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ABSTRACT

The inverse problem of real-time reconstruction of full-field structural
displacements is addressed through the application of a new variational formulation
leading to versatile, robust and computationally efficient inverse shell finite element
analysis.  Utilizing surface strain measurements from strain sensors mounted on the
load-carrying structural components, the methodology enables accurate computations
of the three-dimensional displacement field. This high fidelity computational
technology is essential for providing feedback to the actuation and control systems of
the next generation of aerospace vehicles.

INTRODUCTION

Real-time reconstruction of full-field structural displacements is seen as
enabling technology for providing feedback to the actuation and control systems of
the next generation of aerospace vehicles with morphed-wing architecture. To
facilitate such capabilities, load-carrying structural members will be instrumented
with a network of strain sensors, e.g., fiber optic sensors with Bragg gratings.

Reconstruction of a displacement vector at every material point of the structure
from a set of discrete strain measurements constitutes an inverse mathematical
problem.  Inverse problems are ill posed in the sense that they do not necessarily
satisfy conditions of existence, uniqueness, and stability. For this class of
mathematical problems that use experimentally measured data known only
approximately and containing random error, Tikhonov and Arsenin [1] formulated a
general method for constructing approximate solutions that are stable under small
changes in the measured data. Their approach is based upon the fundamental
concept of a regularizing operator. Recently, Shkarayev et al. [2-3], Bogert et al.
[4], and Tessler and Spangler [5], using different least-squares approaches, focused
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on the inverse problem of reconstructing the three-dimensional displacements in plate
and shell aerospace structures from in-situ strain-sensor measurements.

This paper presents an inverse finite element method (iFEM) based on the Tessler-
Spangler [5] least-squares variational formulation. The error functional uses the least-
squares-difference terms comprised of the Mindlin-theory strain measures that are
expressed in terms of the displacements and the corresponding strain measures
computed from the experimental strains. A penalty-parameter controlled regularization
term enforces appropriate constraint conditions on the transverse shear strains.  By
virtue of these assumptions, all strain compatibility relations are explicitly satisfied.
The inverse formulation does not use elastic or inertial material properties.

A three-node, inverse-shell element is developed having six conventional degrees-
of-freedom at each node, i.e., three displacements and three rotations. The kinematic
variables are interpolated using the lowest-order anisoparametric 

€ 

C0 -continuous
functions, i.e., linear in-plane displacements and bending rotations, and a constrained-
type quadratic deflection. These functions were adopted from an earlier Mindlin shell
element formulation [6-7].

A computational example is presented for a statically loaded cantilevered plate for
which experimentally measured strains have been obtained in a structures laboratory.
Application of iFEM is demonstrated on this problem, and comparisons with the
measured deflections and those obtained using the direct FEM are discussed.

THEORETICAL FOUNDATION

The deformations of an inverse, three-node flat shell element, herein denoted as
iMIN3, are fully defined by the three components of the displacement vector, in
accordance with Mindlin theory (refer to Figure 1):

Figure 1.  Three-node, inverse shell element, iMIN3.
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ux( x, y, z) = u + z θy , uy (x, y, z) = v + z θ x , uz ( x, y, z) = w (1)

where 

€ 

u = u( x, y)  and 

€ 

v = v( x, y)  are the mid-plane displacements in the 

€ 

x  and 

€ 

y
directions, respectively; 

€ 

θx =θx (x, y)  and 

€ 

θy = θy (x, y)  are the rotations of the

normal about the negative 

€ 

x  and positive 

€ 

y  axes, respectively; and 

€ 

w = w( x, y)  is the
deflection variable which is constant across the thickness coordinate 

€ 

z ∈ [−t, t], with
2t denoting the total shell thickness.

The strain-displacement relations, taking into account Equations (1), have the
form
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≡ e u( ) + z k u( ) (2)

where the membrane strain measures associated with the stretching of the middle
surface are given as
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≡ Lm u  (3)

In addition, the bending curvatures are
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k u( ) ≡
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≡ Lb u  (4)

The transverse shear strains can also be expressed in terms of the same five
kinematic variables as
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g u( ) ≡
γxz 0
γyz0
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≡ Ls u  (5)



Assuming the structure is instrumented with strain sensors (e.g., conventional
strain rosettes or fiber-optic Bragg-grating sensors), strains are measured at the
locations 

€ 

xi = (xi , yi , ±t)  representing the top and bottom shell surfaces (refer to
Figure 2).  Evaluating Equations (2) at these discrete locations, the relationships
between the measured surface strains and the reference plane strains and curvatures
can be readily established as
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In the above equations, the 

€ 

ε superscript is used to signify the existence of
experimental error in the strain measurements and, hence, in 

€ 

ei
ε  and 

€ 

ki
ε .

THREE-NODE, INVERSE SHELL ELEMENT

Using the above stated assumptions, a simple and versatile inverse shell element is
developed consisting of three nodes and six engineering degrees-of-freedom (dof) at
each node, as illustrated in Figure 1.  To avoid singular numerical solutions in shell
models, a drilling rotation, 

€ 

θz , degree-of-freedom is added using the artificial stiffness
approach [7].

Figure 2.  Shell surfaces instrumented with strain rosettes.
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The element matrices are derived from a least squares smoothing functional [5],
for which an extremum is sought for a fixed value of a scalar penalty parameter 

€ 

λ > 0 .
For an inverse shell finite element of area Ae, this functional can be expressed as

€ 

Φe
λ(u) = e u( ) −eε

2
+ k u( ) −kε

2
+ λ g u( ) −gε

2

 (8)

In Equation (8), the squared norms are given as,

€ 

e u( ) −eε
2
≡
1
n

e(u)i − eiε[ ]
2
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n

∑ dx
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2
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g u( ) −gε
2
≡
1
n
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2
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n

∑ dx
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2
≡ g(u)2dx
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where 

€ 

n ≥1 is the number of strain sensor locations that fall within the element
domain.

Note that the squared norms in Equations (9) differ slightly from those introduced
in [5].  The main difference is that the curvature norm is normalized with respect to the
squared shell thickness; whereas in [5] the shell reference area is used. The present
curvature norm, with respect to the geometric parameters, is consistent with the
bending strain energy corresponding to Mindlin theory.

In Equations (9), the second form of the transverse shear norm makes the
formulation applicable only to thin (Kirchhoff-type) plate and shell structures that do
not exhibit shear deformation; whereas the first form applies to moderately thick,
shear-deformable structures.  The transverse shear strains, however, cannot be directly
obtained from the surface strains, and auxiliary procedures are required in order to
determine these quantities (refer to [5] for further discussions of this issue). The
transverse shear norm in Equation (8) is controlled by a small regularization parameter

€ 

λ > 0  (the 

€ 

λ  values in the range of 10-5–10-8 yield consistent and stable performance),
providing the appropriate coupling control between the bending and transverse shear
terms.

Utilizing the displacement finite element method, the displacement field in
Equation (8) is interpolated using a set of suitable shape functions,

€ 

u =Nue, (ue
T = {ui , vi, wi , θxi , θyi}, i =1,2,3)  (10)

where N denotes a matrix of 

€ 

C0 -continuous anisoparametric shape functions. The
kinematic variables are consistent with respect to the order of interpolation, where the
deflection variable, w, is interpolated with a quadratic polynomial, and the other four
variables vary linearly over the element (refer to [6-7] for further details on these
interpolations).  The resulting membrane strains and bending curvatures are constant,



and the transverse shear strains are linear, across the element. This implies that, for a
given distribution of strain sensors, an optimal iFEM mesh would require the strain
sensors be located at the element centroids.

Substituting Equation (10) into Equations (9), and minimizing Equation (8) with
respect to the nodal displacement dof, results in the element matrix equation,

€ 

Kue = fe  (11)

where, for brevity, the detailed expressions for K and fe are omitted.
The element matrices of the discretized structure are then assembled into a linear

system of equations, taking into account appropriate transformations of the
displacement dof from the element to global system coordinates, and performing the
standard finite element assembly operation.  Mindlin-type displacement boundary
conditions, corresponding to the problem definition, are then imposed, producing a
nonsingular system matrix (refer to [5] for the discussion on the boundary conditions
for the inverse formulation).  The resulting solution for the displacement dof exists and
is unique since the system matrix is nonsingular. Once the nodal displacements are
obtained, a straightforward computation at the element level provides the results for
the smoothed element strains, and with the use of material constitutive relations, the
stresses are also readily computed. All of these computations are based on linear
equations and therefore are computationally efficient.

CANTILEVERED PLATE IN BENDING

A cantilevered aluminum plate subjected to a static transverse force near the tip
was tested in a structures laboratory [4]. The plate was also analyzed using the direct
FEM plate bending analysis and the inverse FEM using a relatively coarse mesh of
iMIN3 elements.  The plate dimensions, loading, boundary conditions, material
properties, and locations of the 28 strain rosettes, positioned on the bottom of the plate
surface, are depicted in Figure 3.  Also shown is a triangular mesh consisting of 28
iMIN3 elements. The mesh is such that at least one strain rosette falls within each
element. The mesh extends up to the location of the applied force only, since the part
of the plate to the right of the load is free of stress and need not be modeled.

To establish an accurate numerical solution, a direct FEM convergence study was
carried out with three levels of progressively increasing mesh refinements, using
meshes of triangular and quadrilateral elements. The most refined mesh consisted of
432 square, uniformly distributed elements, possessing 1400 dof. In the analyses, three
different elements were employed:  a three-node triangular element, MIN3, available
in NASA’s COMET-AR [8] code, a three-node triangular element, S3, and a reduced-
integration quadrilateral shell element, S4R, both available in the ABAQUS [9] code.
All element models converged rapidly to the deflection of approximately 0.27 inches.
It is noted that even the low-fidelity mesh of MIN3 elements (the mesh is shown in
Figure 3) produced adequate deflection results, with the error for the maximum
deflection less than 1 percent.  This observation suggests that the low-fidelity mesh
can also be effective for the inverse analysis since iMIN3 has the same kinematic
interpolations as MIN3.



In Figure 4, the deflection contours corresponding to the direct FEM analysis, using
the high-fidelity mesh of S4R elements and the inverse FEM using the low-fidelity
mesh of iMIN3 elements, are presented.  In the inverse FEM solution, the actual strain
measurements from the 28 rosettes were used.  As depicted in the figure, the direct and
inverse FEM results are found to be in excellent agreement across the entire plate
domain including the maximum values.

Figure 3.  Cantilevered plate under transverse force.

Figure 4. Deflection contours corresponding to direct FEM (high-fidelity mesh of S4R elements,
ABAQUS [9]) and inverse FEM (low-fidelity mesh of iMIN3 elements, COMET-AR [8]).
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CONCLUSIONS

In this paper, a novel inverse finite element method (iFEM) was developed for the
inverse problem of reconstructing the full-field structural displacements from
experimentally measured surface strains in plate and shell structures. Based on a least
squares smoothing functional that employs the complete set of strain measures, a
three-node inverse shell element was developed enabling accurate, robust, and
computationally efficient high-fidelity deformation reconstruction solutions. The
methodology explicitly enforces all strain compatibility relations and does not use
elastic or inertial material properties. It is therefore applicable to both static and
dynamic applications.

An example problem of a cantilevered plate was examined for which experimental
measurements were obtained in a structures laboratory.  Direct and inverse FEM
solutions were obtained to validate the high accuracy predictions of deformations
afforded through the inverse FEM modeling.

The methodology is seen as essential technology for providing real-time
displacement feedback to the actuation and control systems of the next generation of
aerospace vehicles, as well as for applications to airframe structural health-monitoring
information systems.

REFERENCES

1. Tikhonov, V., and Arsenin, V. Y., 1977. “Solutions of Ill-Posed Problems,” Winston,
Washington, D.C.

2. Shkarayev, S., Krashantisa, R., and Tessler, A., 2001. “An Inverse Interpolation Method
Utilizing In-Flight Strain Measurements for Determining Loads and Structural Response of
Aerospace Vehicles,” Proceedings of Third International Workshop on Structural Health
Monitoring, Stanford, California, pp. 336-343.

3. Shkarayev, S., Raman, A., and Tessler, A., 2002. “Computational and Experimental Validation
Enabling a Viable In-Flight Structural Health Monitoring Technology,” Proceedings of First
European Workshop on Structural Health Monitoring, Cachan (Paris), France, pp. 1145-1150.

4. Bogert, P. B., Haugse, E. D., and Gehrki, R. E., 2003. “Structural Shape Identification from
Experimental Strains using a Modal Transformation Technique,” Proceedings of 44th

AIAA/ASME/ASCE/AHS Structures. Structural Dynamics, and Materials Conference, AIAA
2003-1626, Norfolk, Virginia.

5. Tessler, A. and Spangler, J. L., 2003. “A Variational Principle for Reconstruction of Elastic
Deformations in Shear Deformable Plates and Shells,” NASA/TM-2003-212445.

6. Tessler, A., and Hughes, T. J. R., 1985. “A Three-Node Mindlin Plate Element with Improved
Transverse Shear,” Computer Methods in Applied Mechanics and Engineering, Vol. 50, pp. 71-
101.

7. Tessler, A, 1990. “A C0-Anisoparametric Three-Node Shallow Shell Element,” Computer
Methods in Applied Mechanics and Engineering, Vol. 78, pp. 89-103.

8. Moas, E. (ed.) 1997. “COMET-AR User’s Manual,” NASA/CR-97-206284.
9. ABAQUS/Standard User’s Manual, Version 6.3.1, Hibbitt, Karlsson, and Sorensen, Inc.,

Pawtucket, RI, 2002.


