

2F1

(
a, b

c
; x

)
∼

n−1∑
s=0

(a)s(b)s

(c)ss!
xs + O(c−n), (6.9)

as |c| → ∞. The precise restrictions on a, b and x are discussed in [13].

Let

w(a) = Γ (a)2F1

(
a, b

c
; x

)
. (6.10)

We will assume that x is fixed and 0 < phx < 2π. From the recurrence relation of the
hypergeometric function with respect to the parameter a (see [1]) we obtain

w(a + 2) +
(2 − x)a + 2 − c + (b − 1)x

x − 1
w(a + 1) +

a(c − a − 1)
x − 1

w(a) = 0. (6.11)

Thus

f0 =
2 − x

x − 1
, f1 =

2 − c + (b − 1)x
x − 1

, g0 =
1

1 − x
, g1 =

2 − c

1 − x
, (6.12)

and fn = gn = 0 for n = 2, 3, . . . . The reader can check that

ρ1 = 1, ρ2 =
1

1 − x
, α1 = b, α2 = c − b, (6.13)

and that

as,1 =
(b)s(b − c + 1)s

s!
(−x)−s, as,2 =

(1 − b)s(c − b)s

s!

(
1 − x

x

)s

. (6.14)

It follows from (3.2) that since fn = gn = 0 for n = 2, 3, . . . the Borel transforms have
no singularities at the origin. Hence, the restrictions (2.10) and (2.12) do not apply in
this example and Theorems 2.2 and 2.3 are valid for all non-zero ρ1 and ρ2 such that
ρ1 �= ρ2, that is, for all fixed x /∈ {0, 1,∞}.

Theorem 2.1 tells us that there are solutions w1(a) and w2(a) of (6.11) such that

w1(a) ∼
∞∑

s=0

as,1Γ (a − b − s) ∼ Γ (a − b)
∞∑

s=0

(b)s(b − c + 1)s

(b − a + 1)ss!
x−s, (6.15 a)

w2(a) ∼ (1 − x)−a
∞∑

s=0

as,2Γ (a + b − c − s)

∼ Γ (a + b − c)
(1 − x)a

∞∑
s=0

(1 − b)s(c − b)s

(c − a − b + 1)ss!

(
1 − 1

x

)s

, (6.15 b)
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as a → +∞. Thus

Γ (a)2F1

(
a, b

c
; x

)
∼ C1(a)Γ (a − b)

∞∑
s=0

(b)s(b − c + 1)s

(b − a + 1)ss!
x−s

+ C2(a)
Γ (a + b − c)

(1 − x)a

∞∑
s=0

(1 − b)s(c − b)s

(c − a − b + 1)ss!

(
1 − 1

x

)s

, (6.16)

where C1(a) and C2(a) are periodic functions in a with period 1. To find the exact
values of these periodic functions we are going to express w1(a) and w2(a) in terms
of hypergeometric functions. The surprising fact is that although the right-hand sides
of (6.15) converge in certain x domains to hypergeometric functions and according to (6.9)
these hypergeometric functions have the right-hand sides of (6.15) as their asymptotic
expansions, these hypergeometric functions are not equal to wj(a), which are defined via
the Borel transform representation (3.1). Thus

w1(a) �= Γ (a − b)2F1

(
b, b − c + 1
b − a + 1

;
1
x

)
. (6.17)

To obtain the correct expressions of w1(a) and w2(a) in terms of hypergeometric functions
we use (6.14) in (3.5) and obtain

Y1(t) = (1 − t)bΓ (−b)2F1

(
b, b − c + 1

b + 1
;
1 − t

x

)
,

Y2(t) =
(

1 − t

1 − x

)c−b

Γ (b − c)2F1

(
1 − b, c − b

c − b + 1
;
t + x − 1

x

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.18)

We substitute these results into (3.1), use one integration by parts to simplify the inte-
grand, and obtain

w1(a) =
Γ (a)Γ (a − c + 1)
Γ (a + b − c + 1) 2F1

(
b, b − c + 1

a + b − c + 1
; 1 − 1

x

)
,

w2(a) = (1 − x)−a Γ (a)Γ (a − c + 1)
Γ (a − b + 1) 2F1

(
1 − b, c − b

a − b + 1
;
1
x

)
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6.19)

In this derivation we use contour integral representations of hypergeometric functions
(see [12]), but omit the details. The connection relation (3.9.7) in [6] of hypergeometric
functions can be rewritten as

w1(a) = Γ (a − b)2F1

(
b, b − c + 1
b − a + 1

;
1
x

)
+

πe(c−a−b)πix2b−c(1 − x)c−b

Γ (b)Γ (b − c + 1) sin((b − a)π)
w2(a), (6.20)

which clearly shows that in general (6.17) is correct. To obtain the period functions C1(a)
and C2(a) in (6.16) we use the connection relation (3.9.13) in [6]

w(a) = (−x)−b Γ (c)
Γ (c − b)

w1(a) +
(

x

1 − x

)b−c
Γ (c)
Γ (b)

w2(a), (6.21)
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and obtain

C1(a) = (−x)−b Γ (c)
Γ (c − b)

, C2(a) =
(

x

1 − x

)b−c
Γ (c)
Γ (b)

. (6.22)

We have shown that for large a the hypergeometric function has asymptotic expansion
(6.16), where C1(a) and C2(a) are given in (6.22). This result holds for fixed b, c and x,
where 0 < phx < 2π. The large a asymptotics is also discussed in [6]. Equation (7.2.22)
in [6] is connection relation (6.21), and the dominant behaviour is determined. However,
asymptotic expansion (6.16) seems to be new.

The first part of Theorem 2.2 gives us the expansion

(b)s(b − c + 1)s

s!
(−x)−s

∼ K1(−x)c−2b−s(1 − x)b−c
∞∑

j=0

(−1)j (1 − b)j(c − b)j

j!
Γ (s − j + 2b − c), (6.23)

as s → ∞. We compare this with the well-known result (see [10, (2.2.42)])

Γ (b + s)Γ (b − c + 1 + s)
s!

∼
∞∑

j=0

(−1)j (1 − b)j(c − b)j

j!
Γ (s − j + 2b − c), (6.24)

as s → ∞. Hence, we can compute the constant

K1 =
(−x)2b−c(1 − x)c−b

Γ (b)Γ (b − c + 1)
and similarly K2 =

xc−2b(1 − x)b−c

Γ (1 − b)Γ (c − b)
. (6.25)

We could now use these constants and obtain an exponentially improved version of
asymptotic expansion (6.16). The numerical results are similar to those of Example 6.1.
The re-expansions are in terms of hypergeometric functions with a large parameter.
Hence, the approximants are roughly of the same complexity as the function that we try
to approximate. Thus the exponentially improved version of asymptotic expansion (6.16)
is not very interesting.
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